
The accurate and efficient evaluation of potentials is of great importance for the numerical
solution of partial differential equations. When the integration domain of the potential is
irregular and is discretized by an unstructured mesh, the function spaces of near field and
self-interactions are non-compact, and, thus, their computations cannot be easily accelerated.
In this paper, we propose three novel and complementary techniques for accelerating the
evaluation of potentials over unstructured meshes. Firstly, we rigorously characterize the
geometry of the near field, and show that this analysis can be used to eliminate all the
unnecessary near field interaction computations. Secondly, as the near field can be made
arbitrarily small by increasing the order of the far field quadrature rule, the expensive
near field interaction computation can be efficiently offloaded onto the FMM-based far field
interaction computation, which leverages the computational efficiency of highly optimized
parallel FMM libraries. Finally, we show that a separate interpolation mesh that is staggered
to the quadrature mesh dramatically reduces the cost of constructing the interpolants.
Besides these contributions, we present a robust and extensible framework for the evaluation
and interpolation of 2-D volume potentials over complicated geometries. We demonstrate
the effectiveness of the techniques with several numerical experiments.
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1 Introduction

Integral equation methods solve partial differential equations (PDEs) by reformulating
them as integral equations using the tools of potential theory. The accurate and efficient
evaluation of potentials with singular or weakly-singular kernels, over curves, surfaces and
volumes, is thus of great importance for the numerical solution of PDEs. However, their
numerical evaluation poses several difficulties. Firstly, the potential is often expressed as
a convolution of a Green’s function with a density function, and due to the singularity
of the Green’s function, special integration techniques must be employed. Secondly, the
integration domain of the potential could be complicated, which requires it to either be
embedded into a larger regular domain, or to be resolved by adaptive meshing. Finally,
the scheme for evaluating the potential must be compatible with fast algorithms (e.g.,
the fast multipole method (FMM) or the fast Fourier transform (FFT)) for achieving
linear or quasi-linear time complexity. We note that, when the integration domain is
regular, the difficulties stated above can be easily overcome by exploiting the translational
invariance of the free-space Green’s function. More specifically, given a regular domain
that is discretized by a rectangular mesh, the dimensionality of the function spaces of
near field and self-interactions is finite, and, thus, these interactions can be efficiently
tabulated, from which it follows that the box code [9, 3] can be used to compute the
potential in linear time with a small constant. However, when the integration domain is
irregular, provided that the domain is discretized by an unstructured mesh, the function
spaces of near field and self-interactions are non-compact, and, thus, one can no longer
easily accelerate the computation by precomputations.

Existing methods for computing the potential over an irregular domain generally fall
into two categories. The first one is based on the observation that the volume potential is
the solution to an elliptic interface problem, where the irregular domain Ω is embedded
inside a regular box (see, for example, [2], for details). A finite difference method with
corrections based on knowledge of the jumps in the solution across ∂Ω is applied, with
the order of accuracy determined by the finite difference scheme used. Additionally, the
method is compatible with the FFT when a uniform grid is used to discretize the domain,
and, thus, it can achieve a quasi-linear time complexity. We note that, although this
approach saves the trouble of meshing an irregular domain, its order of convergence is
usually low, and it is not highly compatible with adaptive mesh refinement. Furthermore,
the method doesn’t easily generalize to the surface potential case.

The methods belonging to the second category compute the potential directly by
quadrature. More specifically, the domain Ω is discretized into an unstructured mesh,
and for each target location x, depending on its proximity to the mesh elements, different
quadrature schemes are used to compute the integral over each mesh element, which leads
to a spectrally accurate evaluation. Moreover, the computation of the far field interactions
(i.e., integrals over mesh elements that are far away from x) can be accelerated by the
FMM, which results in linear total time complexity. We note that research into methods
of this type has mostly focused on the surface potential case, despite the fact that the
algorithms for computing the surface potential have great similarities with the ones for
computing the 2-D volume potential. We refer the readers to [1] for a thorough literature
review of methods belonging to these two categories.

Despite the advantages of the direct approach of computing the potential by quadrature
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(i.e., spectral accuracy and linear time complexity), the actual constants in time complexity
are usually large, due to the cost associated with the near field and self-interaction
computations, which cannot be efficiently precomputed over an unstructured mesh. In
[1], the authors propose a remedy to this issue. Given an irregular domain Ω, they embed
a rectangular mesh inside a large regular subdomain of Ω, and fill the rest of the domain
with unstructured meshes that conform to the curved boundary. It follows that a large
proportion of the evaluations can be accelerated by the box code, while respecting the
true geometry of the domain to retain spectral accuracy. However, as the authors of [1]
point out, the computation of near field and self-interactions over the unstructured mesh
forms the majority of the costs in their algorithm, even when the unstructured mesh
elements only make up a small proportion of the total mesh elements. Furthermore, such
a remedy is not applicable to surface potential evaluation. Therefore, we regard potential
evaluation over unstructured meshes as a problem of great importance in integral equation
methods.

In this paper, we propose the following novel and complementary techniques for
accelerating the near and self-interaction computations over an unstructured mesh.
Below, we briefly describe the techniques.

1. In the classic literature, the near field is typically approximated by a ball or a
triangle. We observe that this often leads to an overestimation of the true near field,
especially when the order of the quadrature or the error tolerance is high, which
leads to substantial unnecessary and expensive near field interaction computations.
Thus, we rigorously characterize the geometry of the near field, which allows us to
dramatically reduce the number of the required near field interaction computations.
Specifically, we show that the near field is approximately equal to the union of several
Bernstein ellipses. In addition, this technique provides error control functionality to
the far and near field interaction computations. For example, this technique allows
for a precise determination of the number of required subdivisions of the element
domain when the near field interactions are computed adaptively, which avoids the
possibility both of oversampling and of undersampling.

2. Since our analysis shows that the near field can be made arbitrarily small by
increasing the order of the far field quadrature rule, we observe that one can
efficiently offload the near field interaction computation onto the FMM-based far
field interaction computation. This trade leverages the computational efficiency of
highly optimized parallel FMM libraries, and reduces the cost of the much more
expensive and unstructured near field interaction computation. Furthermore, this
offloading technique is one of the few applications we are aware of that requires the
use of extremely high-order (say, 50th order) quadrature rules in high dimensions.

3. When one interpolates the potential, we observe that the most commonly used
arrangement of the quadrature nodes and interpolation nodes, where they are both
placed over a single mesh, leads to an artificially large near field and self-interaction
computation cost. If the quadrature and interpolation nodes are instead placed over
two separate meshes that are staggered to one another, the number of interpolation
nodes at which the near field and self-interactions are costly to evaluate is reduced
dramatically.
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We note that the near field geometry analysis for the 1-D layer potential computed by the
trapezoidal rule and the Gauss-Legendre rule has been rigorously carried out in [4] and in
[17, 18], respectively, and recently, the authors of [19] characterize the near field geometry
of the surface potential in R3 \ S, where S is the surface over which the potential is
generated. The near field geometry analysis for volume potentials has not been carried out
previous to this paper. Furthermore, we point out that the near field geometry analysis is
much more powerful in high dimensions (i.e., 2-D volumes, 3-D volumes, surfaces), since
the intersection of the near field with the domain over which the potential is generated
becomes non-negligible in these situations, and thus, the computation of the near field
interactions becomes a bottleneck when solving integral equations over these domains.
We also note that the idea of increasing the order of the far field quadrature rule to
reduce the amount of near field interaction computation appears, for example, in [16, 1].
However, it is presented as a heuristic. In fact, without characterizing the geometry of
the near field precisely, such an idea cannot be optimally carried out. As we show in this
paper, the near field is approximately equal to the union of several Bernstein ellipses,
and when the order of the far field quadrature is high, their area becomes vanishingly
small. Thus, a naive estimation of the near field (by a ball [16, 6] or a triangle [1]) is
seen to be poor, and a large proportion of the near field interaction computations are
unnecessary. In addition to this, when a naive estimation of the near field is used, one
has to overestimate the size of the near field to improve the robustness of the algorithm,
which further increases the unnecessary cost.

One would generally expect that a reduction in the area of the near field leads to
a reduction in the cost of the computation of near field interactions. However, this
turns out to be false, in the common case where the target points are chosen to be
interpolation nodes over the same triangle mesh as the one that is used for quadrature.
The discretization nodes tend to cluster near the edges of the mesh elements, which
means that a smaller near field does not necessarily result in a commensurate reduction in
the computational cost. With the use of a separate interpolation mesh that is staggered
to the quadrature mesh, the reduction in the near field interaction computation cost
becomes proportional to the reduction in the area of the near field. The techniques that
we present are thus complementary.

In this paper, for simplicity, we only consider the evaluation of the 2-D Newtonian
potential over an irregular domain Ω,

u(x) =

∫∫
Ω

1

2π
log ‖x− y‖f(y) dAy. (1)

We note that our techniques can be easily generalized to kernels of other types and, also,
with some additional work, to surface and 3-D volume potential evaluations.

Besides the general contributions to potential evaluation problems that we describe
above, we make the following contributions that are specific to the 2-D volume potential
evaluation problem.

• We describe a robust and extensible framework for evaluating and interpolating
2-D volume potentials over complicated geometries, without the need for extensive
precomputation. Our presentation makes minimal use of specialized quadrature
rules, although our framework is compatible with their use.
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• Although a well-conditioned formula for computing self-interactions has already
appeared, for example, in [32, 1], its standard derivation is somewhat overcompli-
cated and the necessity of the formula is not fully motivated. We instead present a
short and elementary derivation of the same formula from the first principles, and
explain why it is needed.

• We provide a description of a full and robust pipeline of the geometric algorithms
that are required for the volume potential evaluation, e.g., a meshing algorithm, a
nearby element query algorithm, etc.

We conduct several numerical experiments to demonstrate the performance of the
techniques for accelerating the computation over an unstructured mesh. We also report
the overall performance of our volume potential evaluation algorithm.

2 Mathematical preliminaries

2.1 Koornwinder polynomials

The Koornwinder polynomials, denoted by Knm : ∆1 → R, are defined by

Kmn(x, y) = cmn(1− x)mP
(2m+1,0)
n−m (2x− 1)Pm

( 2y

1− x
− 1
)
, m ≤ n, (2)

where

∆1 = {(x, y) ∈ R2 : 0 ≤ x ≤ 1, 0 ≤ y ≤ 1− x} (3)

is the standard simplex, P
(a,b)
k is the Jacobi polynomial of degree k with parameters (a, b),

Pm is the Legendre polynomial of degree m, and cmn is the normalization constant such
that ∫

∆1

|Kmn(x, y)|2 dx dy = 1. (4)

It is observed in [20] that the (N + 1)(N + 2)/2 functions{
Kmn(x, y) : n = 0, . . . , N,m = 0, . . . , n

}
(5)

form an orthogonal basis for PN on the standard simplex ∆1, where PN denotes the
space of polynomials of order at most N on ∆1. In addition, by orthogonality, we also
have that ∫

∆1

Kmn(x, y) dx dy = 0, (6)

for any m,n ∈ N≥0 with m+ n > 0.
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2.2 Quadrature and interpolation over triangles

On a two-dimensional domain, a quadrature rule of length n is optimal if it integrates
3n functions (since the total number of degrees of freedom of the rule is 3n), and we
refer to such a rule as a generalized Gaussian quadrature rule. In general, the efficiency
of a quadrature rule is defined to be E = m

(d+1)n , where d is the dimensionality of the
domain, n is the length of the quadrature rule, and m is the dimensionality of the space
of functions that can be integrated exactly using that rule (see [28] for details).

