
The roots of a monic polynomial expressed in a Chebyshev basis are known to be the
eigenvalues of the so-called colleague matrix, which is a Hessenberg matrix that is the sum
of a symmetric tridiagonal matrix and a rank-1 matrix. The rootfinding problem is thus
reformulated as an eigenproblem, making the computation of the eigenvalues of such matrices
a subject of significant practical importance. In this report, we describe an O(n2) explicit
structured QR algorithm for colleague matrices and prove that it is componentwise backward
stable, in the sense that the backward error in the colleague matrix can be represented as
relative perturbations to its components. A recent result of Noferini, Robol, and Vandebril
shows that componentwise backward stability implies that the backward error δc in the
vector c of Chebyshev expansion coefficients of the polynomial has the bound ‖δc‖ . ‖c‖u,
where u is machine precision. Thus, the algorithm we describe has both the optimal backward
error in the coefficients and the optimal cost O(n2). We illustrate the performance of the
algorithm with several numerical examples.
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1 Introduction

The problem of finding the roots of the polynomial

p(x) = c0 + c1x+ · · ·+ cn−1x
n−1 + xn (1)

is one of the oldest and most classical problems in mathematics. Countless methods
have been proposed for its solution (see, for example, [28] for a history, and the two
volumes [24] and [25] for a detailed account of such methods). In the 1800’s, it was observed
by Frobenius that the roots of the polynomial are the eigenvalues of a certain matrix
called the companion matrix, formed using the polynomial coefficients. A matrix whose
eigenvalues are the roots of p(x) is called a linearization of p(x). Given a linearization of
p(x), the roots of the polynomial can thus be recovered by computing the eigenvalues of
the matrix.
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If the roots of the polynomial are found numerically, than the computed roots can
be viewed as the exact roots of a perturbed polynomial p(x) + δp(x) with coefficients
ci + δci, where the size of the vector δc is called the backward error in the polynomial
coefficients. The best possible bound on the backward error that a linearization method
can have for general polynomials is

‖δc‖ . ‖c‖u, (2)

or, in other words, that the relative normwise backward error in the polynomial coefficients
is bounded by machine precision u (see, for example, [26]). The backward error in the
companion matrix method was revealed by the influential paper [19], which analyzed the
relationship between perturbations in the companion matrix and perturbations in the
polynomial coefficients. There, the authors proved that if the companion matrix C is
perturbed by the matrix E, then the matrix C + E is a linearization of the polynomial
with perturbed coefficients ci + δci, and that the perturbation satisfies the normwise
bound

‖δc‖ . ‖c‖‖E‖u. (3)

If the eigenvalues are computed by a standard QR algorithm, which is known to be
backward stable (see, for example, [35]), then the computed eigenvalues are the exact
eigenvalues of C +E, where ‖E‖ . ‖C‖u. Since ‖C‖ ≈ ‖c‖, it follows that the backward
error in the polynomial coefficients is bounded by

‖δc‖ . ‖c‖2u. (4)

Thus, as ‖c‖ get larger, the relative backward error in the coefficients increases. The
companion matrix method, at first glance, would appear then to have two drawbacks: it
falls short of the optimal backward error bound (2), and it costs O(n3) operations as a
result of using the QR algorthim.

The situation improved dramatically in 2007, when Bini, Eidelman, Gemignani,
and Gohberg published a paper [10] describing a stable, O(n2) explicit QR method for
companion matrices (around the same time, Chandrasekaran, Gu, Xia, and Zhu also
discovered an O(n2) method for companion matrices, see [15]). The algorithm is based on
the observation that the companion matrix and its QR iterates have a certain structure
which allows them to be represented by a collection of O(n) parameters called generators
(specifically, the companion matrix is a Hessenberg matrix that is the sum of a unitary
matrix and a rank-1 perturbation; matrices of this form are called fellow matrices). In
2010, an implicit version of this algorithm, also stable and O(n2), and also based on
generators, was introduced in [9]. Around the same time, Van Barel, Vandebril, Van
Dooren, and Frederix discovered in [8] an alternative stable, O(n2) implicit QR algorithm
based on representing the unitary part by so-called core transformations, which are
rotation matrices acting only on two adjacent rows at a time (see, for example, [2]).
The first example of a proof of backward stability for an implicit O(n2) QR algorithm
for companion matrices was given by Aurentz, Mach, Vandebril, and Watkins in [4];
this algorithm is again based on core transformations. The backward stability result
accompanying this QR algorithm guarantees the sub-optimal bound (2), but has the
optimal complexity of O(n2). Amazingly, the authors then discovered that the algorithm
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they had constructed, with some minor modifications, actually yields the optimal bound (4)
in practice. An investigation showed that the reason for this remarkable behavior is
that their algorithm is not just backward stable, but is componentwise backward stable,
meaning that the backward error in the companion matrix can be decomposed into
proportional backward errors in each of its components. They published a proof of
the componentwise backward stability of their algorithm, together with a proof that
componentwise backward stability guarantees the bound (2), in [3], along with numerical
experiments.

Thus, if the coefficients of the polynomial p(x) in the monomial basis are known,
then the algorithm of [3] is optimal in both error and time complexity. However, if the
coefficients are not known, then the companion matrix cannot be used to the find the
roots accurately, since the relationship between the values of the polynomial p(x) and
the coefficients of its monomial expansion is highly unstable (this fact has been known
for many decades, at least as early as Wilkinson [31]). If the polynomial p(x) is instead
expanded in a basis of Chebyshev polynomials

p(x) = c0 + c1T1(x) + · · ·+ cn−1Tn−1(x) + Tn(x), (5)

where Ti(x) is the Chebyshev polynomial of order i, then the relationship between the
coefficients and the polynomial is perfectly stable (see, for example, [36]). In fact, this
observation is the basis for the Chebfun software package (see [6] and [16]). An analogue
of the companion matrix, constructed from the Chebyshev expansion coefficients, was
discovered in 1961 by Good [21], who called it the colleague matrix, and independently by
Spect in 1957 [33]–[34]. The first O(n2) algorithm for colleague matrices was discovered by
Bini, Gemignani, and Pan in 2005 (even before [10] appeared) and is a stable, explicit QR
algorithm based on generators [11]. Like the companion matrix, the colleague matrix has
a special structure that is preserved over QR iterations (specifically, the colleague matrix
is a Hessenberg matrix that is the sum of a Hermitian matrix and a rank-1 perturbation).
In 2008, Eidelman, Gemignani, and Gohberg, in [20], introduced a stable, O(n2) implicit
QR algorithm. The relationship between the backward error in the Chebyshev expansion
coefficients and perturbations to the colleague matrix was first investigated Nakasukasa
and Noferini in [26], where the authors found a lower bound for the backward error in
the coefficients, showing that a backward stable QR algorithm can do no better than (4)
(around the same time, Lawrence, Van Barel, and Van Dooren published a general analysis
in [23], where they also proved a lower bound for colleague matrices). In [30], Perez
and Noferini improved on this result and found an upper bound as well, proving that
if the perturbation to the colleague matrix is small, then the bound (2) is achieved.
The relationship between componentwise perturbations to the colleague matrix and the
backward error in the coefficients was described completely in 2019 by Noferini, Robol,
and Vandebril in [27].

Recently (see [32] and [14]), it was observed that certain O(n2) structured QR
algorithms for colleague matrices are surprisingly stable, attaining the bound (2) in
many cases, an observation that mirrors the discovery in [3] for the case of companion
matrices. However, unlike in [3], all previously proposed O(n2) structured QR algorithms
for colleague matrices have polynomials for which the worst-case bound (4) is attained.
Thus, the question of whether or not there exists a structured O(n2) QR algorithm that,
when used to find the roots of a colleague matrix, attains the optimal bound (2), has
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remained open. In this report, we answer this question in the affirmative by presenting
a new, explicit O(n2) QR algorithm for colleague matrices (in fact, for all Hessenberg
matrices that have a Hermitian plus rank-1 structure), and prove that our algorithm is
componentwise backward stable. Combined with the result in [27], this amounts to a
proof that the optimal bound (2) is attained for all polynomials p(x). We demonstrate
that this is indeed the case with several numerical experiments.

The structure of this report is as follows. Section 2 describes the mathematical and
numerical preliminaries. Section 3 describes the algorithm, and explains the significance
of each step. In Section 4, we prove rigorously that the algorithm is componentwise
backward stable. Section 5 presents the results of several numerical experiments. In
Section 6, we discuss possible extensions and generalizations of the algorithm.

2 Preliminaries

In this section, we describe the mathematical and numerical preliminaries.

2.1 Linear Algebra

The following lemma states that if the sum of a Hermitian matrix and a rank-1 update
pq∗ is lower Hessenberg, then the matrix is determined entirely by its diagonal and
superdiagonal together with the vectors p and q.

Lemma 2.1 (Eidelman, Gemignani, Gohberg [20]). Suppose that A ∈ Cn×n is Hermitian,
and let d and β denote the diagonal and superdiagonal of A, respectively. Suppose that
p, q ∈ Cn and that A+ pq∗ is lower Hessenberg. Then

ai,j =


−piq∗j if j > i+ 1

βi if j = i+ 1
di if j = i

βj if j = i− 1
−qjp∗i if j < i− 1

(6)

where ai,j denotes the (i, j)-th entry of A.

The following lemma states that if the sum of a matrix and a rank-1 update pq∗ is
lower triangular, then the upper Hessenberg part of the matrix is determined entirely by
its diagonal and subdiagonal, together with the vectors p and q.

Lemma 2.2. Suppose that B ∈ Cn×n and let d and γ denote the diagonal and subdiagonal
of B, respectively. Suppose that p, q ∈ Cn and that B + pq∗ is lower triangular. Then

bi,j =


−piq∗j if j > i

di if j = i
γj if j = i− 1

(7)

where bi,j denotes the (i, j)-th entry of B.

The following definition introduces two matrix seminorms that we will need in our
error analysis.
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Definition 2.1. Suppose that A ∈ Cn×n and let ai,j denote the (i, j)-th entry of A. We
will use the notation ‖·‖H to denote the square root of the sum of squares of the entries
in the upper Hessenberg part of a matrix, so that

‖A‖H =

√ ∑
j≥i−1

|ai,j |2. (8)

Likewise, we will use the notation ‖·‖T to denote the square root of the sum of squares
of the entries in the upper triangular part, so that

‖A‖T =

√∑
j≥i
|ai,j |2. (9)

The following is a straightforward lemma stating that if a certain sequence of transfor-
mations is applied to a matrix on the right, then the upper triangular part of the result
is determined by only the upper Hessenberg part of the original matrix.

Lemma 2.3. Suppose that B ∈ Cn×n, and let P2, P3, . . . , Pn ∈ Cn×n be matrices such
that Pk only affects the (k − 1, k)-plane of any vector it is applied to. Define P ∈ Cn×n
by the formula P = P2P3 · · ·Pn. Then the upper triangular part of BP ∗ is determined
entirely by the upper Hessenberg part of B. Furthermore, if P2, P3, . . . , Pn are unitary,
then ‖BP ∗‖T ≤ ‖B‖H .

2.2 Error Analysis

The following definition introduces the notation used in the error analysis that appears
in this report. We follow the notation used in [22] and [3].

Definition 2.2. Evaluation of an expression in floating point arithmetic is denoted by
fl(·), and we denote the unit roundoff (or machine epsilon) by u. We assume that

fl(x op y) = (x op y)(1 + δ), |δ| ≤ u, (10)

where op stands for any of the basic arithmetic operations +,−, ∗, /. We denote computed
quantities by a hat, so that x̂ denotes the computed approximation to x. We use the
notation . to mean “less than or equal to the right hand side times a modest multiplicative
constant depending on n as a low-degree polynomial”, where the meaning of n is clear
from the context. Whenever a matrix or vector norm appears to the left or right of .,
we omit the particular choice of norm, since in finite dimensions all norms are equivalent.
When u appears in an expression on the right hand side of ., we ignore all higher order
powers of u.

2.2.1 Floating point computation of complex plane rotations

The following lemma bounds the forward error of the floating point computation of a
complex plane rotation (see, for example, §20 of [37]).
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Lemma 2.4. Suppose that x = (x1, x2)
T ∈ C2, and let Q ∈ SU(2) be the complex

rotation matrix which eliminates the first entry, so that (Qx)1 = 0. Let Q̂ ∈ C2×2 be the
floating point matrix defined by

Q̂1,1 = c Q̂1,2 = −s (11)

Q̂2,1 = s Q̂2,2 = c (12)

(13)

where c = fl
(
x2/
√
|x1|2 + |x2|2

)
and s = fl

(
x1/
√
|x1|2 + |x2|2

)
, and where c = 1 and

s = 0 if ‖x‖ = 0. Then

‖Q̂−Q‖ . u. (14)

2.2.2 Multiplication by complex plane rotations

The following lemma estimates the forward error of applying a plane rotation to a vector
(see, for example, §21 of [37]).

Lemma 2.5. Suppose that Q ∈ SU(2) is a complex rotation matrix, and let Q̂ be a floating
point approximation to Q satisfying (14). Suppose further that x = (x1, x2)T ∈ C2. Then

‖fl(Q̂x)−Qx‖ . ‖x‖u. (15)

2.3 Colleague Matrices and Polynomial Rootfinding

Suppose that p(x) is a monic polynomial of order n represented by

p(x) =
n∑
j=0

cjTj(x), (16)

where cj ∈ R, cn = 1, and Tj(x) is the Chebyshev polynomial of order j. It turns out
that the roots of p(x) are the eigenvalues of the (scaled) n× n colleague matrix

C =



0 1√
2

1√
2

0 1
2

1
2

. . .
. . .

. . . 0 1
2

1
2 0

−
1

2
en
(
c0
√

2 c1 c2 · · · cn−1
)
,

(17)

where en is the n-th unit vector (see, for example, [21]). A matrix C whose eigenvalues
are the roots of p(x) is called a linearization of p(x). Letting

A =



0 1√
2

1√
2

0 1
2

1
2

. . .
. . .

. . . 0 1
2

1
2 0

 (18)
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and

q∗ = −1

2

(
c0
√

2 c1 c2 · · · cn−1
)
, (19)

we see that the colleague matrix C can be written as

C = A+ enq
∗, (20)

where A is Hermitian and C is lower Hessenberg.
The following beautiful theorem by Noferini, Robol, and Vandebril (see Corollary 5.4

of [27]) bounds the change in the coefficients of the polynomial being linearized by the
componentwise perturbations of the colleague matrix C = A+ enq

∗.

Theorem 2.6. Let C = A+ enq
∗ be the linearization (17) of the monic polynomial p(x),

expressed in the Chebyshev basis. Consider the perturbations ‖δA‖ ≤ εA, ‖δen‖ ≤ εn, and
‖δq‖ ≤ εq. Then, the matrix

C + δC = A+ δA+ (en + δen)(q + δq)∗ (21)

is a linearization of the polynomial

p(x) + δp(x) =
n∑
j=0

(cj + δcj)Tj(x), (22)

where ‖δc‖ . εn + εq + ‖c‖εA.

