In this paper, we describe an algorithm for approximating functions of the form f(z) =
f: xto(p) dp over [0,1] C R, where 0 < a < b < 0o and o(u) is some signed Radon measure
over [a,b] or some distribution supported on [a,b]. Given the desired accuracy € and the
values of a and b, our method determines a priori a collection of non-integer powers {tj }é\f:l,
so that the functions are approximated by series of the form f(x) ~ Z;V: L ¢jz, where the
expansion coefficients can be found by solving a square, low-dimensional Vandermonde-like
linear system using the collocation points {x; }§V:1» also determined a priori by € and the
values of @ and b. We prove that our method has a small uniform approximation error which
is proportional to € multiplied by some small constants. We demonstrate the performance of
our algorithm with several numerical experiments, and show that the number of singular
powers and collocation points grows as N = O(log %)
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1 Introduction

The approximation of functions with singularities is a central topic in approximation
theory. One motivating application is the representation of solutions to partial differential
equations (PDEs) on nonsmooth geometries or with discontinuous data, which are known
to be characterized by power-type singularities. Substantial progress has been made in
this area, and existing methods can be classified into several categories, the primary
ones being rational approximation, Sinc approximation combined with single- or double-
exponential transformations, methods incorporating a priori knowledge of singularity
types, and function approximation using combinations of complex exponentials obtained
from the c-eigenpairs of certain Hankel matrices.

Rational approximation is a classical and well-established method for approximating
functions with singularities, using rational basis functions determined by their poles and
residues or by their weights in barycentric representations. In 1964, Newman discovered
that there exists a rational approximation to the function f(z) = |z| on [—1, 1], converging
at a rate of O(exp(—C+/n)) [2I] (the polynomial approximation to |z| on [—1, 1] can only
achieve a convergence rate no better than O(n~!)). Furthermore, he observed that the
same approximation also applies to the functions f(x) = \/z and f(z) = 2 on [0, 1]. It is
noteworthy that Newman’s approximation utilizes poles that are clustered exponentially
and symmetrically around zero along the imaginary axis.

Numerous papers have been published on rational approximation methods for functions
with singularities since Newman’s discovery (see, for example, [§], [26], [18], [6]). The
best possible rational approximation is the so-called minimax approximation, which
minimizes the maximum uniform approximation error between the function and its
rational approximation. However, this minimax approximation is not easily to find and
is not necessarily unique in the complex plane [II]. In practice, it turns out that the
poles of the rational approximation can often be determined a priori, similar to those
employed in Newman’s method, to achieve a root-exponential convergence rate. One
such method is Stenger’s approximation [28], which involves interpolating the functions
at a set of preassigned points exponentially clustered near the endpoints of the interval,
in a rational basis with poles that are exponentially clustered at the endpoints.

While Stenger’s method uses explicit formulas for the rational approximations, the
residues can also be found numerically. In fact, if the poles are determined a priori, one
can oversample the function and use the least-squares method to determine the residues
which minimize the maximum approximation error. A class of methods utilizing this
technique is known as lightning methods, which have been designed to approximate
solutions of Laplace ([10], [9]) and Helmholtz ([9]) equations on two-dimensional domains
with corners. Lightning methods employ rational functions with preassigned poles that
cluster exponentially around the corner singularities along rays. It was proved in [10] that
any complex poles exhibiting exponential clustering, with spacing scaling as O(n_l/ 3,
can achieve root-exponential rates of convergence. On more general geometries, the
adaptive Antoulas-Anderson (AAA) algorithm [20] is an efficient and flexible nonlinear
method that was developed to be domain-independent. The AAA method employs
rational barycentric representations in the real or complex plane, incrementally increases
the approximation order during iterations, and dynamically selects poles using a greedy
algorithm. To determine the weights in the rational barycentric representations, the
algorithm likewise solves a least-squares problem at each iteration.



While all the aforementioned methods can achieve root-exponential rates of conver-
gence, it was discovered in [30] that further improvements in convergence rates can be
obtained for most methods with preassigned poles by employing poles with tapered expo-
nential clustering around singularities, such that the clustering density on a logarithmic
scale tapers off linearly to zero near the singularities.

Rational approximation can also be applied after a change of variables. An approach
referred to as reciprocal-log approximation [19] uses approximations of the form r(log z),
where r(s) is a rational function with poles determined a priori, either on a parabolic
contour or confluent at the same point. Similarly to lightning methods, the coefficients
are determined through a linear least-squares problem using collocation points that
cluster exponentially around z = 0. This method converges at a rate of O(exp(—Cn))
or O(exp(—Cn/logn)), depending on the form of the approximation and the function’s
behaviour in the complex plane.

An alternative approach is to use a combination of a change of variables and an
approximation scheme that converges rapidly for smooth functions on the real line. By
applying smooth transformations to functions with singularities at the endpoints of
some finite intervals on the real line, these functions can be transformed into rapidly
decaying functions, with the singularities mapped to the point at infinity. After this
transformation, such functions can be approximated accurately using the Sinc approxi-
mation, by a truncated Sinc expansion. Two primary approaches of this type have been
developed: the SE-Sinc and DE-Sinc approximations (see, for example, [27], [22] and
[17]). The SE-Sinc approximation combines the single-exponential transformation with
the Sinc approximation, resulting in a convergence rate of O(exp(—Cy/n)), while the
DE-Sinc approximation combines the double-exponential transformation with the Sinc
approximation, to further improve the convergence rate to O(exp(—Cn/logn)).

While the previously mentioned methods can approximate functions with unknown
singularity types, an alternative approach is possible when the leading terms of the
singular functions are known in advance. In such cases, the singularities can be included
directly in the approximation scheme. This often occurs in the solutions of boundary
value problems for PDEs on domain with corners, when asymptotic expansions of the
singularities around corners are available. It was revealed in [I5] that the solutions of
the Dirichlet problem for linear second order elliptic PDEs have singular expansions in
terms of the form r(r?logr)™, where r is the radial distance from the singularity, o € R,
g,m € N and ¢ > 1. It was shown in [29] that, when singularities are of the type %,
the rates of convergence of ordinary finite element methods are limited by the order «,
even when the order of the polynomial basis is high. As pointed out in [29], a common
method to reduce the error of approximation is by including the leading terms of the
singularities into the interpolation basis of finite element methods, over sufficiently large
regions around the singular points. One example of a method of this kind is the Blended
Singular Basis Function Method (BSBFM) [23], in which the basis functions of elements in
regions near the singular points are augmented with singular basis functions, constructed
from leading-order singular powers multiplied by one-zone or two-zone blending functions.
An alternative approach which also uses the leading terms of singularities is known as
the method of auxiliary mapping (MAM) (see, for example, [16], [1]). MAM addresses
the corner singularities by employing conformal mappings on neighborhoods of corners,
so that the solutions on the transformed neighborhoods become more regular. When



PDEs are reformulated as integral equations for boundary charge or dipole densities used
to represent the solutions, leading terms of the asymptotic expansions of the singular
densities can likewise be used in the approximation scheme. Such approximations were
taken in [24] and [25] to solve the Laplace and Helmholtz equations.

Following a different approach, Beylkin and Monzén [4] proposed a method that
involves representing a function by a linear combination of exponential terms with
complex-valued exponents and coefficients. This method is motivated by the observation
that many functions admit representations by exponential integrals over contours in the
complex plane, which can then be discretized by quadrature. Instead of starting with a
contour integral however, the existence of such representations is only assumed implicitly,
and the exponents (which they also call nodes) are obtained by finding the roots of a
c-eigenpolynomial corresponding to a Hankel matrix, constructed from uniform samples
of the function over the interval, while the coefficients (or weights) are determined via a
Vandermonde system. We note that their primary focus is on minimizing the error at the
sample points, and for singular functions, they only emphasize the error on a subinterval
which excludes the singularities.

