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Abstract

The Gaussian factor copula model is the market standard model for multi-name credit

derivatives. Its main drawback is that factor copula models exhibit correlation smiles

when calibrating against market tranche quotes. To overcome the calibration defi-

ciency, we introduce a multi-period factor copula model by chaining one-period fac-

tor copula models. The correlation coefficients in our model are allowed to be time-

dependent, and hence they are allowed to follow certain stochastic processes. Therefore,

we can calibrate against market quotes more consistently. Usually, multi-period fac-

tor copula models require multi-dimensional integration, typically computed by Monte

Carlo simulation, which makes calibration extremely time consuming. In our model,

the portfolio loss of a completely homogeneous pool possesses the Markov property, thus

we can compute the portfolio loss distribution analytically without multi-dimensional

integration. Numerical results demonstrate the efficiency and flexibility of our model

to match market quotes.

∗This research was supported in part by the Natural Sciences and Engineering Research Council (NSERC)
of Canada.

†Department of Computer Science, University of Toronto, 10 King’s College Road, Toronto, ON, M5S
3G4, Canada; krj@cs.toronto.edu

‡Algorithmics Inc., 185 Spadina Avenue, Toronto, ON, M5T 2C6, Canada; alex.kreinin@algorithmics.com
§Royal Bank of Canada, 200 Bay Street, Toronto, ON, M5J 2J5, Canada; zhangw@cs.toronto.edu

1



1 Introduction

Due to their computational efficiency, factor copula models are popular for pricing multi-

name credit derivatives. Within this class of models, the Gaussian factor copula model is

the market standard model. However, it cannot match market quotes consistently with-

out violating the model assumptions as explained in Hull and White (2006) and Torresetti

et al. (2006). For example, it has to use different correlation factor loadings for different

tranches based on the same underlying portfolio. To better match the observable spreads,

several modifications have been proposed based on the conditional independence framework.

See, for example, Andersen and Sidenius (2004), Baxter (2007) and Hull and White (2008).

Most of these approaches are static one-period models that generate a portfolio loss distri-

bution at a fixed maturity. They may not be flexible enough to match market quotes or

applicable for new products with strong time-dependent features, such as forward-starting

tranches, tranche options and leveraged super-senior tranches as pointed out in Andersen

(2006). Another popular approach to calibrate factor copula models is base correlation, such

as McGinty et al. (2004), which calibrates the correlation for the first loss tranche, i.e., the

sum of all tranches up to a detachment point. Although it guarantees the existence of the

correlation parameter, it is not arbitrage free. For example, it is easy to construct a tranche

with a negative spread using this method as noticed in Torresetti et al. (2006).

Another methodology for multi-name credit derivatives is the top-down approach, which

models the portfolio loss directly. For example, Bennani (2005), Schönbucher (2005) and Side-

nius et al. (2008) proposed similar frameworks to model the dynamics of the aggregate port-

folio losses by modeling the forward loss rates. With these pool loss dynamics, the pricing

of credit derivatives becomes straightforward. This approach has been further extended by

many researchers, such as Giesecke et al. (2011). However, these models require a large

amount of data to calibrate and are currently speculative as explained in Andersen (2006).

It is tempting to see whether we can introduce dynamics into the factor copula model to

combine its computational efficiency with the ability to calibrate more consistently against
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market quotes. The main challenge in developing such a dynamic factor copula model is that

the arbitrage free property and computational efficiency become more difficult to achieve,

as the number of state variables grows rapidly with the introduction of dynamics. Fingers

(2000) proposed several extensions of one-period default models. However, they are not

based on the factor copula approach. Therefore, only Monte Carlo simulation is available

to implement these extensions. In addition, the correlation coefficients are not allowed to

be time-dependent. Andersen (2006) and Sidenius (2007) introduced several “chaining”

techniques to build multi-period factor copula models from one-period factor copula models.

As these models must integrate over all the common factors, they require a multi-dimensional

integration, which is usually computed by Monte Carlo simulation. This makes the model

calibration extremely time consuming. Except for some special cases, for example, where

the factors are the same for all periods, existing “chaining” methods cannot avoid multi-

dimensional integration. Therefore, current multi-period models are hard to generalize to

more than two periods.

In this paper, we develop a novel chaining method to build a multi-period factor copula

model, which does not allow arbitrage opportunities and avoids multi-dimensional integra-

tion. Based on our model, the portfolio loss of a completely homogeneous pool possesses the

Markov property, so we can compute its distribution across time by a recursive method in-

stead of by Monte Carlo simulation. Numerical results demonstrate the accuracy, efficiency

and flexibility of our model in calibrating against market quotes.