2.4 Stability of Rootfinding Using Linearizations

Suppose that p(x) is a monic polynomial of order n represented in the Chebshev basis

p(x) =

n∑
j=0

cjTj(x), (23)

where cj ∈ R, cn = 1, and Tj(x) is the Chebyshev polynomial of order j, and let the roots
of p(x) be denoted by x1, x2, . . . xn ∈ C. Suppose that a rootfinding algorithm returns
the computed roots x̂1, x̂2, . . . , x̂n ∈ C. If the computed roots are the exact roots of some
perturbed polynomial

p(x) + δp(x) =
n∑
j=0

(cj + δcj)Tj(x), (24)

where

‖δc‖
‖c‖

. u, (25)

then we say that the rootfinding algorithm is backward stable. In fact, this is the best
backward stability bound that can be hoped for, for general polynomials p(x) (see the
discussion in Appendix A of [26]).
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Remark 2.1. Suppose that p(x) is a polynomial of order n, that is not monic, expressed
in the Chebyshev basis

p(x) =
n∑
j=0

ajTj(x), (26)

where aj ∈ R and Tj(x) is the Chebyshev polynomial of order j. Clearly, the roots of p(x)
are identical to the roots of p(x)/an. Let cj = aj/an, for j = 0, 1, . . . , n. If a backward
stable rootfinding algorithm is applied to the monic polynomial p(x)/an, then, letting
δa = δc · an, the algorithm is also backward stable with respect to the original coefficients
aj , since

‖δa‖
‖a‖

=
1
an
‖δa‖

1
an
‖a‖

=
‖δc‖
‖c‖

. u. (27)

When linearization is used as a rootfinding algorithm, the stability of the computed
roots comes from the stability of the eigenvalue algorithm applied to the colleague matrix
C. If the eigenvalues of C are computed by an unstructured QR algorithm, then the
backward error δC on C is bounded by ‖δC‖ . ‖C‖u. Since the backward error is
unstructured, it follows that ‖δA‖ ≈ ‖C‖u, so, by Theorem 2.6 together with the fact
that ‖C‖ ≈ ‖c‖, the backward error in the coefficients is bounded by ‖δc‖ . ‖c‖2u.

Remark 2.2. This backward error can be reduced by partially balancing the matrix C.
Suppose that, instead of computing the eigenvalues of C, we compute the eigenvalues of

C̃ =



0 1√
2

1√
2

0 1
2

1
2

. . .
. . .

. . . 0 ‖c‖
1
2

2
1

2‖c‖
1
2

0


− 1

2‖c‖
1
2

en

(
c0
√

2 c1 c2 · · · ‖c‖
1
2 cn−1

)
.

(28)

Provided that the entry in the (n, n)-position is small, we have that ‖C̃‖ ≈ ‖c‖
1
2 , so the

backward error δC̃ of unstructured QR is bounded by ‖δC̃‖ . ‖c‖
1
2 u. In practice, it

turns out that ‖δA‖ ≈ ‖δC̃‖ . ‖c‖
1
2 , so ‖δc‖ . ‖c‖

3
2 u. The assumption that the (n, n)-th

element is small is not always satisfied. However, usually the norm of c is large because
the last coefficient an in the non-monic expansion (26) is small. When this is the case,
we can simply raise the order of the expansion by one by taking an additional term. The
last two terms will both be small and roughly the same size, making the (n, n)-th element
small. Notice also that, by adjusting the last row, the matrix C̃ can be represented as a

symmetric tridiagonal matrix of magnitude ‖c‖
1
2 plus a rank-1 matrix of magnitude ‖c‖

1
2 .

Remark 2.3. Let bal(C) denote the matrix C after complete balancing. Remarkably,
in some situations, ‖bal(C)‖ ≈ 1 even when ‖c‖ is large. Thus, complete balancing
can completely eliminate large entries in C, at the expense of destroying its symmetric
tridiagonal plus rank-1 structure. See Remark 5.1, as well as the paper [29], for a more
detailed discussion.
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Remark 2.4. While unstructured QR, applied to the colleague matrix, is known to
achieve only the backward error bound ‖δc‖ . ‖c‖2u, the QZ algorithm, applied to an
appropriately scaled matrix pencil, does result in a backward stable rootfinder with the
bound ‖δc‖ . ‖c‖u (see, for example, [26]). This is because the eigenvalue problem
for the colleague matrix can be written as a matrix pencil A− λB, where both A and
B are small, and a backward stable QZ algorithm applied to the pencil computes the
exact eigenvalues of a perturbed pencil (A+ δA)− λ(B + δB), where ‖δA‖ . ‖A‖u and
‖δB‖ . ‖B‖u. Unfortunately, it appears to be very difficult to construct structured,
O(n2) QZ algorithms for colleague matrices that retain the nice stability properties of
the unstructured, O(n3) QZ algorithm.

The following theorem, stated in a slightly different form in [27], says that if the
eigenvalues of the colleague matrix C = A+ enq

∗ are computed using a componentwise
backward stable algorithm, then linearization is backward stable as a rootfinding algorithm.
It follows immediately from Theorem 2.6.

Theorem 2.7. Suppose that the eigenvalues of the colleague matrix C = A+ enq
∗ are

computed by a componentwise backward stable algorithm, in the sense that the computed
eigenvalues are the exact eigenvalues of the matrix

C + δC = A+ δA+ (en + δen)(q + δq)∗, (29)

where ‖δA‖ . ‖A‖u ≈ u, ‖δen‖ . ‖en‖u ≈ u, and ‖δq‖ . ‖q‖u. Then, linearization is
backward stable as a rootfinding algorithm, with ‖δc‖ . ‖c‖u.

2.5 Conventions

It was pointed out to the authors that, while the Hessenberg matrices in this report are
all lower Hessenberg, the standard convention in numerical linear algebra is to study the
transpose of the problem, and consider only upper Hessenberg matrices (see [18]). The
upper Hessenberg form is much better notationally since, in upper Hessenberg form, the
first elimination step eliminates the entry in the (2, 1)-position, while, in lower Hessenberg
form, the entry in the (n − 1, n)-position is eliminated first. Furthermore, the upper
Hessenberg form is more convenient when representing polynomials in the Lagrange basis
(see, for example, [17]). Unfortunately, at the time that this was all pointed out, most of
the writing and numerical codes were complete, and had been written in lower Hessenberg
form because of a historical fluke related to the structure of old explicit QR codes that
were used as a template for our algorithm.

3 The Algorithm

In this section, we give an overview of our algorithm. We begin by describing the class of
matrices our algorithm can be applied to. Let Fn ⊂ Cn×n be the set of lower Hessenberg
matrices of the form

A+ pq∗, (30)

where A ∈ Cn×n is Hermitian and p, q∗ ∈ Cn. Eidelman, Gemignani, and Gohberg
observed in [20] that the matrix A is determined entirely by:
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1. The diagonal entries di = ai,i, for i = 1, 2, . . . , n;

2. The superdiagonal entries βi = ai,i+1 for i = 1, 2, . . . , n− 1;

3. The vectors p and q

(see Lemma 2.1). Following [20], we call these four vectors the basic elements or generators
of A. In [20], the authors construct an implicit QR algorithm that takes advantage of this
structure to achieve a cost of O(n2). They also prove that their algorithm is backward
stable, in the sense that, when the algorithm is used to compute the eigenvalues of a
matrix C ∈ Fn, the computed eigenvalues are the exact eigenvalues of C + δC, where
‖δC‖ . ‖C‖u. This is the same backward stability bound that is provided by an
unstructured QR algorithm.

In this report, we describe a new explicit QR algorithm for matrices A+ pq∗ ∈ Fn,
that also has the cost O(n2), and prove that our algorithm is componentwise backward
stable, in the sense that the computed eigenvalues are the exact eigenvalues of (A+ δA) +
(p+ δp)(q + δq)∗, where ‖δA‖ . ‖A‖u, ‖δp‖ . ‖p‖u, and ‖δq‖ . ‖q‖u.

To motivate our algorithm, consider first the naive unshifted QR algorithm in exact
arithmetic, applied to the matrix C = A+ pq∗. Let the matrix Un ∈ Cn×n be the unitary
matrix that rotates the (n− 1, n)-plane so that

(UnC)n−1,n = 0, (31)

eliminating the superdiagonal in the (n− 1, n)-th position. Likewise, let Un−1 ∈ Cn×n
denote the unitary matrix rotating the (n− 2, n− 1)-plane so that

(Un−1UnC)n−2,n−1 = 0, (32)

eliminating the superdiagonal in the (n− 2, n− 1)-th position. Continuing in this fashion,
let Un−2, Un−3, . . . , U2 be the unitary matrices eliminating the superdiagonal entries in the
(n−3, n−2), (n−4, n−3), . . . , (1, 2) positions of the matrices (Un−1UnC), (Un−2Un−1UnC),
. . . , (U3 · · ·Un−1UnC), respectively. Letting U = U2U3 · · ·Un, we have that UC is lower
triangular. This matrix has the form

UC = B + (Up)q∗, (33)

where the upper Hessenberg part of the matrix B = UA is determined entirely by:

1. The diagonal entries di = bi,i, for i = 1, 2, . . . , n;

2. The subdiagonal entries γ
i

= bi+1,i, for i = 1, 2, . . . , n− 1;

3. The vectors p = Up and q

(see Lemma 2.2). Like with the matrix A, we call these four vectors the basic elements or
generators of (the upper Hessenberg part of) B.

Next, the matrix is multiplied by U∗ on the right; clearly,

UCU∗ = BU∗ + Up(Uq)∗, (34)
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so

UCU∗ = UAU∗ + Up(Uq)∗. (35)

It’s easy to show that, since UC is lower triangular and U∗ = U∗nU
∗
n−1 · · ·U∗2 , where Uk

rotates the (k − 1, k)-plane, the matrix UCU∗ is lower Hessenberg. Thus, UCU∗ ∈ Fn,
and the matrix A = UAU∗ is determined entirely by its diagonal and superdiagonal,
together with p = Up and q = Uq. Furthermore, the upper triangular part of UAU∗

is determined entirely by the upper Hessenberg part of B (see Lemma 2.3), and since
UAU∗ is Hermitian, it follows that the whole of the matrix UAU∗ is determined entirely
by the upper Hessenberg part of B.

In our algorithm, we use only the basic elements of A and B to represent our
matrices. This results in a single iteration of our QR algorithm requiring O(n) operations.
Furthermore, we prove that the matrix Â and vectors p̂ and q̂, computed by a single

iteration of our QR algorithm, have the componentwise forward error bounds ‖Â−A‖ .
‖A‖u, ‖p̂− p‖ . ‖p‖u, and ‖q̂ − q‖ . ‖p‖u. We then show that these componentwise
forward error bounds result in componentwise backward stability.

3.1 Eliminating the Superdiagonal

In this section, we describe how our algorithm performs a single elimination of a su-
perdiagonal element (see Algorithm 1). Suppose that we have already eliminated the
superdiagonal elements in the positions (n − 1, n), (n − 2, n − 1), . . . , (k, k + 1). Let
p(k+1) = Uk+1Uk+2 · · ·Unp and B(k+1) = Uk+1Uk+2 · · ·UnA. Suppose further that p̂ (k+1)

and B̂(k+1) are the computed approximations to p(k+1) and B(k+1), and that the upper
Hessenberg part of the computed matrix B̂(k+1) is represented by its generators:

1. The diagonal elements d̂
(k+1)
i = b̂

(k+1)
i,i , for i = 1, 2, . . . , n;

2. The superdiagional elements β̂
(k+1)
i = b̂

(k+1)
i,i+1 , for i = 1, 2, . . . , k − 1;

3. The subdiagional elements γ̂
(k+1)
i = b̂

(k+1)
i+1,i , for i = 1, 2, . . . , n− 1;

4. The vectors p̂ (k+1) and q, from which the remaining elements in the upper Hessen-
berg part are inferred.

Suppose that ‖B̂(k+1) −B(k+1)‖H . ‖A‖u and ‖p̂ (k+1) − p(k+1)‖ . ‖p‖u. Notice that, if

we define B̂(n+1) = B(n+1) = A and p̂ (n+1) = p(n+1) = p, then this is obviously true for
k = n.

To eliminate the superdiagonal element in the (k− 1, k) position of B̂(k+1) + p̂ (k+1)q∗,
we first compute the rotation matrix Qk ∈ SU(2) that eliminates it by a rotation in the
(k−1, k)-plane (see Line 4 of Algorithm 1). Next, we apply the rotation matrix separately
to the generators of B̂(k+1) and to the vector p̂ (k+1). Since we are only interested in
computing the upper Hessenberg part of B̂(k), we need to update the subdiagonal element

in the (k−1, k−2) position of B̂(k+1), represented by γ̂
(k+1)
k−2 (see Figure 1). However, this

calculation requires the sub-subdiagonal entry in the (k, k − 2) position of B̂(k+1), which
is unknown to us since only the upper Hessenberg part of B̂(k+1) is available. Fortunately,
it can be recovered by the following trick.
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. . . γ̂
(k+1)
k−3 d̂

(k+1)
k−2 β̂

(k+1)
k−2 −p̂ (k+1)

k−2 q∗k −p̂ (k+1)
k−2 q∗k+1 · · ·

· · · × γ̂
(k+1)
k−2 d̂

(k+1)
k−1 β̂

(k+1)
k−1 −p̂ (k+1)

k−1 q∗k+1 · · ·

· · · × b̂
(k+1)
k,k−2 γ̂

(k+1)
k−1 d̂

(k+1)
k −p̂ (k+1)

k q∗k+1 · · ·

· · · × × × γ̂
(k+1)
k d̂

(k+1)
k+1

. . .


Figure 1: The (k − 1)-th and k-th rows of B̂(k+1), represented by its generators.

SinceB(k+1) = Uk+1Uk+2 · · ·UnA andA is Hermitian, it follows thatB(k+1)U∗nU
∗
n−1 · · ·U∗k+1

is also Hermitian. Thus,

(B(k+1)U∗nU
∗
n−1 · · ·U∗k+1)k,k−2 = (B(k+1)U∗nU

∗
n−1 · · ·U∗k+1)k−2,k. (36)

Furthermore, since right-multiplication by U∗j only affects columns j and j − 1 (see

Figure 1), we have that right-multiplication by U∗nU
∗
n−1 · · ·U∗k+1 leaves b

(k+1)
k,k−2 unchanged.

Therefore,

b
(k+1)
k,k−2 = (B(k+1)U∗nU

∗
n−1 · · ·U∗k+1)k−2,k. (37)

We know that the entries in the (k− 2, k), (k− 2, k+ 1), . . . , (k− 2, n) positions of B̂(k+1)

are inferred from p̂ (k+1) and q by the formula

b̂
(k+1)
k−2,` = −p̂ (k+1)

k−2 q∗` , (38)

for ` = k, k + 1, . . . , n. Combining (37) and (38), we thus have that the sub-subdiagonal
entry in the (k, k − 2) position of B̂(k+1) can be recovered by the formula

b̂
(k+1)
k,k−2 = (−p̂ (k+1)

k−2 q∗U∗nU
∗
n−1 · · ·U∗k+1)k. (39)

Defining q̃ (k+1) = Uk+1Uk+2 · · ·Unq, we have

b̂
(k+1)
k,k−2 = −q̃ (k+1)

k p̂
(k+1)∗
k−2 . (40)

By computing the vector ̂̃q (k+1)
(see Line 14 of Algorithm 1), we use this formula to

recover the sub-subdiagonal element b̂
(k+1)
k,k−2 .