In this paper, we present a method for approximating functions with an endpoint
singularity over [0,1] C R, or more generally, a curve I' C C, where the functions
have the form f(x) = fab xto(u) du, where 0 < a < b < oo, x € [0,1], and o(u) is
some signed Radon measure over [a,b] or some distribution supported on [a,b]. Our
method represents these functions as expansions of the form fN(m) = Z;VZI /c\jwtj, so that

Ilf— fNH Lee[o,1] & € where the singular powers {t; }§V21 are determined a priori based on
the desired approximation accuracy € and the values of a and b. The coefficients of the
expansion are determined by solving a Vandermonde-like collocation problem

az? a:? . :UZiN 1 f(z1)
A c2 f(x2)

= . (1)
:L";\l, $§\2[ e :U%V CN f(zn)

for f(z) at the points {x; }jV: 1, which are likewise determined a priori by €, a and b. We
show that these collocation points cluster tapered-exponentially near the singularities
at x = 0. We also show numerically that, in order to obtain a uniform approximation
error of ¢, the number of basis functions and collocation points grows as N = O(log %)
Our method does not require any prior knowledge of the singularity types, besides the
values of a and b, and the resulting basis functions depend only on these values, together
with the precision €. In contrast to rational approximation which converges only at
a root-exponential rate, our method converges exponentially. When compared to the
DE-Sinc approximation method which requires a large number of collocation points placed
at the both endpoints after applying the smooth transformation (even when singularities
only happen at only one endpoint), and reciprocal-log approximation which uses many
collocation points together with least squares, our method has a small number both of
basis functions and collocation points, such that the coefficients can be determined via a
square, low-dimensional Vandermonde-like system.

Among all the methods discussed, the methodology of Beylkin and Monzén [4] bears
the closest similarity with our method. However, unlike their method, our method
emphasizes achieving a small uniform error over the entire interval.



The structure of this paper is as follows. Section [2] reviews the truncated Laplace
transform and the truncated singular value decomposition. Section [3| demonstrates some
numerical findings about the singular value decomposition of the truncated Laplace
transform. Section [4] develops the main analytical tools of this paper. Section [5] describes
some numerical experiments which provide conditions for the practical use of the theorems
in section {4l Section |§| shows that functions of the form f(x) = ff xto(p) dp can be
approximated uniformly by expansions in singular powers. Section [7] shows that the
coefficients of such expansions can be obtained numerically by solving a Vandermonde-like
system, and provides a bound for the uniform approximation error. Section [§] illustrates
that the previous results can be extended to the case where the measure is replaced by
a distribution. Section [9] shows that, in practice, the algorithm can be applied using a
smaller number of basis functions and collocation points than stated in section [7] Finally,
section presents several numerical experiments to demonstrate the performance of our
algorithm.

2 Mathematical Preliminaries

In this section, we provide some mathematical preliminaries.

2.1 The Truncated Laplace Transform

Throughout this paper, we utilize the analytical and numerical properties of the truncated
Laplace transform, which have been previously presented in [13]. Here, we briefly review
the key properties.

For a function f(x) € L?[a,b], where 0 < a < b < oo, the truncated Laplace transform
L is a linear mapping L?[a,b] — L?[0, ), defined by the formula

b
(zmaf»cw::/"e—”fuwﬁ. 2)

We introduce the operator T, : L?[0,1] — L?[0, 00), defined by the formula

1 1
(nummzéeﬁwwﬂmma 3)

so that T, is the truncated Laplace transform of f(x) shifted from [a,b] to [0,1], where
v = g. It is clear that £, and T, are compact operators (see, for example [3]).

As pointed out in [I3], the singular value decomposition of the operator T’, consists
of an orthonormal sequence of right singular functions {u;}i—01.. 0o € L?[0,1], an
orthonormal sequence of left singular functions {v;}i=0.1,.. 00 € L?[0,00), and a discrete

sequence of singular values {c;}i=0.1,.. 0 € R. The operator T, can be rewritten as

o0

T = Yo [ w0 d)ute) (@

=0
for any function f(x) € L?[0,1]. Note that

Ty (u;) = oz, (5)



and

Tf;(vi) = Q;Uq, (6)

for all i =0, 1, ..., where T7 is the adjoint of 7', defined by

w90 = | e ) g ) d ()

0

Furthermore, for all i =0, 1, ...,

Q; > 041 > 0, (8)

and {a;}i—0.1,... .00 decays exponentially fast in n.
Assume that the left singular functions of £, are denoted by vg, v1, ..., and that the
right singular functions of £, are denoted by ug, 11, ... . Then, the relations between

the singular functions of £, ; and those of T’, are given by the formulas

wit) = Vb —a wia+ (b—at), (9)

and
1 -, T
(@) =~ (). (10)
forall i =0, 1, ... . It is observed in [13] that vy, v1, ... are the eigenfunctions of the

4th order differential operator D,,, defined by

(D)) =~ (wQ(E;f(w)) @+ 1) (W 1)) + (et + 2 ),
(1)

where f € C*[0,00) N L?[0,00), and that ug, u1, ... are the eigenfunctions of the 2nd
order differential operator Dy, defined by

7 _d /e a2 20d 2 2
(Bun) 0= 5 (@ -0 -1 350) -2 -y, 2
where f € C?[a,b]. Thus, U, for alli =0, 1, ..., can be evaluated by finding the solution
to the differential equation
d? o d&® 2 2y d 2 d 2;2 92 2\~ o

_dw2<w dWQUZ-(w)) + (a*+0b )dcu(w dwvi(w)> + (—a“b*w” 4 2a7)v;(w) = Xiv;i(w),
(13)
where Y; is the ith eigenvalue of the differential operator ﬁw. Similarly, u;, for all 4 = 0,

1, ..., can be evaluated by finding the solution to the differential equation
3 (-0 - ) 500 - 26 - i) = o) (1)

where X; is the ith eigenvalue of the differential operator ﬁt.

A procedure for the evaluation of the singular functions and singular values of the
operator T’,, as well as the roots of the singular functions, is described comprehensively
in [13).



2.2 The Truncated Singular Decomposition (TSVD)
The singular value decomposition (SVD) of a matrix A € R"*" is defined by
A=UxvT, (15)

where the left and right matrices U € R™*™ and V € R™ " are orthogonal, and the
matrix X € R™*" is a diagonal matrix with the singular values of A on the diagonal, in
descending order, so that

Y= diag(o-la g2, ... aamin{m,n})' (16)

Let r < min{m, n} denote the rank of A, which is equal to the number of nonzero entries
on the diagonal, and suppose that £ < r. The k-truncated singular value decomposition
(k-TSVD) of A is defined as

Ap = U VT, (17)
where

Yy = diag(oq,...,0%,0,...,0) € R™*™, (18)
The pseudo-inverse of Ay is defined by

Al =vsluT e R, (19)
where

s = diag(o1 7", ..., 0471,0,...,0) € R™™. (20)

The following theorem bounds the sizes of the solution and residual, when a perturbed
linear system is solved using the TSVD. It follows the same reasoning as the proof of
Theorem 3.4 in [12].