Although the construction (or even the existence) of perfect generalized Gaussian
quadrature rules over two-dimensional domains remains an open problem, various schemes
for generating nearly-perfect ones exist, e.g., [26, 28]. In this section, we describe some
quadrature and interpolation schemes for polynomials over a triangle domain.

The Vioreanu-Rokhlin rule, introduced in [26], takes two integers N and M ≥ N
as inputs, and attempts to generate a quadrature rule of length exactly dimPN that
integrates all functions in PM over a given convex domain exactly. The method is based
on the observation that elements of the complex spectrum of the multiplication operator
restricted to PN , acting on any convex domain, turn out to be excellent quadrature
nodes for integrating all functions in PN over the domain. These nodes are used as an
initial guess by the Vioreanu-Rokhlin algorithm and iteratively improved (by solving
a nonlinear least-squares problem) to integrate all functions in PM . As a result, the
generated rule is generally efficient and of high quality. Additionally, the set of quadrature
nodes can also serve as interpolation nodes for approximating functions in PN , since the
length of the rule equals dimPN . To get the interpolation matrix, we invert the matrix
that maps the Koornwinder polynomial expansion coefficients to function values at the
interpolation nodes. Using the Vioreanu-Rokhlin nodes as the interpolation nodes, the
condition number of this interpolation matrix turns out to be small, which guarantees
that the interpolation is stable.

In the situation where interpolation is not needed, one can loosen the restriction in
the Vioreanu-Rokhlin algorithm that the length of the quadrature rule equals dimPN
for some N , and this can result in a more efficient quadrature algorithm. This fact is
used by the Xiao-Gimbutas algorithm [28], which is also based on solving a nonlinear
least-squares problem. For example, the Xiao-Gimbutas rule of length 78 integrates P20

exactly, while the Vioreanu-Rokhlin rule needs to have a length equal to dimP12 = 91 to
accomplish the same job. We tabulate the lengths and orders of some Xiao-Gimbutas
rules and Vioreanu-Rokhlin rules in Tables 2 and 3.

2.3 The polar tangential angle

In this section, we describe some concepts in differential geometry that we make use of in
the sequel.

Definition 2.1. Given a unit-speed parametrized curve γ(s), we define the polar tan-
gential angle ψ(s) of γ with respect to polar coordinates centered at O to be

ψ(s) = ∠(γ′(s), γ(s)−O), (7)

where γ is parameterized by arc length (see Figure 1). In other words, ψ(s) represents
the angle between the tangent line to the curve at γ(s) and the ray from O to the point.
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Figure 1: The polar tangential angle ψ(s).

Let the polar angle θ(s) be the angle of the point γ(s) in polar coordinates with
respect to the origin O. The following theorem illustrates how to compute the derivative
of the polar angle of a given curve, given its radius and polar tangential angle. The proof
of the theorem can be found in Chapter 12 of [27].

Theorem 2.1. Suppose that γ(s) is a unit-speed parametrized curve. Suppose further
that r0(s) and θ(s) are the radius and polar angle, respectively, of γ(s) with respect to a
given polar coordinate system. Then

θ′(s) =
sin(ψ(s))

r0(s)
, (8)

where ψ(s) is the polar tangential angle of γ at γ(s).

It turns out that the derivative θ′(s) can be expressed directly in terms of γ(s) and
r0(s).

Corollary 2.2. Suppose that γ(s) is a unit-speed parametrized curve. Suppose further
that r0(s) and θ(s) are the radius and polar angle, respectively, of γ(s) with respect to a
given polar coordinate system centered at O. Then

θ′(s) =
|(γ(s)−O)× γ′(s)|

r2
0(s)

. (9)

Proof. By definition of the cross product, we have that

|(γ(s)−O)× γ′(s)| = r0(s) sin(ψ(s)). (10)

By combining (8) and (10), we prove the result. �

2.4 Approximation of analytic functions by polynomials

In this section, we describe several concepts in approximation theory that we make use
of in the sequel.
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Definition 2.2. Given a real number ρ > 1, the Bernstein ellipse with parameter ρ is
defined to be the ellipse{

(z + z−1)/2 : z = ρeiθ, θ ∈ [0, 2π)
}
. (11)

Furthermore, we denote the interior of the Bernstein ellipse by Eρ. In a slight abuse of
notation, we also refer to Eρ as the Bernstein ellipse, when the meaning is clear.

The proof of the following two theorems can be found in [25].

Theorem 2.3. Suppose f is a function on [−1, 1] for which there exist a sequence of
polynomials q0, q1, . . . , where qn is a polynomial of order n, satisfying

‖f − qn‖L∞[−1,1] ≤ Cρ
−n, (12)

for some integer n ≥ 0, and some real numbers ρ > 1, C > 0. Then f can be analytically
continued to an analytic function in Eρ.

Theorem 2.4. Suppose that an analytic function f : [−1, 1]→ R is analytically continu-
able to Eρ, for some real number ρ > 1. Suppose further that |f(z)| is bounded inside Eρ
by some constant M . Then,

‖f − fn‖L∞[−1,1] ≤
2Mρ−n

ρ− 1
, (13)

for all n ≥ 0, where fn denotes the nth order Chebyshev projection of f , by which we
mean the infinite expansion of f in terms of Chebyshev polynomials, truncated at the nth
order (inclusive).

The following corollary is an immediate consequence of Theorem 2.4.

Corollary 2.5. Suppose that an analytic function f : [−1, 1] → R is analytically con-
tinuable to Eρ, for some real number ρ > 3/2. Suppose further that |f(z)| is bounded
inside Eρ by 1/4. Then,

‖f − fn‖L∞[−1,1] ≤ ρ
−n, (14)

for all n ≥ 0, where fn denotes the nth order Chebyshev projection of f , by which we
mean the infinite expansion of f in terms of Chebyshev polynomials, truncated at the nth
order (inclusive).

3 Volume potential evaluation over complicated geometries

In this section, we describe a numerical apparatus for computing and interpolating the
volume potential

u(v) =

∫∫
Ω

log(‖v − y‖)f(y) dAy, (15)

where the target location v ∈ R2, and Ω is a smooth planar domain. We first discretize
Ω into a triangle mesh (see Appendices A.3, A.4 for details), and reduce the problem
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to the case where the integration region is either a triangle ∆ or a curved element ∆̃ (a
mesh element with three sides, one of which is curved). Furthermore, we divide each of
these two problems into three distinct subproblems: where v is far from the element (i.e.,
far field interactions), where v is close to the element (i.e., near field interactions), where
v lies within the element (i.e., self-interactions). Our goal is to present a simple and
robust framework for handling these different types of the interactions. In particular, we
minimize the use of special-purpose quadrature rules in our discussion, although it could
potentially speed up the algorithm. We note that, however, our framework is compatible
with such rules. In addition, we describe an interpolation scheme for the volume potential
over a mesh element. In the end, we describe how to couple the algorithms with the fast
multipole method (FMM) to evaluate the volume potential generated over Ω at any given
set of target locations, with linear time complexity.

For simplicity, we refer to both standard triangles and curved elements as mesh
elements when there is no ambiguity.

3.1 Integration over a mesh element

In this section, we introduce algorithms for generating efficient quadrature rules for
integrating smooth functions over an arbitrary mesh element ∆ (either a triangle or a
curved element).

Recall that in Section 2.2, we describe how to obtain a nearly-perfect Gaussian
quadrature rule for integrating polynomials over the standard simplex

∆1 = {(x, y) ∈ R : 0 ≤ x ≤ 1, 0 ≤ y ≤ 1− x}. (16)

Clearly, provided that an invertible and well-conditioned mapping ρ : ∆1 → ∆ is given,
the generation of a quadrature rule over ∆ is simple, and is described in the following
theorem.

Theorem 3.1. Given the standard simplex ∆1 and a mesh element ∆, suppose that
{(xi, yi), wi}i is a set of quadrature nodes and weights that integrates {Kmn}m,n exactly
over ∆1, and ρ is an invertible and well-conditioned mapping from ∆1 to ∆. Then,{

ρ(xi, yi), wi · |Jρ(xi, yi)|
}
i

(17)

is the set of quadrature nodes and weights that integrates {Kmn ◦ ρ−1}m,n exactly over
the mesh element ∆, where Jρ(x) denotes the Jacobian determinant of ρ at x.

Proof. The theorem follows directly from a change of variables. �

Therefore, the problem of evaluating an integral over a mesh element reduces to the
computation of an invertible and well-conditioned mapping ρ from ∆1 to ∆. When ∆
is a triangle, there exists an affine transformation from ∆1 to ∆, so the mapping ρ can
be constructed easily, and |Jρ(xi, yi)| = area(∆)/area(∆1). When ∆ is a curved element,
the blending function method [13, 14, 30] provides an elegant solution to the problem, as
is mentioned in [1]. Below, we describe the method.

Let γ : [0, L]→ R2 be the unit-speed parametrization of the curved side of a curved
element ∆̃, and let O := (x0, y0) denote the vertex opposite to the curved side. Then for
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any point (ξ, η) ∈ ∆1, define

ρ(ξ, η) := (1− ξ − η) · γ(L) + ξ · γ(0) + η ·O

+
1− ξ − η

1− ξ

(
γ
(
L(1− ξ)

)
− (1− ξ) · γ(L)− ξ · γ(0)

)
. (18)

It can be shown that ρ is an invertible and well-conditioned mapping from ∆1 to ∆̃, and
its Jacobian Jρ can be computed by a straightforward calculation.

Remark 3.1. When the curved side γ is a straight line segment (i.e., the curved element
is a triangle), the mapping ρ generated by the blending function method degenerates
into an affine mapping, which implies that the discussion in this section can be unified
under the blending function method framework. For clarity and computational efficiency
purposes, the discussions of the two cases are separated.

Observation 3.2. In the case where the curved side of a curved element is not well-
resolved by the mesh, the Jacobian of the blending function ρ becomes non-smooth, which
requires a relatively large number of degrees of freedom to approximate. Thus, when
the requirement for high accuracy is rigid, it is important to refine the mesh around the
region where the geometry of the boundary is complicated, or use a quadrature rule of
order higher than the one for triangle elements.

3.2 Far field interactions

In this section, we introduce far field quadrature rules for computing the volume potential
(15) when the integration domain Ω is a mesh element, and the target location v is in the
far field of the domain Ω (formally defined at the end of this section). In this case, the
integrand of (15) is a smooth function, so the quadrature rules described in Section 3.1
are applicable.

Given an arbitrary mesh element ∆ (either a triangle or a curved element), and
an invertible and well-conditioned mapping ρ from the standard simplex ∆1 to ∆ (see
Section 3.1), we have that, by Theorem 3.1,∫∫

∆
log(‖v − y‖)f(y) dAy ≈

N∑
i=1

wi · |Jρ(ỹi)| · log(‖v − ρ(ỹi)‖) · f(ρ(ỹi)), (19)

where ỹi = (xi, yi), and {(xi, yi), wi}i=1,2,...,N is a set of quadrature rule over ∆1 (see
Section 2.2).

Remark 3.3. In general, it is preferable to have the mesh elements to be almost
equilateral, in which case the basis function has the same amount of expressibility in the
x- and y-directions.

We now give a precise definition of the set of target points in the far field and near
field of a mesh element. Additionally, we provide a dual definition describing the set of
mesh elements in the far field and near field of a target point.

Definition 3.1. Given a mesh element ∆ (either a triangle or a curved element), a set
of possible densities S, a far field quadrature rule of order N , and an error tolerance ε,
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the far field of the mesh element, denoted by F∆, is the set of targets in R2 where the
volume potential generated by a density f ∈ S over the element can be computed up to
precision ε by applying the given far field quadrature rule. The near field of the mesh
element, denoted by N∆, is the set of locations that do not belong to either the far field
of the mesh element, or the mesh element itself.