The rest of the paper is organized as follows. Section 2 describes the pricing equations

for synthetic CDOs. Section 3 reviews the widely used Gaussian factor copula model as an

example of the conditional independence framework. Section 4 reviews existing “chaining”

methods before introducing our new multi-period model. Section 5 discusses calibration.

Section 6 presents the numerical results. Section 7 concludes the paper and discusses future

work.

3



2 Pricing equations

In a synthetic CDO, the protection seller absorbs the pool loss specified by the tranche

structure. That is, if the pool loss over (0, T ] is less than the tranche attachment point a,

the seller does not suffer any loss; otherwise, the seller absorbs the loss up to the tranche size

S = b − a. In return for the protection, the buyer pays periodic premia at specified times

t1 < t2 < . . . < tn = T .

We consider a synthetic CDO containing K names with loss-given-default Nk for name k

in the original pool. Assume that the recovery rates are constant. Let Di denote the risk-free

discount factors at time ti, and di denote the expected value of Di in a risk-neutral measure.

Denote the pool loss up to time ti by Li. Then, the loss absorbed by the specified tranche is

Li = min(S, (Li − a)+), where x+ = max(x, 0) (1)

We make the standard assumption that the discount factors Di’s and the pool losses Li’s

are independent, whence Di’s and Li’s are also independent.

In general, valuation of a synthetic CDO tranche balances the expectation of the present

values of the premium payments (premium leg) against the effective tranche losses (default

leg), such that

E

[

n
∑

i=1

s(S − Li)(Ti − Ti−1)Di

]

= E

[

n
∑

i=1

(Li − Li−1)Di

]

(2)

The fair spread s is therefore given by

s =
E
[
∑n

i=1(Li − Li−1)Di

]

E
[
∑n

i=1(S − Li)(Ti − Ti−1)Di

] =

∑n

i=1(ELi − ELi−1)di
∑n

i=1(S − ELi)(Ti − Ti−1)di
(3)

In the last equality of (3), we use the fact that Di and Li (Li−1) are independent. Alterna-

tively, if the spread is set, the value of the synthetic CDO is the difference between the two
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legs:
n
∑

i=1

s(S − ELi)(Ti − Ti−1)di −
n
∑

i=1

(ELi − ELi−1)di

Therefore, the problem is reduced to the computation of the mean tranche losses, ELi. To

compute this expectation, we have to compute the portfolio loss Li’s distribution. Therefore,

we need to specify the correlation structure of the portfolio defaults.

3 One factor copula model

Due to their tractability, factor copula models are widely used to specify a joint distribution

for default times consistent with their marginal distribution. A one factor model was first

introduced by Vasicek (1987) to evaluate the loan loss distribution, and the Gaussian copula

was first applied to multi-name credit derivatives by Li (2000). After that, the model was

generalized by Andersen et al. (2003), Hull and White (2004) and Laurent and Gregory

(2005), to name just a few. In this section, we review the one factor Gaussian copula model

to illustrate the conditional independence framework.

Let τk be the default time of name k, where τk = ∞ if name k never defaults. Assume

the risk-neutral default probabilities

πk(t) = P(τk ≤ t), k = 1, 2, . . . , K

are known. In order to generate the dependence structure of default times, we introduce

random variables Uk, such that

Uk = βkX +
√

1− β2
kεk, for k = 1, 2, . . . , K (4)

where X is the systematic risk factor; εk are idiosyncratic risk factors, which are independent

of each other and also independent of X ; and the constants βk ∈ [−1, 1].

The default times τk and the random variables Uk are connected by a percentile-to-
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percentile transformation, such that P(τk ≤ t) = P(Uk ≤ bk(t)), where each bk(t) can be

viewed as a default barrier.

Models satisfying the assumptions above are said to be based on the conditional indepen-

dence framework. If, in addition, we assume X and εk follow standard normal distributions,

then we get a Gaussian factor copula model. In this case, each Uk also follows a standard

normal distribution. Hence we have

bk(t) = Φ−1(πk(t)) (5)

where Φ is the standard normal cumulative distribution function. Conditional on a particular

value x of X , the risk-neutral default probabilities are defined as

πk(t, x) ≡ P(τk ≤ t | X = x) = P(Uk ≤ bk(t) | X = x) = Φ

[

Φ−1(πk(t))− βkx
√

1− β2
k

]

(6)

In this framework, the default events of the names are assumed to be conditionally inde-

pendent. Thus, the problem of correlated names is reduced to the problem of independent

names. The pool losses Li satisfy

P(Li = l) =

∫ ∞

−∞

Px(Li = l)dΦ(x) (7)

where Li =
∑K

k=1Nk1{Uk≤bk(ti)}, and 1{Uk≤bk(ti)} are mutually independent, conditional on

X = x.1 Therefore, if we know the conditional distributions of 1{Uk≤bk(ti)}, the conditional

distributions of Li can be computed easily, as can E[Li]. To approximate the integral (7),

we use a quadrature rule. Thus, the integral (7) reduces to

P(Li = l) ≈
M
∑

m=1

wmPxm
(Li = l)

where the wm and xm are the quadrature weights and nodes, respectively.