Thus, the element in the (k − 1, k − 2) position of B̂(k+1), represented by γ̂
(k+1)
k−2 , is

updated in Line 6 of Algorithm 1. Next, the elements in the (k − 1, k − 1) and (k, k − 1)

positions of B̂(k+1), represented by d̂
(k+1)
k−1 and γ̂

(k+1)
k−1 , respectively, are updated in a

straightforward way in Line 8. Finally, the elements in the (k − 1, k) and (k, k) positions

of B̂(k+1), represented by β̂
(k+1)
k−1 and d̂

(k+1)
k , respectively, are updated in Line 9, and the

vector p̂ (k+1) is rotated in Line 10.

13



Since we’ve eliminated the superdiagonal element in the (k− 1, k) position of B̂(k+1) +
p̂ (k+1)q∗, we have that the (k− 1, k) element of the matrix B̂(k) is inferred from p̂ (k) and
q by the formula

b̂
(k)
k−1,k = −p̂ (k)

k−1q
∗
k. (41)

Now, we would like the upper Hessenberg part of B̂(k) to have a small componentwise
error, so that ‖B̂(k) −B(k)‖H . ‖A‖u. However, consider the following scenario. Sup-

pose that the norm of (p̂
(k+1)
k−1 q∗k, p̂

(k+1)
k q∗k)

T is much larger than ‖A‖. By Lemma 2.5,

the error in p̂
(k)
k−1q

∗
k will be approximately

(√
|p̂ (k+1)
k−1 q∗k|

2
+ |p̂ (k+1)

k q∗k|
2)

u, which will be

much larger than ‖A‖u. In this situation then, even if ‖p̂ (k+1) − p(k+1)‖ . ‖p‖u and
‖B̂(k+1) −B(k+1)‖H . ‖A‖u, we will not have ‖B̂(k) −B(k)‖H . ‖A‖u. To remedy this,

we must apply a correction to p̂
(k)
k−1. Recall that the rotation matrix Qk was defined to be

the matrix eliminating the (k− 1, k)-th entry of B̂(k+1) + p̂ (k+1)q∗ in exact arithmetic. If

we let (p̊
(k)
k−1, p̊

(k)
k )T denote the result of applying Qk to (p̂

(k+1)
k−1 , p̂

(k+1)
k )T in exact arith-

metic, and likewise let (β̊
(k)
k−1, d̊

(k)
k )T denote the result of applying Qk to (β̂

(k+1)
k−1 , d̂

(k+1)
k )T

in exact arithmetic, then, by the definition of Qk, we have

β̊
(k)
k−1 + p̊

(k)
k−1q

∗
k = 0. (42)

By Lemma 2.5, we have that

|β̊(k)k−1 − β̂
(k)
k−1| .

(√
|β̂ (k+1)
k−1 |

2
+ |d̂ (k+1)

k |
2)

u (43)

and

|p̊(k)k−1q
∗
k − p̂

(k)
k−1q

∗
k| .

(√
|p̂ (k+1)
k−1 q∗k|

2
+ |p̂ (k+1)

k q∗k|
2)

u. (44)

Thus, if |p̂ (k+1)
k−1 q∗k|

2
+ |p̂ (k+1)

k q∗k|
2
> |β̂ (k+1)

k−1 |
2

+ |d̂ (k+1)
k |

2
, then we set

p̂
(k)
k−1q

∗
k = −β̂ (k)

k−1, (45)

so

p̂
(k)
k−1 = −β̂ (k)

k−1/q
∗
k (46)

(see Line 12 of Algorithm 1). With this correction to p̂
(k)
k−1, it is easy to see that

‖B̂(k) −B(k)‖H . ‖A‖u and ‖p̂ (k) − p(k)‖ . ‖p‖u. If, on the other hand, |p̂ (k+1)
k−1 q∗k|

2
+

|p̂ (k+1)
k q∗k|

2
≤ |β̂ (k+1)

k−1 |
2

+ |d̂ (k+1)
k |

2
, then the correction is not neccessary, since in this

case the error in p̂
(k)
k−1q

∗
k is smaller than the error in β̂

(k)
k−1.

This process of eliminating the superdiagonal elements can be repeated, until the
upper Hessenberg part of the matrix B̂, approximating B = U2U3 · · ·UnA, is obtained,
together with p̂, approximating p = U2U3 · · ·Unp (see Algorithm 1). In Section 4.1,

Lemma 4.1, we prove that the forward errors in the upper Hessenberg part of B̂ and in
the vector p̂ are proportional to ‖A‖u and ‖p‖u, respectively.

14



Algorithm 1 (A single elimination of the superdiagonal) Inputs: This algorithm
accepts as inputs two vectors d and β representing the diagonal and superdiagonal,
respectively, of an n× n Hermitian matrix A, as well as two vectors p and q of length
n, where A+ pq∗ is lower Hessenberg. Outputs: It returns as its outputs the rotation
matrices Q2, Q3, . . . , Qn ∈ C2×2 so that, letting Uk ∈ Cn×n, k = 2, 3, . . . , n, denote the
matrices that rotate the (k−1, k)-plane by Qk, U2U3 · · ·Un(A+pq∗) is lower triangular. It
also returns the vectors d, γ, and p, where d and γ represent the diagonal and subdiagonal,
respectively, of the matrix U2U3 · · ·UnA, and p = U2U3 · · ·Unp.

1: Set γ ← β, where γ represents the subdiagonal.

2: Make a copy of q, setting q̃ ← q.

3: for k = n, n− 1, . . . , 2 do

4: Construct the 2× 2 rotation matrix Qk ∈ SU(2) so that(
Qk

[
βk−1 + pk−1q

∗
k

dk + pkq
∗
k

])
1

= 0.

5: if k 6= 2 then

6: Rotate the subdiagonal and the sub-subdiagonal:

γk−2 ←
(
Qk

[
γk−2
−q̃kp∗k−2

])
1

7: end if

8: Rotate the diagonal and the subdiagonal:

[
dk−1
γk−1

]
← Qk

[
dk−1
γk−1

]
.

9: Rotate the superdiagonal and the diagonal:

[
βk−1
dk

]
← Qk

[
βk−1
dk

]
.

10: Rotate p:

[
pk−1
pk

]
← Qk

[
pk−1
pk

]
11: if |pk−1q∗k|

2 + |pkq∗k|
2 > |βk−1|2 + |dk|2 then

12: Correct the vector p, setting pk−1 ← −βk−1

q∗k

13: end if

14: Rotate q̃:

[
q̃ k−1
q̃ k

]
← Qk

[
q̃k−1
q̃k

]
15: end for

16: Set d← d, γ ← γ, and p← p.
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. . .
...

...
...

d̂
(k+1)
k−2 −pk−2q̂

(k+1)∗
k−1 −pk−2q̂

(k+1)∗
k −pk−2q̂

(k+1)∗
k+1

γk−2 d̂
(k+1)
k−1 −pk−1q̂

(k+1)∗
k −pk−1q̂

(k+1)∗
k+1

× γk−1 d̂
(k+1)
k β̂

(k+1)
k

× × × d̂
(k+1)
k+1

...
...

...
. . .


Figure 2: The (k − 1)-th and k-th columns of Â(k+1), represented by its generators.

3.2 Rotating Back to Hessenberg Form

In this section, we describe how our algorithm rotates the triangular matrix produced by
an elimination of the superdiagonal back to lower Hessenberg form (see Algorithm 2).
Suppose that B is an n × n matrix and that p and q are vectors such that B + pq∗ is
lower triangular. Notice that this condition is satisfied by the matrix B̂ and the vectors
p̂ and q from the preceding section, produced by an elimination of the superdiagonal.
Let γ denote the subdiagonal of B. Suppose that we have already applied the rotation
matrices U∗n, U

∗
n−1, · · · , U∗k+1 to the right of B and q∗, and let q(k+1) = Uk+1Uk+2 · · ·Unq

and A(k+1) = BU∗nU
∗
n−1 · · ·U∗k+1. Suppose that q̂ (k+1) and Â(k+1) are the computed

approximations to q(k+1) and A(k+1), respectively, and that the upper triangular part of
Â(k+1) is represented by its generators:

1. The diagonal entries d̂
(k+1)
i = â

(k+1)
i,i , for i = 1, 2, . . . , n;

2. The superdiagonal entries β̂
(k+1)
i = â

(k+1)
i,i+1 for i = k, k + 1, . . . , n− 1;

3. The vectors p and q̂ (k+1), from which the remaining elements in the upper triangular
part are inferred.

Suppose that ‖Â(k+1) −A(k+1)‖T . ‖B‖Hu and ‖q̂ (k+1) − q(k+1)‖ . ‖q‖u. Notice that,

if we define Â(n+1) = A(n+1) = B and q̂ (n+1) = q(n+1) = q, then this is obviously true for
k = n.

To apply the matrix U∗k to Â(k+1) + pq̂ (k+1) on the right, we apply the matrix

Q∗k ∈ SU(2) separately to the generators of Â(k+1) and to the vector q̂ (k+1). We start
by rotating the diagonal and superdiagonal elements in the (k − 1, k − 1) and (k − 1, k)

positions of Â(k+1), represented by d̂
(k+1)
k−1 and −pk−1q̂

(k+1)∗
k , respectively, in Line 2 of

Algorithm 2, saving the superdiagonal element in β̂
(k)
k−1 (see Figure 2). Next, we rotate

the elements in the (k, k − 1) and (k, k) positions, represented by γk−1 (the (k − 1)-st

element of the subdiagonal of B) and d̂
(k+1)
k , respectively, in a straightforward way in

Line 3; since we are only interested in computing the upper triangular part of Â(k), we
only update the diagonal entry. Finally, we rotate the vector q̂ (k+1) in Line 4.
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The process of applying the rotation matrices on the right can be repeated, until the
upper triangular part of the matrix Â, approximating A = BU∗nU

∗
n−1 · · ·U∗2 , is obtained,

together with q̂, approximating q = U2U3 · · ·Unq (see Algorithm 2). In Section 4.1,

Lemma 4.2, we prove that the forward errors in the upper triangular part of Â and in
the vector q̂ are proportional to ‖B‖Hu and ‖q‖u, respectively.

3.3 The QR Algorithms

The elimination of the superdiagonal described in Algorithm 1, followed by the rotation
back to Hessenberg form described in Algorithm 2, can be iterated to find the eigenvalues
of A+ pq∗. Our unshifted explicit QR algorithm, based on this iteration, is described in
Algorithm 3. This unshifted QR algorithm can be accelerated by the introduction of shifts;
our explicit shifted QR algorithm, with Wilkinson shifts, is described in Algorithm 4.

In Section 4.1, we show that the forward error of one iteration of our QR algorithm
(Algorithm 1 followed by Algorithm 2) satisfies componentwise forward error bounds. In
Section 4.2, we use this result to prove that both our explicit unshifted QR algorithm
(Algorithm 3) and our shifted QR algorithm (Algorithm 4) are componentwise backward
stable.

Algorithm 2 (Rotating the matrix back to Hessenberg form) Inputs: This algorithm
accepts as inputs n− 1 rotation matrices Q2, Q2, . . . , Qn ∈ Cn×n, two vectors d and γ
representing the diagonal and subdiagonal, respectively, of an n × n complex matrix
B, and two vectors p and q of length n, where B + pq∗ is lower triangular. Outputs:
Letting Uk ∈ Cn×n, k = 2, 3, . . . , n, denote the matrices that rotate the (k − 1, k)-plane
by Qk, this algorithm returns as its outputs the vectors d, β, and q, where d and β
represent the diagonal and superdiagonal, respectively, of the matrix BU∗nU

∗
n−1 · · ·U∗2 ,

and q = U2U3 · · ·Unq.
1: for k = n, n− 1, . . . , 2 do

2: Rotate the diagonal and the superdiagonal:[
dk−1
βk−1

]
← Qk

[
dk−1
−pk−1q∗k

]
.

3: Rotate the subdiagonal and the diagonal:

dk ←
(
Qk

[
γk−1
dk

])
2

4: Rotate q:

[
qk−1
qk

]
← Qk

[
qk−1
qk

]
5: end for

6: Set d← d, β ← β, and q ← q.
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Algorithm 3 (Unshifted explicit QR) Inputs: This algorithm accepts as inputs two
vectors d and β representing the diagonal and superdiagonal, respectively, of an n× n
Hermitian matrix A, as well as two vectors p and q of length n, where A + pq∗ is
lower Hessenberg. It also accepts a tolerance ε > 0, which determines the accuracy the
eigenvalues are computed to. Outputs: It returns as its output the vector λ of length n
containing the eigenvalues of the matrix A+ pq∗.

1: for i = 1, 2, . . . , n− 1 do

2: while βi + piq
∗
i+1 ≥ ε do . Check if (A+ pq∗)i,i+1 is close to zero

3: Perform one iteration of QR (one step of Algorithm 1 followed by one
step of Algorithm 2) on the submatrix (A + pq∗)i:n,i:n defined by the vectors di:n,
βi:n−1, pi:n, and qi:n.

4: end while

5: end for

6: Set λ← d.
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Algorithm 4 (Shifted explicit QR) Inputs: This algorithm accepts as inputs two
vectors d and β representing the diagonal and superdiagonal, respectively, of an n× n
Hermitian matrix A, as well as two vectors p and q of length n, where A + pq∗ is
lower Hessenberg. It also accepts a tolerance ε > 0, which determines the accuracy the
eigenvalues are computed to. Outputs: It returns as its output the vector λ of length n
containing the eigenvalues of the matrix A+ pq∗.

1: for i = 1, 2, . . . , n− 1 do

2: Set µsum ← 0.

3: while βi + piq
∗
i+1 ≥ ε do . Check if (A+ pq∗)i,i+1 is close to zero

4: Compute the eigenvalues µ1 and µ2 of the 2 × 2 submatrix[
di + piq

∗
i βi + piq

∗
i+1

βi + pi+1q
∗
i di+1 + pi+1q

∗
i+1

]
. . This is just (A+ pq∗)i:i+1,i:i+1

5: Set µ to whichever of µ1 and µ2 is closest to di + piq
∗
i .

6: Set µsum ← µsum + µ.

7: Set di:n ← di:n − µ.

8: Perform one iteration of QR (one step of Algorithm 1 followed by one
step of Algorithm 2) on the submatrix (A + pq∗)i:n,i:n defined by the vectors di:n,
βi:n−1, pi:n, and qi:n.

9: end while

10: Set di:n ← di:n + µsum.

11: end for

12: Set λi ← di + piq
∗
i , for i = 1, 2, . . . , n.
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4 Componentwise Backward Stability

The principal results of this section are Theorems 4.6 and 4.7, which state that our
unshifted and shifted QR algorithms, respectively, are componentwise backward stable.
In Section 4.1, we prove that the forward error of a single sweep of our unshifted QR
algorithm satisfies componentwise bounds. In Section 4.2, we use these bounds show
componentwise backward stability of our QR algorithms.

4.1 Forward Error Analysis of a Single Sweep of QR

Suppose that A is Hermitian and A+ pq∗ is lower Hessenberg. In this section, we prove
in Theorem 4.3 that the forward errors in A, p, and q of single sweep of our explicit QR
algorithm are proportional to ‖A‖u, ‖p‖u, and ‖q‖u, respectively.

The following lemma bounds the forward error of Algorithm 1 (the elimination of the
superdiagonal).