Definition 3.2. Given a target location x and a set of mesh element F, we define S(x) ∈ F
to be the element that x lies within. Furthermore, given a far field quadrature rule of
order N , a set of possible densities, and an error tolerance ε, we define N (x) ⊆ F \ S(x)
to be the set of all elements whose near fields contain x (see Definition 3.1), and define
F(x) := F \ (S(x) ∪N (x)). With a slight abuse of notation, we refer to F(x) and N (x)
as the far field and near field of x, respectively.

3.3 Near field interactions

In this section, we introduce an algorithm for computing the volume potential (15) when
the integration domain Ω is a mesh element, and the target location v is in the near field
of Ω (see Definition 3.1 for the definition of the near field). In this case, the integrand of
(15) is nearly-singular, so the far field quadrature rule described in Section 3.2 will not
achieve sufficient accuracy. Below, we describe an adaptive algorithm for resolving the
near-singularity in the integrand.

Figure 2: A subdivided triangle mesh element during the computation of near
field interactions.

For clarify, we denote the integration domain (i.e., a mesh element) by ∆. Furthermore,
suppose that ρ is an invertible and well-conditioned mapping from the standard simplex
∆1 to ∆. Firstly, we recursively subdivide ∆1, as is shown in Figure 2, until all the
sub-simplexes are mapped to sub-mesh elements that belong to F(v) (see Definition 3.2).
More formally, if we let

{∆1
i : i = 1, 2, . . . , N} (20)

denote the set of such sub-simplexes, we have that
{

∆1
i

}
i

are disjoint, and ∪Ni=1∆1
i = ∆1.

Therefore,∫∫
∆

log(‖v − y‖)f(y) dAy =

∫∫
∆1

log(‖v − ρ(y)‖)f(ρ(y))|Jρ(y)| dAy

=
N∑
i=1

∫∫
∆1

i

log(‖v − ρ(y)‖)f(ρ(y))|Jρ(y)|dAy. (21)
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Furthermore, since the target v is now located in the far field of ρ(∆1
i ) for all i, the

integral ∫∫
∆1

i

log(‖v − ρ(y)‖)f(ρ(y))|Jρ(y)|dAy (22)

can be computed both accurately and efficiently using the quadrature rule over triangles
(see Section 2.2). Thus, the near-field interactions over a triangle can be computed
accurately via (21), despite the near-singularity in the integrand.

The determination of the far field F(v) turns out to be important for the speed of
the near interaction computation. We postpone the discussion to Section 4.1.

Observation 3.4. The order of the quadrature rule used in the near interaction compu-
tation is unrelated to the order of the far field quadrature rule. In fact, the order of the
far field quadrature rule only affects whether or not a target is in the far field of some
mesh element. Since the near field quadrature rule is used in a recursively subdivided
partition, its order should be modest.

Remark 3.5. It is suggested in [16] that one should store the function values of the
density at the quadrature nodes of the subdivided triangles used in the computation of near
field interactions, such that these values can be reused in future near-field computations.
This approach can lead to a large improvement in the performance, since it avoids lots
of recurring evaluations of the density function. In large-scale parallel applications, this
runs the risk of turning a compute-bound task into a memory-bound task, which can
cause a degradation in performance. We note that this technique is not employed in our
implementation.

3.4 Self-interactions

In this section, we introduce an algorithm for computing the volume potential (15) when
the integration domain Ω is a mesh element, and the target v lies within the integration
domain. In this case, the integrand of (15) has a singularity at y = v, so some special
treatment is required to resolve it.

Suppose that the integration domain Ω is a triangle with vertices A,B,C ∈ R2, and
v := (x0, y0) ∈ R2 is a target that lies within Ω. We then rewrite the integral (15) as∫∫

Ω
log(‖v − y‖)f(y) dAy =

3∑
i=1

∫∫
∆i

log(‖v − y‖)f(y) dAy, (23)

where ∆i is a subtriangle with vertices given by v and two of A,B,C. When Ω is a
curved element, one of {∆i}i=1,2,3 also becomes a curved element ∆̃i with v being the
vertex opposite to the curved side, while the other two remain subtriangles (see Figure 3).
Therefore, the problem of computing self-interactions reduces to the problem of computing∫∫

∆
log(‖v − y‖)f(y) dAy, (24)

where the element ∆ may or may not have a curved side, and v is a vertex of ∆ (specifically,
the vertex opposite to the curved side, if a curved side exists). With a slight abuse of
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Figure 3: A subdivided curved element during the computation of self-
interactions.

notation, we refer to the side opposite to the vertex v as the curved side, despite that it
could be a straight line.

To evaluate the self-interaction, we first simplify the integrand in (24) by rewriting
the double integral in a different coordinate system. There are many possible coordinates
to use, and we find that the so-called radius-arc length coordinates have many desirable
properties, which we make use of later on.

Let γ : [0, L]→ R2 be the unit-speed parametrization of the curved side of ∆. We
write

∆ =
{

(x0 + r cos(θ(s)), y0 + r sin(θ(s))) : 0 ≤ s ≤ L, 0 ≤ r ≤ r0(s)
}
, (25)

where r0(s) and θ(s) are the radius and polar angle of the curved side γ of ∆ with respect
to polar coordinates centered at v := (x0, y0), and s ∈ [0, L] represents the arc length
parameter of the curved boundary. We also denote the inverse of θ(s) by s(θ).

Theorem 3.2. Suppose that ∆ is a mesh element as defined in (25), and f : ∆→ R is
a function, such that log(‖v − y‖) · f(y) is integrable over ∆. Supposing further that θ(s)
is strictly monotone, we have that∫∫

∆
log(‖v − y‖)f(y) dAy =

∫ L

0

(∫ 1

0
log(r0(s)r̃) · f

(
y(r̃, s)

)
· r̃ dr̃

)
·
∣∣(γ(s)− v)× γ′(s)

∣∣ ds,
(26)

where

y(r̃, s) =

(
x0 + r0(s)r̃ cos(θ(s))
y0 + r0(s)r̃ sin(θ(s))

)
. (27)

Clearly, the function f
(
y(r̃, s)

)
is smoother than f , since the mapping from radius-arc

length coordinates to Cartesian coordinates is smooth (its inverse is not).

Proof. By expressing the double integral in polar coordinates with the radius normalized
to one, which is legitimate because of the assumption that θ(s) is strictly monotone, we
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get ∫∫
∆

log(‖v − y‖)f(y) dAy

=

∫ θ(L)

θ(0)

∫ 1

0
log(‖v − y(r̃, s(θ))‖) · f

(
y(r̃, s(θ))

)
· r0(s(θ))2 · r̃ dr̃ dθ

=

∫ θ(L)

θ(0)

∫ 1

0
log
(
r0(s(θ))r̃

)
· f
(
y(r̃, s)

)
· r0(s(θ))2 · r̃ dr̃ dθ. (28)

Then, by a change of variables θ = θ(s) and Corollary 2.2, (28) becomes∫∫
∆

log(‖v − y‖)f(y) dAy =

∫ L

0

∫ 1

0
log(r0(s)r̃) · f

(
y(r̃, s)

)
· r̃0(s)2 · r̃ · θ′(s) dr̃ ds

=

∫ L

0

∫ 1

0
log(r0(s)r̃) · f

(
y(r̃, s)

)
· r̃ ·

∣∣(γ(s)− v)× γ′(s)
∣∣dr̃ ds

=

∫ L

0

(∫ 1

0
log(r0(s)r̃) · f

(
y(r̃, s)

)
· r̃ dr̃

)
·
∣∣(γ(s)− v)× γ′(s)

∣∣ ds. (29)

�

Figure 4: The mapping r0(s) is better-conditioned than r0(s(θ)). In this example,
the curved side is the line segment connecting (1, 0) and (1, 1), and the origin of the polar
coordinate system is v = (0, 0).

Observation 3.6. It is also possible to express the double integral over ∆ in polar
coordinates (see formula (28)). However, when ∆ is stretched, the mapping from the
polar angle to the radius (i.e., r0(s(θ))) is ill-conditioned, while the mapping from the
arc length parameter to the radius (i.e., r0(s)) is always well-conditioned (see Figure 4).

Observation 3.7. When the curve γ is a line segment, it is not hard to show that
the function

∣∣(γ(s)− v)× γ′(s)
∣∣ is a constant, and is equal to the distance from v to γ.

Furthermore, this function is also a constant when γ is an arc of a circle centered at v. In
general, this function turns out to be smooth except when the curve γ is highly convex,
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regardless of the aspect ratio of the curved element associated with γ. It follows that the
Jacobian term r̃ ·

∣∣(γ(s)− v)× γ′(s)
∣∣ in (26) is also a smooth function under the same

conditions. Therefore, given a smooth function over a curved element ∆̃ whose curved
side is well-resolved and not excessively convex, the corresponding function in radius-arc
length coordinates is also smooth, regardless of the aspect ratio of ∆̃. Such a property is
particularly useful for numerical integration.

Remark 3.8. To fulfill the assumption in Theorem 3.2, it is necessary to have the polar
angle of the curved side of each curved element be strictly monotone. In other words,
any ray with the vertex opposite to the curved side as an endpoint cannot intersect the
curved side more than once. In practice, this assumption can be easily fulfilled by a slight
refinement of the mesh near the domain boundary. We note that the mesh refinement is
easy to achieve by the Distmesh algorithm (see Observations A.3, A.5).

By Theorem 3.2, (24) becomes∫∫
∆

log(‖v − y‖)f(y) dAy

=

∫ L

0

(∫ 1

0

(
log(r0(s)) + log(r̃)

)
·f
(
y(r̃, s)

)
r̃ dr̃

)∣∣(γ(s)− v)× γ′(s)
∣∣ds

=

∫ L

0

(
I1(s) + I2(s)

)∣∣(γ(s)− v)× γ′(s)
∣∣ds, (30)

where

I1(s) =

∫ 1

0
r̃ log r̃ · f

(
y(r̃, s)

)
dr̃, I2(s) =

∫ 1

0
r̃ log(r0(s))f

(
y(r̃, s)

)
dr̃. (31)

Clearly, the integrand of I2(s) is smooth, while the integrand of I1(s) has an r̃ log r̃
singularity at r̃ = 0, which has to be resolved by our quadrature scheme. Using generalized
Gaussian quadratures (see [8]), for any given N ∈ N≥0, we can obtain a set of quadrature
nodes and weights

{r̃j , w̃j}j=1,2,...,Nq (32)

that integrates both{
r̃ log r̃ · Pn(2r̃ − 1)

}
n=0,1,...,N

(33)

and {
r̃ · Pn(2r̃ − 1)

}
n=0,1,...,N

(34)

over the interval [0, 1] to machine precision, where Pn represents the Legendre polynomial
of order n. In other words, this quadrature rule integrates the space of polynomials of
order N over [0, 1] multiplied by r̃ or r̃ log r̃ to machine accuracy. Therefore, the inner
integral of (30) can be approximated by

I1(s) + I2(s) ≈
Nq∑
j=1

w̃j r̃j log(r0(s)r̃j)f
(
y(r̃j , s)

)
, (35)
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from which it follows that∫∫
∆

log(‖v − y‖)f(y) dAy ≈
Nq∑
j=1

w̃j r̃j

∫ L

0
log(r0(s)r̃j)f

(
y(r̃j , s)

)∣∣(γ(s)− v)× γ′(s)
∣∣ ds

=

Nq∑
j=1

w̃j r̃j

∫ L

0

(
log(r0(s)) + log(r̃j)

)
f
(
y(r̃j , s)

)∣∣(γ(s)− v)× γ′(s)
∣∣ds.

