
In this paper, we describe an algorithm for approximating functions of the form f(x) =∫ b
a x

µσ(µ) dµ over [0, 1], where σ(µ) is some signed Radon measure, or, more generally, of the
form f(x) = 〈σ(µ), xµ〉, where σ(µ) is some distribution supported on [a, b], with 0 < a <
b < ∞. One example from this class of functions is xc(log x)m = (−1)m〈δ(m)(µ− c), xµ〉,
where a ≤ c ≤ b and m ≥ 0 is an integer. Given the desired accuracy ε and the values of
a and b, our method determines a priori a collection of non-integer powers t1, t2, . . . , tN ,
so that the functions are approximated by series of the form f(x) ≈

∑N
j=1 cjx

tj , and a set
of collocation points x1, x2, . . . , xN , such that the expansion coefficients can be found by
collocating the function at these points. We prove that our method has a small uniform
approximation error which is proportional to ε multiplied by some small constants, and
that the number of singular powers and collocation points grows as N = O(log 1

ε ). We
demonstrate the performance of our algorithm with several numerical experiments.
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1 Introduction

The approximation of functions with singularities is a central topic in approximation
theory. One motivating application is the efficient representation of solutions to partial
differential equations (PDEs) on nonsmooth geometries or with discontinuous data, which
are known to have branch-point singularities. Substantial progress has been made in
this area, with perhaps the most common approach being rational approximation and its
variants. Alternative approaches include the use of approximation methods for smooth
functions on the real line, applied after a change of variables to ensure a rapid function
decay and the translation of singularities to infinity, and schemes that make use of
basis functions obtained through the discretization of certain integral operators. If the
dominant characteristics of the functions to be approximated are known a priori, a class
of methods called expert-driven approximation can also be used.

Rational approximation is a classical and well-established method for approximating
functions with singularities. Rational functions r(x) = p(x)/q(x) are said to be of type
(n,m) if p and q are polynomials of degree at most n and m, respectively, and the order
of r(x) is defined as max (deg(p),deg(q)). In 1964, Newman proved that there exists
an n-th order rational approximation to the function f(x) = |x| on [−1, 1], converging
uniformly at a rate of O(exp(−C

√
n)) for some constant C > 0 [25]—compare this to the

best polynomial approximation to |x| on [−1, 1], which can only achieve a convergence
rate no better than O(n−1). Furthermore, he observed that the same approximation also
applies to the function f(x) =

√
x and, more generally, to the functions f(x) = xα on

[0, 1], where α > 0. Notably, Newman’s approximation utilizes poles that are clustered
exponentially and symmetrically around zero along the imaginary axis.

Numerous papers have been published on rational approximation methods for functions
with singularities since Newman’s discovery (see, for example, [10], [32], [22], [7]). The
best possible rational approximation is the so-called minimax approximation, which
minimizes the maximum uniform approximation error between the function and its rational
approximate. It was shown by Stahl in 1994 that error of the minimax approximation
to f(x) = xα on [0, 1], where α > 0, converges at the rate O(exp(−2π

√
αn)) [32]. This

minimax approximation is, however, not easy to find, and is not necessarily unique
in the complex plane [13]. In practice, by assuming that the singular functions being
approximated fall into certain regularity classes, the poles of a rational approximation
can often be determined a priori, similar to those employed in Newman’s method, in
order to achieve a root-exponential convergence rate. One such method is Stenger’s
approximation [33], which involves interpolating the functions at a set of preassigned
points exponentially clustered near the endpoints of the interval, using a rational function
of type (2n + 2, 2n + 1) with poles that are likewise exponentially clustered at the
endpoints.

While Stenger’s method uses explicit interpolation formulas for approximating func-
tions falling into certain regularity classes, rational approximations can also be constructed
numerically using other representations. By using Euclidean division and the method of
undetermined coefficients, it is possible to show that any rational function r(x) of type
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(n+m,n) with distinct poles can be written in the form

r(x) =

m∑
j=0

bjx
j +

n∑
j=1

aj
x− zj

. (1)

In order to approximate functions with branch point singularities, lightning methods ([12],
[11]) fix the poles in the representation (1) a priori to cluster exponentially along rays in
the complex plane, terminating at the singular points of the function being approximated.
The coefficients {aj} and {bj} are then determined by solving a least squares problem
at oversampled points. It was proved in [12] that, for any sequence of n complex points
exhibiting exponential clustering, with spacing scaling as O(n−1/2) on a logarithmic scale,
there exists a sequence of rational approximations {rn} of type (n− 1, n) with poles at
these points, which achieves a root-exponential rate of convergence O(exp(−C

√
n)) for

functions with branch point singularities.
Rather than fixing the poles of a rational function a priori, one can instead fix the

interpolation or support points of a rational interpolant. As shown in [24], any rational
function r(x) of type (n, n) which does not have poles at the points {zj} can be written
in the barycentric form

r(x) =

n+1∑
j=1

wjfj
x− zj

/ n+1∑
j=1

wj
x− zj

, (2)

so that r(zj) = fj . The adaptive Antoulas-Anderson (AAA) algorithm [24] is a rational
function approximation method based on this form, which increases the order n at each
iteration, selecting the additional collocation point zn+1 in a greedy fashion. Like lightning
methods, the weights are found by solving a least-squares problem. Unlike lightning
methods, however, the locations of the singular points of the function being approximated
do not have to be known in advance. The AAA method is also root-exponentially
convergent, and achieves a convergence rate close to the minimax rate.

While all of the aforementioned methods can achieve root-exponential rates of conver-
gence, Trefethen et al. [36] made a key observation that the constant C in the rates of
convergence O(exp(−C

√
n)) can be improved for most rational approximation methods

by employing poles with so-called tapered exponential clustering around singularities,
so that the poles {zj} cluster like O(

√
n −
√
j) on a logarithmic scale. It was shown

in [16] that lightning approximations (1) with m = O(
√
n) and with poles {zj} with

tapered exponential clustering attain the minimax rate for the functions f(x) = xα on
[0, 1], where α > 0.

Rational approximation can also be applied after a change of variables. An approach
referred to as reciprocal-log approximation [23] uses approximations of the form r(− log x),
where r(s) is an n-th order rational function with poles determined a priori, either lying
on a parabolic contour or confluent at the same point in the complex plane. Similarly
to lightning methods, the coefficients are determined through a linear least-squares
problem using collocation points that cluster exponentially around z = 0. This method
converges at a rate of O(exp(−Cn)) or O(exp(−Cn/ log n)) for functions with branch-
point singularities, depending on the form of the approximation and the function’s
behaviour in the complex plane.
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An alternative approach is to use a combination of a change of variables and an
approximation scheme that converges rapidly for smooth functions on the real line. By
applying smooth transformations to functions with singularities at the endpoints of
some finite intervals on the real line, they can be transformed into rapidly decaying
functions, with the singularities mapped to the point at infinity. After this transformation,
such functions can be approximated accurately using the Sinc approximation, by an
n-term truncated Sinc expansion. Two primary approaches of this type have been
developed: the SE-Sinc and DE-Sinc approximations (see, for example, [34], [26] and
[21]). The SE-Sinc approximation combines the single-exponential transformation with
the Sinc approximation, resulting in a convergence rate of O(exp(−C

√
n)), while the

DE-Sinc approximation combines the double-exponential transformation with the Sinc
approximation, to further improve the convergence rate to O(exp(−Cn/ log n)).

While the aforementioned methods require no special knowledge of the singularities
being approximated, a class of methods known as expert-driven approximation can be
used to leverage such information. For example, one can leverage knowledge of the leading
terms in the asymptotic expansion of the singularity to achieve a smaller approximation
error. This information is often available for the solutions of boundary value problems
for PDEs on domain with corners—as revealed by Lehman ([19]) and Wasow ([38]), the
solutions of the Dirichlet problem for linear second order elliptic PDEs in two dimensions
have singular expansions of the form

u(r, θ) ∼
∑

k,m,l≥0

ak,m,lr
k+l/α(rp log r)mϕk,m,l(θ), (3)

where ϕk,m,l are smooth functions, r is the radial distance from the corner, πα is the
interior angle at the corner (so that 1/α ≥ 1/2), and p ≥ 1 is an integer. Many
well-developed methods fall under the category of expert-driven approximation, such
as the method of auxiliary mapping (see, for example, [20], [1]), in which an analytic
change of variables is used to lessen the singular behaviour of the function, and enriched
approximation methods (see, for example, [15]), in which singular basis functions are used
to augment a conventional basis. Some examples of enriched approximation methods
include extended/generalized finite element methods (see, for example, [27], [8], [9]),
enriched spectral and pseudo-spectral methods (see, for example, [5], [12], [28]), and
integral equation methods using singular basis functions (see, for example, [29] and [30]).

A much different class of approaches is based on the idea that the functions we are
interested in approximating often belong to the range of certain integral operators. One
such method proposed by Beylkin and Monzón [4] involves representing a function by a
linear combination of exponential terms with complex-valued exponents and coefficients.
This method is motivated by the observation that many functions admit representations
by exponential integrals over contours in the complex plane, which can then be discretized
by quadrature. Instead of starting with a contour integral, the existence of such represen-
tations is only assumed implicitly, and the exponents (which they also call nodes) are
obtained by finding the roots of a c-eigenpolynomial corresponding to a Hankel matrix,
constructed from uniform samples of the function over the interval, while the coefficients
(or weights) are determined via a Vandermonde system. This method can be highly
effective for representing functions, though we note that their method only minimizes the
error at the sample points, and, for singular functions, they only try to control the error
on a subinterval which excludes the singularities.
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In this paper, we present a method for approximating functions with an endpoint
singularity over [0, 1] ⊂ R or, more generally, a curve Γ ⊂ C, where the functions have the

form f(x) =
∫ b
a x

µσ(µ) dµ, where 0 < a < b <∞, x ∈ [0, 1] or x ∈ Γ, and σ(µ) is some
signed Radon measure over [a, b] or some distribution supported on [a, b]. Some examples

of such functions are xc =
∫ b
a x

µδ(µ− c) dµ and xc(log x)m = (−1)m
∫ b
a x

µδ(m)(µ− c) dµ,
where a ≤ c ≤ b, m ∈ Z and m ≥ 0. Our method represents these functions as expansions
of the form f̂N (x) =

∑N
j=1 ĉjx

tj , so that ‖f − f̂N‖L∞[0,1] ≈ ε, where the singular powers
t1, t2, . . . , tN are determined a priori based on the desired approximation accuracy ε and
the values of a and b. The coefficients of the expansion are determined by numerically
solving a Vandermonde-like collocation problem

xt11 xt21 . . . xtN1
xt12 xt22 . . . xtN2
...

...
. . .

...

xt1N xt2N . . . xtNN



c1

c2
...
cN

 =


f(x1)
f(x2)

...
f(xN )

 (4)

for f(x) at the points x1, x2, . . . , xN , where the collocation points are likewise determined
a priori by ε, a and b. We both prove and show numerically that, in order to obtain a
uniform approximation error of ε, the number of basis functions and collocation points
grows as N = O(log 1

ε ).
Note that our assumption on the form of the functions being approximated resembles

the approach by Stenger in [33], in which he also assumed that the functions being
approximated belong to some predetermined regularity class. Our assumption means
that our method focuses on functions f(x) that are in the range of the truncated Laplace

transform after the change of variable x = e−s, with f(e−s) =
∫ b
a e
−sµσ(µ) dµ. The

reciprocal-log approximation [23] shares a similar idea. This method specializes in
approximating functions with branch-point singularities, such as f(x) = xα on [0, 1],
where α > 0, which are transformed into decaying exponentials e−sα by the same change
of variable. Their approach leverages the fact that certain rational approximations
can be obtained to approximate these decaying exponentials with an exponential rate
of convergence. Consequently, xα can be approximated with an exponential rate of
convergence using a rational approximation r(s) with the change of variable s = − log x.
In contrast, our method relies on the discretization of the integral representation of
f(e−s) through the use of the singular value decomposition of the truncated Laplace
transform. Our procedure yields the quadrature nodes that enable us to approximate
f(x) using singular powers. The methodology in [4] also bears certain similarities with
our method, in that they assume implicit integral representations of the functions, with
decaying exponential kernels. However, rather than directly discretizing the integrals
or the integral operators, they identify the exponential terms and coefficients in their
approximations through an analysis of the singular value decomposition of some Hankel
matrix constructed from the function values.