1As we assume constant recovery rates, the pool losses Li are discrete random variables here. This
approach can be extended to the continuous case with stochastic recovery rates.
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A significant drawback of this model is that it does not allow the βk’s to be time de-

pendent, which is often required to calibrate the model effectively. If βk is a function of

time, πk(t, x) may be a decreasing function of time, which may lead to an arbitrage oppor-

tunity, as explained in the next section. More specifically, for 0 < t1 < t2, to guarantee

πk(t1, x) ≤ πk(t2, x), or equivalently,

Φ

(

bk(t1)− βk(t1)x
√

1− βk(t1)2

)

≤ Φ

(

bk(t2)− βk(t2)x
√

1− βk(t2)2

)

we need

bk(t1)− βk(t1)x
√

1− βk(t1)2
≤

bk(t2)− βk(t2)x
√

1− βk(t2)2

As x may be any real value, for any fixed βk(t1) 6= βk(t2), it is easy to find an x to violate

this inequality. For example, if bk(t1) = −2, bk(t2) = −1.4, βk(t1) = 0.6 and βk(t2) = 0.8,

then

πk(t1, 2) = P(τk ≤ t1 | X = 2) = Φ(−4)

πk(t2, 2) = P(τk ≤ t2 | X = 2) = Φ(−5)

4 Multi-period factor copula models

To overcome this drawback, Andersen (2006) and Sidenius (2007) pioneered the technique

of “chaining” a series of one-period factor copula models to produce a multi-period factor

copula model. However, their approaches must integrate over the multi-dimensional common

factors to evaluate the portfolio loss distribution over time, requiring the evaluation of a high-

dimensional integral, usually computed by Monte Carlo simulation. Therefore, their models

are hard to generalize to more than two periods, except for some special, but possibly

unrealistic, cases, such as, the common factors are the same for all periods. In this section,

we first review the approaches of Andersen (2006) and Sidenius (2007). Then, we present

our new model, which avoids multi-dimensional integration.
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In general, the conditional independence framework, including one-period and multi-

period factor copula models, has to satisfy two properties: consistency and no arbitrage. By

consistency, we mean that the model has to match the marginal default probabilities of the

underlyings, i.e.,

P(τk ≤ t) =

∫

D

P(τk ≤ t | X(t) = x)dF (x) (8)

Here, X(t) represents the common factors up to time t (it may be a multiple dimensional

random variable in the discrete case or a stochastic process in the continuous case); D is the

domain of X(t); and F (·) is the cumulative distribution function of X(t). By no arbitrage,

we mean that the pool loss distribution is a non-decreasing function of time, i.e.,

P(Li = l) ≤ P(Lj = l), for ti ≤ tj (9)

To satisfy this constraint in practice, we usually require a stronger condition: the conditional

default probability of a single name is non-decreasing over time, i.e.,

P(τk ≤ t1 | X
(t1) = x) ≤ P(τk ≤ t2 | X

(t2) = y), for t1 ≤ t2 and x(t) = y(t), for t ≤ t1 (10)

where x(t) means the value of x at time t. Obviously, if we satisfy condition (10), then

the pool loss (9) is non-decreasing, which implies no arbitrage. Generally, the consistency

property is easy to satisfy, but the no arbitrage property is not, as shown in the previous

section.

In the rest of the paper, we extend the factor copula model to a discrete-time dynamic

model. For each period (ti−1, ti] and each name k, we associate a latent random variable

Yk,i = βk,iXi +
√

1− β2
k,iǫk,i (11)

where Xi is a random variable associated with the common factors for period (ti−1, ti] and ǫk,i

are mutually independent random variables associated with idiosyncratic factors for name
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k and period (ti−1, ti]. To guarantee the no arbitrage property, Andersen (2006) employed

a discrete version of the first hitting time model to construct the conditional default proba-

bilities. More specifically, he connected the default time τk and the latent random variables

by

P(τk < t) = P(Yk,1 ≤ bk(t1)), t ≤ t1

P(ti−1 < τk ≤ t) = P(Yk,1 > bk(t1), . . . , Yk,i−1 > bk(ti−1), Yk,i ≤ bk(ti)), t ∈ (ti−1, ti]

Then the conditional default probability for t ≤ t1 is the same as that in the one-factor

copula model. For t ∈ (ti−1, ti], the conditional default probability satisfies

P(ti−1 < τk ≤ t | X(i) = x(i)) = P(Yk,1 > bk(t1), . . . , Yk,i−1 > bk(ti−1), Yk,i ≤ bk(ti) | X
(i) = x(i))

Here, X(i) is associated with the common factors for the periods up to ti, or equivalently,

X(i) = {X1, X2, . . . , Xi}.