Theorem 2.1. Suppose that A € R™*", where m > n, and let 01 > 09 > -+ > 0, be
the singular values of A. Suppose that x € R"™ satisfies

Az =b. (21)
Let € > 0, and suppose that

Ty = (A+E)(b+e), (22)
where (A + E)}C is the pseudo-inverse of the k-TSVD of A+ E, so that

O) > € > Ok, (23)

where oy, and 041 are the kth and (k 4 1)th largest singular values of A+ E, and where
E e R™" and e € R™, with ||E||, < €/2. Then

= 1
1Zkly < ;k(%Hasz + llelly) + [zl (24)
and
~ 3
1AZE = blly < Sellzll; + S flello- (25)
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Proof. Let 01 > 09 > --- > 0, denote the singular values of A, and let A be the
k-TSVD of A. We observe that Ayx = b— (A — Ag)x. Letting rp, = (A — Ag)z denote the
residual, we see that |7y < og41]lz]|, and that b — Agz = ry. Let x = AZb. Clearly,
b— Amkf ri and [lzgly < |z

Let A:= A+ E. We see that
b+e)
Axy + 1 + 6)

~

AL(
(
(Azy — Exg + 1 +e)
(—
Ap (=

o ||

Exp+rg+e)+ Ak,Aazk
Exp+ry+e)+ /T]L.Zl\kxk (26)

Taking norms on both sides and observing that //l\,LA\k is an orthogonal projection,

1Zklly < IAL (Bl lzklly + llelly + relly) + el
< 1AL, (1Bl lwrlly + llelly + orrallzlly) + ok, (27)
Letting o4 > 09 > --- > 0, denote the singular values of A+ F, we have by the Bauer-Fike

Theorem (see [2]) that |6; — 0| < ||E||, for j =1, 2, ..., n. Since 0} > € > 0)4; and
|Ell, < €/2, we see that o441 < 3€¢/2. Therefore,

1 3e
|Zk]ly < *( 2|y + llelly + *Hxllg) + |zl
1
= gk(QEIIwI!z + llelly) + llzlp- (28)

To bound the residual, we observe that

ATy, — b= Az, — Azy, — 1y,
= ATy — ap) — Tk
= A(@ — xx) — B(& — xx) — 7 (29)

From , we have that
T — X = A\L(—Eﬂck +rp+e)—(I— A\L Ak)xk. (30)

Combining these two formulas,

AfC\k—b:A\Ak( Exk+'rk—|—e) A\( ;1\,2121\ )xk—E(./I‘\k—:Ek)—Tk

~

:/fl\kf/l\;rg( Exp+r,+e) — E( A k) — E(Zy — x1) — 1y,
= A Al (~Bay, + ¢) - A — Al A)ay — B@x — a) — (I - AADr,
(31)

~

Since A(I — ELA\;C) = (A— A)(I - A\LA;Q), we see that

ATy — b= A Al (—Exy, + ) — (A= Ap)(I — AL A)ay, — B(@y, — x1) — (I — ApAl)ry.
(32)



Taking norms on both sides and observing that /TkA\iTc and (I — /T,Ezzl\k) are orthogonal
projections,

143 = blly < 20 Bllallarlly + el +Furtllanll + I Blal@ell + el
7 1.
< ellelly + llelly + 5l

3
< Seflzfly + 5 el (33)

3 Numerical Apparatus

In this section, we present several numerical experiments to examine some numerical
properties of the singular value decomposition of the shifted truncated Laplace transform,
T,. These findings are critical in the later proofs. We make the following observations:

1. The straight lines displayed in fig. |I| indicate that the singular values of T’, decay
exponentially.

2. Figure 2a] and fig. [3a] show that the L*> norm of both the left and right singular
functions remains small, even for large values of ~.

3. Suppose that z1, 2, ..., x, are the roots of v,(x), and that t1, to, ..., t, are the
roots of u,(t). Let the weights wy, wa, ..., w, and w;, W, ..., w, satisfy

/Oo vi(x) de = Z wiv;(zk), (34)
0 k=1

and

n

1
/ u,(t) dt = Z ﬁkui(tk), (35)
0 k=1

foralli=0,1, ..., n— 1. Then the weights are all positive.

4. Figure 2bl and fig. show that the sizes of weights defined in eq. and eq.

are small.

4 Analytical Apparatus

In this section, we present the principal analytical tools of this paper.

The following theorem states that the products of any two functions in the range of
the operator 7%, introduced in section can be expressed as a function in the range of
T, after a change of variable.
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Theorem 4.1. Suppose that the functions p, ¢ € L*[0,00) are defined by
1 1
po) = [T e, (36)
0

10



and
1 1
a(z) = /E () dt, (37)

respectively, for some n, ¢ € L?[0,1], and some v > 1. Then, there exists some o €
L?[0,1], such that

pm»mw—/zﬁmﬂakwﬁ- (38)

0

Proof. For any p and ¢ defined by eq. and eq. , we have

1 1
po) ga) = [ TR dt [T () ds
0 0
1 1 )
= / / eix(Herﬁ)n(t)cp(s) dsdt. (39)
o Jo
Defining a new variable u = t + s and changing the range of integration, eq. becomes
1 9 u
po) - qta) = [T [T s)p(s) dsdu
0
2 5 1
+ / e *(t5=1) / n(u — s)p(s) ds du. (40)
1 u—1

Letting v = §, we have
_[? etz [
p(z) - q(x) = e v-1 n(2v — s)p(s) ds2dv
0 0

1
2

1 1
+ / - 2(2u+:27) (20 — s)p(s) ds 2dv
1 2v—1

—/ (24520 5 () d, (41)
0
where
2v
o(v) = 2/0 n(2v — s)p(s) ds, (42)
for v € [0, 3], and
1
o(v) = 2/2 | n(2v — s)e(s) ds, (43)
for v € [1,1]. [ ]

11



Observation 4.1. Suppose we have nodes x1, xo, ..., x, and weights w1, wa, ..., Wy,
such that

[e'S) 1
‘/ / ool dtdx—ij/ n@)dt] < elnll oy (44)
0 0
for any n € L?[0,1]. Notice that
| v -ata)as

= [ ) ap)

/ ! / ¢TS50 0 (1) dt du. (45)
Thus,

oo " w; x; x; 1
[ p@)-atwyde =30 () 0| < el <
1

(46)

This theorem shows that the products of any two functions in the range of 77, can
be expressed as a function in the range of 77.

Theorem 4.2. Suppose that the functions p,q € L*[0,1] are defined by

p(t) = /0 ) (2) da, (47)
and
a(t) = /0 T (o) do, (48)

respectively, for some n, ¢ € L?[0,00), and some v > 1. Then, there erists some
o € L?[0,00), such that

pt)-at) = [ o) de (49)
Proof. For any p and ¢ defined by eq. and eq. , we have
p0) 0l = [T o [T g0 do
/ / DT (o () dar du. (50)

Defining v = w + z and changing the range of integration, eq. becomes
o0 " 1 u
p(0) o) = [T [T nwptu ) dwdu
00O o 0
= / e~ +ﬁ)a(u) du, (51)
0

12



where

for u € [0, 00). [ |
Observation 4.2. Suppose we have nodes t1, to, ..., t, and weights wy, wa, ..., wy,
such that

1 0o n 0o
| /0 /0 T ) dad — 3w /0 et n(2) da| < el ey (53)
=1

for any n € L?[0,00). Since p(t) - ¢(t) is in the range of T3, we have

1 n
‘/o p(t) - q(t)dt = w; - p(t;) - Q(tj)‘ < €lloll 1200,00) < €l L20,00) 191l 120,00y (54)
j=1

Leveraging the multiplication rule established earlier, we demonstrate that the follow-
ing quadrature rule accurately integrates the products of the kernel of T, and the right
singular functions of 7.