Our method converges exponentially, in contrast to rational approximation which
converges only at a root-exponential rate. When compared to the DE-Sinc approximation
method which requires a large number of collocation points placed at the both endpoints
after applying the smooth transformation (even when singularities only occur at only
one endpoint), and reciprocal-log approximation which uses many collocation points
together with least squares, our method has a small number of both basis functions
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and collocation points, such that the coefficients can be determined via a square, low-
dimensional Vandermonde-like system. Unlike the method proposed by Beylkin and
Monzón [4], which only ensures an accurate approximation at equidistant points, our
method ensures a small uniform error over the entire interval. Compared to expert-driven
approximation, our method does not require any prior knowledge of the singularity types,
besides the values of a and b, and the resulting basis functions depend only on these
values, together with the precision ε.

The structure of this paper is as follows. Section 2 reviews the truncated Laplace
transform and the truncated singular value decomposition of a matrix. Section 3 demon-
strates some numerical findings about the singular value decomposition of the truncated
Laplace transform. Section 4 develops the main analytical tools of this paper. Section 5
presents some numerical experiments which provide practical conditions for the use of the
theorems in Section 4. Section 6 shows that functions of the form f(x) =

∫ b
a x

µσ(µ) dµ can
be approximated uniformly by expansions in singular powers. Section 7 shows that the
coefficients of such expansions can be obtained numerically by solving a Vandermonde-like
system, and provides a bound for the uniform approximation error. Section 8 illustrates
that the previous results can be extended to the case where the measure is replaced by a
distribution. Section 9 describes the resulting numerical algorithm for approximating
functions of the form f(x) =

∫ b
a x

µσ(µ) dµ by expansions in singular powers. Finally,
Section 10 presents several numerical experiments which demonstrate the performance of
our algorithm.

2 Mathematical Preliminaries

In this section, we provide some mathematical preliminaries.

2.1 The Truncated Laplace Transform

Throughout this paper, we utilize the analytical and numerical properties of the truncated
Laplace transform, which have been previously presented in [17]. Here, we briefly review
the key properties.

For a function f(x) ∈ L2[a, b], where 0 < a < b <∞, the truncated Laplace transform
La,b is a linear mapping L2[a, b]→ L2[0,∞), defined by the formula

(La,b(f))(x) =

∫ b

a
e−xtf(t) dt. (5)

We introduce the operator Tγ : L2[0, 1]→ L2[0,∞), defined by the formula

(Tγ(f))(x) =

∫ 1

0
e
−x(t+ 1

γ−1
)
f(t) dt, (6)

so that Tγ is the truncated Laplace transform shifted from L2[a, b] to L2[0, 1], where
γ = b

a . It is clear that La,b and Tγ are compact operators (see, for example [3]).
As pointed out in [17], the singular value decomposition of the operator Tγ consists

of an orthonormal sequence of right singular functions {ui}i=0,1,...,∞ ∈ L2[0, 1], an
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orthonormal sequence of left singular functions {vi}i=0,1,...,∞ ∈ L2[0,∞), and a discrete
sequence of singular values {αi}i=0,1,...,∞ ∈ R. The operator Tγ can be rewritten as

(Tγ(f))(x) =

∞∑
i=0

αi

(∫ 1

0
ui(t)f(t) dt

)
vi(x), (7)

for any function f(x) ∈ L2[0, 1]. Note that

Tγ(ui) = αivi, (8)

and

T ∗γ (vi) = αiui, (9)

for all i = 0, 1, . . . , where T ∗γ : L2[0,∞)→ L2[0, 1] is the adjoint of Tγ , defined by

(T ∗γ (g))(t) =

∫ ∞
0

e
−x(t+ 1

γ−1
)
g(x) dx. (10)

Similarly, T ∗γ can be rewritten as

(T ∗γ (g))(t) =
∞∑
i=0

αi

(∫ ∞
0

vi(x)g(x) dx
)
ui(t). (11)

Furthermore, for all i = 0, 1, . . . ,

αi > αi+1 ≥ 0, (12)

and the sequence {αi}i=0,1,...,∞ decays exponentially fast in i, where the decay rate is
described in Theorem 2.2.

Assume that the left singular functions of La,b are denoted by ṽ0, ṽ1, . . . , and that the
right singular functions of La,b are denoted by ũ0, ũ1, . . . . Then, the relations between
the singular functions of La,b and those of Tγ are given by the formulas

ui(t) =
√
b− a ũi(a+ (b− a)t), (13)

and

vi(x) =
1√
b− a

ṽi

(
x

b− a

)
, (14)

for all i = 0, 1, . . . . It is observed in [17] that ṽ0, ṽ1, . . . are the eigenfunctions of the
4th order differential operator D̂ω, defined by(
D̂ω(f)

)
(ω) = − d2

dω2

(
ω2 d2

dω2
f(ω)

)
+ (a2 + b2)

d

dω

(
ω2 d

dω
f(ω)

)
+ (−a2b2ω2 + 2a2)f(ω),

(15)

where f ∈ C4[0,∞) ∩ L2[0,∞), and that ũ0, ũ1, . . . are the eigenfunctions of the 2nd
order differential operator D̃t, defined by(

D̃t(f)
)

(t) =
d

dt

(
(t2 − a2)(b2 − t2)

d

dt
f(t)

)
− 2(t2 − a2)f(t), (16)
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where f ∈ C2[a, b]. Thus, ṽi, for all i = 0, 1, . . . , can be evaluated by finding the solution
to the differential equation

− d2

dω2

(
ω2 d2

dω2
ṽi(ω)

)
+ (a2 + b2)

d

dω

(
ω2 d

dω
ṽi(ω)

)
+ (−a2b2ω2 + 2a2)ṽi(ω) = χ̂iṽi(ω),

(17)

where χ̂i is the ith eigenvalue of the differential operator D̂ω. Similarly, ũi, for all i = 0,
1, . . . , can be evaluated by finding the solution to the differential equation

d

dt

(
(t2 − a2)(b2 − t2)

d

dt
ũi(t)

)
− 2(t2 − a2)ũi(t) = χ̃iũi(t), (18)

where χ̃i is the ith eigenvalue of the differential operator D̃t. It is known that the singular
functions ṽi and ũi (and thus vi and ui) have exactly i distinct roots, for all i = 0, 1, . . . .

A procedure for the evaluation of the singular functions and singular values of the
operator Tγ is described comprehensively in [17] and [18].

The following lemma states that, for any function which is analytic and bounded
within a Bernstein ellipse Eρ, the coefficients in its Chebyshev expansion decay at an
exponential rate (see Chapter 8 of [37]). We will use it to prove that the singular values
α0, α1, . . . of Tγ decay exponentially.

Lemma 2.1. Let a function f analytic in [−1, 1] be analytically continuable to the open
Bernstein ellipse Eρ, where it satisfies |f(x)| ≤ M for some M . Then its Chebyshev
coefficients satisfy |a0| ≤M and

|ak| ≤ 2Mρ−k, k ≥ 1. (19)

The following theorem demonstrates that the singular values of Tγ decay at an
exponential rate, which decreases as γ increases.

Theorem 2.2. Suppose that α0, α1, . . . are the singular values of Tγ, for some γ > 1.
Then, αn decays exponentially with n, and the decay rate decreases with increasing γ.
Specifically, for each c ∈ (0, 1),

αn ≤

√
γ − 1

(1− c)(1− ρ)
ρ−

n
2 , (20)

where

ρ = 1 +
4c

γ − 1
+

√(
4c

γ − 1

)2

+
8c

γ − 1
. (21)

Proof. We can view Tγ,[−1,1] as the operator Tγ shifted from L2[0, 1] to L2[−1, 1], defined
by

(Tγ,[−1,1](f))(x) =

∫ 1

−1
e
−x( t+1

2
+ 1
γ−1

)
f(t) dt, (22)
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while its adjoint T ∗γ,[−1,1] : L
2[0,∞)→ L2[−1, 1] is given by

(T ∗γ,[−1,1](g))(t) =

∫ ∞
0

e
−x( t+1

2
+ 1
γ−1

)
g(x) dx. (23)

It follows that the self-adjoint operator S := T ∗γ,[−1,1]Tγ,[−1,1] : L
2[−1, 1] → L2[−1, 1] is

given by

(S(f))(x) =

∫ ∞
0

e
−y(x+1

2
+ 1
γ−1

)
[∫ 1

−1
e
−y( t+1

2
+ 1
γ−1

)
f(t) dt

]
dy

=

∫ 1

−1

[∫ ∞
0

e
−y(x+1

2
+ 1
γ−1

)
e
−y( t+1

2
+ 1
γ−1

)
dy
]
f(t) dt

=

∫ 1

−1

[∫ ∞
0

e
−y(x+t

2
+ γ+1
γ−1

)
dy
]
f(t) dt

=

∫ 1

−1

2(γ − 1)

(x+ t)(γ − 1) + 2(γ + 1)
f(t) dt. (24)

We now let

K(x, t) =
2(γ − 1)

(x+ t)(γ − 1) + 2(γ + 1)
, (25)

so that

(S(f))(x) =

∫ 1

−1
K(x, t)f(t) dt. (26)

Notice that, for each fixed x ∈ [−1, 1], K(x, t) has a pole at t = −x−2− 4
γ−1 < −1, where

γ ∈ (1,∞). Thus, for each fixed x ∈ [−1, 1], K(x, t) is analytic on [−1, 1], and admits an
analytic continuation to a Berstein ellipse Eρ with the semi-major axis a, where

a =
1

2
(ρ+

1

ρ
). (27)

We observe that a = 0− (−1− c 4
γ−1) = 1 + c 4

γ−1 , for some c ∈ (0, 1). Thus,

1 + c
4

γ − 1
=

1

2
(ρ+

1

ρ
), (28)

which implies

ρ = 1 +
4c

γ − 1
±

√(
4c

γ − 1

)2

+
8c

γ − 1
, (29)

where γ ∈ (1,∞). Since the definition of Eρ assumes ρ > 1, we have

ρ = 1 +
4c

γ − 1
+

√(
4c

γ − 1

)2

+
8c

γ − 1
, (30)
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where the parameter ρ decreases with increasing γ. It follows that K(x, z) can be
expanded as

K(x, z) =

∞∑
j=0

aj(x)Tj(z), (31)

for z ∈ Eρ. Noticing that |K(x, z)| attains its maximum value when z + x = −2− 4c
γ−1 ,

we have

|K(x, z)| =
∣∣∣∣ 2(γ − 1)

(x+ z)(γ − 1) + 2(γ + 1)

∣∣∣∣
≤
∣∣∣∣ 2(γ − 1)

(−2− 4c
γ−1)(γ − 1) + 2(γ + 1)

∣∣∣∣
=

γ − 1

2− 2c
, (32)

where c ∈ (0, 1) and γ ∈ (1,∞), so |K(x, z)| is uniformly bounded by γ−1
2−2c for x ∈ [−1, 1]

and z ∈ Eρ. Thus, Lemma 2.1 implies that

sup
−1≤x≤1

|aj(x)| ≤ γ − 1

1− c
ρ−j , (33)

where ρ is given by Equation (29). For each n, we let

Kn(x, z) =

n−1∑
j=0

aj(x)Tj(z), (34)

and we define Sn : L2[−1, 1]→ L2[−1, 1] by

(Sn(f))(x) =

∫ 1

−1
Kn(x, t)f(t) dt. (35)

Since the Chebyshev polynomials are bounded in uniform norm by 1 and the size of
coefficients decay exponentially fast, we have

|K(x, z)−Kn(x, z)| =
∣∣∣∣ ∞∑
j=n

aj(x)Tj(z)

∣∣∣∣ ≤ ∞∑
j=n

|aj(x)| ≤ γ − 1

(1− c)(1− ρ)
ρ−n.