(36)

To compute the integrals with respect to the arc length s in (36), we first observe that
f
(
y(r̃j , s)

)
·
∣∣(γ(s)− v)× γ′(s)

∣∣ is a smooth function of s when γ is smooth and not too
convex (see Observation 3.7). Thus, all that remains is to examine the singularity of the
term log(r0(s)). In the case where γ denotes a line segment, it is clear that

r0(s) =

√
(s− s̃)2 + ‖v − γ(s̃)‖2 (37)

for s̃ := argmins ‖v − γ(s)‖, from which it follows that the analytic continuation of r0(s)
equals zero at s = s̃+ i‖v − γ(s̃)‖, where i is the imaginary unit. Thus, when γ is a line
segment, log(r0(s)) has a singularity at s = s̃+ i‖v − γ(s̃)‖. In the case where γ is an
arbitrary curved side that is well-resolved by the mesh (which is one of our assumptions),
γ can be seen as a smooth perturbation of a line segment. If we define s̃ by the formula
described above for the line segment, the singularity of log(r0(s)) is likewise located near
s = s̃+ i‖v − γ(s̃)‖. Below, we introduce an algorithm for resolving such a singularity.

1. Subdivide the integration interval into two pieces: [0, s̃] and [s̃, L], where s̃ =
argmins ‖v − γ(s)‖.

2. Divide [0, s̃] into N + 1 subintervals

{[(1− (1/2)N )s̃, s̃]}
⋃
{[(1− (1/2)i−1)s̃, (1− (1/2)i)s̃]}i=1,2,...,N ,

(38)

where

N = min{N : (1/2)N s̃ < ‖v − γ(s̃)‖}. (39)

3. Similarly, divide [s̃, L] into M + 1 subintervals, where

M = min{M : (1/2)M (L− s̃) < ‖v − γ(s̃)‖}. (40)

4. Use the Gauss-Legendre quadrature rule of order p over each subinterval to com-
pute (36). It is necessary for p to be large enough, such that the two integrals∫ s̃/2

0

(
log(r0(s)) + log(r̃j)

)
f
(
y(r̃j , s)

)∣∣(γ(s)− v)× γ′(s)
∣∣ ds (41)

and ∫ L

(L+s̃)/2

(
log(r0(s)) + log(r̃j)

)
f
(
y(r̃j , s)

)∣∣(γ(s)− v)× γ′(s)
∣∣ds (42)

can be computed to full accuracy.
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Using the subdivision technique presented above, it is guaranteed that each panel is
separated from the singularity by at least one panel width, such that it is in the far field
of the logarithmic singularity. It follows that an accurate quadrature result is obtained.

Remark 3.9. The adaptive subdivision along the arc length coordinate for resolving
the nearly-singular integrand can be expensive, especially when the target is close to the
boundary. One can instead use a large number of precomputed specialized quadrature
rules to resolve the nearly-singular integrand, which is substantially more efficient than
the adaptive integration method described above (see [6, 7]). In our implementation, for
simplicity, we compute the self-interactions using the adaptive integration method.

Remark 3.10. The need for subdivisions in the arc length coordinate is not an artifact
of the change of variables, since when the target location v is close to the edge of a mesh
element, the integrand is in nature nearly-singular along the arc-length direction in the
region between v and that edge.

3.5 Interpolation over a mesh element

In this section, we describe an interpolation scheme of the volume potential (15) over a
mesh element. We note that the volume potential is smooth provided that the boundary
of the domain ∂Ω and the density f is smooth (see, for example, [29]), from which it
follows that the Koornwinder polynomial basis is suitable for the interpolation of the
volume potential in this case.

First of all, given a mesh element ∆ and an invertible and well-conditioned mapping
ρ from the standard simplex ∆1 to ∆ (see Section 3.1 for the construction of ρ), the
Koornwinder polynomial expansion coefficients of the function u ◦ ρ : ∆1 → R can be
computed by applying the interpolation matrix to the values of u at the Vioreanu-Rokhlin
nodes over ∆ (see Section 2.2), and we denote the interpolant by Iu◦ρ. As u ◦ ρ is a
smooth function and ρ is easily invertible (the use of Newton’s method is necessary when
∆ is a curved element), we can compute the potential to high accuracy at any point on ∆
by evaluating (Iu◦ρ) ◦ ρ−1.

Remark 3.11. In some applications, it is useful to compute the volume potentials at the
boundary of the domain, i.e., the value of u(v) for some v = γ(s), where γ is the arc length
parameterization of the curved side of the curved element that v lies in. In this case, the
use of Newton’s method is unnecessary, since it is easy to show that ρ−1(v) = (1−s/L, 0),
where ρ is the blending function mapping (18), and L is the total arc length of γ.

Observation 3.12. As is noted in Observation 3.2, when the curved side of a curved
element is not well-resolved by the mesh, the Jacobian of ρ could be nonsmooth. Thus,
it is important for the curved side to be well-resolved by the mesh, or, if it is not
well-resolved, to use a higher-order interpolation scheme.

3.6 Coupling quadratures to the FMM

With the numerical apparatus developed in the previous sections, given geometry with
a triangle mesh, and a source function f : R2 → R, we can evaluate the integral (15)
at any given target location in O(N) operations, where N is the total number of the
quadrature nodes, by summing up all of the potentials generated over the mesh elements
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at the target location, using the algorithms introduced in Sections 3.2, 3.3, 3.4. It is not
hard to see that the cost is dominated by the far field interactions.

It is often desirable to evaluate the potential at multiple targets, which, if computed
naively, leads to O(MN) total operations, where M is the number of target locations.
Such an expensive cost is usually prohibitive in practice. In this section, we reduce the
time complexity to O(M +N) by coupling the FMM to our volume potential evaluation
algorithm.

The key observation of the algorithm is that, if we treat all interactions as far field
interactions, the volume potential evaluation is equivalent to a standard electrostatic
interaction problem, where the charge locations are the quadrature nodes over the
triangles, and the charge densities are given by the density function values at the nodes
multiplied by the corresponding quadrature weights. Therefore, with the well-known
fast multipole method [15], such computations can be done with linear time complexity.
However, since treating all quadrature nodes as point sources does not account for
the near and self-interactions, the computed potential is inaccurate. Therefore, it is
necessary to make a correction to the computed potential. Below, we outline the so-called
“subtract-and-add” method (see [16]) for the potential corrections.

Suppose that x is a target location, and u(x) is the potential at x computed using
the FMM. Let S(x) denote the element containing x, N (x) denote the near field of x, as
defined in Definition 3.2.

1. Find the mesh element S(x) that x lies within, and the set of nearby elements N (x)
using the query algorithm described in Appendix A.5.

2. Subtract from u(x) the contribution made in the FMM calculation from the quadra-
ture nodes over N (x) and S(x). Then, add to u(x) the near and self-interaction
potential over N (x) and S(x), respectively, using the algorithms described in
Sections 3.3 and 3.4.

Since the number of mesh elements in the near field of a given target is O(1), we have
that the number of operations required to correct the potential at each target is O(1).
Therefore, the total time complexity of the algorithm is still O(M +N).

Remark 3.13. Clearly, the subtraction of spurious contributions from near fields can be
avoided by disabling the computation of neighbor interactions in the FMM. However,
it is observed in [16] that the use of the “subtract-and-add” method described in this
Section leads to faster implementation, largely because of a better cache utilization. We
note that catastrophic cancellation could happen during the “subtract-and-add” stage.
In our case, the singularity of the logarithmic kernel is so mild that this is generally not
a concern. When a more singular kernel is in use, one should omit the computation of
neighbor interactions in the FMM, and handle these interactions using the algorithms of
Sections 3.3, 3.4.

4 Accelerating potential evaluation over unstructured meshes

The algorithm described thus far, while differing in some details, involves fairly standard
ideas that have been developed for the evaluation of the surface potential [6, 16]. In this
section, we describe three general observations that lead to accelerated volume potential
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calculations over unstructured meshes. The first concerns the geometry of the near field.
We observe that the near field is typically approximated by a ball or a triangle (see, for
example, [6, 16, 1]), while in reality, the geometry of the near field can be characterized
precisely by the union of several Bernstein ellipses. Moreover, these ellipses are very flat
when the order of the far field quadrature rule is high, or when the error tolerance is
large, from which it follows that the conventional approximations of the near field become
inaccurate. When the near field is computed accurately, the cost of the most expensive
component in the volume potential evaluation algorithm, namely, the near interaction
potential correction, is reduced substantially. The second observation is that, knowing the
near field geometry, one can efficiently offload the near field interaction corrections onto
the FMM-based far field interaction computation by increasing the order of the far field
quadrature rule. Such a trade leverages the computational efficiency of highly optimized
parallel FMM libraries, and reduces the cost of the much more expensive and unstructured
near field interaction computation. The third observation is that the most commonly
used arrangement, in which the interpolation nodes are placed on the same mesh over
which the potential is integrated over, leads to an artificially large potential correction
cost. If the quadrature mesh and the interpolation mesh are instead staggered to one
another, the number of interpolation nodes at which the near field and self-interactions
are expensive to evaluate is reduced dramatically.

We present these techniques in the context of completely unstructured meshes, and
note that the ideas are equally applicable in the context of hybrid or structured meshes.

4.1 Precise near field geometry analysis

In this section, we present the precise characterization of the geometry of the near field,
the use of which eliminates the unnecessary near field interaction computations, and
provides an error control functionality to the far and near field interaction computations.

By Definition 3.1, given a triangle integration domain ∆, a set of possible densities S,
a far field quadrature rule {yi, wi}i=1,2,...,M over ∆ of order N with length M , and an
error tolerance ε, the far field of ∆ is the set of points

F∆ = {x /∈ ∆ :

∣∣∣∣ M∑
i=1

wi log ‖x− yi‖f(yi)−
∫∫

∆
log ‖x− y‖f(y) dAy

∣∣∣∣ < ε, f ∈ S}, (43)

and the near field of ∆, which we denote by N∆, equals the complement of F∆ in the set
R

2 \∆.
For simplicity, we assume that ∆ is the standard simplex ∆1. Given an arbitrary

point x0 = (a, b) ∈ F∆1 , we rewrite the integrand as a Koornwinder polynomial expansion

R(y) := log ‖x0 − y‖f(y) =
∞∑
n=0

n∑
m=0

amnKmn(y), (44)

where amn is the inner product between f and Kmn over ∆1. Furthermore, by definition
(43), we have that∣∣∣∣ M∑

i=1

wiR(yi)−
∫∫

∆1

R(y) dAy

∣∣∣∣ < ε. (45)
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By assumption, the far field quadrature rule {yi, wi}i=1,2,...,M integrates Koornwinder
polynomials of order up to N exactly, from which it follows that

M∑
i=1

wi

N∑
n=0

N−n∑
m=0

amnKmn(yi) =

∫∫
∆1

N∑
n=0

N−n∑
m=0

amnKmn(y) dAy. (46)

Thus, by combining (46) and the orthogonality of the Koornwinder polynomials (see (6)),
the inequality (45) becomes∣∣∣∣ M∑

i=1

wi ·RN (yi)

∣∣∣∣ < ε, (47)

where

RN (y) :=

∞∑
n=0

n∑
m=0

amnKmn(y)−
N∑
n=0

N−n∑
m=0

amnKmn(y)

=
∞∑

n=d(N+1)/2e

n∑
m=N−n+1

amnKmn(y) (48)

denotes the remainder, i.e., the sum of the expansion terms with order larger than N .
Since the remainder RN (y) is a general function, it is generally true that (47) holds if
and only if ∣∣wi ·RN (yi)

∣∣ < ε, (49)

for all i. Specifically, the inequality (49) holds only if∣∣RN (yj)
∣∣ < ε

w
, (50)

where {yj} denotes the ∼ n/2 nodes that are closest to [0, 1]× {0}, and w denotes the
largest quadrature weight corresponding to these nodes (we note that there are usually
around n/2 Xiao-Gimbutas nodes along [0, 1]×{0}). By continuity of the remainder RN ,
(50) implies that∥∥RN |[0,1]×{0}

∥∥
L∞

< ε · CN/w, (51)

where RN |∂∆1 is the trace of the remainder RN on the edges of the standard simplex ∆1,
and CN is a constant that converges down to 1 as N increases, by continuity of RN . We
postpone the discussion on the actual value of CN to Observation 4.1.