Similar to the one-factor copula model, we must compute the boundary bk(ti) satisfying

the consistency property (8). For t ≤ t1, the computation is the same as that for the

one factor copula model. However, for t ∈ (ti−1, ti], it appears that we must integrate the

common factors up to ti. The complexity of this multi-dimensional integration depends on

the assumptions associated with the Xi’s. Andersen (2006) showed two special cases: (1) Xi

are the same and (2) a two-period model, where X are two dimensional random variables.

Besides the computation of the default boundary, the multi-dimensional integration also

arises when computing the unconditional portfolio loss distribution from the conditional loss

distributions.

Sidenius (2007) attacked the no arbitrage problem by introducing conditional forward

survival probabilities

P(τk > t | τk > ti−1, X
(i) = x(i)) =

P(τk > t | X(i) = x(i))

P(τk > ti−1 | X(i) = x(i))
, t ∈ (ti−1, ti]
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Using this, he expressed the conditional survival probability for t ∈ (ti−1, ti] as

P(τk > t | X(i) = x(i)) = P(τk > t | τk > ti−1, X
(i) = x(i))P (τk > ti−1 | X

(i−1) = x(i−1))

For t ≤ t1, the conditional survival probability is the same as that in the one factor copula

model.

The model allows a conditional forward survival probability for each time period (ti−1, ti]

to be associated with each correlation factor, i.e., P(τk > t | τk > ti−1, X
(i) = x(i)) =

P(τk > t | τk > ti−1, Xi = xi). For example, if the Xi’s associated with the latent random

variables Yk,i in (11) are independent, then the conditional forward survival probability can

be computed by

P(τk > t | τk > ti−1, X
(i) = x(i)) =

P

(

βk,iXi +
√

1− β2
k,iǫk,i > bk(ti) | Xi = xi

)

P

(

βk,iXi +
√

1− β2
k,iǫk,i > bk(ti−1) | Xi = xi

)

Using the consistency property (8), we can calibrate the bk(ti) recursively. However, it is

impossible to preserve any tractability for general cases. Similarly, the multi-dimensional

integration problem cannot be avoided, except in some special cases, such as all Xi are the

same.

To overcome the high-dimensional integration problem, we use a similar approach based

on the same latent random variables (11), but we connect Yk,i and τk by the forward default

probability

P(Yk,i ≤ bk(ti)) = P(τk ∈ (ti−1, ti] | τk > ti−1) =
P(τk ≤ ti)− P(τk ≤ ti−1)

1− P(τk ≤ ti−1)

If Xi and ǫk,i follow standard normal distributions, then each Yk,i also follows a standard

normal distribution. Therefore, we can compute the conditional default boundary bk(ti) by

bk(ti) = Φ−1
(

P(τk ∈ (ti−1, ti] | τk > ti−1)
)
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We can also compute each conditional forward default probability by

P
(

τk ∈ (ti−1, ti] | τk > ti−1, Xi = xi

)

= Φ





bk(ti)− βk,ixi
√

1− β2
k,i





The idea of using forward default probabilities has been used for CDO analysis by Mo-

rokoff (2003). However, in Morokoff’s model the correlation coefficients are constant and no

analytical methods are available.

To compute the conditional pool loss distribution, we need to construct P(τk ≤ ti | X1 =

x1, . . . , Xi = xi) from P
(

τk ∈ (ti−1, ti] | τk > ti−1, Xi = xi

)

. Based on the definitions of these

terms, we have

P(τk ≤ ti | X1 = x1, . . . , Xi = xi)

= P(τk ≤ ti−1 | X1 = x1, . . . , Xi−1 = xi−1) + P(τk ∈ (ti−1, ti] | X1 = x1, . . . , Xi = xi)

= P(τk ≤ ti−1 | X1 = x1, . . . , Xi−1 = xi−1)

+ P(τk > ti−1 | X1 = x1, . . . , Xi−1 = xi−1) · P
(

τk ∈ (ti−1, ti] | τk > ti−1, Xi = xi

)

For the rest of the paper, we denote P (τk ≤ ti−1 | X1 = x1, . . . , Xi−1 = xi−1) by qk,i−1 and

P
(

τk ∈ (ti−1, ti] | τk > ti−1, Xi = xi

)

by pk,i for simplicity. If qk,i and pk,i are the same for all

k = 1, . . . , K, we denote them by qi and pi, respectively.