(36)

It follows that

‖S − Sn‖ ≤
2(γ − 1)

(1− c)(1− ρ)
ρ−n, (37)

and we have

λn ≤ ‖S − Sn‖ ≤
2(γ − 1)

(1− c)(1− ρ)
ρ−n, (38)
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where λ1 ≥ λ2 ≥ . . . are the singular values of S, because the n-th singular value is the
optimal error of the rank-(n− 1) approximation to S. Recalling that α0 ≥ α1 ≥ . . . are
the singular values of Tγ , which are the same as the singular values of Tγ,[−1,1], and they
satisfy

2α2
n = λn, (39)

we have

αn ≤

√
γ − 1

(1− c)(1− ρ)
ρ−

n
2 . (40)

�

2.2 The Truncated Singular Decomposition (TSVD)

The singular value decomposition (SVD) of a matrix A ∈ Rm×n is defined by

A = UΣV T , (41)

where the left and right matrices U ∈ Rm×m and V ∈ Rn×n are orthogonal, and the
matrix Σ ∈ Rm×n is a diagonal matrix with the singular values of A on the diagonal, in
descending order, so that

Σ = diag(σ1, σ2, . . . , σmin{m,n}). (42)

Let r ≤ min{m,n} denote the rank of A, which is equal to the number of nonzero entries
on the diagonal, and suppose that k ≤ r. The k-truncated singular value decomposition
(k-TSVD) of A is defined as

Ak = UΣkV
T , (43)

where

Σk = diag(σ1, . . . , σk, 0, . . . , 0) ∈ Rm×n. (44)

The pseudo-inverse of Ak is defined by

A†k = V Σ†kU
T ∈ Rn×m, (45)

where

Σ†k = diag(σ1
−1, . . . , σk

−1, 0, . . . , 0) ∈ Rn×m. (46)

The following theorem bounds the sizes of the solution and residual, when a perturbed
linear system is solved using the TSVD. It follows the same reasoning as the proof of
Theorem 3.4 in [14], and can be viewed as a more explicit version of Lemma 3.3 in [6].
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Theorem 2.3. Suppose that A ∈ Rm×n, where m ≥ n, and let σ1 ≥ σ2 ≥ · · · ≥ σn be
the singular values of A. Let b ∈ Rm, and suppose that x ∈ Rn satisfies

Ax = b. (47)

Let ε > 0, and suppose further that

x̂k = (A+ E)†k(b+ e), (48)

where (A+ E)†k is the pseudo-inverse of the k-TSVD of A+ E, so that

σ̂k ≥ ε ≥ σ̂k+1, (49)

where σ̂k and σ̂k+1 are the kth and (k + 1)th largest singular values of A+ E, defining
σ̂n+1 := 0, and where E ∈ Rm×n and e ∈ Rm, with ‖E‖2 < ε/2. Then

‖x̂k‖2 ≤
1

σ̂k
(2ε‖x‖2 + ‖e‖2) + ‖x‖2 (50)

and

‖Ax̂k − b‖2 ≤ 5ε‖x‖2 +
3

2
‖e‖2. (51)

Proof. Let σ1 ≥ σ2 ≥ · · · ≥ σn denote the singular values of A, and let Ak be the
k-TSVD of A. We observe that Akx = b− (A− Ak)x. Letting rk = (A− Ak)x denote
the residual, we see that ‖rk‖2 ≤ σk+1‖x‖2 and that b − Akx = rk, defining σn+1 := 0.

Let xk = A†kb. Clearly, b−Axk = rk and ‖xk‖2 ≤ ‖x‖2.

Let Â := A+ E. We see that

x̂k = Â†k(b+ e)

= Â†k(Axk + rk + e)

= Â†k(Âxk − Exk + rk + e)

= Â†k(−Exk + rk + e) + Â†kÂxk

= Â†k(−Exk + rk + e) + Â†kÂkxk. (52)

Taking norms on both sides and observing that Â†kÂk is an orthogonal projection,

‖x̂k‖2 ≤ ‖Â
†
k‖2(‖E‖2‖xk‖2 + ‖e‖2 + ‖rk‖2) + ‖xk‖2

≤ ‖Â†k‖2(‖E‖2‖xk‖2 + ‖e‖2 + σk+1‖x‖2) + ‖xk‖2. (53)

Letting σ̂1 ≥ σ̂2 ≥ · · · ≥ σ̂n denote the singular values of A+E, we have by the Bauer-Fike
Theorem (see [2]) that |σ̂j − σj | ≤ ‖E‖2 for j = 1, 2, . . . , n. Since σ̂k ≥ ε ≥ σ̂k+1 and
‖E‖2 < ε/2, we see that σk+1 < 3ε/2. Therefore,

‖x̂k‖2 ≤
1

σ̂k

( ε
2
‖x‖2 + ‖e‖2 +

3ε

2
‖x‖2

)
+ ‖x‖2

=
1

σ̂k
(2ε‖x‖2 + ‖e‖2) + ‖x‖2. (54)
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To bound the residual, we observe that

Ax̂k − b = Ax̂k −Axk − rk
= A(x̂k − xk)− rk
= Â(x̂k − xk)− E(x̂k − xk)− rk. (55)

From Equation (52), we have that

x̂k − xk = Â†k(−Exk + rk + e)− (I − Â†kÂk)xk. (56)

Combining these two formulas,

Ax̂k − b = ÂÂ†k(−Exk + rk + e)− Â(I − Â†kÂk)xk − E(x̂k − xk)− rk
= ÂkÂ

†
k(−Exk + rk + e)− Â(I − Â†kÂk)xk − E(x̂k − xk)− rk

= ÂkÂ
†
k(−Exk + e)− Â(I − Â†kÂk)xk − E(x̂k − xk)− (I − ÂkÂ†k)rk. (57)

Since Â(I − Â†kÂk) = (Â− Âk)(I − Â†kÂk), we see that

Ax̂k − b = ÂkÂ
†
k(−Exk + e)− (Â− Âk)(I − Â†kÂk)xk − E(x̂k − xk)− (I − ÂkÂ†k)rk.

(58)

Taking norms on both sides and observing that ÂkÂ
†
k and (I − Â†kÂk) are orthogonal

projections,

‖Ax̂k − b‖2 ≤ 2‖E‖2‖xk‖2 + ‖e‖2 + σ̂k+1‖xk‖2 + ‖E‖2‖x̂k‖2 + ‖rk‖2

≤ 7

2
ε‖x‖2 + ‖e‖2 +

1

2
ε‖x̂k‖2

≤ 5ε‖x‖2 +
3

2
‖e‖2. (59)

�

3 Numerical Tools

In this section, we present several numerical experiments examining some numerical
properties of the singular value decomposition of the shifted truncated Laplace transform,
Tγ . We make the following observations:

1. Note that the singular values of Tγ decay exponentially, with the decay rate
decreasing as γ increases, as suggested by Theorem 2.2. The numerical experiments
illustrated in Figure 1 show that the singular values decay at a much greater rate
than the bound provided in Theorem 2.2.

2. Figures 2a, 2b and 4a show that the L∞-norms of both the left and right singular
functions and the L1-norm of the left singular functions are small, for γ ∈ [2, 1250].
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3. Suppose that x1, x2, . . . , xn are the roots of vn(x), and that t1, t2, . . . , tn are the
roots of un(t). Let the weights w1, w2, . . . , wn and w̃1, w̃2, . . . , w̃n satisfy∫ ∞

0
vi(x) dx =

n∑
k=1

wkvi(xk), (60)

and ∫ 1

0
ui(t) dt =

n∑
k=1

w̃kui(tk), (61)

for all i = 0, 1, . . . , n− 1. Then the weights are all positive. Moreover, Figures 3a
and 4b show that max1≤k≤n

√
wk and ‖w̃‖1 are small, for γ ∈ [2, 1250].

4. Let

A∞n :=
∞∑
i=n

αi‖vi‖L∞[0,∞)‖ui‖L∞[0,1], (62)

A1
n :=

∞∑
i=n

αi‖vi‖L1[0,∞)‖ui‖L1[0,1], (63)

A1,∞
n :=

∞∑
i=n

αi‖vi‖L1[0,∞)‖ui‖L∞[0,1], (64)

A∞,1n :=

∞∑
i=n

αi‖vi‖L∞[0,∞)‖ui‖L1[0,1], (65)

Un :=
n−1∑
i=0

‖ui‖L∞[0,1], (66)

Vn :=
n−1∑
i=0

‖vi‖L∞[0,∞). (67)

Numerical experiments illustrated in Figures 1 to 4 imply that A∞n , A1
n, A1,∞

n , and
A∞,1n are approximately equal to αn and that Un and Vn are small. Moreover, we
observe that A∞,1n ‖w‖1 ≈ αn‖vn‖L∞[0,∞)‖w‖1, and the size of ‖vn‖L∞[0,∞)‖w‖1 is
illustrated in Figure 3b.

4 Analytical Tools

In this section, we present the principal analytical tools of this paper.
The following theorem states that the product of any two functions in the range of the

operator Tγ , introduced in Section 2.1, can be expressed as Tγ applied to some L∞[0, 1]
function, after a change of variable. This result directly follows from the definition of the
truncated Laplace transform.
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Figure 1: The singular values αn of Tγ , as a function of n. The dashed lines indicate the
bound defined in Theorem 2.2 with c = 0.99, for the corresponding values of γ.
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Figure 2
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(b) ‖vn‖L∞[0,∞) · ‖w‖1, as a function of n.

Figure 3

Theorem 4.1. Suppose that the functions p, q ∈ L2[0,∞) are defined by

p(x) =

∫ 1

0
e
−x(t+ 1

γ−1
)
η(t) dt, (68)

15



0 20 40 60 80

101

γ= 2

γ= 10

γ= 50

γ= 250

γ= 1250
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Figure 4

and

q(x) =

∫ 1

0
e
−x(t+ 1

γ−1
)
ϕ(t) dt, (69)

respectively, for some η, ϕ ∈ L2[0, 1], and some γ > 1. Then, there exists a σ ∈ L∞[0, 1],
such that

p(x) · q(x) =

∫ 1

0
e
−x(2t+ 2

γ−1
)
σ(t) dt. (70)

Proof. For any p and q defined by Equation (68) and Equation (69), we have

p(x) · q(x) =

∫ 1

0
e
−x(t+ 1

γ−1
)
η(t) dt

∫ 1

0
e
−x(s+ 1

γ−1
)
ϕ(s) ds

=

∫ 1

0

∫ 1

0
e
−x(t+s+ 2

γ−1
)
η(t)ϕ(s) ds dt. (71)

Defining a new variable u = t+ s and changing the range of integration, Equation (71)
becomes

p(x) · q(x) =

∫ 1

0
e
−x(u+ 2

γ−1
)
∫ u

0
η(u− s)ϕ(s) ds du

+

∫ 2

1
e
−x(u+ 2

γ−1
)
∫ 1

u−1
η(u− s)ϕ(s) ds du. (72)

Letting v = u
2 , we have

p(x) · q(x) =

∫ 1
2

0
e
−x(2v+ 2

γ−1
)
∫ 2v

0
η(2v − s)ϕ(s) ds 2dv

+

∫ 1

1
2

e
−x(2v+ 2

γ−1
)
∫ 1

2v−1
η(2v − s)ϕ(s) ds 2dv

=

∫ 1

0
e
−x(2v+ 2

γ−1
)
σ(v) dv, (73)
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where

σ(v) = 2

∫ 2v

0
η(2v − s)ϕ(s) ds, (74)

for v ∈ [0, 1
2 ], and

σ(v) = 2

∫ 1

2v−1
η(2v − s)ϕ(s) ds, (75)

for v ∈ [1
2 , 1]. �

Observation 4.1. Suppose we have nodes x1, x2, . . . , xn and weights w1, w2, . . . , wn,
such that∣∣∣∫ ∞

0

∫ 1

0
e
−x(t+ 1

γ−1
)
η(t) dt dx−

n∑
j=1

wj

∫ 1

0
e
−xj(t+ 1

γ−1
)
η(t) dt

∣∣∣ ≤ ε‖η‖L∞[0,1], (76)

for any η ∈ L∞[0, 1]. Notice that∫ ∞
0

p(x) · q(x) dx

=

∫ ∞
0

p(
u

2
) · q(u

2
) · 1

2
du

=

∫ ∞
0

1

2

∫ 1

0
e
−u(t+ 1

γ−1
)
σ(t) dt du. (77)

Thus,∣∣∣∫ ∞
0

p(x) · q(x) dx−
n∑
j=1

wj
2
· p(xj

2
) · q(xj

2
)
∣∣∣ ≤ 1

2
ε‖σ‖L∞[0,1] ≤ ε‖η‖L2[0,1]‖ϕ‖L2[0,1].

(78)

The following theorem shows that the product of any two functions in the range of
T ∗γ can be expressed as T ∗γ applied to some L∞[0,∞) function.