Without loss of generality, we only consider the trace of RN on the edge connecting
the two points (0, 0) and (1, 0), i.e., RN

∣∣
[0,1]×{0}. Furthermore, for ease of presentation,

we map its domain to [−1, 1] by defining HN : [−1, 1]→ R, where

HN (x) := RN
∣∣
[0,1]×{0}

(x+ 1

2

)
. (52)

Similarly, we can define the trace of the integrand R (see (44)) on the same edge (after
the same linear transformation of the domain) by H : [−1, 1]→ R, where

H(x) := R
∣∣
[0,1]×{0}

(x+ 1

2

)
= log

∣∣∣a+ ib− x+ 1

2

∣∣∣ · f(x+ 1

2

)
, (53)
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and i is the imaginary unit (recall that a, b denote the x, y-coordinates, respectively, of the
given point x0). Clearly, H−HN is the projection of H onto the space of one-dimensional
polynomials of order N .

With H and HN thus defined, (51) can be rewritten as∥∥HN

∥∥
L∞[−1,1]

< ε · CN/w. (54)

We now define a Bernstein ellipse Eρ0 with parameter

ρ0 =
( w

ε · CN
)1/N

. (55)

It is clear that Eρ0 is well-defined for sufficiently small ε (so that ρ0 > 1). Then, we have
that H −HN is a one-dimensional polynomial of order N approximating H, satisfying

‖H − (H −HN )‖L∞[−1,1] = ‖HN‖L∞[−1,1] < ε · CN/w = ρ−N0 , (56)

by (54) and (55). It follows that, by Theorem 2.3,

H(z) = log
∣∣∣a+ ib− z + 1

2

∣∣∣ · f(z + 1

2

)
(57)

can be analytically continued to an analytic function in the open Bernstein ellipse Eρ0 .
Therefore, we have that the complex number 2(a + ib) − 1 must be outside of Eρ0 .
Equivalently, in the Cartesian plane, the point x0 has to be outside of

E(1)
ρ0 :=

{(x+ 1

2
,
y

2

)
: x+ iy ∈ Eρ0

}
. (58)

Similarly, one can apply the same argument to the remaining two edges of ∆1, and get

two more ellipses, which we denote by E
(2)
ρ0 and E

(3)
ρ0 . It follows that it is a necessary

condition that the near field N∆1 contains the union of the three ellipses in R2 \∆1, i.e.,

E∆1 ⊂ N∆1 , (59)

where

E∆1 :=
(
∪3
i=1E

(i)
ρ0

)
\∆1. (60)

In other words, E∆1 is a lower bound of the near field N∆1 . One could, in fact, apply the
same argument to get an ellipse for every line segment inside ∆1, however, it is clear that
their union in R2 \∆1 equals E∆1 . Thus, E∆1 is the optimal lower bound that we can
obtain using our argument. Furthermore, it turns out that, with some additional mild
assumptions, one can show that the lower bound E∆1 is tight, and we sketch the proof
below.

Firstly, we define a union of three Bernstein ellipses that are slightly larger than E∆1 :

E′∆1 :=
(
∪3
i=1E

(i)

C
1/N
N ·ρ0

)
\∆1. (61)

We note that the factor C
1/N
N converges down to 1 as N increases, and that empirically,

CN is small when N is small (see Table 1).
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Given x0 ∈ R2 \ (∆1 ∪ E′∆1), suppose that the restriction of the integrand R to any
line segment inside ∆1 can be analytically continued inside ∆1 ∪E′∆1 . Suppose further
that the analytic continuation of each such restriction is bounded inside ∆1 ∪ E′∆1 by
1/4. Also note that in practice, the parameter ρ0 is generally larger than 1.5 (see formula
(55), Observation 4.1). We want to show that x0 ∈ F∆1 .

Recall that x0 ∈ F∆1 if∣∣RN (yi)
∣∣ < ε

wi
, (62)

for all i (see formulas (48), (49)). We show that (62) holds for all the quadrature nodes
{yi} by considering two cases, one for the ∼ 3 · n/2 nodes that are closest to ∂∆1, and
the other for the rest of the nodes, which are away from ∂∆1.

Proof for {yi} that are close to ∂∆1: By Corollary 2.5, we have that

‖RN‖L∞([0,1]×{0}) = ‖HN‖L∞[−1,1] ≈ ‖H − fN‖L∞[−1,1] ≤ (C
1/N
N · ρ0)−N = ε/w, (63)

where fN denotes the Chebyshev projection of H of order N . By a similar argument,
one can show that

‖RN‖L∞([0,1]×{y}) ≤ ε/w ≤ ε/wi, (64)

for all y close to zero, and for all quadrature weights wi corresponding to the nodes yi
that are close to [0, 1]× {0}. Therefore, we have that (62) holds for all the ∼ n/2 nodes
yi that are closest to the line segment connecting (0, 0) and (1, 0). Similarly, one can
show that (62) holds for all the ∼ 3 · n/2 nodes that are closest to the three sides of ∆1.

Proof for {yi} that are away from ∂∆1: We observe that, in practice (i.e., when
the order N of the quadrature rule is no larger than 50), all the quadrature weights {wi}
are bounded by 10 · w. Therefore, to prove (62), it is sufficient to show that∣∣RN (y)

∣∣ < ε

10 · w
, (65)

for y ∈ ∆1 that are away from ∂∆1. Numerically, given an arbitrary line segment L
inside ∆1, provided that the mapping from {Kmn|L}0≤m+n≤N to {Tn}n=1,2,...,N is stable
(where Tn denotes the Chebyshev polynomial of order n),

‖RN |L‖ <
ε

10 · w
(66)

holds if and only if

‖R|L − fn‖ <
ε

10 · w
(67)

holds, where fn is the nth order Chebyshev projection of R|L. Clearly, for each y ∈ ∆1,
one can pick a sufficiently long line segment L that contains y, such that the mapping
is stable. Then, by Corollary 2.5, the inequality (67) (equivalently, (66)) holds if x0 is
outside a Bernstein ellipse transformed so that the interval [−1, 1] corresponds to L, with
parameter (10 · w/ε)1/N . It is easy to see that such an ellipse is inside E∆1 ∪∆1. Thus,
by definition of x0, the inequality (65) holds for all y ∈ ∆1 that are away from ∂∆1.
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Therefore, (62) holds for all i, from which it follows that x0 ∈ F∆1 , and E∆1 is a tight

lower bound of the near field when C
1/N
N is close to 1.

Observation 4.1. Empirically, we find that, when f ∈ S is sufficiently smooth over the
integration domain (a triangle), and when CN is chosen according to Table 1, the set E∆1

precisely characterizes the near field of the standard simplex ∆1 (see Figures 6, 7, 8).

N 50 40 30 25 20 12

CN 1 2 2.5 3 6.8 12

Table 1: The values of CN that allow E∆1 to characterize the near field of ∆1

precisely. We note that this table is obtained empirically, and the values work for
arbitrary triangles. Furthermore, the table agrees with the claim that CN converges down
to 1 as N increases.

To generalize this argument to arbitrary triangles, one only needs to adjust the
constant w (see (50)) based on the magnitude of the quadrature weights (equivalently,
the size of the triangle). This, however, does not add difficulty to the implementation,
since one only needs to compute w for the standard simplex once, and then scale it
according to the ratio between the area of the triangle and the area of the standard
simplex. We note that the naive estimation of the near field neglects this nonlinear
relation between the size of the near field and the size of the mesh element, which causes
unnecessary near field interaction computations, especially when the mesh element is
small. Apart from this, it is important to note that, given a stretched triangle, E∆1 may
not be the optimal lower bound that we can obtain using our argument. For example, as
is shown in the left part of Figure 6d, the near field corresponding to the error tolerance
10−14 is not perfectly captured by E∆1 . Such an issue can be fixed by adding the ellipse,
obtained from applying our argument to the line segment connecting (0, 0.5) and (4, 0.5),
to the union of ellipses. In practice, stretched triangles rarely appear if a decent meshing
algorithm is used, and the presence of a few stretched triangles barely affects the overall
accuracy of the evaluation.

In the situation where the domain is a curved element, if the mapping from the
reference domain (i.e., a standard simplex) to the curved element is also valid and
sufficiently smooth for points near the simplex, one can apply our argument to the
reference domain, and compute the inverse mapping of any given point outside the curved
element (by Newton’s method) to check whether the point is inside the near field or
not; Alternatively, one could linearize the curved boundary of the curved element with
a polyline, and apply our argument to every linearized boundary segment (adjusting ε
to account for the numerically smaller polynomial orders on the traces). We note that,
in practice, given a curved element, very few discretization nodes that are close to the
curved side belong to the near field of the curved element, and thus, it is often convenient
to to treat the curved side as a straight line segment when one applies the near field
geometry analysis.

Besides allowing for the precise identification of all of the necessary near interaction
potential corrections, we note that our near field geometry analysis is also helpful in
the near field interaction computation itself. Recall that, in Section 3.3, we describe
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an adaptive algorithm for resolving the nearly-singular integrand, which recursively
subdivides the integration domain, such that the integrand is smooth on each subdomain.
When our near field geometry analysis is applied to the subdomains, the algorithm is
able to decide the number of required subdivisions precisely, avoiding the possibility both
of oversampling and undersampling.

Observation 4.2. The shape of a near field is similar to a circle, when both the error
tolerance and the order of the quadrature rule are low (see Figures 6a and 8a). This,
however, does not imply that our estimation is useless in such a setting. Firstly, without
rigorous analysis, one often needs to overestimate the size of the near field to improve
the robustness of the algorithm. Secondly, in the adaptive subdivision-based near field
interaction computation, as in the case of arbitrary triangles, one has to scale the size of
w as the area of the triangle becomes smaller during the subdivisions, which is equivalent
to increasing the error tolerance ε by (55). One can observe from Figure 8a that the
naive estimation of the near field of the sub-triangle becomes inefficient, and leads to
many unnecessary subdivisions.

Remark 4.3. By formulas (55) and (60), the volume of the near field goes to zero as
the order of the far field quadrature rule goes to infinity. The near field estimated by a
ball, on the other hand, always results in a non-negligible volume. Moreover, we note
that, the more distorted a mesh element is, the poorer the naive estimation of its near
field becomes.

Remark 4.4. The shape information of the ellipses can be efficiently precomputed for all
the mesh elements. Thus, the cost of checking whether a target is inside the approximated
near field or not using ellipses is negligible.

We report the true near field and our estimated near field, for different triangles with
different densities and different quadrature orders, in Section 5.1.1. We also report the
performance of the volume potential evaluation algorithm, with and without precise near
field geometry analysis, in the same section.