Using the conditional default probabilities qk,i, we can compute efficiently the conditional

distribution of the pool loss for a completely homogeneous pool, where βk,i, πk(t) and Nk are

the same for k = 1, . . . , K. In this special, but important, case, the distribution of Li can

be computed by the distribution of number of defaults li, as Li = N1

∑K

k=1 1{τk≤ti} = N1li.
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Therefore, the conditional pool loss distribution of a completely homogeneous pool satisfies

P
(

Li = rN1 | X1 = x1, . . . , Xi = xi

)

= P
(

li = r | X1 = x1, . . . , Xi = xi

)

=

(

K

r

)

(

qi−1 + (1− qi−1)pi
)r(

(1− qi−1)(1− pi)
)K−r

=

(

K

r

)

(

r
∑

m=0

(

r

m

)

qmi−1(1− qi−1)
r−mpr−m

i

)

(1− qi−1)
K−r(1− pi)

K−r

=

r
∑

m=0

(

K

m

)

qmi−1(1− qi−1)
K−m ·

(

K −m

r −m

)

pr−m
i (1− pi)

K−m−(r−m)

=

r
∑

m=0

P
(

li−1 = m | X1 = x1, . . . , Xi−1 = Xi−1

)

P
(

l̂K−m
(i−1,i] = r −m | Xi = xi

)

(12)

where l̂K−m
(i−1,i] is the number of defaults during (ti−1, ti] with the pool size K − m, and its

distribution is computed using the conditional forward default probability pi.

To compute the tranche loss, we need to compute the unconditional pool loss distri-

bution from the conditional ones, i.e., we need to integrate over the common factors Xi.

Generally, this requires a multi-dimensional integration, for which Monte Carlo simulation

is usually used. However, we can avoid the multi-dimensional integration in this special case

by exploiting the independence of the Xi’s:

P
(

li = r) =

∫ ∞

−∞

. . .

∫ ∞

−∞

r
∑

m=0

P
(

li−1 = m | X1 = x1, . . . , Xi−1 = Xi−1

)

· P
(

l̂K−m
(i−1,i] = r −m | Xi = xi

)

dΦ(X1) . . . dΦ(Xi)

=

r
∑

m=0

∫ ∞

−∞

. . .

∫ ∞

−∞

P
(

li−1 = m | X1 = x1, . . . , Xi−1 = Xi−1

)

dΦ(X1) . . . dΦ(Xi−1)

·

∫ ∞

−∞

P
(

l̂K−m
(i−1,i] = r −m | Xi = xi

)

dΦ(Xi)

=

r
∑

m=0

P
(

li−1 = m
)

P
(

l̂K−m
(i−1,i] = r −m

)

(13)

Therefore, the unconditional pool loss distribution possesses the Markovian property and

can be computed recursively. Iscoe (2003) derived a similar Markovian property for the

two name case of Morokoff’s model in Morokoff (2003), where the correlation coefficients
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are constant. Our derivation is more general, and our model fixes the correlation decay of

Morokoff’s model as described in Iscoe (2003).

Remark: We need to assume that the Xi’s are independent to derive the key formula (13),

which enables us to avoid the costly multi-dimensional integration in computing the uncon-

ditional pool loss distribution from the conditional one. However, it is worth noting that

this is the only place in the paper where we need to assume that Xi and Xj are independent

for all i 6= j. Therefore, we could use more general processes for the Xi’s if we do not need

to compute the unconditional pool loss distribution from the conditional one or if we could

replace (13) by another efficient formula to compute the unconditional pool loss distribution

from the conditional one.

The difference between our approach and Andersen’s approach in Andersen (2006) can

be understood intuitively as follows. In Andersen’s approach, the latent random variables

Yk, which reflect the healthiness of name k, are reset back to zero at the beginning of each

period. Therefore, the process forgets its previous position. The latent process of our model

is also reset to zero at the beginning of each period. However, in our model it describes

the healthiness of the forward default probability. The process for the default probability

actually remembers its position at the end of the previous period: how the process evolves for

the new period depends on the latent process of the forward default probability. In addition,

as noted above, it appears that Andersen’s approach requires a costly multi-dimensional

integration to compute the unconditional pool loss distribution from the conditional one,

except in some simple special cases. For a completely homogeneous pool, assuming that the

Xi and Xj are independent for all i 6= j, our approach uses the much less costly recurrence

(13) to compute the unconditional pool loss distribution from the conditional one.