Corollary 4.3. Suppose that we have a quadrature rule to integrate c;u; - oju; to within
an error of €, for all i and j such thati,7 =0, 1, ..., n— 1. Suppose further that t1, to,

.., tym are the quadrature nodes, and w1, ws, ..., Wy, are the quadrature weights. Then,
the error of the quadrature rule applied to functions of the form f(t) = e_x(tJrﬁ)ui(t),
with x € [0,00), is roughly equal to

n—1 m
€
a; Z HUjHLoo[o,oo) +an - ”UnHLoo[o,oo) : Hun”Lw[O,l] : HUiHLoo[o,l} ' Z |wi. (55)
7 =0 k=1
Proof. Since e_x(Hﬁ) can be written as
o0
e_w(tJrﬁ) = vi(x)oyug(t), (56)
i=0

13



we have

1 m
/ e_w(t—’—ﬁ)ui(t) dt — Z wke_ﬂﬁ(t”ﬁ)ui(tk)
0 k=1

/ (Zw w)agus(t) )u ()dt—Zwk(Zv] Pagus(t) )t

k=1

1
:/0 vi(a:)aiu?(t)dt—Zwk(Zvj T)aju; tk))“i(tk)

k=1

1 nl €
= /0 vi () au? (t) dt — (]Z:%/O vj(x)ajuy(t)u;(t) dt + ]z:% vj(x)a; (Oéiaj>
+ i i wkvj(w)ajw(tk)ui(tk))

J=n k=1

01 vj(z)aj <ala] ) Z Z wiv; (@ ajuj(tk)ui(tk))

j=n k=1

:_(j

n—1
= —( vj + ZZwkv] ozjuj(tk)ui(tk)>. (57)

7=0 Jj=n k=1

Since {@;}i=0,1,... 0o decays exponentially, we have

1
‘/e dt—Zwke st )i(tk)‘
0

‘”Z:l v;j (m)a% + Z: wkvn(:v)anun(tk)ui(tk)’

Q

< *Z 10511 oo 0,00) +Z!wk\ i+ [vnll poogo,00) = [un ()] - [uits)]
7=0
n—1
< — Z ””J”Loo[o o0) T On HUnHLOO[OOO HunHLoo 0,1] HUzHLoo[o 1" Z lwgl.  (58)
j =0 k=1
|
Suppose that =i, x2, ..., ;, and wy, wo, ..., wy, are the nodes and weights of a

quadrature rule which integrates a;v; - ojv;, to within an error of €, for 4,7 =0, 1, .
n — 1. The following theorem shows that, if the left singular functions {v;}i=0.1,..n—1
of the operator 7T’,, are used as interpolation basis, then, the interpolation matrix for
the nodes x1, xo, ..., x,, is well conditioned, provided that the maximum error € of

integrating oyv; - v, for 4,5 =0, 1, ..., n — 1, is sufficiently small.

BT

Theorem 4.4. Suppose that we have an m-point quadrature rule which integrates o;v; -
a;vj, to within an error of €, for all i,j =0, 1, ..., n — 1. Suppose further that x1, 2,
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.., Tm are the quadrature nodes, and wi, wa, ..., W, are the quadrature weights. Let
the matriz A € R™*™ be given by the formula

vo(z1) wvi(x1) ... vp—1(xr)
e vo(x2) 1)1(:%'2> . vn_.l(acg) | (59)
vo(Tm) vi(zm) ... Up—1(zm)
and let the matriz W be the diagonal matrix with diagonal entries wi, wa, ..., w,. We

define the matriz E = [e;)] such that
E=1-ATWA. (60)

Then,

€
lejr| < ——.
Q101

Proof. From eq. , we have
m
€ik = 5jk — Zwlvj_l(xl)vk,l(xl), (62)
=1

where 9, = 1 if j = k, and §;, = 0 otherwise. Then,

m
1
lejk| = ’5jk = Zwlaj—lvj—l(wl) Vg1 (X)) —————
P Q101
<fou- (oo [ (@) (@) dz — —)
<o — (——— | ajo1vj-1(2) - ap_rvp_i(z) do — ———
! Q5 _10k—1 Jo ! ! Q51001
€
. (63)
Qj—10k—1
[ |

The following corollary establishes an upper bound on the norm of the pseudo-inverse
At of the matrix A defined in eq. .

Corollary 4.5. Suppose that we have a collection of quadrature nodes x1, T2, ..., Tm
and quadrature weights w1, wa, ..., Wy, which integrate a;v; - ajv; to within an error of

€< %, foralli,j=0,1, ..., n—1. Let A € R™*" be the matriz defined in eq. .
Then,

||AT||2 <2 max +/wj, (64)
1<i<m

where AT € R™™ s the pseudo-inverse of A.

Proof. Since wi, wo, ..., wy,, are positive, it is reasonable to let W3 den?te a diagonal
matrix with entries /w1, Jwa, ..., \/Wn. We define B such that B = W2 A. It follows
by eq. that BTB = I — E. Since ejr < oz, for all j,;k =1, 2, ..., n, we have
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|E]l; < Szv/n. Let 61, 72, ..., 0, denote the singular values of BT B. Then, it can be
shown that (see Theorem IIla in [2])

~ €
7 =1 < [|E]l, < —Vn, (65)
an
for all j =1, 2, ..., n. This means that
1— S \n<&;<1+-n (66)
o, g
Letting k = min{n, m} and o1, 09, ..., o) be the singular values of B, we have

€ €
,ll—a—%\/ﬁ<aj<,/1+a—%\/ﬁ. (67)

Letting BT be tllle pseudo-inverse of B, such that BB = I, since B = W%A, we have
that A" = BtW2. Thus,

1
14Tl < BT, W]l
1
Vv A w
«

n

2
If we have € < 20\%, then eq. (@j implies that

4Tl < V2 max /. (69)

5 Empirical Bounds

In this section, we present several numerical experiments to demonstrate that the er-

ror of the quadrature rule described in corollary , applied to the function f(t) =
1

eix(wﬁ)ui(t), fori=0,1, ..., n—1, turns out to be smaller than the bound described

in corollary We also show that the norm of AT € R™™ achieves the bound specified

in corollary for a quadrature rule which integrates a;v; - ajv;, for 4,5 =0, 1, ...,

2
n — 1, to an error that exceeds —=

o’
Suppose that the nodes t1, ta, ..., t, are the roots of u, (), and that the weights wy,

wa, ..., Wy satisfy
1 n
/ u;(t) dt = Z@kuz’(tk)a (70)
0 k=1
fori=0,1,...,n— 1. Applying observation we have

1 n
E, = max ‘/ aui(t) - ajug(t) dt — Ztﬂkaiul-(tk) - ojug(ty)
770 k=1

< @03l 0.0 104l 2100y = (71)
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However, numerical experiments for v = 10, 100 and 200 demonstrate that the error of the

quadrature rule in eq. , applied to a;u; - ajuj, fori,j =0, 1, ..., n—1, is smaller than
a? in practice, as shown in figs. and

1
that the error of such quadrature rule applied to the function f(t) = e_x(Hﬁ)ul(t), is

approximately of the same size as a,.

Thus, it can be inferred from corollary

10°1 101
- EB | T
03 X a? P
81
1076< //
10 9 6« l'/
71‘2 | III
10 Ay 1A
10151 I" """ \/5 max +/ Wy
\ 1<k<n
0 10 20 30 0 10 20 30
(a) (b)
Figure 4: v =10
wr~—————————— =
109 301 P
106 251
1079< 20‘ I//'
15 [
—12 | 1
10 / JA* s
10151 101 72 V2 max vy
! 1<k<n
5L . . . . .
0 10 20 30 40 50
(b)

Suppose that the nodes x1, x3, ..

