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Interval methods for ODEs often face two obstacles in practical computations: the dependency problem and the wrapping
effect. Taylor model methods, which have been developed by Berz and his group, have recently attracted attention. By
combining interval arithmetic with symbolic calculations, these methods suffer far less from the dependency problem than
traditional interval methods for ODEs. By allowing nonconvex enclosure sets for the flow of a given initial value problem,
Taylor model methods have also a high potential for suppressing the wrapping effect.

Makino and Berz [1] advocate the so-called blunting method. In this paper, we analyze the blunting method (as an interval
method) for a linear model ODE. We compare its convergence behavior with that of the well-known QR interval method.
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1 Introduction

We consider a Taylor series method with constant stepsize and order on the test problem

y′ = Ay, y(0) = y0 ∈ y0,

where y ∈ Rn, A ∈ Rn×n, n ≥ 2, and y0 is a given interval vector, accounting for uncertainty in initial conditions.
We represent the enclosure of

y(tj ; 0,y0) = {y(tj ; 0, y0) | y0 ∈ y0}

as {
uj + Sjα + Bjr | α ∈ α, r ∈ rj

}
,

where uj , α, r ∈ Rn, rj ∈ IRn; Sj , Bj ∈ Rn×n, Bj nonsingular, and α = y0 − m(y0). For an interval vector z, m(z)
denotes its midpoint.

Initially, when j = 0,

u0 = m(y0), S0 = I, B0 = I, and r0 = 0.

In

y(tj ; 0,y0) ∈
{
uj + Sjα + Bjr | α ∈ α, r ∈ rj

}
,

•
{
uj + Sjα | α ∈ α

}
is an approximation to y(tj ; 0,y0), and

• {Bjr | r ∈ rj} is an approximation of the overestimation, or excess, accumulated in the integration process from 0 to tj .

2 The blunting method

In

rj = (B−1
j Cj)rj−1 + B−1

j ej , Cj = TBj−1, T =
k−1∑
i=0

(hA)i

i!
,

we wish to select a nonsingular Bj such that

{Cjr + e | r ∈ rj−1, e ∈ ej} ⊆ {Bjr | r ∈ rj},
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and {Bjr | r ∈ rj} is a tight enclosure of

{Cjr + e | r ∈ rj−1, e ∈ ej},

where ej = zj − m(zj), and zj is the local error of the Taylor series method.
In the QR method, we perform a QR factorization Cj = QjRj and select Bj = Qj . This choice leads to the simultaneous

iteration QjRj = TQj−1 [2]. In the blunting method, we select Bj from Cj = TBj−1 = Q∗
jR

∗
j (QR factorization of TBj−1),

B̂j = CjDj + QjGj , and Bj = B̂jFj . Dj is a diagonal matrix such that CjDj is normalized (each column is of length 1 in
‖ · ‖2). Gj is a diagonal matrix with blunting factors > 0 [1]. Fj is a diagonal matrix such that Bj = B̂jFj is normalized.
Letting Vj = (R∗

jDj +Gj)Fj , we obtain the simultaneous iteration Q∗
j (R

∗
jV

−1
j−1) = TQ∗

j−1. Choosing Q0 = Q∗
0 = I (where

I is the identity matrix), the relations between the respective matrices in the QR and in the blunting methods are Qj = Q∗
j ,

Rj = R∗
jV

−1
j−1.

We are interested in the excess propagation in

(B−1
j Cj)rj−1 = (B−1

j TBj−1)rj−1.

In the QR method, we have B−1
j TBj−1 = QT

j TQj−1 = Rj , whereas the blunting method reads

B−1
j TBj−1 = V −1

j QT
j QjR

∗
j = V −1

j R∗
j = V −1

j RjVj−1.

Since the width of rj is

w(rj) = |B−1
j TBj−1|w(rj) + |B−1

j |w(zj),

the excess propagation depends on the spectral radius of a certain matrix. In the QR method, this matrix is [2]

Hj,i = |QT
j TQj−1| |QT

j−1TQj−2| · · · |QT
i+1TQi| = |Rj | |Rj−1| · · · |Ri+1|,

whereas in the blunting method, it is

Pj,i = |B−1
j TBj−1| |B−1

j−1TBj−2| · · · |B−1
i+1TBi| = |V −1

j RjVj−1| |V −1
j−1Rj−1Vj−2| · · · |V −1

i+1Ri+1Vi|.

Now we consider the case that T has eigenvalues λi of distinct magnitudes, i.e. |λ1| > |λ2| > · · · |λn| > 0. In the
QR method, the diagonal of |Rj | converges to (|λ1|, |λ2|, · · · , |λn|), as j → ∞. Thus, as j becomes sufficiently large, the
diagonal of the upper triangular matrix Hj,i behaves like(

|λ1|j−i+1, |λ2|j−i+1, . . . , |λn|j−i+1
)
.

On the other hand, the diagonal of the upper triangular matrix Pj,i behaves like(
|λ1|j−i+1, α

(2)
i,j |λ2|j−i+1, . . . , α

(n)
i,j |λn|j−i+1

)
,

where

α
(k)
i,j =

(Vi)k,k

(Vj)k,k
.

Since the α
(k)
i,j can be bounded above, the spectral radius of Pj,i and the spectral radius of Hj,i both tend to |λ1|j−i+1, as

j →∞, so that the excess propagation in both methods should be similar, for j sufficiently large.

3 Remarks

• The blunting method and the QR method both work well for our simple test problem y′ = Ay (assuming T has eigenval-
ues of distinct magnitude).

• The suggested blunting factor 10−3 [1] may not always be a good choice. It seems reasonable for y′ = Ay to start with
small blunting factors and increase them as j increases.

• At present, we do not know how to analyze the case that T has two or more eigenvalues of the same magnitude (this
includes the important case the T has a pair of complex conjugate eigenvalues) or how to accommodate permutations in
the QR and blunting methods. This question will be the subject of future research.
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