For a more general pool2, it still holds that the event that r defaults occur before ti is

equivalent to the event that m defaults occur before ti−1 and r − m defaults occur during

2There are two other types of underlying pools: (1) homogeneous pools, where all Nk are the same, for
all k = 1, . . . ,K, and either βk,i or πk(t) are different for some k; (2) inhomogeneous pools, where Nk, βk,i

and πk(t) are different for some k.
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(ti−1, ti], for m = 0, . . . r. That is,

P(li = r) =
r
∑

m=0

P(li−1 = m, l(i−1,i] = r−m) =
r
∑

m=0

P (li−1 = m) ·P(l(i−1,i] = r−m | li−1 = m)

Moreover, this relationship extends to the conditional probabilities:

P(li = r | X1 = x1, . . . , Xi = xi) =

r
∑

m=0

P(li−1 = m | X1 = x1, . . . , Xi−1 = xi−1)

·P(l(i−1,i] = r −m | li−1 = m,X1 = x1, . . . , Xi = xi)

Under the assumptions of our model, we can simplify the expression above using

P(l(i−1,i] = r −m | li−1 = m,X1 = x1, . . . , Xi = xi) = P(l(i−1,i] = r −m | li−1 = m,Xi = xi)

Therefore,

P(li = r | X1 = x1, . . . , Xi = xi) =
r
∑

m=0

P(li−1 = m | X1 = x1, . . . , Xi−1 = xi−1)

· P(l(i−1,i] = r −m | li−1 = m,Xi = xi)

To obtain the unconditional pool loss distribution, we need to integrate over the common

factors, as we did in (13). Therefore, in our model, the Markov property holds for a general

pool:

P
(

li = r) =
r
∑

m=0

P
(

li−1 = m
)

· P
(

lK−m
(i−1,i] = r −m | li−1 = m

)

However, as the default probability of each name may be different in a general pool, we end

up with another combinatorial problem: we need to consider all possible combinations of

li−1 = m.

Obviously, the completely homogeneous pool is a special case. However, it is of consid-

erable practical importance, since such pools often arise in practice. Moreover, the pool loss

of a general pool is generally approximated by the pool loss of a completely homogeneous

14



one for computational efficiency in calibration and the valuation of bespoke contracts.

Remark: For simplicity, we used the Gaussian factor copula model to illustrate our new

discrete dynamical multi-period factor copula model. However, it is important to note that

our approach can be applied to construct a multi-period factor copula model from any one

factor copula model based on the conditional independence framework.

5 Calibration

Our goal is to calibrate our model against the market tranche quotes on the same underlying

pool. To illustrate our approach, we use the tranche quotes of the credit indexes, CDX

and ITRAXX. As our model allows the correlation factor loadings to be time-dependent,

we can introduce dynamics into the model by letting the correlation factor loadings follow

particular dynamic processes. This added flexibility gives our dynamic model enough degrees

of freedom to calibrate against market quotes.

We obtain the spread quotes for the indexes and tranches on CDX and ITRAXX from

the Thomson Datastream. We approximate the default probabilities of a single name using

the index spreads, which are the average spreads of the 125 names in CDX or ITRAXX. Due

to the data availability and popularity, we calibrate our model against the four mezzanine

tranches with maturities 5 years, 7 years and 10 years. Therefore, we have to fit 12 market

tranche quotes on the same underlying pool.

To fit these 12 tranche quotes, we must incorporate sufficient degrees of freedom into

our model. As the correlation factor loadings are time-dependent in our model, they can

be any dynamic process within the range [0, 1]. Therefore, we can obtain sufficient degrees

of freedom by constructing a suitable dynamic process for the correlation factor loadings.

To illustrate our approach, we employ a binomial tree structure for the correlation factor

loadings in our numerical examples. We assume that the correlation factor loading process

is a piecewise constant function over time and each branch of the tree describes one possible

path of the factor loading process. To compute the tranche prices, we only need to take the
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Figure 1: A dynamic tree structure

expectation of the tranche prices on each branch. Figure 1 illustrates an equally-spaced three-

period3 tree, where ρj is the value of the correlation factor loading and pj is the probability of

the process taking the upper branch. With this tree structure, the correlation factor loading

process has four possible paths for a 10-year maturity contract. For example, for an annual

payment tranche contract, one possible path for the βk,i’s is (ρ0, ρ0, ρ0, ρ1, ρ1, ρ1, ρ3, ρ3, ρ3, ρ3)

with probability p0p1. We can increase or decrease the degrees of freedom of the tree by

adjusting the number of periods or the tree structure, e.g., constraining the general tree to

be a binomial tree. Recently, Kaznady (2011) proposed an improved alternative multi-path

parameterization of the correlation coefficients dynamics.