4.2 Offloading the near field interaction computation onto the FMM-
based far field interaction computation

Since the volume of the near field goes to zero as the order of the far field quadrature rule
increases (see Remark 4.3), the number of near field interaction potential corrections can
be reduced arbitrarily, in exchange for a more expensive far field interaction computation.
It has been long realized that one needs to adjust the order of the far field quadrature rule,
such that the costs of the far field interactions and the near field interactions are balanced
(see, for example, [1, 16]). However, this idea is presented as a heuristic in the literature,
and the adjustments are done empirically. In fact, without characterizing the near field
geometry precisely, such an idea cannot be efficiently carried out. This is because, when
the order of the far field quadrature rule is high, the standard approximation of the
near field by a ball or a triangle becomes inaccurate (see Section 4.1 and Figure 6). It
follows that the high-order far field quadrature rule is underutilized; moreover, one has
to overestimate the size of the near field to improve the robustness of the algorithm, in
the absence of the precise near field geometry analysis. Therefore, the use of the precise
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near field geometry analysis is critical for efficiently offloading the near field interaction
computation onto the FMM-based far field interaction computation.

To quantify the trade-off, we analyze the rate at which the Bernstein ellipse Eρ0
shrinks. It is easy to show that the area of a Bernstein ellipse with parameter ρ is
asymptotically proportional to

log ρ0 =
1

N
log
( w

ε · CN
)
, (68)

(see, for example, [10]), from which it follows that the cost of the near field interaction
potential corrections is proportional to

3

N
log
( w

ε · CN
)
. (69)

We also have that the cost of the FMM-based far field interaction computation is
proportional to

Ntgt +Nsrc = Ntgt +O(N2), (70)

where Ntgt, Nsrc denote the number of the target locations and the number of quadrature
nodes in total, respectively. Despite that the FMM cost can potentially increase at a
faster rate than the near field interaction potential correction cost decreases, such a trade
leverages the computational efficiency of highly optimized parallel FMM libraries (see,
for example, [22, 31]), and reduces the cost of the much more expensive and unstructured
near field interaction computation. In practice, we find that the FMM cost increases
much more slowly, since the number of the interpolation nodes tends to be large compared
to the number of the quadrature nodes of the same order, from which it follows that
the FMM cost is dominated by the large number of target points, unless the order of
the far field quadrature rule is extremely high (see Figure 10). In addition, although
the near field interaction (and self-interaction) potential corrections are embarrassingly
parallelizable, and their costs can be potentially made very small with the use of many
cores, it still requires engineering efforts to attain the optimal parallel efficiency. On the
other hand, many efforts have been made in the design and implementation of parallel
FMM libraries, and thus, it is preferable to offload the near field interaction computations
onto the far field interaction computations.

Remark 4.5. We use high order far field quadrature rules in this paper to resolve the
Green’s function, rather than the density function. It follows that the density function can
be oversampled during the integration process, which is undesirable when its evaluation
is expensive. In this situation, it is recommended to construct a lower-order interpolant
of the density function.

We demonstrate the effectiveness of the offloading technique in Section 5.1.2.

4.3 Fast interpolation of the volume potential with a staggered mesh

In Section 3.5, we described an interpolation scheme for the volume potential over a mesh
element. In practice, it is often desirable to have the volume potential interpolated over
all the mesh elements in the domain Ω, such that the evaluation of the volume potential
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at any point in the domain is both instantaneous and accurate. A common strategy is to
let a single mesh serve both as the quadrature mesh and the interpolation mesh, i.e., the
interpolants are constructed by evaluating the volume potential at the Vioreanu-Rokhlin
nodes over all mesh elements, and the integration domain Ω is discretized into the same
set of the mesh elements. In this section, we first show that such an approach does not
lead to optimal computational efficiency. Then, we propose a simple modification that
significantly improves the efficiency.

First of all, we note that the time cost of the potential correction is strongly correlated
with the location of the target: if the target is extremely close to some edge in the
mesh, extensive subdivisions are required to resolve the near-singularity in the near and
self-interactions (see Sections 3.3, 3.4 for details); if the target is away from all of the
edges, e.g., in the center of a mesh element, very few subdivisions are required and
the correction can be made rapidly. Therefore, when a single mesh is both used for
quadrature and interpolation, the potential corrections become very expensive, since the
interpolation nodes tend to cluster around the edges and corners of the mesh elements
(see Figure 5). Furthermore, the precise identification of the near field and the offloading
technique (described in Sections 4.1, 4.2) become less helpful if the majority of the nodes
nearby a mesh element are indeed inside its near field.

0.0 0.1 0.2

0.10

0.15

0.20

0.25

0.30

Figure 5: Interpolation nodes over a mesh. Note that the nodes cluster around the
edges.

However, it is important to note that the non-uniform potential correction cost
described above is an artifact of the discretization of the domain (see Appendices A.3,
A.4), rather than an intrinsic difficulty of the problem. We observe that if one instead
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staggers the interpolation mesh with the quadrature mesh, both the number of potential
corrections for each target, and the number of subdivisions needed for resolving the
nearly-singular integrands, are reduced substantially. By “stagger”, we mean that the
edges of the interpolation mesh are maximally non-overlapping with the edges of the
quadrature mesh, such that the interpolation nodes cluster around the centroid of each
element in the quadrature mesh (see Figure 9).

A good heuristic approximation to such an interpolation mesh can be obtained by
shifting the initial guess to the meshing algorithm (the triangular tiling, see Appendix
A.3), such that the initial guess for the interpolation mesh becomes staggered with the
initial guess for the quadrature mesh.

We report the performance of the interpolation, with and without the use of a
staggered mesh, in Section 5.1.1.

Remark 4.6. With the use of a staggered mesh, some target points could be extremely
close to some edges in the mesh. As is shown in Tables 5 and 6, this turns out not to
be a problem, since the number of required subdivisions increases logarithmically with
respect to the distance between the target point and the edges, and such targets only
make up a small proportion of the total target points.

5 Numerical experiments

In this section, we illustrate the performance of the algorithm with several numerical
examples. We implemented our algorithm in FORTRAN 77, and compiled it using
the Intel Fortran Compiler, version 2021.5.0, with the -Ofast flag. We conducted all
experiments on a ThinkPad laptop, with 16 GB of RAM and an Intel Core i7-10510U
CPU. We note that, in our implementation, we do not construct interpolants of the
density function, but rather always evaluate the density function naively. Thus, the timing
results that we present depend on the actual cost of evaluating the density functions.
Furthermore, for simplicity, we numerically reparametrize the input parametrized curve
(i.e., the boundary of the domain Ω) by arc length, which results in a somewhat costly
evaluation of the reparametrized curve. This, however, does not affect the spirit of the
experimental results that we present, i.e., the acceleration of the computation using the
techniques described in this paper.

We use the code that is publicly available in the companion code of [6] for the
evaluation of Koornwinder polynomials. We also use the tables of Xiao-Gimbutas rules
and Vioreanu-Rokhlin rules that are publicly available in [12]. We use the FMM library
published in [11] in our implementation. We make no use of the high-performance linear
algebra libraries, e.g., BLAS, LAPACK, etc.

We list the notations that appear in this section below.

• h0: the mesh element size.

• ε: the error tolerance of the far and near field interaction computations (controlled
by the precise near field geometry analysis).

• N : the order of the quadrature rule. In particular, we use the following notations
to denote the value under the special settings.
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– Nf : the order of the far field quadrature rule.

– Nn: the order of the quadrature rule used in the near field interaction compu-
tation.

– Nl: the order of the Gauss-Legendre quadrature rule used in the self-interaction
computation (along the arc length coordinate).

– Ng: the order of the generalized Gaussian quadrature rule used in the self-
interaction computation (along the radial coordinate), in the sense that it
integrates both φ(r) and r log r · φ(r) over [0, 1] exactly, where φ(r) is a
polynomial of order up to Ng.

– Ns: the order of the interpolation scheme.

• Ntot: the total number of discretization nodes.

• c: the average number of the potential corrections (including corrections both over
triangles and curved elements), for each target location.

• sn: the average number of subtriangles that one needs to integrate over, to resolve
the nearly-singular integrands in the near field interaction computations, including
both the triangle and curved element integration domains, for each target location.

• sl: the total number of subdivisions along the arc length coordinate to resolve the
nearly-singular integrands in the self-interaction computations.

• TF : The time spent on far field interaction computations.

• TN : The time spent on near field interaction computations.

• TF+N : The total time spent on far and near field interaction computations.

• TS : The time spent on self-interaction computations.

• Ttot: The total time for the evaluation of the volume potential at all of the dis-
cretization nodes.

• Eabs: the largest absolute error of the potential evaluations at all of the interpolation
nodes.

• Ẽabs: the largest absolute error of the solution to Poisson’s equation at all of the
interpolation nodes.

• #tgt
sec : the number of targets that the algorithm (with the use of precise near field

geometry analysis and a staggered mesh) can evaluate the volume potential at, per
second.

We list the superscripts that appear in the notations below.

• 0 (e.g., c0, s0
n): the experimental setting where the near field is approximated naively

by a ball, and the staggered mesh is not used.

• + (e.g., c+, s+
n ): the experimental setting where the near field is approximated by

the union of Bernstein ellipses, and the staggered mesh is not used.
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• ∗ (e.g., c∗, s∗n): the experimental setting where the near field is approximated by
the union of Bernstein ellipses, and the staggered mesh is used.

• quad (e.g., N quad
tri , N quad

tot ): the quadrature mesh-related information.

• interp (e.g., N interp
tri , N interp

tot ): the interpolation mesh-related information.

In Tables 2 and 3, we tabulate the orders and lengths of the quadrature rules used in
our implementation.

Type Nf Length

X-G 12 32

X-G 33 201

X-G 40 290

X-G 50 444

GGQ 8 8

Table 2: The orders and lengths of the quadrature rules. We note that X-G
denotes the Xiao-Gimbutas rules, and GGQ denotes the generalized Gaussian quadrature
rule that we make use of in Section 3.4.

Ns Nf Length κ

12 20 91 19.2

20 33 231 194

Table 3: The orders, lengths and condition numbers of the Vioreanu-Rokhlin
rules. We denote the condition number of the interpolation matrix by κ.

5.1 Effectiveness of the acceleration techniques

In this section, we demonstrate the effectiveness of the acceleration techniques described
in Section 4. We fix Nn = 12, Nl = 16, Ng = 8 (in fact, the values of Nl and Ng are
irrelevant to the experimental results presented in this Section, as we only report the
number of subdivisions).

5.1.1 Precise near field estimation and staggered mesh-based interpolation

In this section, we first demonstrate how well the near field is characterized by the union
of Bernstein ellipses in Figures 6, 7, 8. Additionally, we provide an illustration of two
staggered meshes in Figure 9. Then, we report the effect of the near field geometry
analysis and the use of a staggered mesh on the average number of near field potential
corrections, and the average number of the subtriangles that one needs to integrate over,
for each target, in Table 5. In Table 6, we also report the number of subdivisions along
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the arc length coordinate in the computation of self-interactions, with and without the
use of a staggered mesh.

To estimate the errors, we consider the computation of

u(x) =

∫∫
Ω

1

2π
log(‖x− y‖) dAy, (71)

where the integration domain Ω is a circle with radius 1. In Table 4, we report the size of
this problem for varioius mesh sizes h0. It can be easily shown that u(x) = 1

4(‖x‖2 − 1).
Again, we note that the cost of evaluating the density function is independent of the
experimental results that we present here, as we only report the number of corrections
and subtriangles that one needs to integrate over, rather than the actual time costs.
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Figure 6: The contour plot of log10Eabs with the Xiao-Gimbutas quadrature
rule of order 40, and the estimation of the near field. We select the density f to
be 1, and the parameter CN to be 2 in all these plots.