..., Wy satisfy

Figure 5: v = 100

/Oo vi(z) dr = Zwkw(%k),
0 k=1

fori=0,1, ..., n— 1. Observation implies that

FEs5 := max

1,J

< an”“z‘”p[o,l}HUJHL2[0,1] = Qn

17

n

)/OOO ;vi(z) - ajvj(z) do — Z %am(x

k Tk
) aui(5)

k=1

., T, are the roots of v, and the weights wi, wo,

(72)



s =
10-% 401 P
1061
30
1091
II
—12 ] 20‘ I’
10 { ATl
. v S S
1015 101 ", \/Elrgll??n Wy,
0 20 40 60

Figure 6: v = 200

In contrast to the error of the quadrature rule in eq. applied to aju; - ajuy, for
1,j =0, 1, ..., n — 1, which is in practice less than «;, the error of the quadrature
rule in eq. applied to a;v; - ajvj, lies between a? and «,,. However, we observe
that the special structure of A € R™"™ enables the norm of Af to still attain the bound

specified in eq. . The results for v = 10, 100 and 200 are shown in figs. and
respectively.

Remark 5.1. It is worth emphasizing that the choice of quadrature nodes is not unique.
Any set of quadrature nodes with corresponding weights that satisfy eq. or eq.
can be employed for our purposes. In this paper, we choose the roots of u, and v, to
be the quadrature nodes, since the associated weights are positive and reasonably small,
which we have shown in section [3]

6 Approximation by Singular Powers

In this section, we present a method for approximating a function of the form

b
f(x) = / Polu)dy,  z e, 1], (74)

for some signed Radon measure o(u), using a basis of {z% }é\le for some specially chosen
points t1, to, ..., ty € [a,b]. Our approach involves an initial approximation using the
left singular functions of T, followed by a discretization of the left singular functions in
terms of {'/} ).

In the following theorem, we establish the existence of such an approximation, and
quantify its approximation error.

Theorem 6.1. Let f be a function of the form eq. . Suppose that
N > min{i: oy < a2}, (75)

Suppose further that t1, ta, ..., ty are the roots of un shifted to the interval [a,b], and

18



that the weights wy, ws, ..., Wy Ssatisfy

1 N
~ ti—a
/ uit)dt = 3 (S0, (76)
0 = —a
foralli=0,1, ..., N —1. Then, there exists a vector c € RN such that the formula

N
x) = chxtj, (77)
i=1

satisfies

If - fNHLoo[o,l] < ap - HU”Ll[a,b] ) (”UnHLoo[o,u ) ||Un||Loo[o,oo)

maxo<i<n—1
+n max l[will oogo,ay - e, ). (78)
where
n—1 N
E; < ap Z ||Uj||Loo[opo) +an- HUnHLOO[Opo) : ||unHLoo[o,1} ‘ ||Ui||L°o[0,1] : Z [wi| = o,
7=0 =1
(79)

and the norm of the coefficient vector ¢ is bounded by

N
~ 2
> @il VNn-fol - ( max uill poojo)) (80)

<
ell, < | x|
7j=1

Proof. Substituting w = —log z into eq. , we have
b
fe) = [ ot du,
1 ~c=, 1
_ / e (4 a)o((b— )i+ a)dp, @ € [0,00), (81)
0

where i = =2, and © = (b — a)w. Since {®;}i—0,1,.. 00 decays exponentially, we truncate

ydyeee, 00

the SVD of the operator T, after n terms and obtaln

00 n—1
t PR
(t+5 g v; (w) o (t g v (w) o (t (82)
1=0 1=0

Then, we construct the approximation ]?to f, defined by

Fle) =3 ai( [ Cus(i)b— a)o((b— a)i + ) )@, (53)
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Thus,

S =
[l
- O

cia;vi(—(b—a)logx),

=0
for x € [0, 1], where

1

& = /0 wi()(b — @) (b — a)ja + a) d,

foralli=0,1, ..., n— 1. Due to Holder’s inequality, we observe that

|ci| <ol HuiHLOO[O,l]’

and
1Elly < v/nlol - max|luill poogo -
Thus,
1f = Fll oo = || D Gowvi(—(b — a) log 2)
=n L>°[0,1]

~ H'cvnanvn(—(b —a)log m)HLoo[o,l]
<ap-|of- ||Un||L<>o[o,1} ) ||UnHL<>o[0,oo]'

According to eq. , we have

1
aivi(w):/ efw(Hﬁ)ui(t)dt.
0

Letting t1, t9, ..., ty be the roots of uy, there exist some wq, ws, ...,

1 N
/ wi(t) dt = Z@zui(tz),
0 I=1

foralli=0,1,..., N —1. We apply observation [£.2] to obtain

1 N
‘/ aui(t)aguy(t) dt — Ztﬂlaiui(tl)ajuj(tl)‘ < ay < ap’?,
0 =1
foralli,7 =0, 1, ..., n— 1. It follows from corollary [£.3] that
1
Ei;:‘/ oWt dt—Zwe (5= (tz)’
0

n—1

1
Flo) = X i [ wlmo - (6~ )+ 0) a0 - o) og)

(88)

(89)

wy, satisfying

(90)

(91)

=

<an2““ﬂ“Loo[oOo)+0‘n‘”'UnHLoo()oo HunHLw[m] ”quLoo[m Z|wl‘ (92)

7=0
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Since Zl 1w, HU]HLOO[O o0y and ||u]||Loo 0,1) are small, for all j =0, 1, n—1, as
shown in section [3] the discretization error, E;, is approximately of the size au,.
Recalling from eq. ., we have

n—1
= Z’c}aivi(—(b —a)logx),

=0
n—1 N n—1
<Y E S @ Pt T ) + 3 G E;
=0 j=1 i=0
n—1 N - 1 n—1
- 5 -
= 2 Ci j;w]e Tui(t; — o 1) + 2 ¢iFi, (93)
where @ = —(b — a)logz, and ¢; = t; + ﬁ, for all j =1, 2, ..., N. Substituting
e % = £(0=9) into eq. , we define the approximation fy to f,
n—1 N 1 ~
fn(@) =) ) wiulty — — l)x(b_a)tj,
i=0  j=1 v
N —
= chx(b_a)tj, z € [0,1], (94)
7j=1
where ¢; = w; Y _01 Giui(t; — Ll) for j =1,2, ..., N. For the sake of simplicity, we
rename the nodes (b — a)t1, (b—a)te, ..., (b— a)tN to t1, ta, ..., ty, and observe that
ti, ta, ..., ty € [a,b]. By eq. (94) and eq. , we have

N
D1 VNV el  ma o] oego

llell, < \
N\

The approximation error of fy to fcan be bounded by

N
2 _ . 2
Z_: |w;? - -VNn-|o ‘ (Ogr%affl ”UzHLoo[o,l]) : (95)

If = Fnllpeepo) < Osf%af_lEi
£[0,1]
<
\fHC||20<m<aX 1
< . , . -
<nlo| max [|luill ey - max E; (96)

Thus, we obtain the bound on the approximation error of fn to f as

If = vl oy < IF = Fllpeegoy + 1 = Fnlloegon

< an ol (lunll pooo,)  10nll Lo ,00)
maxo<i<n—1 i
+n max llwill poopo, - a—n) (97)
[ |
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7 Numerical Algorithm and Error Analysis

In the previous section, we have showed that, given any function f of the form eq. ,
for each N > min{i : a; < a,,%}, there exists a coefficient vector ¢ € RY such that, when

t1, ta, ..., ty are the roots of uy shifted to the interval [a, b],
N
fn(x) = cha:tj (98)
j=1

is uniformly close to f, to within an error given by eq. .

In this section, we show that, by letting N = min{i : a; < g&;} and choosing the

collocation points according to the formula

2= ¢ T, (99)
for j =1, 2, ..., N, where sy, s2, ..., sy are the roots of vy, we can construct an
approximation

N
Ful) = 3z (100)
Jj=1

which is also uniformly close to f, by solving a linear system
Ve=F, (101)

for the coefficient vector ¢ € RY, where

az? x'iz xiN
V= x? x? o m,tQN e RV, (102)
and
F = (f(z1), f(x2),..., f(zn))" € RY. (103)

The uniform approximation error of ]?N to f over [0, 1] is bounded in theorem

In the following lemma, we establish upper bounds on the norm and the residual of
the perturbed TSVD solution ¢ to the linear system in eq. , in terms of the norm of
the coefficient vector ¢ in eq. .