6 Numerical examples

We begin by comparing the results generated by the Monte Carlo method to those obtained

by the recursion (13) on an example with arbitrarily chosen parameters. The numerical ex-

periments are based on 5-year CDOs with 100 underlying names and annual premium pay-

ments. The tranche structure is the same as those of CDX, i.e., six tranches with attachment

3As illustrated in this example, the number of periods for the tree may be different from the number of
periods of our model, which equals the number of premium payments.
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Time 1Y 2Y 3Y 4Y 5Y
Probability 0.0041 0.0052 0.0069 0.0217 0.0288

Table 1: Risk-neutral cumulative default probabilities

Tranche Monte Carlo 95% CI Recursion
0% – 3% 953.40 [946.71, 960.62] 951.60
3% – 7% 182.09 [179.51, 184.81] 181.59
7% – 10% 58.95 [57.26, 60.33] 58.77
10% – 15% 22.21 [21.01, 23.39] 22.09
15% – 30% 3.47 [3.03, 3.78] 3.44
30% – 100% 0.07 [0.03, 0.09] 0.07

Table 2: Tranche premia (bps)

and detachment points, 0%–3%, 3%–7%, 7%–10%, 10%–15%, 15%–30% and 30%–100%. We

assume a constant interest rate of 4% and a constant recovery rate of 40%. For simplicity,

we assume that all βk,i = 0.6. The risk-neutral cumulative default probabilities are listed in

Table 1.

Each Monte Carlo simulation consists of 100,000 trials, and 100 runs (with different seeds)

for each experiment are made. Based on the results of these 100 experiments, we calculate the

mean and the 95% non-parametric confidence interval. Table 2 presents the risk premia for

the CDOs. For our example, the running time of one Monte Carlo experiment with 100,000

trials is about 14 times that used by our recursive method. These results demonstrate that

the recursive relationship (13) is accurate and efficient.

To calibrate against the market quotes, we employ the tree structure for the correlation

factor loadings discussed in the previous section. In particular, we use an equally-spaced four-

period tree. However, we add constraints by using the same growth rate µj and probability

pj for period j, as shown in the tree in Figure 2. Therefore, we have 7 parameters in total

to calibrate against 12 tranche quotes. We compute the parameters by solving an associated

optimization problem. For the objective function of the optimization problem, we could use

either the absolute error in the spreads

fabs =
∑

(mi − si)
2, for i = 1, . . . , 12
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Figure 2: A particular dynamic tree example

or the relative error in the spreads

frel =
∑

(mi − si)
2/m2

i , for i = 1, . . . , 12

where mi is the market spread quote for tranche i and si is the model spread for tranche i.

Table 3 lists the calibration result for the tranche quotes of CDX series 8 on April 4,

2007. The upper half of the table uses the absolute spread error as the objective function,

while the lower half of the table uses the relative spread error as the objective function. In

both cases, the rows “Parameter” display the values of the parameters in our model, in the

order ρ0, µ0, p0, µ1, p1, µ2, p2.

Table 4 lists the calibration results for the same data using the Gaussian factor copula

model and the normal inverse Gaussian factor copula model in Kalemanova et al. (2007). In

the table, “NIG(1)” means the normal inverse Gaussian factor copula model with one extra

parameter for fat-tailness, and “NIG(2)” means the normal inverse Gaussian factor copula

model with two extra parameters for skewness and fat-tailness. Our results in Table 3 are

far superior to the results of the three models in Table 4.
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Maturity 5 yr 7 yr 10 yr
Tranche Market Model Abs Err Market Model Abs Err Market Model Abs Err
3 – 7 111.81 110.13 1.68 251.44 254.65 3.21 528.31 528.37 0.06
7 – 10 22.31 20.90 1.41 54.69 59.51 4.82 134.00 134.21 0.21
10 – 15 10.42 7.99 2.43 26.47 28.45 1.98 63.30 61.38 1.92
15 – 30 4.34 1.97 2.37 9.50 12.08 2.58 20.46 23.36 2.90

Parameter 0.73 0.43 0.98 0.32 0.57 0.11 0.63 fabs = 8.52

Tranche Market Model Rel Err Market Model Rel Err Market Model Rel Err
3 – 7 111.81 109.88 1.73% 251.44 300.00 19.31% 528.31 560.57 6.11%
7 – 10 22.31 21.37 4.23% 54.69 54.00 1.26% 134.00 141.36 5.49%
10 – 15 10.42 10.79 3.57% 26.47 25.01 5.52% 63.30 60.20 4.90%
15 – 30 4.34 4.36 0.37% 9.50 9.86 3.79% 20.46 22.30 8.99%