In fact, the use of the near field geometry analysis together with a staggered mesh is
more powerful than Table 5 indicates, for the following reason. To make a fair comparison
with the standard way of computing the near interactions (i.e., using the Vioreanu-Rokhlin
rule over a single mesh), we are bound to a fixed pair of quadrature and interpolation
orders. Comparing Figure 6 with Figure 7, it is easy to see that the experimental results
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Figure 7: The contour plot of log10Eabs with the Xiao-Gimbutas quadrature
rule of order 20, and the estimation of the near field. We select the density f to
be 1, and the parameter CN to be 6.8 in all these plots. One can observe that when the
error tolerance is low (say, Eabs < 10−14), the true near field is almost a ball.

h0 Ntri Ntot

0.2 143 33033

0.1 657 151767

0.05 2766 638946

Table 4: The total number of mesh elements for different mesh sizes h0 with
Ns = 20. We also report the order of the Vioreanu-Rokhlin rules, and the total number
of the discretization nodes.

ε c0 c+ c∗ c∗/c0 s0
n s+

n s∗n s∗n/s
0
n E∗abs

10−8 1.46 0.99 0.50 33.9% 15.7 9.67 4.19 26.8% 2.06×10−8

10−10 2.32 1.49 0.91 39.2% 30.7 20.2 10.3 33.7% 1.78×10−10

10−12 2.94 2.03 1.39 47.3% 55.0 36.9 22.4 40.8% 1.61×10−12

10−14 3.49 2.64 1.98 56.5% 103 72.1 47.1 45.3% 2.47×10−14

Table 5: The average number of near field potential corrections, and the
average number of subtriangles that need to be integrated over to resolve the
nearly-singular integrand during the computation of near field interactions,
for each target, with and without the precise near field analysis and the use
of a staggered mesh. Note that we fine-tuned the parameters, such that E0

abs and E+
abs

are around the same size as E∗abs.

in Table 5 will be even more impressive if we use a higher-order quadrature rule. We
exploit this fact in Sections 5.1.2 and 5.2.
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(a) f(x, y) = sin(x+ 2y)

−2 0 2 4

−1

0

1

2

3

4

5

−16

−14

−12

−10

−8

−6

−4

−2

0

(b) f(x, y) = exp(−x2 − y2)

Figure 8: The contour plot of log10Eabs with the Xiao-Gimbutas quadrature
rule of order 40, and the estimation of the near field. We select the parameter
CN to be 2 in all these plots. Comparing Figure 8a with Figure 6a, one can observe
that the near field only becomes slightly larger when the density function changes from 1
to sin(x + 2y). In general, as long as the density function can be well-resolved by the
selected quadrature rule, the shape of the near field is nearly the same as the shape of
the near field with density function 1. In Figure 8b, one can observe that the actual
near field is much smaller than the predicted near field, especially for the region that is
away from the origin (0, 0). This is because the density function exp(−x2 − y2) decays
exponentially as |x|, |y| increase, which cancels out the logarithmic singularity that is
away from the origin. Thus, such a behavior is expected.

h0 s0
l s∗l s∗l /s

0
l

0.2 18.8 16.5 87.6%

0.1 18.8 16.2 86.1%

0.05 18.7 16.0 85.7%

Table 6: Average number of self-interaction subdivisions with and without the
use of a staggered mesh. One can observe that the use of a staggered mesh reduces
the amount of computation of the self-interactions by 15%.

5.1.2 Trade-off between the far and near field interaction computations

In this section, we demonstrate the effectiveness of the offloading technique for reducing
the total amount of time spent on the near field interaction computations in Figure 10.
In our examples, we consider the computation of

u(x) =

∫∫
Ω

1

2π
log(‖x− y‖)f(y) dAy, (72)
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Figure 9: The staggered mesh under a microscope.

where the integration domain Ω is a circle with radius 1, and the density f is

f(x0, y0) = 4e−(x0+1.6)2−(y0+0.2)2 · (x2
0 + y2

0 + 3.2x0 + 0.4y0 + 1.6)+

4e−(x0−0.2)2−(y0−1)2 · (x2
0 + y2

0 − 0.4x0 − 2y0 + 0.04). (73)
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Figure 10: The offloading technique applied to volume potential evaluations
with different interpolation orders and error tolerances, without paralleliza-
tion. We fix the element size to be h0 = 0.1 in all cases. If the FMM computations are
parallelized, the time spent on the computation of far field interactions can be reduced
dramatically, depending on the number of cores.

5.2 Computation of the volume potential and Poisson’s equation

In this section, we report the accuracy (implicitly, by reporting the accuracy of the
solution to Poisson’s equation) and speed of the computation of the volume potential

u(x) =

∫∫
Ω

1

2π
log(‖x− y‖)f(y) dAy, (74)

where the density function

f(x0, y0) = 4e−(x0+1.6)2−(y0+0.2)2 · (x2
0 + y2

0 + 3.2x0 + 0.4y0 + 1.6)+

4e−(x0−0.2)2−(y0−1)2 · (x2
0 + y2

0 − 0.4x0 − 2y0 + 0.04), (75)

and the domain Ω is a wobbly ellipse, as is displayed in Figure 11. The sizes of the our
experiments are presented in Table 7. We compare the performance of the algorithm,
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with and without the use of precise near field geometry analysis and a staggered mesh, in
Tables 8 and 9. Additionally, we solve the Poisson’s equation

∇2ϕ = f(x0, y0) in Ω,

ϕ = g(x0, y0) on ∂Ω, (76)

where

g(x0, y0) = exp(−(x0 + 1.6)2 − (y0 + 0.2)2) + exp(−(x0 − 0.2)2 − (y0 − 1)2),
(77)

and we present the error heat map in Figure 12. Below, we sketch the algorithm for
solving Poisson’s equation with the use of the volume potential.

Since the volume potential

u(x) =
1

2π

∫∫
Ω

log ‖x− y‖f(y) dAy (78)

satisfies

∇2u = f in Ω, (79)

provided that uh : Ω→ R solves Laplace’s equation

∇2uh = 0 in Ω,

uh = g − u on ∂Ω, (80)

we have that ϕ := uh+u satisfies the given Poisson’s equation. In our implementation, we
compute u(x)|∂Ω through interpolation (see Remark 3.11), from which it follows that the
condition number of the interpolation matrix affects the accuracy of our computational
results (see [26, 12]). Then, we find the solution to the Laplace equation (80) by the
boundary integral equation method [23]. Finally, we note that the true solution ϕ to this
Poisson’s equation equals g.

h0 N quad
tri N interp

tri N quad
tot N interp

tot

0.2 231 225 102564 51975

0.1 1001 997 444444 230307

0.05 4183 4172 1857252 963732

Table 7: The total number of mesh elements, quadrature and interpolation
nodes for different mesh sizes h0. In this table, we set Nf = 50, Ns = 20.
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Figure 11: The wobbly ellipse domain Ω discretized by an unstructured mesh
with h0 = 0.2.

ε h0 T 0
F+N T ∗F+N

T ∗F+N
T 0
F+N

T 0
S T ∗S T 0

tot T ∗tot Ẽ∗abs
#tgt
sec

10−10 0.2 4.14 1.98 47.8% 2.64 2.39 7.08 4.72 2.66×10−9 1.10×104

0.1 16.0 7.93 49.4% 12.3 11.0 30.3 21.0 2.42×10−9 1.10×104

0.05 60.5 29.6 49.0% 50.9 45.3 85.9 46.9 4.69×10−9 1.12×104

10−14 0.2 9.69 5.96 61.5% 2.65 2.72 12.6 9.06 2.42×10−12 5.73×103

0.1 36.3 19.3 53.2% 12.5 11.4 50.6 32.7 4.13×10−13 7.05×103

0.05 136 67.2 49.3% 70.7 63.4 217 141 4.54×10−13 6.84×103

Table 8: Comparisons of the computational time of the volume potential eval-
uation with 20th order interpolation of the solution, without parallelization.
When ε = 10−10, we set Nf = 40, Nn = 12, Nl = 10, Ng = 8; when ε = 10−14, we set
Nf = 50, Nn = 12, Nl = 10 (except that Nl = 14 when h0 = 0.05), Ng = 8. In all
of these experiments, the Vioreanu-Rokhlin rule of order 20 is used in the naive case
indicated by the superscript 0. It is important to note that we only report the error of
the approximation to the solution to Poisson’s equation here, as the analytic solution for
the volume potential is not available. However, we note that the actual accuracy of the
volume potential evaluations is higher than the one shown in the Ẽ∗abs column, due to
the use of not perfectly-conditioned interpolation matrices. Note that we fine-tuned the
parameters, such that E0

abs is around the same size as E∗abs.

6 Conclusions and further directions

In this paper, we present three complementary techniques for accelerating potential
calculations over unstructured meshes, as well as a robust and extensible framework for
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ε h0 T 0
F T ∗F T 0

N T ∗N
T ∗N
T 0
N

10−10 0.2 0.55 0.84 3.59 1.15 31.9%

0.1 2.75 4.10 13.3 3.83 28.8%

0.05 11.7 17.3 48.8 12.3 25.2%

10−14 0.2 0.63 1.47 9.07 4.49 49.5%

0.1 3.15 6.39 33.1 12.9 39.0%

0.05 13.3 27.0 123 40.2 32.6%

Table 9: Comparisons of the computational time of the far and near field inter-
actions with 20th order interpolation of the solution, without parallelization.
The setting of the experiments shown in this table is the same as the ones shown in
Table 8. It is important to note that, when one parallelizes the FMM computations,
TF becomes negligible as the number of cores increases, from which it follows that the
computational time, with the use of near field geometry analysis and a staggered mesh,

is roughly equal to the values in the
T ∗N
T 0
N

column times the naive computational time.

the evaluation and interpolation of 2-D volume potentials over complicated geometries.
With the use of precise near field geometry analysis, we show that one can eliminate
all of the unnecessary near field potential computations. By introducing the use of a
staggered mesh, we further show that the number of interpolation nodes at which the
near field and self-interactions are costly to evaluate is reduced dramatically. These
two observations facilitate the offloading technique, which transforms the expensive and
unstructured near field interaction computation into the highly-optimized parallel FMM
computation. Of the methods described in this paper, we believe the offloading technique
to be the most general, since we expect that the near field will become vanishingly small
when the order of the far field quadrature rule is high, for other kernels, geometries and
in higher dimensions. The offloading technique is one of the few methods we are aware of
for which the use of extremely high-order quadrature rules is essential.

In the following sections, we discuss the generalizations and extensions of the techniques
and the volume potential evaluation algorithm presented in this paper.

6.1 Precise near field geometry analysis for different kernels and do-
mains

Although the near field geometry analysis is only applied to the 2-D Newtonian potential
in this paper, the same analysis can be trivially generalized to the 2-D Helmholtz volume
potential, as its kernel has the same type of logarithmic singularity. The same approach
to analyzing the near field can be applied to, for example, quadrilateral elements in
2-D, and more complicated elements in 3-D, although we expect the near field geometry
analysis in 3-D to be substantially more involved.

Since surfaces are often represented by a collection of mappings from 2-D domains,
and surfaces are often discretized by meshing these 2-D domains using unstructured
meshes, the generalization of the near field geometry analysis to the on-surface evaluation
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Figure 12: The heat maps of log10 Ẽabs when h0 = 0.05. The results are computed
by evaluating the interpolants.

of surface potentials is similar to the near field analysis presented in this paper, except
that the kernel becomes more singular, and the effect of the mapping on the near field
must be accounted for.