Lemma 7.1. Let V € RV*N  F c RN, and € > 0. Suppose that
&= (V+8V)(F+6F), (104)
where (V 4+ (5V)L is the pseudo-inverse of the k-TSVD of V 4 6V, so that

Q) > € > Qpy1, (105)
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where @y, and Q41 denote the kth and (k + 1)th largest singular values of V + dV', where

SV € RVXN and 6F € RN, with
€

||5V||2 <€ -p < 5

and

10Fly < €0 - pa-
Suppose further that

Ve=F + AF,

for some AF € RN and ¢ € RN, Then,

~ 1 Py
[ekllz < 72+ anlell; + Z-(1AFl; + o - p2),

1
Qg
and

. 3 3
Ve, = (F'+ AF)|ly < Sellclly + S AF 5 + 5eo - p2-
Proof. By eq. (104)), we have
(V+6V)er, =F +0F =F+ AF — AF +6F = F+ AF +e,

where e := —AF + §F. Thus, theorem implies that

A 1 _ 1
1Cklly < = 2¢+ap)|clly + = || -AF +6F|,
893 Qg

IN

1 _
a2t anllelly + Z-(IAF]; + €0 - p2),

1
Qg
and that

5 3 3
Ve, = (F'+ AF)|y < Sellclly + S AF 5 + 5eo - p2-

(106)

(107)

(108)

(109)

(110)

(111)

(112)

(113)

The following observation bounds the backward error, |V¢;, — F|,, where ¢, is the TSVD

solution to the perturbed linear system, defined in eq. ([104]).

Observation 7.1. According to lemma the TSVD solution ¢, to the perturbed
linear system is bounded by the norm of ¢, as described in eq. (109)), where c is the exact
solution to the linear system Ve = F + AF, and satisfies eq. (80). Thus, the resulting

backward error is bounded by

Ve, = Flly = |[Vér — (F + AF) + AF|,

< ||Vér — (F+ AF)||, + |AF],

) 3
< Sellelly + SIAFl, + Seo - i

23
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Although the interpolation matrix V" in the basis of {xtﬂ} ", tends to be ill-conditioned,
resulting in a loss of stability in the solution to the linear system in eq. -, we have
shown in lemma [7.1] and observation [7.1] that, when the TSVD is used to solve the linear
system in eq. , the backward error, ||V¢, — F||5, which measures the discrepancy
between f and fy at the collocation points, is nonetheless small.

The following lemma bounds the L°°-norm of a function of the form eq. , in terms
of its values at the collocation points {z; };VZI The constant appearing in this bound
serves the same role as the Lebesgue constant for polynomial interpolation.

Lemma 7.2. Let N = min{i : o < O‘” } Suppose that the collocation points X :

(xj)évzl are defined by the formula x; = e ?® Ja, where s1, Sa2, ..., SN are the roots of vy,
and that the weights wy, wa, ..., wy satisfy

0o N
/ vi(z) dx = Zwkvi(xk), (115)
0 k=1

fori=0,1,..., N—1. Let f(x) be a function of the form eq. , for some signed
Radon measure o, and let f(X) € RN be the vector of values of f(x) sampled at X. Then,

Hf”LOO[o,l] < apV2n - max . /w; gorax. HUZ’”LOO[O,OO] O

1<]<N
+ (Oén ol ||UnHLoo[o,1] : HUnHLoo[o oo])

S(1+aoV2n- VN - max w;- max |vill peop ) (116)

1<j<N 0<i<n—1

Proof. Recall from theorem that f(z) can be approximated by

n—1

f(@) =) caivi(—(b—a)logx), (117)
=0
such that
[ fHLOO[O,l} < an o ”UnHLoo[o,l] : ”"UnHLOO[o,oo]- (118)
Letting f(X) = (f(xl), flxa), ..., f(:cN))T, since corollary implies that ||AT[|, <

V2 maxi<j<nN /W;, where the matrix At € RV is the pseudo-inverse of A, the coefficient
vector ¢ in eq. (117)) can be found stably by the formula

= ATf(x). (119)
From eq. (117)), we have

Z ¢ia;vi(—(b—a)logx)

1l ooy =
L>°[0,1]

< Oé()\/ﬁ' €l plnax 03] oo 0,00]

< aov/- 4T 1FCOlly  max il oo o

< ooy V2- max iy [FOl max [ollpepage  (120)

0<i<n
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where w1, wa, ..., wy are defined in eq. (115]). Since

[ (25) = F@p)| < I = Fll oo (121)
forallj=1,2,..., N —1, we have

1F Ol < VNI = Fllpeoy + £ (122)

It follows that

£l eopor) < I1F = Fll ooy + 1l ooy
<Nf = Fllpego) + @0v/n- V2 max /W5 [F(X)ly  max Jvi][ pooj )

0<i<n-—1
<|f- f||Loo[0,1] + agv/n - V2 max NG

1<j<N

C(VNIF = ey + 1S GO - masx [oill poego o)

0<i<n—

< a0V max i max ol gy - 1F(X)]

+ (Oén ol - ||UnHLoo[o,1] : HUTLHLOO[O,OO])

(14 aoV2n- VN - max_/w; - [ hax HUZ'HLOO[O,oo])' (123)

1<j<N <i<n—1

__ The following theorem provides an upper bound on the global approximation error of
fn to f, when the coefficient vector in the approximation is computed by solving Ve = F
using the TSVD.

Theorem 7.3. Let f(z) be a function of the form eq. , for some signed Radon

measure o(p). Suppose that N = min{i : o; < 2‘“\’}%} Let t1, ta, ..., ty be the roots of
upn shifted to the interval [a,b], and let x1, z2, ..., xn be the collocation points defined by
the formula x; = e_ﬁ, where s1, sa, ..., sy are the roots of vy. Suppose V. € RN*N

is defined in eq. (102) and F € RN is defined in eq. (103)), and let € > 0. Suppose further
that

= (V+ oV (F+4F), (124)
where (V 4+ (5V)L is the pseudo-inverse of the k-TSVD of V 4 6V, so that
Q) > € > Qgy1, (125)

where ay, and Qg1 denote the kth and (k + 1)th largest singular values of V + 6V, where
SV € RVXN and 6F € RN, with
€

I8V, < o < 5

(126)
and

[6F ||y < €0 - pro- (127)
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Let
N

Irnlz) =" Cpjab, (128)

=1

with ¢ defined in eq. (124). Then,
2

~ ! apa
1f = fnll o) S @0 - (€ 4+ an + =) - |o] + aoeopz + 2" o (129)
’ (e L
Proof. We observe that
b
Fo() = [ " Gn () du, (130)
a
for the signed Radon measure,
N
Gn(t) = ot — 1), (131)
j=1
where §(t) is the Dirac delta function. Then, f(z) — fN(x) can be rewritten as
b
£@) = @) = [ 0" (o) ~ G () dn (132)
a
where o(p) is defined in eq. . By theorem there exists a vector ¢ € R, such that
N
fn(x) = cha:tj (133)
j=1

is uniformly close to f, with an error bounded by eq. 1' Let X := (x]-);v:l and
AF = f(X) — fn(X). Notice that

|AFI, < VN -IIf = fvllpmpoy
< - Jo] - VN (Jltn | oej0,) - 1onll o0y

maxo<i<n—1£;

). (134)