Lemma 4.1. Suppose that A ∈ Cn×n is a Hermitian matrix, and that p, q ∈ Cn.
Suppose further that A+pq∗ is lower Hessenberg, and let d and β denote the diagonal and
superdiagonal of A, respectively. Suppose that Algorithm 1 is carried out in floating point
arithmetic with d, β, p, and q as inputs, and let Q2, Q3, . . . , Qn ∈ SU(2) be the unitary
matrices generated by an exact step of Line 4 of Algorithm 1 applied to the computed
vectors at that step. Let Uk ∈ Cn×n, k = 2, 3, . . . , n, denote the matrices that rotate the
(k − 1, k)-plane by Qk, and define U ∈ Cn×n by the formula U = U2U3 · · ·Un. Suppose
finally that d̂, γ̂, and p̂ are the outputs generated by Algorithm 1, and define the upper

Hessenberg part of the matrix B̂ ∈ Cn×n by the formula

b̂i,j =


−p̂

i
q∗j if j > i,

d̂i if j = i,
γ̂
j

if j = i− 1.
(47)

where b̂i,j denotes the (i, j)-th entry of B̂. Let B = UA and p = Up. Then

‖B̂ −B‖H . ‖A‖u (48)

and

‖p̂− p‖ . ‖p‖u, (49)

where ‖·‖H denotes the square root of the sum of squares of the entries in the upper
Hessenberg part of its argument (see Definition 2.1).

Proof. Suppose that d̂ (k), γ̂(k), β̂ (k), p̂ (k), and ̂̃q (k) denote the computed vectors
in Algorithm 1 after the elimination of the superdiagonal elements in the positions
(n− 1, n), (n− 2, n− 1), . . . , (k − 1, k). Suppose further that the upper Hessenberg part
of the matrix B̂(k) ∈ Cn×n is defined by the formula

b̂
(k)
i,j =


−p̂ (k)

i q∗j if j > i+ 1 or if j = i+ 1 and j ≥ k,
β̂

(k)
i if j = i+ 1 and j < k,

d̂
(k)
i if j = i,

γ̂
(k)
i if j = i− 1,

(50)

20



where b̂
(k)
i,j denotes the (i, j)-th entry of B̂(k). Clearly, d̂ = d̂ (2), γ̂ = γ̂(2), p̂ = p̂ (2), and

B̂ = B̂(2). Let B(k) = UkUk+1 · · ·UnA and p(k) = UkUk+1 · · ·Unp. We will prove that
‖B̂(k) −B(k)‖H . ‖A‖u and ‖p̂ (k) − p(k)‖ . ‖p‖u, for each k = n, n− 1, . . . , 2.

We begin by proving this statement for k = n. From Line 4, we have that the matrix
Qn ∈ SU(2) satisfies(

Qn

[
βn−1 + pn−1q

∗
n

dn + pnq
∗
n

])
1

= 0, (51)

with the computed matrix Q̂n satisfying ‖Q̂n −Qn‖ . u by Lemma 2.4. In Line 6, we
have

γ̂
(n)
n−2 = fl

(
Q̂n

[
γn−2
−q̃np∗n−2

])
1

. (52)

At this stage q̃ is still equal to q and, according to Lemma 2.1, an,n−2 = −qnp∗n−2. By

definition, an−1,n−2 = γn−2. Therefore, by Lemma 2.5, we have that |γ̂(n)n−2 − b
(n)
n−1,n−2| .

‖A‖u, where b
(n)
i,j denotes the (i, j)-th entry of B(n). In Line 8, we have[

d̂
(n)
n−1
γ̂
(n)
n−1

]
= fl

(
Q̂n

[
dn−1
γn−1

])
. (53)

Since an−1,n−1 = dn−1 and an,n−1 = γn−1, by Lemma 2.5, we have that |d̂ (n)
n−1 − b

(n)
n−1,n−1| .

‖A‖u and |γ̂(n)n−1 − b
(n)
n,n−1| . ‖A‖u. In Line 9, we have[

β̂
(n)
n−1
d̂

(n)
n

]
= fl

(
Q̂n

[
βn−1
dn

])
. (54)

Since, by definition, an−1,n = βn−1 and an,n = dn, it follows from Lemma 2.5 that

|β̂ (n)
n−1 − b

(n)
n−1,n| .

(√
|βn−1|2 + |dn|2

)
u ≤ ‖A‖u and |d̂ (n)

n − b(n)n,n| .
(√
|βn−1|2 + |dn|2

)
u ≤

‖A‖u. In Line 10, we have[
p̂
(n)†
n−1
p̂
(n)
n

]
= fl

(
Q̂n

[
pn−1
pn

])
, (55)

where p̂
(n)†
n−1 is a temporary value that will be corrected later. Once again, Lemma 2.5 tells

us that |p̂ (n)†
n−1 − p

(n)
n−1| .

(√
|pn−1|2 + |pn|2

)
u ≤ ‖p‖u and |p̂ (n)

n − p(n)n | .
(√
|pn−1|2 + |pn|2

)
u ≤

‖p‖u. Next, we observe that, by the definition of Qn, we have that

b
(n)
n−1,n + p

(n)
n−1q

∗
n = 0. (56)

In Line 12, we apply a correction to p̂
(n)†
n−1 , so that

p̂
(n)
n−1 =

{
−β̂ (n)

n−1/q
∗
n if |pn−1q∗n|

2 + |pnq∗n|
2 > |βn−1|2 + |dn|2,

p̂
(n)†
n−1 if |pn−1q∗n|

2 + |pnq∗n|
2 ≤ |βn−1|2 + |dn|2.

(57)
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From this, we see that, if |pn−1q∗n|
2 + |pnq∗n|

2 > |βn−1|2 + |dn|2, then

|p̂ (n)
n−1 − p

(n)
n−1| = |−β̂

(n)
n−1/q

∗
n − p

(n)
n−1|

= |b(n)n−1,n/q
∗
n − β̂

(n)
n−1/q

∗
n|

=
1

|q∗n|
|b(n)n−1,n − β̂

(n)
n−1|

.

√
|βn−1|2 + |dn|2

|q∗n|
u

≤
(√
|pn−1|2 + |pn|2

)
u

≤ ‖p‖u. (58)

where the second equality is due to (56). Furthermore,

|−p̂ (n)
n−1q

∗
n − b

(n)
n−1,n| = |β̂

(n)
n−1 − b

(n)
n−1,n|

.
(√
|βn−1|2 + |dn|2

)
u

≤ ‖A‖u. (59)

If, on the other hand, |pn−1q∗n|
2 + |pnq∗n|

2 ≤ |βn−1|2 + |dn|2, then

|p̂ (n)
n−1 − p

(n)
n−1| = |p̂

(n)†
n−1 − p

(n)
n−1|

.
√
|pn−1|2 + |pn|2u

≤ ‖p‖u. (60)

Moreover,

|−p̂ (n)
n−1q

∗
n − b

(n)
n−1,n| = |−p̂

(n)†
n−1q

∗
n − b

(n)
n−1,n|

= |−p̂ (n)†
n−1q

∗
n + p

(n)
n−1q

∗
n|

. |q∗n|
(√
|pn−1|2 + |pn|2

)
u

≤
(√
|βn−1|2 + |dn|2

)
u

≤ ‖A‖u. (61)

where the second equality follows from (56). This completes the proof that ‖B̂(n) −B(n)‖H .
‖A‖u and ‖p̂ (n) − p(n)‖ . ‖p‖u.

Now, we will show that, if ‖B̂(k+1) −B(k+1)‖H . ‖A‖u and ‖p̂ (k+1) − p(k+1)‖ . ‖p‖u,

then ‖B̂(k) −B(k)‖H . ‖A‖u and ‖p̂ (k) − p(k)‖ . ‖p‖u. From Line 4, we have that the
matrix Qk ∈ SU(2) satisfies(

Qk

[
β̂

(k+1)
k−1 + p̂

(k+1)
k−1 q∗k

d̂
(k+1)
k + p̂

(k+1)
k q∗k

])
1

= 0, (62)
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with the computed matrix Q̂k satisfying ‖Q̂k −Qk‖ . u by Lemma 2.4. In Line 6, we
have

γ̂
(k)
k−2 = fl

(
Q̂k

[
γ̂
(k+1)
k−2

−̂̃q (k+1)

k p̂
(k+1)∗
k−2

])
1

. (63)

We must first show that∣∣−̂̃q (k+1)

k p̂
(k+1)∗
k−2 − b(k+1)

k,k−2
∣∣ . ‖A‖u. (64)

We begin by observing that

b
(k+1)
k,k−2 = (B(k+1))k,k−2 = (B(k+1)U∗nU

∗
n−1 · · ·U∗k+1)k,k−2, (65)

since right-multiplication by U∗j only affects columns j and j − 1. We now observe that

B(k+1)U∗nU
∗
n−1 · · ·U∗k+1 = Uk+1Uk+2 · · ·UnAU∗nU∗n−1 · · ·U∗k+1 (66)

is Hermitian, so from (65) we have that

b
(k+1)
k,k−2 = (B(k+1)U∗nU

∗
n−1 · · ·U∗k+1)k−2,k. (67)

By the induction hypothesis,

b̂
(k+1)
k−2,` = −p̂ (k+1)

k−2 q∗` (68)

and

|̂b (k+1)
k−2,` − b

(k+1)
k−2,` | . ‖A‖u, (69)

for all ` = k, k + 1, . . . , n. Thus,∣∣(−p̂ (k+1)
k−2 q∗U∗nU

∗
n−1 · · ·U∗k+1)k − (B(k+1)U∗nU

∗
n−1 · · ·U∗k+1)k−2,k

∣∣ . ‖A‖u. (70)

Combining (70) with (67),∣∣−p̂ (k+1)
k−2 q̃

(k+1)∗
k − b(k+1)

k,k−2
∣∣ . ‖A‖u, (71)

where q̃ (k+1) = Uk+1Uk+2 · · ·Unq. From Line 14 we have

̂̃q (k+1)
= fl(Ûk+1Ûk+2 · · · Ûnq), (72)

and, by repeated application of Lemma 2.5,∣∣̂̃q (k+1)

k − q̃ (k+1)
k

∣∣ . (√|qk|2 + |qk+1|2 + · · ·+ |qn|2
)

u. (73)

Thus,

∣∣p̂ (k+1)
k−2

̂̃q (k+1)∗
k − p̂ (k+1)

k−2 q̃
(k+1)∗
k

∣∣ . (√|p̂ (k+1)
k−2 q∗k|

2
+ |p̂ (k+1)

k−2 q∗k+1|
2

+ · · ·+ |p̂ (k+1)
k−2 q∗n|

2)
u

=
(√
|̂b (k+1)
k−2,k |

2
+ |̂b (k+1)

k−2,k+1|
2

+ · · ·+ |̂b (k+1)
k−2,n |

2)
u

. ‖A‖u. (74)
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where the first equality follows by (68) and the second inequality by (69). Combining (71)
and (74), ∣∣−p̂ (k+1)

k−2
̂̃q (k+1)∗
k − b(k+1)

k,k−2
∣∣ . ‖A‖u, (75)

or, equivalently,∣∣−̂̃q (k+1)

k p̂
(k+1)∗
k−2 − b(k+1)

k,k−2
∣∣ . ‖A‖u. (76)

Finally, since, by the induction hypothesis,∣∣γ̂(k+1)
k−2 − b

(k+1)
k−1,k−2

∣∣ . ‖A‖u, (77)

we use (76) and (77) and apply Lemma 2.5 to (63) to find that |γ̂(k)k−2 − b
(k)
k−1,k−2| . ‖A‖u.

In Line 8, we have[
d̂

(k)
k−1
γ̂
(k)
k−1

]
= fl

(
Q̂k

[
d̂

(k+1)
k−1
γ̂
(k+1)
k−1

])
. (78)

By the induction hypothesis, |d̂ (k+1)
k−1 − b(k+1)

k−1,k−1| . ‖A‖u and |γ̂(k+1)
k−1 − b

(k+1)
k,k−1| . ‖A‖u.

Thus, another application of Lemma 2.5 shows that |d̂ (k)
k−1 − b

(k)
k−1,k−1| . ‖A‖u and

|γ̂(k)k−1 − b
(k)
k,k−1| . ‖A‖u. In Line 9, we have[

β̂
(k)
k−1
d̂

(k)
k

]
= fl

(
Q̂k

[
β̂

(k+1)
k−1
d̂

(k+1)
k

])
. (79)

By the induction hypothesis, |β̂ (k+1)
k−1 − b(k+1)

k−1,k| . ‖A‖u and |d̂ (k+1)
k − b(k+1)

k,k | . ‖A‖u, so

it follows from Lemma 2.5 that |β̂ (k)
k−1 − b

(k)
k−1,k| . ‖A‖u and |d̂ (k)

k − b(k)k,k| . ‖A‖u. In
Line 10, we then have[

p̂
(k)†
k−1
p̂
(k)
k

]
= fl

(
Q̂k

[
p̂
(k+1)
k−1
p̂
(k+1)
k

])
, (80)

where p̂
(k)†
k−1 is a temporary value that will be corrected later. By the induction hypothesis,

|p̂ (k+1)
k−1 − p(k+1)

k−1 | . ‖p‖u and |p̂ (k+1)
k − p(k+1)

k | . ‖p‖u, so it follows from Lemma 2.5 that

|p̂ (k)†
k−1 − p

(k)
k−1| . ‖p‖u and |p̂ (k)

k − p(k)k | . ‖p‖u. Define β̊
(k)
k−1 and d̊

(k)
k by the formula[

β̊
(k)
k−1
d̊
(k)
k

]
= Qk

[
β̂

(k+1)
k−1
d̂

(k+1)
k

]
, (81)

and define p̊
(k)
k−1 and p̊

(k)
k by[

p̊
(k)
k−1
p̊
(k)
k

]
= Qk

[
p̂
(k+1)
k−1
p̂
(k+1)
k

]
. (82)
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Clearly,

β̊
(k)
k−1 + p̊

(k)
k−1q

∗
k = 0, (83)

by the definition of Qk (see (62)). Also, by Lemma 2.5, we have that |β̊(k)k−1 − β̂
(k)
k−1| .(√

|β̂ (k+1)
k−1 |

2
+ |d̂ (k+1)

k |
2)

u ≤ ‖A‖u and |p̊(k)k−1 − p̂
(k)†
k−1 | .

(√
|p̂ (k+1)
k−1 |

2
+ |p̂ (k+1)

k |
2)

u ≤

‖p‖u. In Line 12, we apply a correction to p̂
(k)†
k−1 , so that

p̂
(k)
k−1 =

{
−β̂ (k)

k−1/q
∗
k if |p̂ (k+1)

k−1 q∗k|
2

+ |p̂ (k+1)
k q∗k|

2
> |β̂ (k+1)

k−1 |
2

+ |d̂ (k+1)
k |

2
,

p̂
(k)†
k−1 if |p̂ (k+1)

k−1 q∗k|
2

+ |p̂ (k+1)
k q∗k|

2
≤ |β̂ (k+1)

k−1 |
2

+ |d̂ (k+1)
k |

2
.