Theorem 4.2. Suppose that the functions p, q ∈ L2[0, 1] are defined by

p(t) =

∫ ∞
0

e
−x(t+ 1

γ−1
)
η(x) dx, (79)

and

q(t) =

∫ ∞
0

e
−x(t+ 1

γ−1
)
ϕ(x) dx, (80)

respectively, for some η, ϕ ∈ L2[0,∞), and some γ > 1. Then, there exists a σ ∈
L∞[0,∞), such that

p(t) · q(t) =

∫ ∞
0

e
−x(t+ 1

γ−1
)
σ(x) dx. (81)
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Proof. For any p and q defined by Equation (79) and Equation (80), we have

p(t) · q(t) =

∫ ∞
0

e
−ω(t+ 1

γ−1
)
η(ω) dω

∫ ∞
0

e
−x(t+ 1

γ−1
)
ϕ(x) dx

=

∫ ∞
0

∫ ∞
0

e
−(ω+x)(t+ 1

γ−1
)
η(ω)ϕ(x) dx dω. (82)

Defining u = ω + x and changing the range of integration, Equation (82) becomes

p(t) · q(t) =

∫ ∞
0

e
−u(t+ 1

γ−1
)
∫ u

0
η(ω)ϕ(u− ω) dω du

=

∫ ∞
0

e
−u(t+ 1

γ−1
)
σ(u) du, (83)

where

σ(u) =

∫ u

0
η(ω)ϕ(u− ω) dω, (84)

for u ∈ [0,∞). �

Observation 4.2. Suppose we have nodes t1, t2, . . . , tn and weights w̃1, w̃2, . . . , w̃n,
such that∣∣∣∫ 1

0

∫ ∞
0

e
−x(t+ 1

γ−1
)
η(x) dx dt−

n∑
j=1

w̃j

∫ ∞
0

e
−x(tj+

1
γ−1

)
η(x) dx

∣∣∣ ≤ ε‖η‖L∞[0,∞), (85)

for any η ∈ L∞[0,∞). Since

p(t) · q(t) =

∫ ∞
0

e
−x(t+ 1

γ−1
)
σ(x) dx, (86)

we have∣∣∣∫ 1

0
p(t) · q(t) dt−

n∑
j=1

w̃j · p(tj) · q(tj)
∣∣∣ ≤ ε‖σ‖L∞[0,∞) ≤ ε‖η‖L2[0,∞)‖ϕ‖L2[0,∞).

(87)

Leveraging the multiplication rule established earlier, we demonstrate that the follow-
ing quadrature rule accurately integrates the products of the kernel of Tγ and the right
singular functions of Tγ .

Corollary 4.3. Suppose that we have a quadrature rule to integrate αiui · αjuj to within
an error of ε, for all i, j = 0, 1, . . . , n− 1. Suppose further that t1, t2, . . . , tm are the
quadrature nodes, and w̃1, w̃2, . . . , w̃m are the quadrature weights. Then, the error of the

quadrature rule applied to functions of the form f(t) = e
−x(t+ 1

γ−1
)
ui(t), with x ∈ [0,∞),

is bounded by

ε

αi
Vn +A∞n ‖ui‖L∞[0,1]‖w̃‖1, (88)

where Vn and A∞n are defined in Equation (67) and Equation (62), respectively.
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Proof. Since e
−x(t+ 1

γ−1
)

can be written as

e
−x(t+ 1

γ−1
)

=
∞∑
j=0

vj(x)αjuj(t), (89)

we have∣∣∣∣∫ 1

0
e
−x(t+ 1

γ−1
)
ui(t) dt−

m∑
k=1

w̃ke
−x(tk+ 1

γ−1
)
ui(tk)

∣∣∣∣
=

∣∣∣∣∫ 1

0

( ∞∑
j=0

vj(x)αjuj(t)
)
ui(t) dt−

m∑
k=1

w̃k

( ∞∑
j=0

vj(x)αjuj(tk)
)
ui(tk)

∣∣∣∣
=

∣∣∣∣n−1∑
j=0

∫ 1

0
vj(x)αjuj(t)ui(t) dt+

∞∑
j=n

∫ 1

0
vj(x)αjuj(t)ui(t) dt

−
n−1∑
j=0

( m∑
k=1

w̃kvj(x)αjuj(tk)
)
ui(tk)−

∞∑
j=n

( m∑
k=1

w̃kvj(x)αjuj(tk)
)
ui(tk)

∣∣∣∣
=

∣∣∣∣n−1∑
j=0

∫ 1

0
vj(x)αjuj(t)ui(t) dt−

n−1∑
j=0

( m∑
k=1

w̃kvj(x)αjuj(tk)
)
ui(tk)

−
∞∑
j=n

( m∑
k=1

w̃kvj(x)αjuj(tk)
)
ui(tk)

∣∣∣∣
≤

n−1∑
j=0

|vj(x)| · ε
αi

+

∣∣∣∣ m∑
k=1

w̃kui(tk)
( ∞∑
j=n

vj(x)αjuj(tk)
)∣∣∣∣

≤ ε

αi
Vn +A∞n ‖ui‖L∞[0,1]‖w̃‖1. (90)

�
Suppose that x1, x2, . . . , xm and w1, w2, . . . , wm are the nodes and weights of a
quadrature rule which integrates αivi ·αjvj , to within an error of ε, for all i, j = 0, 1, . . . ,
n − 1. The following theorem shows that, if the left singular functions {vi}i=0,1,...,n−1

of the operator Tγ , are used as interpolation basis, then, the interpolation matrix for
the nodes x1, x2, . . . , xm is well conditioned, provided that the maximum error ε of
integrating αivi · αjvj , for i, j = 0, 1, . . . , n− 1, is sufficiently small.

Theorem 4.4. Suppose that we have an m-point quadrature rule which integrates αivi ·
αjvj, to within an error of ε, for all i, j = 0, 1, . . . , n− 1. Suppose further that x1, x2,
. . . , xm are the quadrature nodes, and w1, w2, . . . , wm are the quadrature weights. Let
the matrix A ∈ Rm×n be given by the formula

A =


v0(x1) v1(x1) . . . vn−1(x1)
v0(x2) v1(x2) . . . vn−1(x2)

...
...

. . .
...

v0(xm) v1(xm) . . . vn−1(xm)

 , (91)
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and let the matrix W be the diagonal matrix with diagonal entries w1, w2, . . . , wm. We
define the matrix E = [ejk] such that

E = I −ATWA. (92)

Then,

|ejk| ≤
ε

αj−1αk−1
. (93)

Proof. From Equation (92), we have

ejk = δjk −
m∑
l=1

wlvj−1(xl)vk−1(xl), (94)

where δjk = 1 if j = k, and δjk = 0 otherwise. Then,

|ejk| =
∣∣∣δjk − m∑

l=1

wlαj−1vj−1(xl) · αk−1vk−1(xl)
1

αj−1αk−1

∣∣∣
≤
∣∣∣δjk − 1

αj−1αk−1

∫ ∞
0

αj−1vj−1(x) · αk−1vk−1(x) dx
∣∣∣+

ε

αj−1αk−1

=
ε

αj−1αk−1
. (95)

�

The following corollary establishes an upper bound on the norm of the pseudo-inverse
A† of the matrix A defined in Equation (91).

Corollary 4.5. Suppose that we have a collection of quadrature nodes x1, x2, . . . , xm
and positive quadrature weights w1, w2, . . . , wm, which integrates αivi · αjvj to within

an error of ε ≤ α2
n

2n , for all i, j = 0, 1, . . . , n− 1. Let A ∈ Rm×n be the matrix defined in
Equation (91). Then,

‖A†‖2 <
√

2 max
1≤i≤m

√
wi, (96)

where A† ∈ Rn×m is the pseudo-inverse of A.

Proof. Recalling that w1, w2, . . . , wm are positive, we let W
1
2 denote a diagonal matrix

with entries
√
w1,
√
w2, . . . ,

√
wm. We define B such that B = W

1
2A. It follows from

Equation (92) that BTB = I − E. Since ejk <
ε
α2
n

, for all j, k = 1, 2, . . . , n, we have

‖E‖2 <
ε
α2
n
n. Let σ̃1, σ̃2, . . . , σ̃n denote the singular values of BTB. Then, it can be

shown that (see Theorem IIIa in [2])

|σ̃j − 1| ≤ ‖E‖2 <
ε

α2
n

n, (97)

for all j = 1, 2, . . . , n. This means that

1− ε

α2
n

n < σ̃j < 1 +
ε

α2
n

n. (98)
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Letting k = min{n,m} and σ1, σ2, . . . , σk be the singular values of B, we have√
1− ε

α2
n

n < σj <

√
1 +

ε

α2
n

n. (99)

Letting B† be the pseudo-inverse of B, such that B†B = I, since B = W
1
2A, we have

that A† = B†W
1
2 . Thus,

‖A†‖2 ≤ ‖B
†‖2‖W

1
2 ‖2

<
1√

1− ε
α2
n
n
· max

1≤i≤m

√
wi. (100)

If we have ε ≤ α2
n

2n , then Equation (100) implies that

‖A†‖2 <
√

2 max
1≤i≤m

√
wi. (101)

�

5 Selecting the Quadrature Nodes and Weights

In this section, we discuss how to construct the quadrature rules described in the conditions
of the theorems presented in Section 4.

Suppose that the nodes t1, t2, . . . , tm are the roots of um(t), and that the weights
w̃1, w̃2, . . . , w̃m satisfy∫ 1

0
ui(t) dt =

m∑
k=1

w̃kui(tk), (102)

for all i = 0, 1, . . . , m− 1. Then, Equation (11) and Equation (102) imply that∣∣∣∫ 1

0

∫ ∞
0

e
−x(t+ 1

γ−1
)
η(x) dx dt−

m∑
k=1

w̃k

∫ ∞
0

e
−x(tk+ 1

γ−1
)
η(x) dx

∣∣∣
=
∣∣∣∫ 1

0

∞∑
i=0

αi

(∫ ∞
0

vi(x)η(x) dx
)
ui(t) dt−

m∑
k=1

w̃k

∞∑
i=0

αi

(∫ ∞
0

vi(x)η(x) dx
)
ui(tk)

∣∣∣
=
∣∣∣∫ 1

0

∞∑
i=m

αi

(∫ ∞
0

vi(x)η(x) dx
)
ui(t) dt−

m∑
k=1

w̃k

∞∑
i=m

αi

(∫ ∞
0

vi(x)η(x) dx
)
ui(tk)

∣∣∣
≤
∣∣∣∫ 1

0

∞∑
i=m

αi

(∫ ∞
0

vi(x)η(x) dx
)
ui(t) dt

∣∣∣+
∣∣∣ m∑
k=1

w̃k

∞∑
i=m

αi

(∫ ∞
0

vi(x)η(x) dx
)
ui(tk)

∣∣∣
≤ ‖η‖L∞[0,∞)(A

1
m +A1,∞

m ‖w̃‖1), (103)

where A1
m and A1,∞

m are defined in Equation (63) and Equation (64), respectively. It
follows from Observation 4.2 that

E1 := max
0≤i,j≤n−1

∣∣∣∫ 1

0
αiui(t) · αjuj(t) dt−

m∑
k=1

w̃kαiui(tk) · αjuj(tk)
∣∣∣ ≤ A1

m +A1,∞
m ‖w̃‖1.

(104)
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Since A1
m ≈ αm, A1,∞

m ≈ αm, and ‖w̃‖1 is small, we have E1 . αm. If E1 ≤ α2
n,

then Corollary 4.3 guarantees that such a quadrature rule integrates the functions

f(t) = e
−x(t+ 1

γ−1
)
ui(t), for i = 0, 1, . . . , n− 1, to an error of approximately the same size

as αn. Since the singular values αi decay exponentially, we see that E1 . αm ≤ α2
n when

m ≈ 2n. In practice, however, it is unnecessary to take m to be so large. Numerical
experiments for γ = 10, 50 and 250 demonstrate that, by choosing m = n, the error of
the quadrature rule applied to αiui · αjuj , for all i, j = 0, 1, . . . , n− 1, turns out to be
smaller than α2

n, as shown in Figures 5a, 6a and 7a. Thus, it follows from Corollary 4.3

that the error of the quadrature rule applied to f(t) = e
−x(t+ 1

γ−1
)
ui(t), for i = 0, 1, . . . ,

n− 1, is approximately αn.
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Figure 5: γ = 10
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Figure 6: γ = 50

Suppose now that the nodes x1, x2, . . . , xm are the roots of vm(x), and the weights
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Figure 7: γ = 250

w1, w2, . . . , wm satisfy∫ ∞
0

vi(x) dx =
m∑
k=1

wkvi(xk), (105)

for all i = 0, 1, . . . , m− 1. Then, Equation (7) and Equation (105) imply that∣∣∣∫ ∞
0

∫ 1

0
e
−x(+ 1

γ−1
)
η(t) dt dx−

m∑
k=1

wk

∫ 1

0
e
−xk(t+ 1

γ−1
)
η(t) dt

∣∣∣
=
∣∣∣∫ ∞

0

∞∑
i=0

αi

(∫ 1

0
ui(t)η(t) dt

)
vi(x) dx−

m∑
k=1

wk

∞∑
i=0

αi

(∫ 1

0
ui(t)η(t) dt

)
vi(xk)

∣∣∣
=
∣∣∣∫ ∞

0

∞∑
i=m

αi

(∫ 1

0
ui(t)η(t) dt

)
vi(x) dx−

m∑
k=1

wk

∞∑
i=m

αi

(∫ 1

0
ui(t)η(t) dt

)
vi(xk)

∣∣∣
≤
∣∣∣∫ ∞

0

∞∑
i=m

αi

(∫ 1

0
ui(t)η(t) dt

)
vi(x) dx

∣∣∣+
∣∣∣ m∑
k=1

wk

∞∑
i=m

αi

(∫ 1

0
ui(t)η(t) dt

)
vi(xk)

∣∣∣
≤ ‖η‖L∞[0,1](A

1
m +A∞,1m ‖w‖1), (106)

where A1
m and A∞,1m are defined in Equation (63) and Equation (65), respectively. It

follows from Observation 4.1 that

E2 := max
0≤i,j≤n−1

∣∣∣∫ ∞
0

αivi(x) · αjvj(x) dx−
m∑
k=1

wk
2
αivi(

xk
2

) · αjvj(
xk
2

)
∣∣∣ ≤ A1

m +A∞,1m ‖w‖1.