6.2 The offloading technique for computing surface and 3-D volume
potentials

The offloading technique clearly can be generalized to the computation of surface and 3-D
volume potentials, provided that high-order quadrature rules are available. In practice,
high-order quadrature rules for tetrahedra or cubes are presently not available. For
example, the highest order quadrature rule for tetrahedra reported in [28] is 15, which is
far from enough for the offloading technique to be effective.

6.3 The staggered mesh for surfaces and 3-D volumes

Our heuristic way of generating the staggered mesh, described in Section 4.3, can be
trivially generalized to the surface mesh and 3-D volume mesh case. Furthermore, the
use of a staggered mesh can similarly accelerate the potential interpolation in these cases.

6.4 Accelerating near and self-interaction computations by specialized
quadrature rules

Our focus in this paper is to accelerate the far and near field interaction computations.
The self-interaction computations are minimally optimized. After applying all of the
optimizations proposed in this paper, one can observe from Table 8 that the self-interaction
evaluation cost becomes a bottleneck of the algorithm. As is noted in Remark 3.9, this cost
can be reduced dramatically by precomputing a large number of specialized quadrature
rules.

In the computation of near field interactions, we use the most naive scheme, i.e.,
adaptive subdivision, for resolving the nearly-singular integrand, and we anticipate that
the cost can be further reduced with the use of more advanced methods (see, for example,
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[1]). The techniques proposed in this paper are compatible with other schemes for the
computation of near field and self-interactions.
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A Appendix: Geometric algorithms

In this appendix, we provide a description of all of the geometry processing algorithms
used in this paper.

A.1 Quadtree

A quadtree is a tree data structure used to efficiently store points in a two-dimensional
space. More specifically, it partitions the domain into boxes by recursively subdividing
each box into four sub-boxes until each leaf box contains no more than m points, where
m is a user-specified number. Given a set of n points that are uniformly distributed, it
takes O(n log n) operations to construct a quadtree for these points. After the quadtree
is constructed, it takes O(log n) operations to find all of the leaf boxes that intersect a
given rectangle. We refer readers to Chapter 37 of [21] for a detailed introduction to the
quadtree data structure.

A.2 Construction of a signed distance function from a set of parametrized
curves

In this section, we first introduce the concept of signed distance function (SDF), and then
describe an efficient algorithm for computing the SDF of a geometry with boundaries
described by a set of closed curves{

γi(s)
}
i
, γi : [0, Li]→ R2, i = 1, 2, . . . , N, (81)

where γi is a unit-speed parameterization, and Li is the total arc length of γi. Below, we
give the formal definition of a signed distance function.

Definition A.1 (Signed distance function). Given a geometry Ω with boundaries de-
scribed by a set of closed curves {γi(s)}, the signed distance function h : R2 → R

determines the distance of a given point x from the boundary of Ω, with the sign indicates
whether x is inside Ω or not. By convention, h(x) is positive for x ∈ Ω, and negative for
x ∈ Ωc.

Our algorithm for converting the parameterized boundary curves into an SDF is
outlined as follows. We begin with the following precomputation:

1. (Sampling) Generate equidistant sampling points over the boundaries, where the
number of total sampling points depends on the required accuracy. In addition, we
store the corresponding curve parameter for each sampling point.
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2. (Quadtree) Create a quadtree data structure for the sampling points (see Appendix
A.1).

Then, we evaluate the signed distance function at any given target location x by the
following steps.

1. Create a rectangle centered at x with appropriate side lengths.

2. Query all of the sampling points that are inside the rectangle by exploiting the
quadtree data structure. If no points are captured by the rectangle, increase the
size of the rectangle and perform the query step again.

3. Loop through all of the captured sampling points, and find the point x′ that is
closest to the target point x.

4. (Optional) Do a few iterations of Newton’s method using x′ as the initial guess to
get a highly accurate approximation to the closest point on the boundaries.

5. Return sgn(〈x′ − x, nx′〉)‖x′ − x‖ as the SDF value at x, where nx′ denotes the
outward-pointing normal vector of the boundary at x′, and sgn(·) represents the
sign function.

Remark A.1. The necessity of Newton’s method in this algorithm depends on the
accuracy needed for the SDF evaluation. Without the use of Newton’s method, the
accuracy is proportional to h, where h is the spacing of the equidistant sampling points.

Remark A.2. One can also construct a signed distance function from a domain repre-
sented as an implicit function (see Section 4 in [24]).

A.3 Distmesh

Distmesh [24] is a simple and short algorithm for generating a triangle mesh for a geometry
with boundaries described by a signed distance function. The algorithm is based on the
physical analogy between a simplex mesh and a truss structure, and the triangle mesh is
computed by solving an ordinary differential equation for the equilibrium in the truss
structure composed of compressible springs (using piecewise linear force-displacement
relations). Despite its simplicity, the generated triangles are of high quality, in the sense
that most of the triangles are close to equilateral, which is important in many applications.

Below, we describe the Distmesh algorithm briefly (see [24] for details).

1. (Initial guess) Create an initial node distribution arranged in a triangular tiling
inside a bounding box of the input geometry, and remove the nodes outside the
geometry.

2. (Reset topology) Compute a triangle mesh by applying the Delauney triangulation
algorithm to the nodes.

3. (Compute equilibrium) Solve for the equilibrium in the truss structure represented
by the triangle mesh using the forward Euler method. When some nodes end up
outside the geometry, move them back to the closest point on the boundary, where
the closest point is computed using the SDF.
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4. Go back to Step 2 when the total movements of nodes in Step 3 become large.
Otherwise, return the final triangle mesh.

Observation A.3. It is often desirable to resolve a complex geometry by adaptive
meshing, i.e., requiring mesh elements close to a singularity to be smaller relative to
elements further away. This can be achieved using Distmesh by setting the equilibrium
lengths of the springs (by analogy with a truss system) near the singularities to be shorter
than the equilibrium length of the rest of the springs. In practice, the desired equilibrium
lengths of the springs are specified by a so-called element size function (see [24] and
Observation A.5 for details).

Observation A.4. The quality of a mesh generated by the Distmesh algorithm is
relatively insensitive to the computational accuracy of the solution to the evolution
equations of the truss system, and to the computational accuracy of the SDF evaluation.
Therefore, the use of the forward Euler method, whose order of convergence is one,
is sufficient for our purpose. For the same reason, when the SDF is computed using
the algorithm described in Appendix A.2, it is unnecessary to use Newton’s method to
improve its accuracy.

A.4 Modified Distmesh algorithm for constructing a curved triangula-
tion

In Appendix A.3, we describe a simple triangle mesh generation algorithm named
Distmesh, introduced in [24]. To apply Distmesh to our particular problem, several
additional pieces of information must be returned by the algorithm, including:

• Given a mesh element, whether it is a triangle or a curved element;

• Given a curved element, which vertex is opposite to that curved side;

• The curve parameters that correspond to the endpoints of a curved side.

These issues can be remedied with several modifications to the Distmesh algorithm. In
addition, we present a simple technique for improving the triangle mesh quality using the
new outputs.

Firstly, given a triangle mesh, based on the observation that the boundary edges are
the edges that are associated only with a single element, it is easy to quickly identify all
of the boundary edges, boundary vertices and curved elements (including the vertices
opposite to the curved sides). In addition, we also observe that the use of the signed
distance function (described in Appendix A.2) allows us to quickly determine the curve
parameters corresponding to the endpoints of a curved side. So far, all of the required
information stated above can be computed for any given triangle mesh and its associated
boundary.

The mesh quality can be improved by the following modification. During the compu-
tation of the equilibrium state of the truss structure, as noted in Appendix A.3, some
nodes, especially the ones that are located on the boundary, may end up outside the
geometry. The original Distmesh algorithm handles this by projecting each outside node
to the closest point on the boundary at the end of each iteration. In other words, when
solving for the equilibrium, the boundary is neglected until the very end of each iteration.
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Such treatment is somehow non-physical, since the boundary should be treated as a
hard obstacle at all stages. Therefore, in our implementation, we maintain an array of
flags that indicates whether or not a node is on the boundary, and ensure that for every
boundary node, the force component that is normal to the boundary is eliminated. This
way, only forces tangential to the boundary can contribute to the computation. Although
some nodes will still end up outside the geometry and require projection back to the
closest point on the boundary at the end of each iteration, their movements become more
physical, and it improves the triangle mesh quality.

Finally, we note that such modification is impossible without keeping track of the
boundary nodes.

Observation A.5. Recall that Distmesh uses an element size function to control the
sizes of mesh elements (see Observation A.3). We find the element size function

h(x, y) :=

∮
∂Ω
e−a((x−x0)2+(y−y0)2) · κ(x0, y0) ds (82)

gives a mesh that resolves the boundary of the domain well (see Figure 11), where
κ(x0, y0) denotes the curvature of ∂Ω at (x0, y0), and a is a constant that depends on
the scale of the domain and the size of the mesh elements.

Remark A.6. In fact, the volume potential evaluation algorithm of the paper does not
depend on any particular meshing algorithm. All that is needed is a triangle mesh of
good quality which contains all of the required information described in this section.

A.5 Nearby mesh elements query

Due to the singularity of the Green’s function, it is important to identify all nearby mesh
elements at a given target location, so that the elements close to or containing the target
can be handled separately from the mesh elements that are far away. In this section,
we introduce an algorithm for finding all of the mesh elements that are within a certain
distance of a given target x, together with the particular element that x lies within (if
such an element exist). The procedure is outlined as follows. We first preprocess the
triangle mesh:

1. (Sampling) For each mesh element, sample the four vertices of its bounding box.
Associate each sampling point with the index of the mesh element that it is sampled
from.

2. (Quadtree) Create a quadtree data structure for the sampling points (see Appendix
A.1).

Then, we find the nearby mesh elements of a given target x. Formally speaking, given
a query box centered at x of size larger than the sizes of the bounding boxes of adjacent
mesh elements of the target, we find all of the elements that intersect the query box, as
follows.

1. Find all the sampling points that are inside the query box by exploiting the quadtree
data structure.
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2. Return the associated element indices of the captured sampling points.

Finally, we are also able to find the particular mesh element that x lies within (if
any):

1. (Optional) Evaluate the signed distance function (see Appendix A.2) at x, and
return null if x is outside the domain Ω.

2. Loop through all of the nearby elements of x (obtained through the previous
computation). For each element:

• If the element is a triangle, return the index if the barycentric coordinates of
x with respect to the element are all between zero and one;

• If the element is a curved element (denoting the vertex opposite to the curved
side by O), return the index if both of the following conditions are satisfied:

– The polar angle of x is in between the polar angles of the two straight
sides of the curved element, with respect to polar coordinates centered at
O.

– The distance between x and O is smaller than the distance between x′

and O, where x′ denotes the point at which the line x′O and the curved
side intersects.

As is stated in our assumption above, it is important to have the query box be larger
than the sizes of the bounding boxes of adjacent mesh elements of the target location,
since otherwise, the query box can overlap with the bounding box without capturing any
of its vertices, which leads to uncaptured nearby elements (see Figure 13).

Figure 13: The size of the query box has to be larger than its nearby bounding
boxes. On the left, the triangle is not captured by the query box, as the size of the box
is too small. This can be fixed by increasing the size of the box, as is shown on the right.

Remark A.7. The construction of the quadtree above takes O(n log n) operations, and
the use of the quadtree to query nearby elements takes O(log n+m) operations, where
n and m are the total number of mesh elements and nearby elements, respectively (see
Appendix A.1). We note that in practice, m = O(1).

Remark A.8. This query algorithm can be easily generalized to meshes of other types,
e.g., the quadrilateral mesh.
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