(84)

Thus, if |p̂ (k+1)
k−1 q∗k|

2
+ |p̂ (k+1)

k q∗k|
2
> |β̂ (k+1)

k−1 |
2

+ |d̂ (k+1)
k |

2
, then∣∣p̂ (k)

k−1 − p
(k)
k−1
∣∣ =

∣∣−β̂ (k)
k−1/q

∗
k − p

(k)
k−1
∣∣. (85)

We then observe that∣∣−β̊(k)k−1/q
∗
k − p

(k)
k−1
∣∣ =

∣∣p̊(k)k−1 − p(k)k−1∣∣ . ‖p‖u, (86)

and ∣∣−β̊(k)k−1/q
∗
k + β̂

(k)
k−1/q

∗
k

∣∣ =
1

|q∗k|
∣∣β̂ (k)
k−1 − β̊

(k)
k−1
∣∣

.

√
|β̂ (k+1)
k−1 |

2
+ |d̂ (k+1)

k |
2

|q∗k|
u

≤
(√
|p̂ (k+1)
k−1 |

2
+ |p̂ (k+1)

k |
2)

u

≤ ‖p‖u. (87)

Finally, combining (85), (86), and (87), we find that |p̂ (k)
k−1 − p

(k)
k−1| . ‖p‖u. Furthermore,∣∣−p̂ (k)

k−1q
∗
k − b

(k)
k−1,k

∣∣ =
∣∣β̂ (k)
k−1 − b

(k)
k−1,k

∣∣ . ‖A‖u. (88)

If, conversely, |p̂ (k+1)
k−1 q∗k|

2
+ |p̂ (k+1)

k q∗k|
2
≤ |β̂ (k+1)

k−1 |
2

+ |d̂ (k+1)
k |

2
, then∣∣p̂ (k)

k−1 − p
(k)
k−1
∣∣ =

∣∣p̂ (k)†
k−1 − p

(k)
k−1
∣∣ . ‖p‖u. (89)

Next, we observe that∣∣−p̂ (k)
k−1q

∗
k − b

(k)
k−1,k

∣∣ =
∣∣−p̂ (k)†

k−1q
∗
k − b

(k)
k−1,k

∣∣. (90)

Since ∣∣−p̊(k)k−1q∗k − b(k)k−1,k∣∣ =
∣∣β̊(k)k−1 − b

(k)
k−1,k

∣∣ . ‖A‖u, (91)
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and ∣∣−p̊(k)k−1q∗k + p̂
(k)†
k−1q

∗
k

∣∣ = |q∗k|
∣∣−p̊(k)k−1 + p̂

(k)†
k−1
∣∣

. |q∗k|
(√
|p̂ (k+1)
k−1 |

2
+ |p̂ (k+1)

k |
2)

u

≤
(√
|β̂ (k+1)
k−1 |

2
+ |d̂ (k+1)

k |
2)

u

≤ ‖A‖u, (92)

we combine (90), (91), and (92) to see that |−p̂ (k)
k−1q

∗
k − b

(k)
k−1,k| . ‖A‖u.

Now all that’s left is to show that |−p̂ (k)
k−1q

∗
` − b

(k)
k−1,`| . ‖A‖u and |−p̂ (k)

k q∗` − b
(k)
k,` | .

‖A‖u, for all ` = k + 1, k + 2, . . . , n. By the induction hypothesis,∣∣−p̂ (k+1)
k−1 q∗` − b

(k+1)
k−1,`

∣∣ . ‖A‖u (93)

and ∣∣−p̂ (k+1)
k q∗` − b

(k+1)
k,`

∣∣ . ‖A‖u, (94)

for all ` = k + 1, k + 2, . . . , n. Multiplying (82) by q∗` , we have[
p̊
(k)
k−1q

∗
`

p̊
(k)
k q∗`

]
= Qk

[
p̂
(k+1)
k−1 q∗`
p̂
(k+1)
k q∗`

]
, (95)

which, combined with (93) and (94), means that∣∣−p̊(k)k−1q∗` − b(k)k−1,`∣∣ . ‖A‖u (96)

and ∣∣−p̊(k)k q∗` − b
(k)
k,`

∣∣ . ‖A‖u, (97)

for all ` = k + 1, k + 2, . . . , n. It is not difficult to show (see (87)) that

|p̊(k)k−1 − p̂
(k)
k−1| .

(√
|p̂ (k+1)
k−1 |

2
+ |p̂ (k+1)

k |
2)

u (98)

and

|p̊(k)k − p̂
(k)
k | .

(√
|p̂ (k+1)
k−1 |

2
+ |p̂ (k+1)

k |
2)

u, (99)

from which it follows that

|p̊(k)k−1q
∗
` − p̂

(k)
k−1q

∗
` | .

(√
|p̂ (k+1)
k−1 q∗` |

2
+ |p̂ (k+1)

k q∗` |
2)

u . ‖A‖u (100)

and

|p̊(k)k q∗` − p̂
(k)
k q∗` | .

(√
|p̂ (k+1)
k−1 q∗` |

2
+ |p̂ (k+1)

k q∗` |
2)

u . ‖A‖u, (101)
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for all ` = k + 1, k + 2, . . . , n, where the second inequality follows from (93) and (94).

Finally, combining (96), (97), (100), and (101), we find that |−p̂ (k)
k−1q

∗
` − b

(k)
k−1,`| . ‖A‖u

and |−p̂ (k)
k q∗` − b

(k)
k,` | . ‖A‖u, for all ` = k + 1, k + 2, . . . , n, and we are done.

�

The following lemma bounds the forward error of Algorithm 2 (the rotation back to
Hessenberg form).

Lemma 4.2. Suppose that B ∈ Cn×n and p, q ∈ Cn. Suppose further that B + pq∗ is
lower triangular, and let d and γ denote the diagonal and subdiagonal of B, respectively.
Suppose that Q2, Q3, . . . , Qn ∈ SU(2), and suppose that Algorithm 2 is carried out in
floating point arithmetic, using d, γ, p, q, and Q2, Q3, . . . , Qn as inputs. Suppose finally
that d̂, β̂, and q̂ are the outputs generated by Algorithm 2, and define the upper triangular

part of the matrix Â ∈ Cn×n by the formula

âi,j =


−piq̂ ∗j if j > i+ 1,

β̂
i

if j = i+ 1,

d̂i if j = i,

(102)

where âi,j denotes the (i, j)-th entry of Â. Let Uk ∈ Cn×n, k = 2, 3, . . . , n, denote
the matrices that rotate the (k − 1, k)-plane by Qk. Define U ∈ Cn×n by the formula
U = U2U3 · · ·Un, and let A = BU∗ and q = Uq. Then

‖Â−A‖T . ‖B‖Hu (103)

and

‖q̂ − q‖ . ‖q‖u, (104)

where ‖·‖T denotes the square root of the sum of squares of the entries in the upper
triangular part of its argument and ‖·‖H denotes the square root of the sum of squares of
the upper Hessenberg part (see Definition 2.1).

Proof. Suppose that d̂ (k), β̂ (k), and q̂ (k) denote the computed vectors in Algorithm 2
after rotations in the positions (n− 1, n), (n− 2, n− 1), . . . , (k − 1, k). Suppose further
that the upper triangular part of the matrix Â(k) ∈ Cn×n is defined by the formula

â
(k)
i,j =


−piq̂ (k)∗j if j > i+ 1 or if j = i+ 1 and j < k,

β̂
(k)
i if j = i+ 1 and j ≥ k,
d̂

(k)
i if j = i,

(105)

where â
(k)
i,j denotes the (i, j)-th entry of Â(k). Clearly, d̂ = d̂ (2), β̂ = β̂(2), q̂ = q̂ (2), and

Â = Â(2). Let A(k) = BU∗nU
∗
n−1 · · ·U∗k and q(k) = UkUk+1 · · ·Unq. We will prove that

‖Â(k) −A(k)‖T . ‖B‖Hu and ‖q̂ (k) − q(k)‖ . ‖q‖u, for each k = n, n− 1, . . . , 2.

Define d̂ (n+1) = d, q̂ (n+1) = q, q(n+1) = q, and A(n+1) = B. Obviously, Â(n+1) =
A(n+1) and q̂ (n+1) = q(n+1), so the above statement is true for k = n+ 1. We will prove
it for the cases k = n, n− 1, . . . , 2 by induction. In Line 2, we have[

d̂
(k)
k−1
β̂

(k)
k−1

]
= fl

(
Q̂k

[
d̂

(k+1)
k−1

−pk−1q̂
(k+1)∗
k

])
. (106)
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By the induction hypothesis, |d̂ (k+1)
k−1 − a(k+1)

k−1,k−1| . ‖B‖Hu and |−pk−1q̂
(k+1)∗
k − a(k+1)

k−1,k| .
‖B‖Hu. Since, by Lemma 2.3, ‖A(k+1)‖T ≤ ‖B‖H , an application of Lemma 2.5 gives us

|d̂ (k)
k−1 − a

(k)
k−1,k−1| . ‖B‖Hu and |−pk−1q̂

(k)∗
k − a(k)k−1,k| . ‖B‖Hu. In Line 3, we have

d̂
(k)
k = fl

(
Q̂k

[
γk−1

d̂
(k+1)
k

])
2

. (107)

We first observe that

γk−1 = bk,k−1 = (BU∗nU
∗
n−1 · · ·U∗k+1)k,k−1 = a

(k+1)
k,k−1, (108)

since right multiplication by U∗j only affects columns j and j − 1. Since, by the induction

hypothesis, |d̂ (k+1)
k − a(k+1)

k,k | . ‖B‖Hu, an application of Lemma 2.5 together with the

inequality ‖A(k+1)‖T ≤ ‖B‖H gives us |d̂ (k)
k − a(k)k,k| . ‖B‖Hu. In Line 4,[

q̂
(k)
k−1
q̂
(k)
k

]
= fl

(
Q̂k

[
q̂
(k+1)
k−1
q̂
(k+1)
k

])
. (109)

By the induction hypothesis, |q̂ (k+1)
k−1 − q(k+1)

k−1 | . ‖q‖u and |q̂ (k+1)
k − q(k+1)

k | . ‖q‖u, so it

follows from Lemma 2.5 that |q̂ (k)k−1 − q
(k)
k−1| . ‖q‖u and |q̂ (k)k − q(k)k | . ‖q‖u.

All that’s left now is to prove that |−p`q̂
(k)∗
k−1 − a

(k)
`,k−1| . ‖B‖Hu and |−p`q̂

(k)∗
k − a(k)`,k | .

‖B‖Hu, for all for all ` = 1, 2, . . . , k − 2. By the induction hypothesis,

|−p`q̂
(k+1)∗
k−1 − a(k+1)

`,k−1 | . ‖B‖Hu (110)

and

|−p`q̂
(k+1)∗
k − a(k+1)

`,k | . ‖B‖Hu, (111)

for all ` = 1, 2, . . . , k − 2. Define q̊
(k)
k−1 and q̊

(k)
k by[

q̊
(k)
k−1
q̊
(k)
k

]
= Qk

[
q̂
(k+1)
k−1
q̂
(k+1)
k

]
. (112)

Multiplying (112) by p∗` , we have[
q̊
(k)
k−1p

∗
`

q̊
(k)
k p∗`

]
= Qk

[
q̂
(k+1)
k−1 p∗`
q̂
(k+1)
k p∗`

]
, (113)

which, combined with (110) and (111) and the fact that ‖A(k+1)‖T ≤ ‖B‖H , means that∣∣−p`q̊(k)∗k−1 − a
(k)
`,k−1

∣∣ . ‖B‖Hu (114)

and ∣∣−p`q̊(k)∗k − a(k)`,k
∣∣ . ‖B‖Hu, (115)
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for all ` = 1, 2, . . . , k − 2. By Lemma 2.5,

|̊q(k)k−1 − q̂
(k)
k−1| .

(√
|q̂ (k+1)
k−1 |

2
+ |q̂ (k+1)

k |
2)

u (116)

and

|̊q(k)k − q̂
(k)
k | .

(√
|q̂ (k+1)
k−1 |

2
+ |q̂ (k+1)

k |
2)

u, (117)

from which it follows that

|̊q(k)k−1p
∗
` − q̂

(k)
k−1p

∗
` | .

(√
|q̂ (k+1)
k−1 p∗` |

2
+ |q̂ (k+1)

k p∗` |
2)

u . ‖B‖Hu (118)

and

|̊q(k)k p∗` − q̂
(k)
k p∗` | .

(√
|q̂ (k+1)
k−1 p∗` |

2
+ |q̂ (k+1)

k p∗` |
2)

u . ‖B‖Hu, (119)

for all ` = 1, 2, . . . , k − 2, where the second inequality follows from (110) and (111) and
the inequality ‖A(k+1)‖T ≤ ‖B‖H . Finally, combining (114), (115), (118), and (119),

we find that |−p`q̂
(k)∗
k−1 − a

(k)
`,k−1| . ‖B‖Hu and |−p`q̂

(k)∗
k − a(k)`,k | . ‖B‖Hu, for all for all

` = 1, 2, . . . , k − 2, and we are done.
�

The following theorem bounds the forward errors of a full sweep of our QR algorithm,
and is the principal result of this subsection.

Theorem 4.3. Suppose that A ∈ Cn×n is a Hermitian matrix, that p, q ∈ Cn, and that
A+ pq∗ is lower Hessenberg. Let d and β denote the diagonal and superdiagonal of A,
respectively. Suppose that Algorithm 1 is carried out in floating point arithmetic, and let
Q2, Q3, . . . , Qn ∈ SU(2) be the unitary matrices generated by an exact step of Line 4 of
Algorithm 1 applied to the computed vectors at that step. Let Uk ∈ Cn×n, k = 2, 3, . . . , n,
denote the matrices that rotate the (k − 1, k)-plane by Qk, and define U ∈ Cn×n by the
formula U = U2U3 · · ·Un. Suppose that Algorithm 2 is then carried out in floating point
arithmetic, using the outputs of Algorithm 1 as inputs. Suppose finally that p̂ is an output

of Algorithm 1 and q̂, d̂, and β̂ are all outputs of Algorithm 2, and define the matrix Â
by the formula

âi,j =



−p̂
i
q̂∗
j

if j > i+ 1

β̂
i

if j = i+ 1

d̂i if j = i

(β̂
j
) if j = i− 1

−q̂
j
p̂∗
i

if j < i− 1

(120)

where âi,j denotes the (i, j)-th entry of Â. Let A = UAU∗, p = Up, and q = Uq. Then

‖Â−A‖ . ‖A‖u, (121)

29



‖p̂− p‖ . ‖p‖u, (122)

and

‖q̂ − q‖ . ‖q‖u. (123)

Proof. Suppose that B̂ (defined by (47)), p̂, and Q̂2, Q̂3, . . . , Q̂n ∈ Cn×n are outputs of
Algorithm 1. Let B = UA and p = Up. By Lemma 4.1,

‖B̂ −B‖H . ‖A‖u (124)

and

‖p̂− p‖ . ‖p‖u, (125)

where ‖·‖H denotes the square root of the sum of squares of the entries in the upper

Hessenberg part of its argument (see Definition 2.1). Now suppose that B̂, p̂, q, and

Q̂2, Q̂3, . . . , Q̂n ∈ Cn×n are used as inputs to Algorithm 2. Let Ûk ∈ Cn×n, k = 2, 3, . . . , n,
denote the matrices that rotate the (k − 1, k)-plane by Q̂k, and define Û ∈ Cn×n by
the formula Û = Û2Û3 · · · Ûn. Let A˜ = B̂Û∗ and q˜ = Ûq, and observe that the upper
triangular part of A˜ is well-defined due to Lemma 2.3. By Lemma 4.2 we have that

‖Â−A˜‖T . ‖B̂‖Hu (126)

and

‖q̂ − q˜‖ . ‖q‖u, (127)

where ‖·‖T denotes the square root of the sum of squares of the entries in the upper
triangular part of its argument and ‖·‖H denotes the square root of the sum of squares of
the upper Hessenberg part (see Definition 2.1). Let A = BU∗ = UAU∗ and let q = Uq.
We observe that

‖A˜ −A‖T = ‖B̂Û∗ −BU∗‖T
≤ ‖B̂Û∗ −BÛ∗‖T + ‖BÛ∗ −BU∗‖T
= ‖(B̂ −B)Û∗‖T + ‖B(Û∗ − U∗)‖T
. ‖A‖u, (128)

where the last inequality follows from (124) and the fact that ‖Û − U‖ . u. Since, clearly,
‖B̂‖Hu . ‖A‖u, we combine (126) and (128) to get

‖Â−A‖T . ‖A‖u. (129)

Now we observe that, since both A = UAU∗ and Â are Hermitian,

‖Â−A‖ . ‖A‖u. (130)
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Next, we observe that

‖q˜− q‖ = ‖Ûq − Uq‖

= ‖(Û − U)q‖
. ‖q‖u, (131)

so, combining (127) and (131), we have

‖q̂ − q‖ . ‖q‖u, (132)

and we are done.
�

4.2 Backward Error Analysis of the QR Algorithms

Suppose that A is Hermitian and A+pq∗ is lower Hessenberg. In this section, we prove in
Theorems 4.6 and 4.7 that the backward errors in A, p, and q of both our explicit unshifted
QR algorithm (see Algorithm 3) and explicit shifted QR algorithm (see Algorithm 4) are
proportional to ‖A‖u, ‖p‖u, and ‖q‖u, respectively.