(107)

Since A1
m ≈ αm, A∞,1m ≈ αm, and A∞,1m ‖w‖1 ≈ αm‖vm‖L∞[0,∞)‖w‖1, we have E2 .

αm(1 + ‖vm‖L∞[0,∞)‖w‖1), with the size of ‖vm‖L∞[0,∞)‖w‖1 illustrated in Figure 3b. If

E2 ≤ α2
n

2n , then Corollary 4.5 guarantees that the norm of A† ∈ Rn×m achieves the bound
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specified in Equation (96). We see that E2 . αm(1 + ‖vm‖L∞[0,∞)‖w‖1) ≤ α2
n

2n when
m ≈ 2n. However, instead of choosing m to be so large, we can once again take m = n,
and use the nodes xk and the weights wk rather than xk/2 and wk/2. Unlike the error of
the quadrature rule in Equation (102) applied to αiui · αjuj , for i, j = 0, 1, . . . , n− 1,
which is, in practice, less than α2

n, the error of the quadrature rule in Equation (105)
applied to αivi · αjvj , for i, j = 0, 1, . . . , n − 1, lies somewhere between α2

n and αn.
However, we observe that the special structure of A ∈ Rn×n allows the norm of A† to
still attain the bound specified in Equation (96). The results for γ = 10, 50 and 250 are
shown in Figures 5b, 6b and 7b, respectively.

Remark 5.1. It is worth emphasizing that the choice of quadrature nodes is not unique.
Any set of quadrature nodes with corresponding weights that satisfy Equation (102) or
Equation (105) can be employed for our purposes. In this paper, we choose the roots
of um and vm to be the quadrature nodes, since the associated weights are positive and
reasonably small, which we have shown in Section 3.

6 Approximation by Singular Powers

In this section, we present a method for approximating a function of the form

f(x) =

∫ b

a
xµσ(µ) dµ, x ∈ [0, 1], (108)

for some signed Radon measure σ(µ), using a basis of {xtj}Nj=1 for some specially chosen
points t1, t2, . . . , tN ∈ [a, b]. Our approach involves approximating f by the left singular
functions of Tγ , and then discretizing the integral representation of these left singular
functions in the form of {xtj}Nj=1.

In the following theorem, we establish the existence of such an approximation, and
quantify its approximation error.

Theorem 6.1. Let f be a function of the form Equation (108). Suppose that t̃1, t̃2, . . . ,
t̃N and w̃1, w̃2, . . . , w̃N are the quadrature nodes and weights of a quadrature rule such
that E1 ≤ α2

n, where E1 is defined in Equation (104). Let tj = a+ (b− a)t̃j, for all j = 1,
2, . . . , N . Then, there exists a vector c ∈ RN such that the function

fN (x) =

N∑
j=1

cjx
tj , (109)

satisfies

‖f − fN‖L∞[0,1] ≤ |σ|αn
(A∞n
αn

+ UnVn +
A∞n
αn

Un
2‖w̃‖1

)
, (110)

where A∞n , Un and Vn are defined in Equation (62), Equation (66) and Equation (67),
respectively, and the norm of the coefficient vector c is bounded by

‖c‖2 ≤ ‖w̃‖1|σ| · Un
2. (111)
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Proof. Substituting ω = − log x into Equation (108), we have

f(e−ω) =

∫ b

a
e−ωµσ(µ) dµ,

=

∫ 1

0
e
−ω̃(µ̄+ 1

γ−1
)
(b− a)σ((b− a)µ̄+ a) dµ̄, ω̃ ∈ [0,∞), (112)

where µ̄ = µ−a
b−a , and ω̃ = (b− a)ω. Since {αi}i=0,1,...,∞ decays exponentially, we truncate

the SVD of the operator Tγ after n terms and obtain

e
−ω(t+ 1

γ−1
)

=
∞∑
i=0

vi(ω)αiui(t) ≈
n−1∑
i=0

vi(ω)αiui(t). (113)

Then, we construct the approximation f̃ to f , defined by

f̃(e−ω) =
n−1∑
i=0

αi

(∫ 1

0
ui(µ̄)(b− a)σ((b− a)µ̄+ a) dµ̄

)
vi(ω̃). (114)

Thus,

f̃(x) =
n−1∑
i=0

αi

(∫ 1

0
ui(µ̄)(b− a)σ((b− a)µ̄+ a) dµ̄

)
vi(−(b− a) log x)

=
n−1∑
i=0

c̃iαivi(−(b− a) log x), (115)

for x ∈ [0, 1], where

c̃i =

∫ 1

0
ui(µ̄)(b− a)σ((b− a)µ̄+ a) dµ̄. (116)

We observe that

|c̃i| ≤ |σ| · ‖ui‖L∞[0,1]. (117)

Thus,

‖f − f̃‖L∞[0,1] =

∥∥∥∥ ∞∑
i=n

c̃iαivi(−(b− a) log x)

∥∥∥∥
L∞[0,1]

≤ |σ|A∞n , (118)

where A∞n is defined in Equation (62) and A∞n ≈ αn. According to Equation (8), we have

αivi(ω) =

∫ 1

0
e
−ω(t+ 1

γ−1
)
ui(t) dt. (119)

Since

E1 = max
0≤i,j≤n−1

∣∣∣∫ 1

0
αiui(t)αjuj(t) dt−

N∑
l=1

w̃lαiui(t̃l)αjuj(t̃l)
∣∣∣ ≤ αn2,

(120)
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for all i, j = 0, 1, . . . , n− 1, it follows from Corollary 4.3 that

Ẽi :=
∣∣∣∫ 1

0
e
−ω(t+ 1

γ−1
)
ui(t) dt−

N∑
l=1

w̃le
−ω(t̃l+

1
γ−1

)
ui(t̃l)

∣∣∣
≤ αnVn +A∞n ‖ui‖L∞[0,1]‖w̃‖1, (121)

where A∞n and Vn are defined in Equation (62) and Equation (67), respectively.
Recalling Equation (115), we have

f̃(x) =
n−1∑
i=0

c̃iαivi(−(b− a) log x), (122)

so ∣∣∣f̃(e−
ω̃
b−a )−

n−1∑
i=0

c̃i

N∑
j=1

w̃je
−ω̃(t̃j+

1
γ−1

)
ui(t̃j)

∣∣∣ ≤ n−1∑
i=0

|c̃i|Ẽi, (123)

which means that∣∣∣f̃(e−
ω̃
b−a )−

n−1∑
i=0

c̃i

N∑
j=1

w̃je
−ω̃t̄jui(t̄j −

1

γ − 1
)
∣∣∣ ≤ n−1∑

i=0

|c̃i|Ẽi, (124)

where ω̃ = −(b − a) log x and t̄j = t̃j + 1
γ−1 , for all j = 1, 2, . . . , N . Substituting

e−
ω̃
b−a = x into Equation (124), we define the approximation fN to f̃ ,

fN (x) =

n−1∑
i=0

c̃i

N∑
j=1

w̃jui(t̄j −
1

γ − 1
)x(b−a)t̄j ,

:=
N∑
j=1

cjx
(b−a)t̄j , x ∈ [0, 1], (125)

where cj = w̃j
∑n−1

i=0 c̃iui(t̄j −
1

γ−1), for j = 1, 2, . . . , N . Letting tj = (b− a)t̄j , we have

tj = (b− a)t̃j + a, for j = 1, 2, . . . , N . Equation (125) and Equation (117) imply that

‖c‖2 ≤ ‖w̃‖1 · max
1≤j≤N

∣∣∣n−1∑
i=0

c̃iui(t̄j −
1

γ − 1
)
∣∣∣

≤ ‖w̃‖1 ·
n−1∑
i=0

|c̃i|‖ui‖L∞[0,1]

≤ ‖w̃‖1|σ| ·
n−1∑
i=0

‖ui‖2L∞[0,1]

≤ ‖w̃‖1|σ| · Un
2, (126)
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where Un is defined in Equation (66). The approximation error of fN to f̃ can be bounded
by

‖f̃ − fN‖L∞[0,1] ≤
n−1∑
i=0

|c̃i|Ẽi

≤
n−1∑
i=0

|σ|‖ui‖L∞[0,1](αnVn +A∞n ‖ui‖L∞[0,1]‖w̃‖1)

≤ |σ| · (αnUnVn +A∞n

n−1∑
i=0

‖ui‖2L∞[0,1]‖w̃‖1)

≤ |σ| · (αnUnVn +A∞n Un
2‖w̃‖1). (127)

Thus, we obtain the bound on the approximation error of fN to f as

‖f − fN‖L∞[0,1] ≤ ‖f − f̃‖L∞[0,1] + ‖f̃ − fN‖L∞[0,1]

≤ |σ|αn
(A∞n
αn

+ UnVn +
A∞n
αn

Un
2‖w̃‖1

)
, (128)

which is approximately equal to |σ|αn, since A∞n ≈ αn, and Un, Vn and ‖w̃‖1 are small.
�

7 Numerical Approximation and Error Analysis

In the previous section, we have shown that, given any function f of the form Equa-
tion (108) and any quadrature rule such that E1 ≤ αn

2, where E1 is defined in Equa-
tion (104), there exists a coefficient vector c ∈ RN such that, letting t1, t2, . . . , tN denote
the quadrature nodes shifted to the interval [a, b],

fN (x) =
N∑
j=1

cjx
tj (129)

is uniformly close to f , to within an error given by Equation (110).
In this section, we show that, by choosing a quadrature rule with quadrature nodes

s1, s2, . . . , sN such that E2 ≤ αn2

2n , where E2 is defined in Equation (107), and letting

xj = e−
sj
b−a , (130)

for j = 1, 2, . . . , N , we can construct an approximation

f̂N (x) =

N∑
j=1

ĉjx
tj (131)

which is also uniformly close to f , by numerically solving a linear system

V c = F, (132)
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for the coefficient vector ĉ ∈ RN , where

V =


xt11 xt21 . . . xtN1
xt12 xt22 . . . xtN2
...

...
. . .

...

xt1N xt2N . . . xtNN

 ∈ RN×N , (133)

and

F = (f(x1), f(x2), . . . , f(xN ))T ∈ RN . (134)

The uniform approximation error of f̂N to f over [0, 1] is bounded in Theorem 7.3. Recall

that E1 ≤ α2
n and E2 ≤ αn2

2n when N ≈ 2n and the quadrature nodes are chosen to be
the roots of uN (t) and vN (x) (see Section 5).

In the following lemma, we establish upper bounds on the norm and the residual of
the perturbed TSVD solution ĉ to the linear system in Equation (132), in terms of the
norm of the coefficient vector c in Equation (129).

Lemma 7.1. Let V ∈ RN×N , F ∈ RN , and ε > 0. Suppose that

ĉk = (V + δV )†k(F + δF ), (135)

where (V + δV )†k is the pseudo-inverse of the k-TSVD of V + δV , so that

α̂k ≥ ε ≥ α̂k+1, (136)

where α̂k and α̂k+1 denote the kth and (k+1)th largest singular values of V +δV , defining
α̂N+1 := 0, where δV ∈ RN×N and δF ∈ RN , with

‖δV ‖2 ≤ ε0 · µ1 <
ε

2
, (137)

and

‖δF‖2 ≤ ε0 · µ2, (138)

for some ε0, µ1, µ2 > 0. Suppose further that

V c = F + ∆F, (139)

for some ∆F ∈ RN and c ∈ RN . Then,

‖ĉk‖2 ≤
1

α̂k
(2ε+ α̂k)‖c‖2 +

1

α̂k
(‖∆F‖2 + ε0 · µ2), (140)

and

‖V ĉk − (F + ∆F )‖2 ≤ 5ε‖c‖2 +
3

2
‖∆F‖2 +

3

2
ε0 · µ2. (141)
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Proof. By Equation (135), we have

(V + δV )k ĉk = F + δF = F + ∆F −∆F + δF = F + ∆F + e, (142)

where e := −∆F + δF . Thus, Theorem 2.3 implies that

‖ĉk‖2 ≤
1

α̂k
(2ε+ α̂k)‖c‖2 +

1

α̂k
‖−∆F + δF‖2

≤ 1

α̂k
(2ε+ α̂k)‖c‖2 +

1

α̂k
(‖∆F‖2 + ε0 · µ2), (143)

and that

‖V ĉk − (F + ∆F )‖2 ≤ 5ε‖c‖2 +
3

2
‖∆F‖2 +

3

2
ε0 · µ2. (144)

�
The following observation bounds the backward error, ‖V ĉk − F‖2, where ĉk is the TSVD
solution to the perturbed linear system, defined in Equation (135).