Parameter 0.55 0.65 0.80 0.42 0.71 0.15 0.57 frel = 25.01%

Table 3: Calibration result of CDX 8 on April 4, 2007

In additional to the market data on a single day, we calibrate our model against market

spreads of CDX series 8 on each Wednesday from March 23, 2007 to July 4, 2007. Figure

3 plots the absolute errors and relative errors of the 12 tranches using the four-period tree

structure with 7 parameters. The unit of the absolute error is basis points and the unit of

the relative error is percentage. For market data before the credit crunch (July, 2007), our

model is able to match the data quite well with 7 parameters. For market data after the

credit crunch, the calibration error increases dramatically. We believe this is because the

market quotes exhibit arbitrage due to the large demand and supply gap. As the financial

crisis developed, traders tried to sell the credit derivatives they were holding, but no one

wanted to buy them. For more numerical results about calibration of our model, refer to

Kaznady (2011).

7 Conclusions

In this paper, we introduce a dynamic multi-period factor copula model, which can be cal-

ibrated fairly easily and matches the market quotes quite well. Using the independence

of the common factors and the forward default probability, we show that the loss of a

completely homogeneous pool possesses the Markov property. Therefore, we can avoid the
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Maturity 5 yr 7 yr 10 yr

Tranche Market Gaussian NIG(1) NIG(2) Market Gaussian NIG(1) NIG(2) Market Gaussian NIG(1) NIG(2)

3 – 7 111.81 149.77 84.48 92.12 251.44 379.65 240.59 240.36 528.31 653.48 537.32 536.43
7 – 10 22.31 14.61 32.42 33.21 54.69 80.52 62.03 64.61 134.00 248.90 154.68 148.07
10 – 15 10.42 1.51 21.42 19.71 26.47 14.80 36.18 35.30 63.30 77.84 66.95 65.44
15 – 30 4.34 0.02 12.28 9.36 9.50 0.49 19.02 16.18 20.46 5.49 29.00 26.38

Abs err 39.98 32.14 24.86 131.62 18.88 18.54 171.19 24.39 17.42

Parameter Gaussian: 0.30 NIG(1): 0.46, 0.37 NIG(2): 0.44, 0.99, -0.61

Tranche Market Gaussian NIG(1) NIG(2) Market Gaussian NIG(1) NIG(2) Market Gaussian NIG(1) NIG(2)

3 – 7 111.81 164.22 89.70 86.76 251.44 383.20 289.34 265.15 528.31 635.06 642.09 616.51
7 – 10 22.31 21.07 23.40 24.17 54.69 94.04 53.01 53.28 134.00 255.83 173.08 151.31
10 – 15 10.42 2.88 12.52 12.50 26.47 20.92 24.02 25.14 63.30 89.10 54.25 53.37
15 – 30 4.34 0.07 4.96 4.46 9.50 0.98 8.77 9.23 20.46 8.06 15.40 16.95

Rel err 130.96% 31.95% 31.26% 128.06% 19.53% 8.35% 118.37% 46.17% 31.39%

Parameter Gaussian: 0.33 NIG(1): 0.34, 0.44 NIG(2): 0.35, 0.99, -0.63

Table 4: Calibration result of CDX 8 on April 4, 2007 by different models
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Figure 3: Weekly calibration result of CDX 8

multi-dimensional integration that must be computed in the multi-period factor copula mod-

els. The calibration results demonstrate the flexibility of our model in fitting the market

quotes. Most importantly, the method is a generic one: it can be applied to construct a

multi-period factor copula model from any one-period factor copula model based on the

conditional independence framework.

Our numerical results demonstrate that our multi-period factor copula model is able to

calibrate consistently against market data. However, we have developed an efficient method

for completely homogenous pools only using an independent latent process across time.

Therefore, key open questions are how to extend the model to a general pool and a general

latent process.
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Philipp Schönbucher. Portfolio losses and the term structure of loss transition rates: a new

methodology for the pricing of portfolio credit derivatives. Working paper, available at

http://www.defaultrisk.com, 2005.

Jakob Sidenius. On the term structure of loss distributions — a forward model approach.

International Journal of Theoretical and Applied Finance, 10(4):749–761, 2007.

Jakob Sidenius, Vladimir Piterbarg, and Leif Andersen. A new framework for dynamic credit

portfolio loss modeling. International Journal of Theoretical and Applied Finance, 11(2):

163–197, 2008.

Roberto Torresetti, Damiano Brigo, and Andrea Pallavicini. Implied correlation in

CDO tranches: A paradigm to be handled with care. Working paper, available at

www.defaultrisk.com, 2006.

Oldrich Vasicek. Probability of loss distribution. Technical report, KMV Corporation, 1987.

23