The following lemma states that a single iteration of our QR algorithm is component-
wise backward stable.

Lemma 4.4. Suppose that A ∈ Cn×n is a Hermitian matrix, that p, q ∈ Cn, and that
A+ pq∗ is lower Hessenberg. Let d and β denote the diagonal and superdiagonal of A,
respectively. Suppose that a single iteration of our QR algorithm (Algorithm 1 followed by
Algorithm 2) is carried out in floating point arithmetic, and let p̂, q̂, d̂, and β̂ denote the

outputs of the algorithm. Define the matrix Â by the formula (120). Then there exists a
unitary matrix U ∈ Cn×n, a matrix δA ∈ Cn×n, and vectors δp, δq ∈ Cn, such that

Â = U(A+ δA)U∗, (133)

p̂ = U(p+ δp), (134)

and

q̂ = U(q + δq), (135)

where ‖δA‖ . ‖A‖u, ‖δp‖ . ‖p‖u, and ‖δq‖ . ‖q‖u.

Proof. Let U ∈ Cn×n be the unitary matrix defined in the statement of Theorem 4.3,
and let A = UAU∗, p = Up, and q = Uq. By Theorem 4.3,

Â = A+ δA, (136)

where ‖δA‖ . ‖A‖u. Thus,

Â = UAU∗ + δA = U(A+ δA)U∗, (137)
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where δA = U∗δAU . Since U is unitary, clearly ‖δA‖ . ‖A‖u. Likewise, by Theorem 4.3,

p̂ = p+ δp, (138)

where ‖δp‖ . ‖p‖u, so

p̂ = U(p+ δp), (139)

where δp = U∗δp and ‖δp‖ . ‖p‖u. Similarly,

q̂ = U(q + δq), (140)

where ‖δq‖ . ‖q‖u.
�

The following lemma states that repeated iterations of our QR algorithm are compo-
nentwise backward stable.

Lemma 4.5. Suppose that A ∈ Cn×n is a Hermitian matrix, that p, q ∈ Cn, and that
A+ pq∗ is lower Hessenberg. Let d and β denote the diagonal and superdiagonal of A,
respectively. Suppose that k iterations of our QR algorithm (Algorithm 1 followed by
Algorithm 2) are carried out in floating point arithmetic, and let p̂ (k), q̂ (k), d̂ (k), and
β̂(k) denote the outputs of the algorithm. Define the matrix Â(k) by the formula (120),
making the obvious substitutions. Then there exists a unitary matrix U ∈ Cn×n, a matrix
δA ∈ Cn×n, and vectors δp, δq ∈ Cn, such that

Â(k) = U(A+ δA)U∗, (141)

p̂ (k) = U(p+ δp), (142)

and

q̂ (k) = U(q + δq), (143)

where ‖δA‖ . ‖A‖u, ‖δp‖ . ‖p‖u, and ‖δq‖ . ‖q‖u.

Proof. We will prove this statement only for the matrix Â(k), since the proofs for p̂ (k) and
q̂ (k) are essentially identical. By repeated application of Lemma 4.4, we know that there
exist unitary matrices U (1), U (2), . . . , U (k) and matrices δA(0), δÂ(1), δÂ(2), . . . , δÂ(k−1)

such that

Â(k) = U (k)(Â(k−1) + δÂ(k−1))U (k)∗, (144)

Â(k−1) = U (k−1)(Â(k−2) + δÂ(k−2))U (k−1)∗, (145)

...

Â(2) = U (2)(Â(1) + δÂ(1))U (2)∗, (146)

Â(1) = U (1)(A+ δA(0))U (1)∗, (147)
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where ‖δA(0)‖ . ‖A‖u and ‖δÂ(`)‖ . ‖A‖u, for ` = 1, 2, . . . , k−1. Combining (144)–(147)
and expanding, we find that

Â(k) = U (k)U (k−1) · · ·U (1)AU (1)∗U (2)∗ · · ·U (k)∗ + U (k)δÂ(k−1)U (k)∗

+ U (k)U (k−1)δÂ(k−2)U (k−1)∗U (k)∗ + · · ·
+ U (k)U (k−1) · · ·U (1)δA(0)U (1)∗ · · ·U (k−1)∗U (k)∗. (148)

Letting U = U (k)U (k−1) · · ·U (1), this becomes

Â(k) = UAU∗ + U (k)δÂ(k−1)U (k)∗

+ U (k)U (k−1)δÂ(k−2)U (k−1)∗U (k)∗ + · · ·
+ U (k)U (k−1) · · ·U (1)δA(0)U (1)∗ · · ·U (k−1)∗U (k)∗. (149)

Suppose now that the matrix δA is defined by

δA = U∗
(
U (k)δÂ(k−1)U (k)∗ + U (k)U (k−1)δÂ(k−2)U (k−1)∗U (k)∗ + · · ·

+ U (k)U (k−1) · · ·U (1)δA(0)U (1)∗ · · ·U (k−1)∗U (k)∗)U. (150)

Clearly, ‖δA‖ . ‖A‖u. Combining (149) and (150), we have

Â(k) = U(A+ δA)U∗, (151)

and we are done.
�

The following theorem states that our explicit unshifted QR algorithm is component-
wise backward stable.

Theorem 4.6 (Explicit unshifted QR). Suppose that A ∈ Cn×n is a Hermitian matrix,
that p, q ∈ Cn, and that A+ pq∗ is lower Hessenberg. Let d and β denote the diagonal
and superdiagonal of A, respectively. Suppose that Algorithm 3 is carried out in floating
point arithmetic with ε . ‖A‖u, and let λ̂1, λ̂2, . . . , λ̂n denote the outputs. Then there
exist a matrix δA ∈ Cn×n and vectors δp, δq ∈ Cn such that λ̂1, λ̂2, . . . , λ̂n are the exact
eigenvalues of the matrix

(A+ δA) + (p+ δp)(q + δq)∗, (152)

where ‖δA‖ . ‖A‖u, ‖δp‖ . ‖p‖u, and ‖δq‖ . ‖q‖u.

Proof. Suppose that we carry out QR iterations until the entry in the (1, 2) position is
less than ε in absolute value. Let d̂ (1), β̂(1)†, p̂ (1), and q̂ (1) denote the resulting outputs,
and let Â(1)† be the resulting matrix, defined by formula (120) (making the obvious
substitutions). By Lemma 4.5, there exist a unitary matrix U (1) ∈ Cn×n, a matrix
δA(0)† ∈ Cn×n, and vectors δp(0), δq(0) ∈ Cn such that

Â(1)† = U (1)(A+ δA(0)†)U (1)∗, (153)

p̂ (1) = U (1)(p+ δp(0)), (154)
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and

q̂ (1) = U (1)(q + δq(0)), (155)

where ‖δA(0)†‖ . ‖A‖u, ‖δp(0)‖ . ‖p‖u, and ‖δq(0)‖ . ‖q‖u. Let Â(1) be equal to

Â(1)†, except that the entry in the (1, 2) position of Â(1) is equal to −p̂ (1)
1 q̂

(1)∗
2 , so that

Â
(1)
1,2 + p̂

(1)
1 q̂

(1)∗
2 = 0. Since |Â(1)†

1,2 + p̂
(1)
1 q̂

(1)∗
2 | < ε, we have

‖Â(1)† − Â(1)‖F < ε, (156)

where ‖·‖F denotes the Frobenius norm, and since ε . ‖A‖u,

‖Â(1)† − Â(1)‖ . ‖A‖u. (157)

Letting

δA(0) = δA(0)† + U (1)∗(Â(1) − Â(1)†)U (1) (158)

and combining (153) and (158), we have

Â(1) = U (1)(A+ δA(0))U (1)∗, (159)

where ‖δA(0)‖ . ‖A‖u by (157). Clearly, since Â
(1)
1,2 + p̂

(1)
1 q̂

(1)∗
2 = 0 and Â(1) + p̂ (1)q̂ (1)∗

is lower Hessenberg, λ̂1 = Â
(1)
1,1 + p̂

(1)
1 q̂

(1)∗
1 is an eigenvalue of Â(1) + p̂ (1)q̂ (1)∗. Thus,

from (154), (155), and (159), we see that λ̂1 is an eigenvalue of (A+δA(0))+(p+δp(0))(q+
δq(0))∗.

Now suppose that we deflate the matrix, and perform QR iterations on the submatrix

Â
(1)
2:n,2:n + p̂

(1)
2:n q̂

(1)∗
2:n , until the entry in the (1, 2) position of the deflated matrix is less than

ε. Let d̂˜(2) ∈ Cn−1, β̂˜(2)† ∈ Cn−2, p̂˜(2) ∈ Cn−1, and q̂˜(2) ∈ Cn−1 denote the resulting

outputs, and let Â˜ (2)† ∈ C(n−1)×(n−1) be the resulting matrix, defined by formula (120)
(again making the obvious substitutions). By Lemma 4.5, there exist a unitary matrix
U˜ (2) ∈ C(n−1)×(n−1), a matrix δÂ˜ (1)† ∈ C(n−1)×(n−1), and vectors δp̂˜(1), δq̂˜(1) ∈ Cn−1such that

Â˜ (2)† = U˜ (2)(Â
(1)
2:n,2:n + δÂ˜ (1)†)U˜ (2)∗, (160)

p̂˜ (2) = U (2)(p̂
(1)
2:n + δp̂˜(1)), (161)

and

q̂˜ (2) = U (2)(q̂
(1)
2:n + δq̂˜(1)), (162)

where ‖δÂ˜ (1)†‖ . ‖A‖u, ‖δp̂˜(1)‖ . ‖p‖u, and ‖δq̂˜(1)‖ . ‖q‖u. Like before, let Â˜ (2) ∈
C(n−1)×(n−1) be equal to Â˜ (2)†, except that the entry in the (1, 2) position of Â˜ (2) is equal

to −p̂˜(2)1
q̂˜(2)∗2

, so that Â˜ (2)1,2
+ p̂˜(2)1

q̂˜(2)∗2
= 0. Since |Â˜ (2)†1,2

+ p̂˜(2)1
q̂˜(2)∗2
| < ε, we have

‖Â˜ (2)† − Â˜ (2)‖F < ε, (163)
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where ‖·‖F denotes the Frobenius norm, and since ε . ‖A‖u,

‖Â˜ (2)† − Â˜ (2)‖ . ‖A‖u. (164)

Letting

δÂ˜ (1) = δÂ˜ (1)† + U˜ (2)∗(Â˜ (2) − Â˜ (2)†)U˜ (2), (165)

we have

Â˜ (2) = U˜ (2)(Â
(1)
2:n,2:n + δÂ˜ (1))U˜ (2)∗, (166)

where ‖δÂ˜ (1)‖ . ‖A‖u. Since Â˜ (2)1,2
+ p̂˜(1)1

q̂˜(1)∗2
= 0 and Â˜ (2) + p̂˜(2)q̂˜(2)∗ is lower Hessenberg,

λ̂2 = Â˜ (2)1,1
+ p̂˜(2)1

q̂˜(2)∗1
is an eigenvalue of Â˜ (2) + p̂˜(2)q̂˜(2)∗. Now define the unitary matrix

U (2) ∈ Cn×n by the formula

U (2) =


1 0 · · · 0

0

U˜ (2)...
0

 , (167)

the matrix δÂ(1) ∈ Cn×n by

δÂ(1) =


0 0 · · · 0

0

δÂ˜ (1)...
0

 , (168)

and the vectors δp̂(1), δq̂(1) ∈ Cn, by

δp̂ (1) =

[
0

δp̂˜(1)
]
, (169)

and

δq̂ (1) =

[
0

δq̂˜(1)
]
. (170)

Clearly, ‖δA(1)‖ . ‖A‖u, ‖δp̂ (1)‖ . ‖p‖u, and ‖δq̂ (1)‖ . ‖q‖u. Let Â(2) ∈ Cn×n be
defined by

Â(2) = U (2)(Â(1) + δA(1))U (2)∗, (171)

and p̂ (2), q̂ (2) ∈ Cn by

p̂ (2) = U (2)(p̂ (1) + δp̂ (1)), (172)
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and

q̂ (2) = U (2)(q̂ (1) + δq̂ (1)). (173)

We first notice that Â
(2)
1,` + p̂

(2)
1 q̂

(2)∗
` = 0 for ` = 2, 3, . . . , n. Next, we observe that

Â
(2)
1,1 + p̂

(2)
1 q̂

(2)∗
1 = Â

(1)
1,1 + p̂

(1)
1 q̂

(1)∗
1 = λ̂1; therefore, λ̂1 is an eigenvalue of Â(2) + p̂ (2)q̂ (2)∗.

We then observe that (Â(2) + p̂ (2)q̂ (2)∗)2:n,2:n = Â˜ (2) + p̂˜(2)q̂˜(2)∗; therefore, λ̂2 is an

eigenvalue of Â(2) + p̂ (2)q̂ (2)∗. Finally, letting U = U (2)U (1) and substituting (154), (155),
and (159) into (171)–(173) and expanding, it is straightforward to show that there exist
matrices δA ∈ Cn×n and vectors δp, δq ∈ Cn such that

Â(2) + p̂ (2)q̂ (2)∗ = U(A+ δA)U∗ + U(p+ δp)(q + δq)∗U∗, (174)

where ‖δA‖ . ‖A‖u, ‖δp‖ . ‖p‖u, and ‖δq‖ . ‖q‖u. Therefore, λ̂1 and λ̂2 are eigenvalues
of the matrix

(A+ δA) + (p+ δp)(q + δq), (175)

where ‖δA‖ . ‖A‖u, ‖δp‖ . ‖p‖u, and ‖δq‖ . ‖q‖u. The same proof can be repeated
inductively to show this for all λ̂1, λ̂2, . . . , λ̂n.