Observation 7.1. According to Lemma 7.1, the TSVD solution ĉk to the perturbed
linear system is bounded by the norm of c, as described in Equation (140), where c is the
exact solution to the linear system V c = F + ∆F , and satisfies Equation (111). Thus,
the resulting backward error is bounded by

‖V ĉk − F‖2 =
∥∥V ĉk − (F + ∆F

)
+ ∆F

∥∥
2

≤
∥∥V ĉk − (F + ∆F

)∥∥
2

+ ‖∆F‖2

≤ 5ε‖c‖2 +
5

2
‖∆F‖2 +

3

2
ε0 · µ2. (145)

Although the interpolation matrix V in the basis of {xtj}Nj=1 tends to be ill-conditioned,
resulting in a loss of stability in the solution to the linear system in Equation (132), we
have shown in Lemma 7.1 and Observation 7.1 that, when the TSVD is used to solve the
linear system in Equation (132), the backward error, ‖V ĉk − F‖2, which measures the

discrepancy between f and f̂N at the collocation points, is nonetheless small.
The following lemma bounds the L∞-norm of a function of the form Equation (108),

in terms of its values at the collocation points {xj}Nj=1. The constant appearing in this
bound serves the same role as the Lebesgue constant for polynomial interpolation.

Lemma 7.2. Suppose that s1, s2, . . . , sN and w1, w2, . . . , wN are the nodes and weights
of a quadrature rule such that E2 ≤ αn2

2n , where E2 is defined in Equation (107), and that

the collocation points X := (xj)
N
j=1 are defined by the formula xj = e−

sj
b−a , for j = 1,

2, . . . , N . Let f(x) be a function of the form Equation (108), for some signed Radon
measure σ, and let f(X) ∈ RN be the vector of values of f(x) sampled at X. Then,

‖f‖L∞[0,1] ≤
√

2 · max
1≤j≤N

√
wj · Vn · ‖f(X)‖2 + |σ|A∞n · (1 +

√
N ·
√

2 max
1≤j≤N

√
wj · Vn),

(146)

where A∞n and Vn are defined in Equation (62) and Equation (67), respectively.
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Proof. Recall from the proof of Theorem 6.1 that f(x) can be approximated by

f̃(x) =

n−1∑
i=0

c̃iαivi(−(b− a) log x), (147)

such that

‖f − f̃‖L∞[0,1] ≤ |σ|A
∞
n , (148)

where A∞n is defined in Equation (62), and c̃i, for i = 0, 1, . . . , n − 1, is given by

Equation (116). Let f̃(X) =
(
f̃(x1), f̃(x2), . . . , f̃(xN )

)T
. Since Corollary 4.5 implies

that ‖A†‖2 <
√

2 max1≤j≤N
√
wj , where the matrix A† ∈ Rn×N is the pseudo-inverse of

A, the coefficient vector c̃ in Equation (147) can be found stably by the formula

(c̃iαi) = A†f̃(X). (149)

From Equation (147), we have

‖f̃‖L∞[0,1] =

∥∥∥∥n−1∑
i=0

c̃iαivi(−(b− a) log x)

∥∥∥∥
L∞[0,1]

≤ ‖(c̃iαi)‖2

√√√√n−1∑
i=0

‖vi‖2L∞[0,∞)

≤ ‖A†‖2 · ‖f̃(X)‖2 · Vn
≤
√

2 · max
1≤j≤N

√
wj · ‖f̃(X)‖2 · Vn, (150)

where Vn is defined in Equation (67). Since∣∣f(xj)− f̃(xj)
∣∣ ≤ ‖f − f̃‖L∞[0,1], (151)

for all j = 1, 2, . . . , N − 1, we have

‖f̃(X)‖2 ≤
√
N‖f − f̃‖L∞[0,1] + ‖f(X)‖2. (152)

It follows that

‖f‖L∞[0,1] ≤ ‖f − f̃‖L∞[0,1] + ‖f̃‖L∞[0,1]

≤ ‖f − f̃‖L∞[0,1] +
√

2 · max
1≤j≤N

√
wj · ‖f̃(X)‖2 · Vn

≤ ‖f − f̃‖L∞[0,1] +
√

2 · max
1≤j≤N

√
wj · (

√
N‖f − f̃‖L∞[0,1] + ‖f(X)‖2) · Vn

≤
√

2 · max
1≤j≤N

√
wj · Vn · ‖f(X)‖2 + |σ|A∞n · (1 +

√
N ·
√

2 max
1≤j≤N

√
wj · Vn).

(153)

�

The following theorem provides an upper bound on the global approximation error of
f̂N to f , when the coefficient vector in the approximation is computed by solving V c = F
using the TSVD.
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Theorem 7.3. Let f(x) be a function of the form Equation (108), for some signed Radon
measure σ(µ). Suppose that t̃1, t̃2, . . . , t̃N are the nodes of a quadrature rule such that

E1 ≤ α2
n, and that s1, s2, . . . , sN are the nodes of a quadrature rule such that E2 ≤ αn2

2n ,
where E1 and E2 are defined in Equation (104) and Equation (107), respectively. Let
tj = (b− a)t̃j + a, for j = 1, 2, . . . , N , and let x1, x2, . . . , xN be the collocation points

defined by the formula xj = e−
sj
b−a . Suppose that V ∈ RN×N is defined in Equation (133)

and F ∈ RN is defined in Equation (134), and let ε > 0. Suppose further that

ĉk = (V + δV )†k(F + δF ), (154)

where (V + δV )†k is the pseudo-inverse of the k-TSVD of V + δV , so that

α̂k ≥ ε ≥ α̂k+1, (155)

where α̂k and α̂k+1 denote the kth and (k+1)th largest singular values of V +δV , defining
α̂N+1 := 0, where δV ∈ RN×N and δF ∈ RN , with

‖δV ‖2 ≤ ε0 · µ1 <
ε

2
, (156)

and

‖δF‖2 ≤ ε0 · µ2, (157)

for some ε0, µ1, µ2 > 0. Let

f̂N (x) =

N∑
j=1

ĉk,jx
tj , (158)

with ĉk defined in Equation (154). Then,

‖f − f̂N‖L∞[0,1]

≤
√

2 · max
1≤j≤N

√
wj · Vn ·

(
5ε · ‖w̃‖1|σ| · Un

2 +
5

2

√
N · |σ|αn

(A∞n
αn

+ UnVn +
A∞n
αn

Un
2‖w̃‖1

)
+

3

2
ε0 · µ2

)
+ (|σ|+

√
N‖ĉk‖2) ·A∞n · (1 +

√
N ·
√

2 max
1≤j≤N

√
wj · Vn),

(159)

where

‖ĉk‖2 ≤
1

α̂k
(2ε+ α̂k)‖w̃‖1|σ| · Un

2 +
1

α̂k

(√
N · |σ|αn

(A∞n
αn

+ UnVn +
A∞n
αn

Un
2‖w̃‖1

)
+ ε0 · µ2

)
. (160)

Proof. We observe that

f̂N (x) =

∫ b

a
xµ σ̂N (µ) dµ, (161)
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for the signed Radon measure

σ̂N (t) =
N∑
j=1

ĉk,jδ(t− tj), (162)

where δ(t) is the Dirac delta function. Therefore, f(x)− f̂N (x) can be rewritten as

f(x)− f̂N (x) =

∫ b

a
xµ
(
σ(µ)− σ̂N (µ)

)
dµ, (163)

where σ(µ) is defined in Equation (108). By Theorem 6.1, there exists a vector c ∈ RN ,
such that

fN (x) =
N∑
j=1

cjx
tj (164)

is uniformly close to f , with an error bounded by Equation (110). Let X := (xj)
N
j=1 and

∆F := f(X)− fN (X). Then,

‖∆F‖2 ≤
√
N · ‖f − fN‖L∞[0,1]

≤
√
N · |σ|αn

(A∞n
αn

+ UnVn +
A∞n
αn

Un
2‖w̃‖1

)
, (165)

where A∞n , Un and Vn are defined in Equation (62), Equation (66) and Equation (67),
respectively. By Equation (145) and Equation (111), we have

‖f(X)− f̂N (X)‖2
= ‖V ĉk − F‖2

≤ 5ε‖c‖2 +
5

2
‖∆F‖2 +

3

2
ε0 · µ2

≤ 5ε · ‖w̃‖1|σ| · Un
2 +

5

2

√
N · |σ|αn

(A∞n
αn

+ UnVn +
A∞n
αn

Un
2‖w̃‖1

)
+

3

2
ε0 · µ2,

(166)

where w̃ is the vector of the quadrature weights such that E1 ≤ α2
n. It follows from

Lemma 7.2 that the uniform error of the approximation of f̂N to f is bounded as

‖f − f̂N‖L∞[0,1]

≤
√

2 · max
1≤j≤N

√
wj · Vn ·

(
5ε · ‖w̃‖1|σ| · Un

2 +
5

2

√
N · |σ|αn

(A∞n
αn

+ UnVn +
A∞n
αn

Un
2‖w̃‖1

)
+

3

2
ε0 · µ2

)
+ |σ − σ̂N |A∞n · (1 +

√
N ·
√

2 max
1≤j≤N

√
wj · Vn). (167)
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Since |σ − σ̂N | ≤ |σ|+ |σ̂N | and |σ̂N | ≤ ‖ĉk‖1, we have

‖f − f̂N‖L∞[0,1]

≤
√

2 · max
1≤j≤N

√
wj · Vn ·

(
5ε · ‖w̃‖1|σ| · Un

2 +
5

2

√
N · |σ|αn

(A∞n
αn

+ UnVn +
A∞n
αn

Un
2‖w̃‖1

)
+

3

2
ε0 · µ2

)
+ (|σ|+ ‖ĉk‖1) ·A∞n · (1 +

√
N ·
√

2 max
1≤j≤N

√
wj · Vn)

≤
√

2 · max
1≤j≤N

√
wj · Vn ·

(
5ε · ‖w̃‖1|σ| · Un

2 +
5

2

√
N · |σ|αn

(A∞n
αn

+ UnVn +
A∞n
αn

Un
2‖w̃‖1

)
+

3

2
ε0 · µ2

)
+ (|σ|+

√
N‖ĉk‖2) ·A∞n · (1 +

√
N ·
√

2 max
1≤j≤N

√
wj · Vn),

(168)

where ‖ĉk‖2 is bounded by substituting Equation (111) and Equation (165) into Equa-
tion (140),

‖ĉk‖2 ≤
1

α̂k
(2ε+ α̂k)‖c‖2 +

1

α̂k
(‖∆F‖2 + ε0 · µ2)

≤ 1

α̂k
(2ε+ α̂k)‖w̃‖1|σ| · Un

2 +
1

α̂k

(√
N · |σ|αn

(A∞n
αn

+ UnVn +
A∞n
αn

Un
2‖w̃‖1

)
+ ε0 · µ2

)
. (169)

�

Remark 7.2. By ignoring all the small terms in Equation (168) and Equation (169),
and recalling that A∞n ≈ αn, we have

‖f − f̂N‖L∞[0,1] . (ε+ αn)|σ|+ ε0 · µ2 + αn‖ĉk‖2, (170)

where

‖ĉk‖2 . (
ε

α̂k
+ 1 +

αn
α̂k

)|σ|+ ε0
α̂k
µ2. (171)

Thus,

‖f − f̂N‖L∞[0,1] . (ε+ αn +
αnε

α̂k
+
α2
n

α̂k
)|σ|+ ε0 · µ2 +

αn
α̂k
ε0 · µ2. (172)

Neglecting all the insignificant terms, the accuracy of the approximation depends on
αn, ε, α̂k and |σ|, as well as the machine precision ε0.