+n- max il oo, -

0<i<n— o,

By eq. (114)), we have

1F(X) = Fn (X)),
= Ver = Fll,

5 3
< Seflelly + SIAFly + Seo - 2

N

S ol - : ?
z;\wﬂ VNn - |o| (Oglglgag_l\|uz||mo[o,1])
‘]:

)
+ om1o] VN (el oo - ol o

maxo<i<n—1 E; 3
e ma [l g - e ) + S g, (135)

0<i<n— n
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where Wy, Ws, ..., wy are defined in eq. 1) Since, as shown in section Zjvzl |w; |2,
[[will foogo,1 and ||Ui||Loo[0 sy are all reasonably small, for i =0, 1, ..., n — 1, we have

1£(X) = Fn(X)lly S €lo| + an - o] + €0 - pa- (136)

It follows from lemma that the uniform error of the approximation of fN to f is
roughly bounded as
1f = Fnll pocpo,
< @oV2n- max /wj- max |vil] e o) - /(X)) = fv (Xl

1< <N
+ (o - |o = JN\ : Hun”LOO[O,l] N[vnll oc, oo})

. (1—|—a0\/2n'\r max N/ ws rnax HviHLw[o,oo])

1<5<
Sap- [IF(X) = Fn(X)]ly + anlo —Gn| - ag
SOCO'(€'|0‘+Oén'|J|+60',U2+Oén‘(7—8]v|). (137)

Since |0 —on| < |o| + |on| and |on]| < ||¢k]|;, we have
1f = Fxll oo S 0 - (€ + @) - [o] + ao€opa + aoam - |o] + agom - |3,
<ag-(e+ap) - |o| + ageop + apay - |o| + oo, - \/NHEk,Hz (138)
By ignoring the small terms in eq. and eq. (134)), eq. (112) becomes

~ 1
Ieklla < = (2 +ax)lell, + S (AP, + o o)
k k

1
(26 + ag)|o| + — A (anlo| + € - p2). (139)

Thus, eq. (138) and eq. (139) imply that
1f = Inllpecgo ) S @0 - (e 4+ an) - [o| + aoéopz + anon - [o| + apan - VNl

~ g - (€+an) - |o| + agegpz + agan - ||ckl;
o2

o€ 00
0 (€4 an+ L + —k) o] + apeopz + — A ol (140)
Since ay > €, eq. ( - ) becomes
2
- a oo
1f = fnllpeoo ) S @0 - (e +an + ail) -|o| + ageopa + Aknfoug- (141)
[ |

Neglecting all the insignificant terms, the accuracy of the approximation depends on «y,
an, €, ai and |o|, as well as the machine precision ¢g.

If we choose € ~ «, in eq. , then 22 2 < %2 =1 and, accordingly,
If - fN||Loo[o,1] Sao-(€+ Oén) “|o| + aoeopz
R apap|o| + apeopia. (142)

Thus, the approximation error can achieve a bound that is roughly proportional to a;,|o]|.
Otherwise, if € is significantly smaller than «,, then the error will exceed a,|o| because
of the term ‘é—f
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8 Extension from Measures to Distributions

In section [7, we presented an algorithm for approximating functions of the form

b
f(z) = / Po(w)dy, e 1], (143)

where o is a signed Radon measure, and derived an estimate for the uniform error of the
approximation in theorem In this section, we observe that this same algorithm can
be applied more generally to functions of the form

f(x) = <U7 xu>7 (144)

where o € D'(R) is a distribution supported on the interval [a, b]. Since every distribution
with compact support has a finite order, it follows that f € C™([a,b])* for some order
m > 0.

Recall that

(o, 2)] < lollom(ga,gy> - 2% lem (fas)) (145)
where
¥ gy = 3 sup @), (146)
n—0 T€[a,b]
and
HUHcm([a,b])* = sup o (). (147)
peC™[a,b]

lellgmia,p=1

We can use the algorithm of section [7| to approximate a function of the form eq. ((144]),
where the approximation error is bounded by the following theorem, which generalizes
theorem [7.3]

Theorem 8.1. Let f(x) be a function of the form eq. (144), for some distribution
o€ C™(la,b))* of order m > 0. Suppose that N = min{i : a; < 20‘\’}2} Lett1, to, ..., tN

be the roots of uy shifted to the interval [a,b], and let x1, xo, ..., xN be the collocation

points defined by formula x; = e_ﬁ, where s1, 82, ..., SN are the roots of vy. Suppose
V € RYXN s defined in eq. (102) and F € RN is defined in eq. (103), and let € > 0.
Suppose further that

&= (V+8V)(F+6F), (148)
where (V + (SV);[C is the pseudo-inverse of the k-TSVD of V 4 6V, so that
O > €> ak_H, (149)

where ay, and Q41 denote the kth and (k + 1)th largest singular values of V + 8V, where
SV € RNXN gnd 6F € RN, with
€

6V, < o < 5

(150)
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and

167, < eo - pa (151)
Let
R N
Fn(@) =Y e jat, (152)
j=1

with ¢y, defined in eq. (148]). Then,
2

N n (t=a
If = fNHLOO[[)J] Sao-(e+an+ aik) : ||‘7||C7n([a,b])* ‘ ogl?garfil Hul(b—a) HCm[a,b]

(671077
Qg

+ apegpiz + €0p2 (153)

Proof. Since the proof closely resembles the one of theorem we omit it here. The only
difference is that |o| in eq. 1} is replaced by ||o (| com (q,p))« - MaX0<i<n—1 |ui (5=2) Hcm[a,b]’
due to the fact that

o, uwi (5=2 )] < Nlollom(japy - }qu'(i%‘;)!\cm[a,by (154)

where the term Huz(l’:—Z) is not negligible, for m > 1. |

len [a,b]

Note that, when o is a signed Radon measure, the corresponding distribution has
order zero, and ||| 4,4y« = |o]- Thus, in this case, the above bound on || f — fn || feepo 1]
is exactly the same as the bound described in eq. ((129)).

9 Practical Numerical Algorithm

A remarkable result of the experiments in section [5] is that, in practice, functions
ft) = e_I(Hﬁ)ui(t) can be integrated to precision o2 using only N = n points, and the
interpolation matrix A € RV*" defined in eq. is well conditioned, also for N = n. As
a result, by taking IV = n, we can establish the same bounds on [c[|, and || f — fx || feopo 1]
as those described in theorem [6.1] Furthermore, the fact that A remains well-conditioned
for N = n means that eq. in lemma still hold. Consequently, we achieve a
uniform approximation error of the same size as in eq. in theorem for N = n.

Previously, we assumed € ~ «,,. When N = n, we instead choose € as follows. First,
we observe ||V 71|, < é, as shown in fig. 7| Letting o, denotes the n-th singular values

of V, and assuming that |6V ||, < %‘, we have

1 2

V+oV) < = < = =2[V7!, 155
IV +6V) M < 5 < 5 =21V (155)

Thus, ||(V +6V) 7|y S i, which is equivalent to i < é We have then that 2= <1,
and therefore, as long as € is not larger than «,, the resulting approximation error is
bounded by

1f = Inllpeego ) S @0 - (e + an) - [o] + aoeopz
S apanlo| + apeopia. (156)

In practice, we take € = €.
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Figure 7: A comparison between ||V ~1||,, and i, for v = 10, 100, 200.