�

The following theorem states that our explicit shifted QR algorithm is componentwise
backward stable, for those eigenvalues for which the shifts are small.

Theorem 4.7 (Explicit shifted QR). Suppose that A ∈ Cn×n is a Hermitian matrix,
that p, q ∈ Cn, and that A+ pq∗ is lower Hessenberg. Let d and β denote the diagonal
and superdiagonal of A, respectively. Suppose that Algorithm 4 is carried out in floating
point arithmetic with ε . ‖A‖u, and suppose that µ(`) is the largest total shift encountered
at any point during the course of the algorithm from i = 1, 2, . . . , ` in the outer loop.
Let λ̂1, λ̂2, . . . , λ̂n denote the outputs of the algorithm. Then, for each ` = 1, 2, . . . , n,
there exist a matrix δA ∈ Cn×n and vectors δp, δq ∈ Cn such that λ̂1, λ̂2, . . . , λ̂` are exact
eigenvalues of the matrix

(A+ δA) + (p+ δp)(q + δq)∗, (176)

where ‖δA‖ . (‖A‖+ |µ(`)|)u, ‖δp‖ . ‖p‖u, and ‖δq‖ . ‖q‖u.

Proof. The proof is essentially identical to the proof of Theorem 4.6, and we omit it. �

Remark 4.1. Notice that Theorems 4.6 and 4.7 do not make any mention of convergence.
What they say is that, if the algorithm converges, then it is componentwise backward
stable. We observe that, in practice, Algorithm 4 always converges rapidly, at least
quadratically, for ε ≈ ‖A‖u.

Remark 4.2. Notice that the bound on δA in Theorem 4.7 involves µ(`), which is the
largest total shift encountered at any point during the calculation of λ̂1, λ̂2, . . . , λ̂`. While
this bound appears weaker than the corresponding bound in Theorem 4.6, in practice it
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turns out to be essentially the same, as follows. We can always assume that A is much
smaller than p, or q, or both; if this isn’t the case, then componentwise stability no
longer has any special meaning, since it follows immediately from the usual Bauer-Fike
perturbation bounds (see [7]). Furthermore, we tend to be interested in the componentwise
backward stability of small eigenvalues λ̂i, where |λ̂i| ≈ ‖A‖. If we perform a few iterations
of unshifted QR on the matrix, then the eigenvalues of the top-left 2×2 block will approach
the two smallest eigenvalues of the matrix (recalling that our QR algorithm works with
lower Hessenberg matrices). If we now use Algorithm 4, we’ll find that the initial shift is
small and, as a result, all the eigenvalues are computed roughly in order from smallest
to largest. This means that |µ(i)| ≈ |λ̂i| and (approximately) λ̂1 < λ̂2 < · · · < λ̂i. For
λ̂i such that |λ̂i| ≈ ‖A‖, we have then that the bound ‖δA‖ . (‖A‖+ |µ(i)|)u becomes
‖δA‖ . ‖A‖u. Finally, we point out that the dependence of the bound on µ(`) could
likely be removed entirely by reformulating our QR algorithm as an implicit method.

5 Numerical Results

In this section, we demonstrate the componentwise backward stability of our shifted QR
algorithm (see Algorithm 4) by illustrating its stability when it is used as a rootfinding
algorithm (see Sections 2.3 and 2.4). Consider a polynomial p(x) of order n, not necessarily
monic, expressed in a Chebyshev polynomial basis

p(x) =
n∑
j=0

ajTj(x), (177)

where aj ∈ R and Tj(x) is the Chebyshev polynomial of order j. By Theorem 2.7 and
Remark 2.1, we have that if the eigenvalues of the linearization (17), where cj = aj/an,
j = 0, 1, . . . , n, are computed by a componentwise backward stable algorithm, then the
computed roots x̂1, x̂2, . . . , x̂n are the exact roots of the perturbed polynomial

p(x) + δp(x) =
n∑
j=0

(aj + δaj)Tj(x), (178)

where

‖δa‖
‖a‖

. u. (179)

By applying our QR algorithm to linearizations of various polynomials p(x), we demon-
strate our algorithm’s componentwise backward stability by showing that the bound (179)
always holds.

We estimate the size of the backward error δa in the coefficients by using the following
observation (see the discussion accompanying Table 1 in [26]). By the definition of
p(x) + δp(x), we have that (p+ δp)(x̂i) = 0 for i = 1, 2, . . . , n. From (177) and (178), it
follows that

p(x̂i) = p(x̂i)− (p+ δp)(x̂i) = −
n∑
j=0

δajTj(x̂j). (180)
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Since −1 ≤ Tj(x) ≤ 1 for all j when x ∈ [−1, 1], we have

p(x̂i) ≈ ‖δa‖, (181)

whenever x̂i ∈ C is not too far from the interval [−1, 1].
Even though x̂i is already a floating point number, the value p(x̂i) cannot be computed

exactly in floating point arithmetic. Letting p̂(x̂i) denote the approximation to p(x̂i)
computed in floating point arithmetic, we know that

p̂(x̂i) ≈ p(x̂i) + κ(p; x̂i)u, (182)

where

κ(p; x̂i) = |x̂i||p′(x̂i)| (183)

is the absolute condition number of p(x) at x = x̂i. When κ(p; x̂i) is large, the error in
evaluating p(x̂i) dominates, while when κ(p; x̂i) is of modest size, we have p̂(x̂i) ≈ p(x̂i).
In this section, we investigate the quantity

η(p; x̂i) =
p̂(x̂i)

max(κ(p; x̂i), ‖a‖)
, (184)

for various polynomials p(x). When κ(p; x̂i) ≥ ‖a‖, we have

|η(p; x̂i)| =
|p̂(x̂i)|
κ(p; x̂i)

≈ |p(x̂i)|
κ(p; x̂i)

+ u ≤ |p(x̂i)|
‖a‖

+ u. (185)

When κ(p; x̂i) ≤ ‖a‖,

|η(p; x̂i)| =
|p̂(x̂i)|
‖a‖

≈ |p(x̂i)|
‖a‖

+
κ(p; x̂i)

‖a‖
u ≤ |p(x̂i)|

‖a‖
+ u. (186)

Thus, if our QR algorithm is indeed componentwise backward stable and (179) is satisfied,
then, by (181), we expect to find that

η(p; x̂i) ≈ u, (187)

for all polynomials p(x).
For p(x̂i) to be a good approximation to ‖δa‖ (see (181)), we stated that x̂i ∈ C

should be “not too far from the interval [−1, 1].” We make this notion precise as follows.
Let zi, i = 1, 2, . . . , n denote the exact roots of the order-n polynomial p(x), and let ẑi
denote the computed roots. We select roots close to the interval [−1, 1] by choosing some
δ > 0 (for example, δ = 10−3), and letting x̂i ∈ R denote the real part of all roots ẑi that
are inside the rectangle

{z ∈ C : 1− δ < Re(z) < 1 + δ,−δ < Im(z) < δ}. (188)

If the polynomial p(x) has the real root zi, then taking the real part of ẑi will not result
in any additional error. The number of real roots inside the region (188) will often be
less than the order n, and we denote the number of such roots by nroots.
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In our numerical experiments, we compute the eigenvalues of the colleague matrix using
three different algorithms: our Algorithm 4; MATLAB’s eig function; and MATLAB’s
eig function with balancing turned off (using the option ’nobalance’), which we call
eig nb. For our experiments in extended (quadruple) precision, we use the Advanpix
Multiprecision Computing Toolbox and its implementation of eig (see [1]). Since the
Advanpix Multiprecision Computing Toolbox’s eig function always balances the matrix,
and does not support the ’nobalance’ option, we omit the test of eig nb in extended
precision.

For each example, we report the degree of the underlying polynomial, the order n of
the Chebyshev expansion used to approximate it, the size of the vector c in the Euclidean
norm, the Frobenius norm of the completely balanced colleague matrix, which we denote
by bal(C), the number nroots of computed roots inside the region (188) for the given
value of δ > 0, the size maxi |zi| of the largest complex root of the colleague matrix, and
the value of maxi |η(p; x̂i)|, where the maximum is taken over all of the real parts of the
computed roots inside the region (188).

We implemented our algorithm in FORTRAN 77, and compiled it using Lahey/Fujitsu
Fortran 95 Express, Release L6.20e. For the timing experiments, the Fortran codes were
compiled using the Intel Fortran Compiler, version 19.0.2.187, with the -fast flag. The
MATLAB experiments were performed using MATLAB R2019b, version 9.7.0.1190202,
and the extended precision MATLAB experiments were performed in quadruple precision
(mp.Digits(34)) using the Advanpix Multiprecision Computing Toolbox, version 4.8.0,
Build 14100. All experiments we conducted on a ThinkPad laptop, with 16GB of RAM
and an Intel Core i7-8550U CPU.

5.1 prand(x): Polynomials with Random Coefficients

Following [14], we construct polynomials prand(x) by sampling Chebyshev expansion
coefficients ai independently from a standard normal distribution, so that ai ∼ N(0, 1),
for i = 0, 1, . . . , n− 1. Then, we choose the desired value of ‖c‖ by setting an = ‖a‖/‖c‖,
so that the vector of coefficients c appearing in the colleague matrix (17), where ci = ai/an
for i = 1, 2, . . . , n, has the specified norm. For this example, we choose n = 30 and set
δ = 10−5 to extract the real roots (see formula (188)).

We report the results in Figure 3. We see that our algorithm shows the expected
backward stability over the entire range of ‖c‖, while MATLAB’s eig, both balanced
and unbalanced, shows the expected growth with ‖c‖ (see the discussion in Section 2.4).
Interestingly, for this example, balancing appears to only improve the error by an order
of magnitude or two, while leaving the growth in the error with respect to ‖c‖ unchanged.
This turns out be completely consistent the following explanation. Balancing the colleague

matrix can reduce the magnitude of the all elements from ‖c‖ to ‖c‖
1
2 , except for the

element in the (n, n)-position, which balancing cannot change. In this example, all of the
elements of the vector c are around the same size as ‖c‖, so there are n large elements in
the colleague matrix. Thus, balancing reduces the number of large elements of size ‖c‖
from n to 1, resulting in an n-fold reduction in the norm of the matrix. In this example,
n = 30, which corresponds well with the approximately 30-fold reduction in error due to
balancing that we observe in Figure 3.

We found that the colleague matrix has a single large eigenvalue of the size ‖c‖, and
the rest of the eigenvalues are small. This is not surprising, since there is an entry of size
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Figure 3: The values of maxi |η(p; x̂i)| for various values of ‖c‖, in double precision (left)
and quadruple precision (right), for the polynomials prand(x) of order n = 30, computed
by our algorithm, eig, and eig nb, with δ = 10−5. The values are indicated for our
algorithm with purple crosses (+), for eig with green x’s (×), and for eig nb with blue
stars (?).

‖c‖ is the (n, n)-position of the matrix (from which it follows that Cen ≈ ‖c‖en). Thus,
for all three algorithms, maxi |ẑi| ≈ ‖c‖.

5.2 pwilk(x): Wilkinson’s Polynomial

Here we consider the famous Wilkinson polynomial, normalized so that all of its roots
are inside the interval [−1, 1], defined by the formula

pwilk(x) =

m∏
i=1

(
x−

( 2i

m+ 1
− 1
))
. (189)

We construct an order-n Chebyshev expansion of this degree-m polynomial, sampling
it at n Chebshev points and applying a linear transformation to obtain the expansion
coefficients (see [36]). We then compute the eigenvalues of the colleague matrix, and
set δ = 10−3 to extract the real roots (see formula (188)). The results of our numerical
experiment are shown in Tables 1 and 2. We observe that our algorithm is backward
stable, while eig loses accuracy whenever the roots of the colleague matrix are large.
Plots of the real and complex roots of the order-100 Chebyshev expansion are shown
for various degrees of pwilk(x) in Figure 4. When the order of the Wilkinson polynomial
becomes large, spurious real roots begin appearing in the middle of the interval [−1, 1].
It turns out that the roots computed by our algorithm are still backward stable, even
in this situation; the function is so small near the middle of the interval that a small
relative perturbation in the Chebyshev coefficients causes additional roots to appear.

Remark 5.1. The remarkable stability of eig for many of the examples in Tables 1 and 2
is explained by the following observation. The colleague matrix is the sum of a tridiagonal
matrix and a matrix that is all zeros except for the last row, which is essentially equal
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Figure 4: The roots of the Chebyshev expansion of order 100 of the Wilkinson polynomial
pwilk(x), of various degrees, computed by our algorithm. The complex roots ẑi are
plotted with purple crosses (+) and the real roots x̂i are plotted with blue stars (?).
The Wilkinson polynomial has, in order from top to bottom, orders 24, 34, 44, and 54.
Observe that the spurious complex roots are well-separated from the interval [−1, 1] when
the order is low, but eventually meet the interval when the order is large.

to the coefficient vector c (see formula (17)). When there are large elements of c near
the tail of the vector, the corresponding large entries in the colleague matrix cannot be
balanced away, since they are very close to the diagonal of the matrix. On the other
hand, when all of the elements of c near the tail of the vector are relatively small, and the
large elements of c appear near the head of the vector, these large elements can be easily
balanced away, since they are far from the diagonal, and the corresponding elements
on the other side of the diagonal are all zero. The coefficient vector c is usually large
only because the last coefficient of the corresponding non-monic Chebyshev expansion is
small. If the function being approximated by this non-monic Chebyshev expansion has
been adequately represented, then taking additional terms in the expansion will result in
corresponding expansion coefficients which are all machine epsilon in size. Thus, adding
terms to the Chebyshev expansion has the effect of adding elements of size approximately
one to the tail of the coefficient vector c; if enough such elements are added, then all
the large elements of c will be closer to the head of the vector, and can be balanced
away. We also observe that, not unexpectedly, the size of the largest eigenvalue of the
colleague matrix is approximately the same size as the norm of the colleague matrix
after balancing. Thus, if enough terms are taken in a Chebyshev expansion, all of the
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eig Algorithm 4
Degree n ‖c‖ ‖bal(C)‖ maxi |zi| nroots maxi |η(p; x̂i)| nroots maxi |η(p; x̂i)|

14 100 0.45 · 1014 0.32 · 102 0.11 · 101 14 0.16 · 10−13 14 0.71 · 10−14

24 24 0.95 · 104 0.65 · 101 0.92 · 100 24 0.15 · 10−14 24 0.32 · 10−14

25 0.66 · 1015 0.35 · 1011 0.35 · 1011 14† 0.11 · 10−4 24 0.19 · 10−14

26 0.22 · 1015 0.11 · 106 0.76 · 105 24 0.51 · 10−10 24 0.24 · 10−14

27 0.40 · 1016 0.66 · 104 0.38 · 104 24 0.90 · 10−12 24 0.19 · 10−14

28 0.12 · 1015 0.37 · 103 0.17 · 103 24 0.58 · 10−13 24 0.14 · 10−14

100 0.38 · 1014 0.24 · 102 0.11 · 101 24 0.10 · 10−13 24 0.24 · 10−14

34 100 0.34 · 1014 0.17 · 102 0.11 · 101 34 0.14 · 10−13 34 0.12 · 10−13

44 100 0.32 · 1014 0.16 · 102 0.11 · 101 44 0.53 · 10−13 44 0.41 · 10−14

54 100 0.30 · 1014 0.16 · 102 0.11 · 101 60 0.15 · 10−13 60 0.28 · 10−13

Table 1: The results of computing the roots of the Wilkinson polynomial pwilk(x), using
our algorithm and eig, with δ = 10−3. †The error was so large here that some roots were
outside of the region (188).