Recalling that α̂k ≥ ε. If we choose ε ≈ αn in Equation (172), then αn
α̂k
≤ αn

ε ≈ 1 and,
accordingly,

‖f − f̂N‖L∞[0,1] . (ε+ αn)|σ|+ ε0µ2

≈ αn|σ|+ ε0µ2. (173)

Thus, the approximation error can achieve a bound that is roughly proportional to αn|σ|.
Otherwise, if ε is significantly smaller than αn, then the error will exceed αn|σ| because

of the term αn2

α̂k
.
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8 Extension from Measures to Distributions

In Section 7, we presented an algorithm for approximating functions of the form

f(x) =

∫ b

a
xµσ(µ) dµ, x ∈ [0, 1], (174)

where σ is a signed Radon measure, and derived an estimate for the uniform error of the
approximation in Theorem 7.3. In this section, we observe that this same algorithm can
be applied more generally to functions of the form

f(x) = 〈σ(µ), xµ〉, (175)

where σ ∈ D′(R) is a distribution supported on the interval [a, b]. Since every distribution
with compact support has a finite order, it follows that σ ∈ Cm([a, b])∗ for some order
m ≥ 0.

Recall that

|〈σ, ϕ〉| ≤ ‖σ‖Cm([a,b])∗ · ‖ϕ‖Cm([a,b]), (176)

where

‖ϕ‖Cm([a,b]) =
m∑
n=0

sup
x∈[a,b]

|ϕ(n)|, (177)

and

‖σ‖Cm([a,b])∗ = sup
ϕ∈Cm([a,b])
‖ϕ‖Cm([a,b])=1

|σ(ϕ)|. (178)

We can use the algorithm of Section 7 to approximate a function of the form Equation (175),
where the approximation error is bounded by the following theorem, which generalizes
Theorem 7.3.

Theorem 8.1. Let f(x) be a function of the form Equation (175), Suppose that t̃1, t̃2,
. . . , t̃N are the nodes of a quadrature rule such that E1 ≤ α2

n, and that s1, s2, . . . , sN
are the nodes of a quadrature rule such that E2 ≤ αn2

2n , where E1 and E2 are defined

in Equation (104) and Equation (107), respectively. Let tj = (b − a)t̃j + a, for j = 1,
2, . . . , N , and let x1, x2, . . . , xN be the collocation points defined by the formula

xj = e−
sj
b−a . Suppose that V ∈ RN×N is defined in Equation (133) and F ∈ RN is defined

in Equation (134), and let ε > 0. Suppose further that

ĉk = (V + δV )†k(F + δF ), (179)

where (V + δV )†k is the pseudo-inverse of the k-TSVD of V + δV , so that

α̂k ≥ ε ≥ α̂k+1, (180)
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where α̂k and α̂k+1 denote the kth and (k+1)th largest singular values of V +δV , defining
α̂N+1 := 0, where δV ∈ RN×N and δF ∈ RN , with

‖δV ‖2 ≤ ε0 · µ1 <
ε

2
, (181)

and

‖δF‖2 ≤ ε0 · µ2, (182)

for some ε0, µ1, µ2 > 0. Let

f̂N (x) =

N∑
j=1

ĉk,jx
tj , (183)

with ĉk defined in Equation (179). Then,

‖f − f̂N‖L∞[0,1]

≤
√

2 · max
1≤j≤N

√
wj · Vn ·

(
5ε · ‖w̃‖1 · ‖σ‖Cm([a,b])∗ · max

0≤i≤n−1

∥∥ui( t−ab−a
)∥∥
Cm([a,b])

· Un2

+
5

2

√
N · ‖σ‖Cm([a,b])∗ · max

0≤i≤n−1

∥∥ui( t−ab−a
)∥∥
Cm([a,b])

· αn
(A∞n
αn

+ UnVn +
A∞n
αn

Un
2‖w̃‖1

)
+

3

2
ε0 · µ2

)
+ (‖σ‖Cm([a,b])∗ · max

0≤i≤n−1

∥∥ui( t−ab−a
)∥∥
Cm([a,b])

+
√
N‖ĉk‖2) ·A∞n

· (1 +
√
N ·
√

2 max
1≤j≤N

√
wj · Vn), (184)

where

‖ĉk‖2 ≤
1

α̂k
(2ε+ α̂k)‖w̃‖1 · ‖σ‖Cm([a,b])∗ · max

0≤i≤n−1

∥∥ui( t−ab−a
)∥∥
Cm([a,b])

· Un2

+
1

α̂k

(√
N · ‖σ‖Cm([a,b])∗ · max

0≤i≤n−1

∥∥ui( t−ab−a
)∥∥
Cm([a,b])

· αn
(A∞n
αn

+ UnVn +
A∞n
αn

Un
2‖w̃‖1

)
+ ε0 · µ2

)
. (185)

Proof. Since the proof closely resembles the one of Theorem 7.3, we omit it here. The only
difference is that |σ| in Equation (159) is replaced by ‖σ‖Cm([a,b])∗ ·max0≤i≤n−1

∥∥ui( t−ab−a
)∥∥
Cm([a,b])

,

due to the fact that

|〈σ, ui
(
t−a
b−a
)
〉| ≤ ‖σ‖Cm([a,b])∗ ·

∥∥ui( t−ab−a
)∥∥
Cm([a,b])

, (186)

where the term
∥∥ui( t−ab−a

)∥∥
Cm([a,b])

is not negligible, for m ≥ 1. �

Note that, when σ is a signed Radon measure, the corresponding distribution has order
zero, and ‖σ‖C([a,b])∗ = |σ|. Thus, in this case, the above bound on ‖f − f̂N‖L∞[0,1] is
exactly the same as the bound described in Equation (159).
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Remark 8.1. Similar to Remark 7.2, the approximation error is approximately bounded
as

‖f − f̂N‖L∞[0,1] . (ε+ αn +
αnε

α̂k
+
α2
n

α̂k
)‖σ‖Cm([a,b])∗ · max

0≤i≤n−1

∥∥ui( t−ab−a
)∥∥
Cm([a,b])

+ ε0 · µ2 +
αn
α̂k
ε0 · µ2. (187)

If we choose ε ≈ αn, Equation (187) becomes

‖f − f̂N‖L∞[0,1] . (ε+ αn)‖σ‖Cm([a,b])∗ · max
0≤i≤n−1

∥∥ui( t−ab−a
)∥∥
Cm([a,b])

+ ε0 · µ2. (188)

9 Numerical Algorithm

The steps of the numerical algorithm for constructing the approximations described in
Theorem 7.3 and Theorem 8.1 can be summarized as follows:

1. Given f(x) of the form Equation (108) or Equation (175), compute γ = b
a .

2. Compute the right singular functions of Tγ , u0, u1, . . . , using the algorithm described
in Section 4.1 of [17].

3. Compute the left singular functions of Tγ , v0, v1, . . . , using the algorithm described
in Section 4.1 of [18].

4. Compute the singular values of Tγ , α0, α1, . . . , using the algorithm described in
Section 4.2 of [18].

5. Find n such that αn|σ| is the desired approximation error, where σ is defined in
Equation (108) or Equation (175).

6. Set N = 2n.

7. Use the algorithm for comrade matrices, described in [31], to compute the roots of
uN (t) as t̃1, t̃2, . . . , t̃N , and the roots of vN (x) as s1, s2, . . . , sN .

8. Rescale sj by
sj
2 , for j = 1, 2, . . . , N .

9. Obtain the non-integer powers tj = (b − a)t̃j + a, and the collocation points

xj = e−
sj
b−a , for j = 1, 2, . . . , N .

10. Use the non-integer powers and the collocation points to construct V ∈ RN×N as
defined in Equation (133) and F ∈ RN as defined in Equation (134).

11. Solve the linear system V c = F for the coefficient vector ĉ, using a TSVD solver
with truncation point ε = αn.

12. Construct the approximation f̂N (x) =
∑N

j=1 ĉjx
tj .
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In the previous section, we prove that, given any two N -point quadrature rules for

which E1 ≤ α2
n and E2 ≤ α2

n
2n , where E1 and E2 are defined in Equation (104) and

Equation (107), respectively, one can numerically approximate f by f̂N uniformly to
precision αn|σ|. We can construct such quadrature rules by selecting the roots of of
uN (t) and vN (x) for N ≈ 2n, as shown in Section 5. However, experiments in Section 5
show that, by taking N = n and using the nodes xk instead of xk/2, we can obtain the

same result in practice. Since the function f(t) = e
−x(t+ 1

γ−1
)
ui(t) can be integrated to

precision α2
n using only N = n points, and the interpolation matrix A ∈ RN×n defined

in Equation (91) is well conditioned also for N = n, we can achieve the same uniform
approximation error of f̂N to f as described in Equation (159) in Theorem 7.3, for N = n.

Previously, we assumed ε ≈ αn. When N = n, we instead choose ε as follows. First,
we observe ‖V −1‖2 ≤

1
αn

, as shown in Figure 8. Letting α̃n denote the n-th singular

value of V and assuming that δV satisfies ‖δV ‖2 ≤
α̃n
2 , we have

‖(V + δV )−1‖2 ≤
1

α̃n − ‖δV ‖2
≤ 2

α̃n
= 2‖V −1‖2. (189)

Thus, ‖(V + δV )−1‖2 .
1
αn

, which is equivalent to 1
α̂n
. 1

αn
. We have then that αn

α̂k
. 1,

and therefore, as long as ε is not larger than αn, the resulting approximation error is
bounded by

‖f − f̂N‖L∞[0,1] . (ε+ αn) · |σ|+ ε0µ2

. αn|σ|+ ε0µ2. (190)

In practice, we take ε = ε0.
Therefore, we implement a practical version of the numerical algorithm, which closely

follows the one outlined at the beginning of this section, with the following adjustments:

• We replace N = 2n with N = n in Step 6.

• When taking N = n, we use the roots of vN (x), s1, s2, . . . , sN , without scaling
them by 2. Thus, we delete Step 8.

• We replace ε = αn with ε = ε0 in Step 11.

The rest of the steps remain the same.

10 Numerical Experiments

In this section, we demonstrate the performance of our algorithm with several numerical
experiments. Our algorithm was implemented in Fortran 77, and compiled using the
GFortran Compiler, version 12.2.0, with -O3 flag. All experiments were conducted on a
laptop with 32 GB of RAM and an Intel 12nd Gen Core i7-1270P CPU. A demo of our
approximation scheme is provided in https://doi.org/10.5281/zenodo.8323315.

All the experiments presented in this section are conducted using the practical version
of the numerical algorithm described in Section 9.
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Figure 8: A comparison between ‖V −1‖2 and 1
αn

, as a function of n, for γ = 10, 50, 250.

10.1 Approximation Over Varying Values of n

In this subsection, we approximate functions of the form f(x) =
∫ b
a x

µσ(µ) dµ, x ∈ [0, 1],
for the following cases of σ(µ):

σ1(µ) =
1

µ
, (191)

σ2(µ) = sin(12µ), (192)

σ3(µ) = e−10µ, (193)

σ4(µ) = µ sin(µ). (194)
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We estimate ‖f − f̂N‖L∞[0,1] by evaluating f and f̂N at 2000 uniformly distributed

points over [0, 1], and finding the maximum error between f and f̂N at those points. We
repeat the experiments for γ = 10, 50, 250, and plot ‖f − f̂N‖L∞[0,1]/|σ|. The results are
displayed in Figures 9 to 11.

It is evident that ‖f − f̂N‖L∞[0,1]/|σ| remains bounded by αn, as shown in Section 9,
until it reaches a stabilized level that is close to machine precision multiplied by some
small constant. Since {αi}i=0,1,...,∞ decays exponentially, the approximation exhibits an
exponential rate of convergence in N .
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Figure 9: The L∞ approximation error over [0, 1], EN :=
‖f−f̂N‖L∞[0,1]

|σ| , as a function of
n, for γ = 10.