10 Numerical Experiments

In this section, we demonstrate the performance of our algorithm with several numerical
experiments. Our algorithm was implemented in Fortran 77, and compiled using the
GFortran Compiler, version 12.2.0, with -O3 flag. All experiments were conducted on a
laptop with 32 GB of RAM and an Intel 12nd Gen Core i7-1270P CPU.
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10.1 Approximation Over Varying Values of n

In this subsection, we approximate functions of the form f(z) = ff zto(p)du, x € [0,1],
for the following cases of o(u):

o1(p) =1, (157)

7a(1) = . (158)

o3(p) = sin(124), (159)

ou(p) = sin(12p)?, (160)

o5(p) = e, (161)
e—lOu

o6(p) = ” (162)

We apply our algorithm with NV = n and € = €p, where € is the truncation point of
the TSVD, as described in theorem ﬁ We estimate || f — fn|[ze[0,1], by evaluating f

and fN at 2000 uniformly distributed points over [0, 1], and finding the maximum error
between f and fN at those points. We repeat the experiments for v = 10, 100, 200, and
plot ||f — fnllze(0,1/|c|- The results are displayed in figs. to

It is evident that || f — fa ||z 0,1/ |o| remains bounded by a,, as shown in section
until it reaches a stabilized level that is close to the machine precision multiplied by some
small constant. Since {e;}i=0.1,... 00 decays exponentially, the approximation exhibits an
exponential rate of convergence in V.

10.2 Approximation of Non-integer Powers

In this subsection, we fix N = n, where o, =~ ¢g. Our goal is to approximate functions of
the form f(x) = f; xto(p)du, x € [0, 1], with

or(p) = (= c), (163)

where ¢ € [a,b]. The resulting function is f(x) = z¢. We approximate such functions
for 1000 values of ¢ distributed logarithmically in the interval [{%, 1.5b]. We set € = ¢,
and evaluate f and fN at 1000 uniformly distributed points over [0, 1] to estimate
1f = fNHLOO[OJ]/‘U’. The results for v = 10, 100, 200 are displayed in fig. It can be
observed that the approximation error remains accurate up to the machine precision
multiplied by some small constants, for values of ¢ within the interval [a, b], and grows

significantly, for values of ¢ outside [a, b].

10.3 Approximation in the Case of Distributions

In this subsection, we assume o € D'(R) has the form
os(p) = 6® (n— o), (164)

where k > 0 is an integer, ¢ € [a,b], and §(t) is the Dirac delta function. The resulting
function is f(z) = x¢(log z)*. We apply our algorithm with N =n and ¢ = €0, and evalu-
ate f and fy at 2000 uniformly distributed points in [0, 1] to estimate || f — fn|[zo[0,1)/]]-
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The results for k=12, ...,6, c=a, ‘%b, b, and v = 10, 100, 200 are shown in figs.
to [[4

In contrast to the previous case where o is a signed Radon measure, the approximation
error can increase significantly with k. However, the approximation error is still bounded

t_ .

by (€ + an) - maxo<i<n—1 Hul(ﬁ) Hcm[a,b]’ as stated in theorem Furthermore, we
observe that the error grows with k£, and when ¢ = a, the error is closely aligned with the
estimated bound, since the function is more singular for smaller ¢ and the approximation
error tends to be larger.

10.4 Approximation Over a Simple Arc in the Complex Plane

In this subsection, we investigate the performance of our algorithm on simple and smooth
arcs in the complex plane. Suppose that 7: [0,1] — C, and let I" = 5([0, 1]). We replace
the interpolation matrix V in eq. (102)) by a modified interpolation matrix Vi, defined by

”j(ﬂfl)z1 j(fﬁl)f . j(fl)ZN
Vi = ’7(1‘:2) 7('%':2) : 7(1;2) c CNxN (165)
Fn) Alen)? o Flan)W

Specifically, we consider the arc J(t) = t + ai(t? — t), for & = 0.8, 1.6 and 2.4, which are
plotted in fig. Our goal is to approximate functions of the form

b
folt) = / (1) o (1) dps, (166)

over the arc (t), where ¢t € [0,1]. We apply the algorithm with N =n and € = ¢y to the
functions fr(t) where o(u) has the forms o;(u) and o5(p), as defined in eq. and
eq. , respectively. The experiments are repeated for v = 10, 100, 200, and the results
are displayed in figs. [16] to

We also investigate the approximation error for non-integer powers fr(t) = v(¢)¢ over
the arc ¥(t), where c € [{%, 1.50], following the same procedure as the one described in
section The results are displayed in fig.

By analyzing the approximation error over ¥(t), for different values of «, we observe
that the approximation error grows with «, and depends on the specific functions being
approximated. Generally, when ~ is small, the approximation error grows only slightly as
the arc becomes more curved, while for large -y, it is possible for the approximation error
to grow significantly larger than a,,. When the arc is slightly curved, the approximation
performs similarly to the case where 5(t) = [0, 1], with the error bounded by ,.

10.5 Tapered Exponential Clustering of the Collocation Points

We observe that the collection of collocation points {x; };V: 1 generated by our algorithm
exhibits a tapered exponential clustering around the singularity at x = 0. Specifically,
the density of {acj}é-vzl over [0,1] tapers in the direction of x = 0, when viewed on a
logarithmic scale. This observation is demonstrated in fig. for v = 10, 100, 200, and
for n ranging from 1 to the value of n where «,, = €.
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11 Conclusion

In this paper, we introduce an approach to approximate functions of the form f(x) =
ff xto () dp over the interval [0, 1], by expansions in a small number of singular powers
att pt2 . 2 where 0 < a < b < oo and o(u) is some signed Radon measure
or some distribution supported on [a,b]. Given any desired accuracy €, our method
guarantees that the uniform approximation error over the entire interval [0, 1] is bounded
by € multiplied by certain small constants. Additionally, the number of basis functions
N grows asymptotically as O(log%), and the expansion coefficients can be found by
collocating the functions at specially chosen collocation points z1, xo, ..., zy and solving
an N x N linear system. In practice, when 2 = 10 and o is a signed Radon measure,
our method requires only approximately N = 30 basis functions and collocation points
in order to achieve machine precision accuracy. Numerical experiments demonstrate
that our method can also be used for approximation over simple smooth arcs in the
complex plane. A key feature of our method is that both the basis functions and the
collocation points are determined a priori by only the values of a, b, and e. This sets
it apart from other methods that rely on careful selection of parameters to determine
the basis functions. For example, the basis functions used in rational and reciprocal-log
approximation are defined by the locations and residues of poles, and the SE-Sinc and
DE-Sinc approximations depend on the choices of smooth transformations. Compared to
the DE-Sinc approximation, which achieves nearly-exponential rates of convergence at
the cost of doubly-exponentially clustered collocation points, our method uses collocation
points which exhibit only tapered exponential clustering. Compared to reciprocal-log
approximation, which requires the least-squares solution of an overdetermined linear
system with many collocation points, our method involves the solution of a small square
linear system to determine the expansion coefficients.

Since our method approximates singular functions accurately by expansions in singular
powers, it can be used with existing finite element methods or integral equation methods
to approximate the solutions of PDEs on nonsmooth geometries or with discontinuous
data. Typically, the leading singular terms of the asymptotic expansions of solutions near
corners are derived from the angles at the corners, and are added to the basis functions
of finite element methods to enhance the convergence rates (see, for example, [29], [7],
[23]). Now, with only the knowledge that the singular solutions are of the form eq. (74)),
we can enhance the convergence rates of finite element methods without knowledge of the
angles at the corners, by adding all of the singular powers obtained from our method to
the basis functions. Likewise, the singular powers obtained from our method can be used
in integral equation methods for PDEs. In integral equation methods, boundary value
problems for PDEs are reformulated as integral equations for boundary charge and dipole
densities which represent their solutions. Previously, singular asymptotic expansions of
the densities, determined by the angles at the corners, were used to construct special
quadrature rules to solve these integral equations (see, for example, [24], [25]). Using only
the fact that the singular densities are of the form eq. , quadrature rules can instead
be developed for only the singular powers obtained from our method, independent of the
angles at the corners.
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Figure 8: The L approximation error over [0, 1], as a function of n, for v = 10.
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