eig Algorithm 4
Degree n ‖c‖ ‖bal(C)‖ maxi |zi| nroots maxi |η(p; x̂i)| nroots maxi |η(p; x̂i)|

14 100 0.12 · 1034 0.38 · 103 0.14 · 101 14 0.22 · 10−31 14 0.15 · 10−32

24 24 0.95 · 104 0.65 · 101 0.92 · 100 24 0.44 · 10−32 24 0.66 · 10−33

25 0.95 · 1033 0.50 · 1029 0.50 · 1029 12† 0.29 · 10−4 24 0.78 · 10−32

26 0.16 · 1033 0.94 · 1014 0.66 · 1014 24 0.11 · 10−19 24 0.18 · 10−32

27 0.11 · 1036 0.22 · 1011 0.11 · 1011 24 0.55 · 10−23 24 0.76 · 10−32

28 0.22 · 1033 0.13 · 108 0.62 · 107 24 0.34 · 10−27 24 0.28 · 10−32

100 0.94 · 1033 0.29 · 103 0.14 · 101 24 0.53 · 10−31 24 0.37 · 10−32

34 100 0.70 · 1033 0.26 · 103 0.15 · 101 34 0.21 · 10−31 34 0.68 · 10−32

44 100 0.53 · 1033 0.23 · 103 0.16 · 101 44 0.54 · 10−32 44 0.40 · 10−32

54 100 0.42 · 1033 0.16 · 103 0.18 · 101 54 0.28 · 10−31 54 0.73 · 10−32

Table 2: The results of computing the roots of the Wilkinson polynomial pwilk(x) in
extended precision, using our algorithm and eig, with δ = 10−3. †The error was so large
here that some roots were outside of the region (188).

eigenvalues of the colleague matrix will eventually be small. All of this indicates that,
provided enough terms are taken, a dense eigensolver combined with balancing can
result in a backward stable rootfinding algorithm. Of course, we note that balancing
the colleague matrix destroys the Hermitian plus rank-1 structure, which bars the use of
structured QR algorithms depending on this property.

5.3 fsin(x): A Smooth Function

Here we construct an order-n Chebyshev expansion of the smooth function

fsin(x) = sin(2 + 20(x+ 0.222)2). (190)

Since fsin(x) is analytic, its expansion coefficients decay exponentially. When i ≥ 80, the
coefficients ai are around 10−14 in size (see Figure 5). If the coefficients are computed
in extended precision, then, when i ≥ 125, the coefficients ai are around 10−34 in size.
Since the function is approximated accurately by a Chebyshev expansion, its roots can
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be computed from the corresponding colleague matrix (see, for example, [12] for a nice
discussion). The results of our numerical experiment are shown in Tables 3 and 4. Plots of
the real and complex roots of the order-100 Chebyshev expansion are shown in Figure 6.
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i

10-13
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|ai|

Figure 5: The function fsin(x), shown on the left, and the magnitude of its Chebyshev
expansion coefficients ai, shown on the right.

eig Algorithm 4
n ‖c‖ ‖bal(C)‖ maxi |zi| nroots maxi |η(p; x̂i)| nroots maxi |η(p; x̂i)|
80 0.89 · 1015 0.16 · 102 0.29 · 101 14 0.74 · 10−14 14 0.10 · 10−13

100 0.14 · 1015 0.14 · 102 0.11 · 101 14 0.84 · 10−14 14 0.26 · 10−13

Table 3: The results of computing the roots of the Chebyshev expansion of the function
fsin(x), using our algorithm and eig, with δ = 10−3.

eig Algorithm 4
n ‖c‖ ‖bal(C)‖ maxi |zi| nroots maxi |η(p; x̂i)| nroots maxi |η(p; x̂i)|

125 0.92 · 1033 0.30 · 102 0.25 · 101 14 0.53 · 10−32 14 0.50 · 10−31

200 0.49 · 1032 0.29 · 102 0.11 · 101 14 0.12 · 10−31 14 0.60 · 10−31

Table 4: The results of computing the roots of the Chebyshev expansion of the function
fsin(x) in extended precision, using our algorithm and eig, with δ = 10−3.

5.4 pmult(x): A Polynomial with Multiple Roots

Here we construct an order n Chebyshev expansion of the degree m polynomial

fmult(x) = (x+ 1
2)(x+ 1

3)(x+ 0.61)(x− 0.121)
m−4∏
i=1

(x− (1− 10−3)). (191)

This polynomial has four simple roots on the interval [−1, 1], and a root of multiplicity
(m− 4) at the point 1− 10−3 (see Figure 7). The results of our numerical experiments
are shown in Tables 5 and 6. We observe that, in double precision, when the multiplicity
of the root is greater than or equal to 5, not all real roots are found. This is because
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Figure 6: The roots of the Chebyshev expansion of order 100 of the function fsin(x).
The complex roots ẑi are plotted with purple crosses (+) and the real roots x̂i are plotted
with blue stars (?).

the error in these roots is approximately equal to ε
1
5 , and when ε ≈ 10−14, we have that

ε
1
5 ≈ 1.6 · 10−3; when δ = 10−3, this means that some of these roots can be outside

the region (188). Likewise, since when ε ≈ 10−34, ε
1
12 ≈ 1.4 · 10−3, it follows that in

extended precision, real roots are missed when their multiplicity is greater than or equal
to approximately 12. See the excellent discussion in [13] for more details.
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Figure 7: The polynomial pmult(x) of order 7 on the left, and order 9 on the right. The
roots are indicated with blue stars (?).

5.5 pyuji(x): A Pathological Example from [26]

Here we consider the order-8 polynomial

pyuji(x) =
8∑
i=0

aiTi(x), (192)

where the coefficient vector a is given by

a =
(
− 1

10 − 1
10 − 1

10 − 1
10 − 1

10 − 1
10 10−10 1 10−15

)
, (193)

described in §6.1 of [26] (in [26], the authors set the last element of the coefficient vector
to 10−20; we set it close to machine epsilon instead). Observe that the entry in the
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eig Algorithm 4
Degree n ‖c‖ ‖bal(C)‖ maxi |zi| nroots maxi |η(p; x̂i)| nroots maxi |η(p; x̂i)|

7 100 0.10 · 1015 0.38 · 102 0.11 · 101 7 0.82 · 10−14 7 0.14 · 10−14

8 8 0.12 · 103 0.50 · 101 0.10 · 101 8 0.59 · 10−15 8 0.93 · 10−15

9 0.54 · 1015 0.22 · 1013 0.22 · 1013 5† 0.33 · 10−4 8 0.11 · 10−14

10 0.61 · 1015 0.16 · 107 0.11 · 107 6† 0.14 · 10−9 8 0.88 · 10−15

11 0.79 · 1015 0.17 · 105 0.93 · 104 8 0.20 · 10−11 8 0.83 · 10−15

100 0.99 · 1014 0.32 · 102 0.11 · 101 8 0.64 · 10−14 8 0.26 · 10−15

9 100 0.97 · 1014 0.32 · 102 0.11 · 101 8� 0.99 · 10−14 8� 0.88 · 10−14

10 100 0.96 · 1014 0.26 · 102 0.11 · 101 8� 0.73 · 10−15 8� 0.38 · 10−15

13 100 0.92 · 1014 0.22 · 102 0.11 · 101 12� 0.12 · 10−14 12� 0.88 · 10−15

Table 5: The results of computing the roots of the polynomial pmult(x), using our
algorithm and eig, with δ = 10−3. †The error was so large here that some roots were
outside of the region (188). �The multiplicity of the rightmost root was so large here that
some roots were outside of the region (188).

eig Algorithm 4
Degree n ‖c‖ ‖bal(C)‖ maxi |zi| nroots maxi |η(p; x̂i)| nroots maxi |η(p; x̂i)|

10 100 0.69 · 1033 0.29 · 103 0.13 · 101 10 0.94 · 10−32 10 0.51 · 10−33

11 11 0.75 · 104 0.98 · 101 0.10 · 101 11 0.76 · 10−33 11 0.12 · 10−32

12 0.16 · 1034 0.11 · 1030 0.11 · 1030 6† 0.28 · 10−5 11 0.95 · 10−33

13 0.37 · 1034 0.53 · 1015 0.35 · 1015 7† 0.63 · 10−19 11 0.66 · 10−33

14 0.25 · 1034 0.68 · 1010 0.35 · 1010 11 0.51 · 10−25 11 0.37 · 10−33

100 0.70 · 1033 0.37 · 103 0.13 · 101 11 0.11 · 10−31 11 0.15 · 10−32

12 100 0.71 · 1033 0.29 · 103 0.13 · 101 12 0.20 · 10−31 12 0.81 · 10−33

13 100 0.72 · 1033 0.30 · 103 0.13 · 101 13 0.17 · 10−31 13 0.11 · 10−32

14 100 0.72 · 1033 0.28 · 103 0.13 · 101 14 0.24 · 10−31 14 0.12 · 10−32

15 100 0.73 · 1033 0.28 · 103 0.13 · 101 9� 0.21 · 10−31 11� 0.21 · 10−31

Table 6: The results of computing the roots of the polynomial pmult(x) in extended
precision, using our algorithm and eig, with δ = 10−3. †The error was so large here that
some roots were outside of the region (188). �The multiplicity of the rightmost root was
so large here that some roots were outside of the region (188).

bottom right corner of the corresponding colleague matrix is around 1015 in size. This
polynomial has seven real roots on the interval [−1, 1], and a single large imaginary root.
We report the results of our numerical experiment in Table 7. Clearly, eig struggles
to produce any accuracy at all, while our algorithm returns all the roots to machine
precision.

5.6 fcas(x): A Pathological Example from [14]

Here we consider the order-n Chebyshev expansion of the smooth function

fcas(x) = sin
( 1

x2 + 10−2

)
, (194)

described in [14]. The first 1430 Chebyshev expansion coefficients of fcas(x) are shown in
Figure 8. This function is highly oscillatory, and requires a Chebyshev expansion of order
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eig Algorithm 4
Degree n ‖c‖ ‖bal(C)‖ maxi |zi| nroots maxi |η(p; x̂i)| nroots maxi |η(p; x̂i)|

8 8 0.10 · 1016 0.50 · 1015 0.50 · 1015 7 0.21 · 10−1 7 0.77 · 10−14

Table 7: The results of computing the roots of the polynomial pyuji(x), using our
algorithm and eig, with δ = 10−3.

at least 1430 to resolve it. Our numerical experiments are shown in Table 8. Plots of the
real and complex roots of the order-1600 Chebyshev expansion are shown in Figure 9.
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Figure 8: The magnitudes of the first 1430 Chebyshev expansion coefficients of fcas(x).

eig Algorithm 4
n ‖c‖ ‖bal(C)‖ maxi |zi| nroots maxi |η(p; x̂i)| nroots maxi |η(p; x̂i)|

1430 0.16 · 1014 0.39 · 102 0.10 · 101 62 0.25 · 10−13 62 0.98 · 10−12

Table 8: The results of computing the roots of the Chebyshev expansion of the function
fcas(x), using our algorithm and eig, with δ = 10−4.

5.7 CPU Times

The CPU times of our algorithm are compared to the times of MATLAB’s eig in Figure 10.
These timing experiments were performed on polynomials with random, independent,
normally distributed Chebyshev expansion coefficients, with the last coefficient chosen so
that the vector c has the desired norm (see Section 5.1). We found that the CPU times
do not depend on ‖c‖, so we report the results only for ‖c‖ = 2. We observe that our
algorithm is strictly faster than eig, even for small inputs, except perhaps for n = 7, for
which our algorithm and eig cost about the same. The growth in CPU times taken by
our algorithm agrees nicely with the expected asymptotic cost of O(n2), while eig shows
a growth of O(n3).
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Figure 9: The roots of the Chebyshev expansion of order 1600 of the function fcas(x).
The complex roots ẑi are plotted with purple crosses (+) and the real roots x̂i are plotted
with blue stars (?).
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Figure 10: The CPU times of our algorithm, plotted with purple crosses (+), and the
CPU times of eig, plotted with green x’s (×), for various values of n, where n is the
dimensionality of the colleague matrix.

6 Conclusions and Generalizations

In this report, we describe an explicit, O(n2) structured QR algorithm for colleague
matrices (more generally, for Hessenberg matrices that are the sum of a Hermitian matrix
and a rank-1 matrix), and prove that it is componentwise backward stable. These results
can be generalized in several directions, of which we describe four. First, the algorithm
can be modified in a fairly straightforward way to work on Hessenberg matrices that
are the sum of a Hermitian matrix and a rank-k perturbation (as opposed to a rank-1
perturbation). Like in the rank-1 case, most of the entries in the Hermitian part are
inferred from the low rank part, except that they are inferred from a rank-k matrix
instead of a rank-1 matrix. The QR iteration proceeds similarly, the main difference
being that the correction in Line 12 of Algorithm 1 becomes a correction to a row of an
n× k matrix.

Second, the extension of this algorithm to an implicit, O(n2) structured QR algorithm
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that is also componentwise backward stable is fairly straightforward. The key observation
of this report (that, to maintain componentwise error bounds, a correction must be
applied to the rank-1 part whenever an entry of the matrix is eliminated) can be applied
to a bulge-chasing algorithm where the matrix is similarly represented by generators.

Third, we observe that this algorithm can be used to accelerate the calculation of
eigenvalues of general matrices, not necessarily in Hessenberg form, that are representable
as the sum of a Hermitian matrix and a rank-1 (or rank-k) matrix. Such matrices can be
quickly reduced to Hessenberg form in O(n3) operations, and once they are in Hessenberg
form, our O(n2) algorithm can be used to compute the eigenvalues. Thus, the cost of the
algorithm is dominated by the reduction to Hessenberg form, which will have a much
smaller constant than the standard algorithm for the evaluation of the eigenvalues of the
original dense matrix. Furthermore, if the reduction to Hessenberg form can be done in a
componentwise backward stable fashion, then this scheme results in a componentwise
backward stable eigensolver for general matrices of the form Hermitian plus rank-1 (or
rank-k).

Fourth, we observe that our algorithm can be used to find the roots of polynomials
expressed in other bases besides Chebyshev polynomials. It was observed in [5] that,
given any orthogonal polynomial basis that satisfies a three-term recurrence relation,
and given a polynomial expressed in that basis, it is possible to construct an analogue
of the colleague matrix from the expansion coefficients. This matrix is a Hessenberg
matrix that is the sum of a (not necessarily symmetric) tridiagonal matrix and a rank-1
matrix; matrices of this form are called comrade matrices. For all classical orthogonal
polynomials, the tridiagonal part can made symmetric by balancing, without making any
entries of the matrix much larger or much smaller. Our algorithm can then be applied to
this new matrix, which is a Hessenberg matrix that is the sum of a symmetric tridiagonal
matrix and a rank-1 matrix.
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