10.2 Approximation of Non-integer Powers

In this subsection, our goal is to approximate functions of the form f(x) =
∫ b
a x

µσ(µ) dµ,
x ∈ [0, 1], with

σ5(µ) = δ(µ− c), (195)

where c ∈ [a, b]. The resulting function is f(x) = xc.
We fix N = n, where αn ≈ ε0, and approximate such functions for 1000 values of

c distributed logarithmically in the interval [ a1.5 , 1.5b]. We evaluate f and f̂N at 1000

39



0 10 20 30 40

10-15

10-12

10-9

10-6

10-3

100
EN
αn

(a) f(x) =
∫ 50

1
xµσ1(µ) dµ

0 10 20 30 40

10-15

10-12

10-9

10-6

10-3

100

(b) f(x) =
∫ 50

1
xµσ2(µ) dµ

0 10 20 30 40

10-15

10-12

10-9

10-6

10-3

100

(c) f(x) =
∫ 50

1
xµσ3(µ) dµ

0 10 20 30 40

10-15

10-12

10-9

10-6

10-3

100

(d) f(x) =
∫ 50

1
xµσ4(µ) dµ

Figure 10: The L∞ approximation error over [0, 1], EN :=
‖f−f̂N‖L∞[0,1]

|σ| , as a function of
n, for γ = 50.

uniformly distributed points over [0, 1] to estimate ‖f − f̂N‖L∞[0,1]/|σ|. The results for
γ = 10, 50, 250 are displayed in Figure 12. It can be observed that the approximation
error remains accurate up to machine precision multiplied by some small constants, for
values of c within the interval [a, b], and grows significantly, for values of c outside [a, b].

We further investigate the approximation error over varying values of n, for c = a,
a+b

2 , b and γ = 10, 50, 250, as shown in Figure 13. The approximation error is bounded
by αn multiplied by some small constants, until it stabilizes at a level around machine
precision.

10.3 Approximation in the Case of Distributions

In this subsection, we assume σ ∈ D′(R) has the form

σ6(µ) = (−1)kδ(k)(µ− c), (196)

where k ≥ 0 is an integer, c ∈ [a, b], and δ(t) is the Dirac delta function. The resulting
function is f(x) = xc(log x)k. We evaluate f and f̂N at 2000 uniformly distributed points
in [0, 1] to estimate ‖f − f̂N‖L∞[0,1]/‖σ‖Cm([a,b])∗ . The results for k = 1, 2, . . . , 6, c = a,
a+b

2 , b, and γ = 10, 50, 250 are shown in Figures 14 to 16.
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Figure 11: The L∞ approximation error over [0, 1], EN :=
‖f−f̂N‖L∞[0,1]

|σ| , as a function of
n, for γ = 250.

In contrast to the previous cases where σ is a signed Radon measure, the approximation
error can increase significantly with k. However, the approximation error is still bounded
by (ε+ αn) ·max0≤i≤n−1

∥∥ui( t−ab−a
)∥∥
Ck([a,b])

, as stated in Theorem 8.1. Furthermore, we

observe that the error grows with k, and when c = a, the error is closely aligned with the
estimated bound, since the function is more singular for smaller c and the approximation
error tends to be larger.

10.4 Approximation Over a Simple Arc in the Complex Plane

In this subsection, we investigate the performance of our algorithm on simple and smooth
arcs in the complex plane. Suppose that γ̃ : [0, 1]→ C, and let Γ = γ̃([0, 1]). We replace
the interpolation matrix V in Equation (133) by a modified interpolation matrix VΓ,
defined by

VΓ =


γ̃(x1)t1 γ̃(x1)t2 . . . γ̃(x1)tN

γ̃(x2)t1 γ̃(x2)t2 . . . γ̃(x2)tN

...
...

. . .
...

γ̃(xN )t1 γ̃(xN )t2 . . . γ̃(xN )tN

 ∈ CN×N . (197)
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Figure 12: The L∞ approximation error of f(x) =
∫ b
a x

µσ5(µ) dµ = xc over [0, 1],

EN :=
‖f−f̂N‖L∞[0,1]

|σ| , as a function of c, for a fixed n such that αn ≈ ε0, and for γ = 10,
50, 250.

Specifically, we consider the arcs γ̃(t) = t+ αi(t2 − t), for α = 0.8, 1.6 and 2.4, which are
plotted in Figure 17. Our goal is to approximate functions of the form

fΓ(t) :=

∫ b

a
γ̃(t)µσ(µ) dµ, (198)
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Figure 13: The L∞ approximation error of f(x) =
∫ b
a x

µσ5(µ) dµ = xc over [0, 1],

EN :=
‖f−f̂N‖L∞[0,1]

|σ| , as a function of n, for c = a, a+b
2 , b, and γ = 10, 50, 250.

over the arcs γ̃(t), where t ∈ [0, 1]. We apply the algorithm to the functions fΓ(t) where
σ(µ) has the forms σ3(µ) and σ4(µ), as defined in Equation (193) and Equation (194),
respectively. The experiments are repeated for γ = 10, 50, 250, and the results are
displayed in Figures 18 to 20.

We also investigate the approximation errors for non-integer powers fΓ(t) = γ̃(t)c

over the arcs γ̃(t), where c ∈ [ a1.5 , 1.5b], following the same procedure as the one described
in Section 10.2. The results are displayed in Figure 21.
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Figure 14: The L∞ approximation error of f(x) =
∫ 10

1 xµσ6(µ) dµ = xc(log x)k over [0, 1],

EN :=
‖f−f̂N‖L∞[0,1]

‖σ‖Cm([a,b])∗
, as a function of n, for c = a, a+b

2 , b, k = 1, . . . , 6, and γ = 10.

Un,k := max0≤i≤n−1

∥∥ui( t−ab−a
)∥∥
Ck([a,b])

.

By analyzing the approximation errors over γ̃(t), for different values of α, we observe
that the approximation error grows with α, and depends on the specific functions being
approximated. Generally, when γ is small, the approximation error grows only slightly as
the arc becomes more curved, while for large γ, it is possible for the approximation error
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Figure 15: The L∞ approximation error of f(x) =
∫ 50

1 xµσ6(µ) dµ = xc(log x)k over [0, 1],

EN :=
‖f−f̂N‖L∞[0,1]

‖σ‖Cm([a,b])∗
, as a function of n, for c = a, a+b

2 , b, k = 1, . . . , 6, and γ = 50.

Un,k := max0≤i≤n−1

∥∥ui( t−ab−a
)∥∥
Ck([a,b])

.

to grow significantly larger than αn. When the arc is slightly curved, the approximation
performs similarly to the cases where γ̃(t) = [0, 1], with the error bounded by αn.
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Figure 16: The L∞ approximation error of f(x) =
∫ 250

1 xµσ6(µ) dµ = xc(log x)k over

[0, 1], EN :=
‖f−f̂N‖L∞[0,1]

‖σ‖Cm([a,b])∗
, as a function of n, for c = a, a+b

2 , b, k = 1, . . . , 6, and γ = 250.

Un,k := max0≤i≤n−1

∥∥ui( t−ab−a
)∥∥
Ck([a,b])

.

10.5 Clustering of the Collocation Points

We analyze the clustering behaviour of the collocation points by plotting them for γ = 10,
50, 250, and for different values of n, as demonstrated in Figures 22 and 23. We observe
that the collocation points cluster double-exponentially towards zero, for points that
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Figure 17: γ̃(t) = t+ αi(t2 − t).
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Figure 18: The L∞ approximation error over γ̃(t), EN :=
‖fΓ−f̂N‖L∞[0,1]

|σ| , as a function of
n, for α = 0.8, 1.6, 2.4, and γ = 10.
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Figure 19: The L∞ approximation error over γ̃(t), EN :=
‖fΓ−f̂N‖L∞[0,1]

|σ| , as a function of
n, for α = 0.8, 1.6, 2.4, and γ = 50.

are close to zero, while clustering at a slower rate, rather than double-exponentially, for
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Figure 20: The L∞ approximation error over γ̃(t), EN :=
‖fΓ−f̂N‖L∞[0,1]

|σ| , as a function of
n, for α = 0.8, 1.6, 2.4, and γ = 250.

points that are away from zero. Notably, Figure 22 reveals that the closest collocation
point to zero required to achieve an approximation error of size αn approaches zero at
only an exponential rate as n increases. For a fixed approximation error, such as ε0, the
closest collocation point to zero remains at the same distance from zero, for a fixed value
of a and varying values of b, as shown in Figure 23.

11 Conclusion

In this paper, we introduce an approach to approximate functions of the form f(x) =∫ b
a x

µσ(µ) dµ over the interval [0, 1], by expansions in a small number of singular powers
xt1 , xt2 , . . . , xtN , where 0 < a < b < ∞ and σ(µ) is some signed Radon measure
or some distribution supported on [a, b]. Given any desired accuracy ε, our method
guarantees that the uniform approximation error over the entire interval [0, 1] is bounded
by ε multiplied by certain small constants. Additionally, the number of basis functions
N grows asymptotically as O(log 1

ε ), and the expansion coefficients can be found by
collocating the function at specially chosen collocation points x1, x2, . . . , xN and solving
an N × N linear system numerically. In practice, when b

a = 10 and σ is a signed
Radon measure, our method requires only approximately N = 30 basis functions and
collocation points in order to achieve machine precision accuracy. Numerical experiments
demonstrate that our method can also be used for approximation over simple smooth
arcs in the complex plane. A key feature of our method is that both the basis functions
and the collocation points are determined a priori by only the values of a, b, and ε. This
sets it apart from expert-driven approximation methods, and from other methods that
rely on careful selection of parameters to determine the basis functions. For example,
the basis functions used in lightning and reciprocal-log approximation are defined by the
locations of poles, and the SE-Sinc and DE-Sinc approximations depend on the choices
of smooth transformations. Compared to the DE-Sinc approximation, which achieves
nearly-exponential rates of convergence at the cost of double-exponentially clustered
collocation points, our method uses collocation points that cluster double-exponentially
only for points that are close to the singularity, and at a slower rate, rather than double-
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Figure 21: The L∞ approximation error of fΓ(t) =
∫ b
a γ̃(t)µσ5(µ) dµ = γ̃(t)c over γ̃(t),

EN :=
‖fΓ−f̂N‖L∞[0,1]

|σ| , as a function of c, for a fixed n such that αn ≈ ε0, α = 0.8, 1.6, 2.4,
and γ = 10, 50, 250.

exponentially, for points that are further away. Moreover, the closest collocation point
required to achieve an approximation error of size αn approaches the singularity at only an
exponential rate as n increases. For a fixed desired accuracy ε, the closest collocation point
stays at the same distance from the singularity for a fixed value of a and varying values
of b. Compared to reciprocal-log approximation, which requires the least-squares solution
of an overdetermined linear system with many collocation points, our method involves
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Figure 22: The distribution of collocation points {xj}Nj=1 over [0, 1], for values of n such
that αn & ε0, and γ = 10, 50, 250.

the solution of a small square linear system to determine the expansion coefficients.
Since our method approximates singular functions accurately by expansions in singular

powers, it can be used with existing finite element methods or integral equation methods
to approximate the solutions of PDEs on nonsmooth geometries or with discontinuous
data. Typically, the leading singular terms of the asymptotic expansions of solutions near
corners are derived from the angles at the corners, and are added to the basis functions of
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Figure 23: The distribution of collocation points {xj}Nj=1 over [0, 1], for fixed values of n
such that αn ≈ ε0, and a = 1, b = 10, 50, 250.

finite element methods to enhance the convergence rates (see, for example, [35], [8], [27]).
Now, with only the knowledge that the singular solutions are of the form Equation (108),
we can enhance the convergence rates of finite element methods without knowledge of the
angles at the corners, by adding all of the singular powers obtained from our method to
the basis functions. Likewise, the singular powers obtained from our method can be used
in integral equation methods for PDEs. In integral equation methods, boundary value
problems for PDEs are reformulated as integral equations for boundary charge and dipole
densities which represent their solutions. Previously, singular asymptotic expansions of
the densities, determined by the angles at the corners, were used to construct special
quadrature rules to solve these integral equations (see, for example, [29], [30]). Using only
the fact that the singular densities are of the form Equation (108), quadrature rules can
instead be developed for only the singular powers obtained from our method, independent
of the angles at the corners.
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[1] Babuška, I., B. Andersson, B. Guo, J. M. Melenk, and H. S. Oh. “Finite Element
Method for Solving Problems with Singular Solutions.” J. Comput. Appl. Math. 74
(1996): 51–70.

[2] Bauer, F.L., and C.T. Fike. “Norms and Exclusion Theorems.” Numer. Math. 2.1
(1960): 137–141.

[3] Bertero, M., P. Boccacci, and E.R. Pike. “On the Recovery and Resolution of
Exponential Relaxation Rates from Experimental Data: a Singular-value Analysis
of the Laplace Transform Inversion in the Presence of Noise.” P. Roy. Soc. A-Math.
Phy. 383 (1982): 15–29.

[4] Beylkin, G., and L. Monzón. “On Approximation of Functions by Exponential Sums.”
Appl. Comput. Harmon. A. 19.1 (2005): 1063–5203.

[5] Chen, S., and J. Shen. “Enriched Spectral Methods and Applications to Problems
with Weakly Singular Solutions.” J. Sci. Comput. 77 (2018): 1468–1489.

51
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