Exploiting Procedural Domain Control Knowledge in State-of-the-Art Planners
(extended version)

Jorge A. Baier Christian Fritz Sheila A. McIlraith
Department of Computer Science, University of Toronto,
Toronto, ON M5S 3G4, CANADA
{jabaier,fritz,shelia}@cs.toronto.edu

Abstract
Domain control knowledge (DCK) has proven effective in improving the efficiency of plan generation by reducing the search space for a plan. Procedural DCK is a compelling type of DCK that supports a natural specification of the skeleton of a plan. Unfortunately, most state-of-the-art planners do not have the machinery necessary to exploit procedural DCK. To resolve this deficiency, we propose to compile procedural DCK directly into PDDL2.1, thus enabling any PDDL2.1-compatible planner to exploit it. The contribution of this paper is threefold. First, we propose a PDDL-based semantics for an Algol-like, procedural language that can be used to specify DCK in planning. Second, we provide a polynomial algorithm that translates an ADL planning instance and a DCK program, into an equivalent, program-free PDDL2.1 instance whose plans are only those that adhere to the program. Third, we argue that the resulting planning instance is well-suited to being solved by domain-independent heuristic planners. To this end, we propose three approaches to computing domain-independent heuristics for our translated instances, sometimes leveraging properties of our translation to guide search. In our experiments on familiar PDDL planning benchmarks we show that the proposed compilation of procedural DCK can significantly speed up the performance of a heuristic search planner. Our translators are implemented and available on the web.

Introduction
Domain control knowledge (DCK) imposes domain-specific constraints on the definition of a valid plan. As such, it can be used to impose restrictions on the course of action that achieves the goal. While DCK sometimes reflects a user’s desire to achieve the goal a particular way, it is most often constructed to aid in plan generation by reducing the plan search space. Moreover, if well-crafted, DCK can eliminate those parts of the search space that necessitate back-tracking. In such cases, DCK together with blind search can yield valid plans significantly faster than state-of-the-art (SOA) planners that do not exploit DCK. Indeed most planners that exploit DCK, such as TLPLAN (Bacchus & Kabanza 1998) or TALPanner (Kvarnström & Doherty 2000), do little more than blind depth-first search with cycle checking in a DCK-pruned search space. Since most DCK reduces the search space but still requires a planner to backtrack to find a valid plan, it should prove beneficial to exploit better search techniques. In this paper we explore ways in which SOA planning techniques and existing SOA planners can be used in conjunction with DCK, with particular focus on procedural DCK.

As a simple example of DCK, consider the trucks domain of the 5th International Planning Competition, where the goal is to deliver packages between certain locations using a limited capacity truck. When a package reaches its destination it must be delivered to the customer. We can write simple and natural procedural DCK that significantly improves the efficiency of plan generation for instance: Repeat the following until all packages have been delivered: Unload everything from the truck, and, if there is any package in the current location whose destination is the current location, deliver it. After that, if any of the local packages have destinations elsewhere, load them on the truck while there is space. Drive to the destination of any of the loaded packages. If there are no packages loaded on the truck, but there remain packages at locations other than their destinations, drive to one of these locations.

Procedural DCK (as used in HTN (Nau et al. 1999) or Golog (Levesque et al. 1997)) is action-centric. It is much like a programming language, and often times like a plan skeleton or template. It can (conditionally) constrain the order in which domain actions should appear in a plan. In order to exploit it for planning, we require a procedural DCK specification language. To this end, we propose a language based on GOLOG that includes typical programming languages constructs such as conditionals and iteration as well as nondeterministic choice of actions in places where control is not germane. We argue that these action-centric constructs provide a natural language for specifying DCK for planning. We contrast them with DCK specifications based on linear temporal logic (LTL) which are state-centric and though still of tremendous value, arguably provide a less natural way to specify DCK. We specify the syntax for our language as well as a PDDL-based semantics following Fox & Long (2003).

With a well-defined procedural DCK language in hand, we examine how to use SOA planning techniques together with DCK. Of course, most SOA planners are unable to exploit DCK. As such, we present an algorithm that translates a PDDL2.1-specified ADL planning instance and associated procedural DCK into an equivalent, program-free PDDL2.1 instance whose plans provably adhere to the DCK.
Any PDDL2.1-compliant planner can take such a planning instance as input to their planner, generating a plan that adheres to the DCK.

Since they were not designed for this purpose, existing SOA planners may not exploit techniques that optimally leverage the DCK embedded in the planning instance. As such, we investigate how SOA planning techniques, rather than planners, can be used in conjunction with our compiled DCK planning instances. In particular, we propose domain-independent search heuristics for planning with our newly-generated planning instances. We examine three different approaches to generating heuristics, and evaluate them on three domains of the 5th International Planning Competition. Our results show that procedural DCK improves the performance of SOA planners, and that our heuristics are sometimes key to achieving good performance.

Background
A Subset of PDDL 2.1

A planning instance is a pair \(I = (D, P) \), where \(D \) is a domain definition and \(P \) is a problem. To simplify notation, we assume that \(D \) and \(P \) are described in an ADL subset of PDDL. The difference between this ADL subset and PDDL 2.1 is that no concurrent or durative actions are allowed.

Following convention, domains are tuples of finite sets \((PF, Ops, Obj_s, D, P)\), where \(PF \) defines domain predicates and functions, \(Ops \) defines operators, \(Obj_s \) contains domain objects, \(D \) is a set of types, and \(P \) is a type relation associating objects to types. An operator (or action schema) is also a tuple \((O(x), O\text{f}(x), Eff(x))\), where \(O(x) \) is the unique operator name and \(x = (x_1, \ldots, x_n) \) is a vector of variables. Furthermore, \(t = (t_1, \ldots, t_n) \) is a vector of types. Each variable \(x_i \) ranges over objects associated with type \(t_i \). Moreover, \(Prec(x) \) is a boolean formula with quantifiers (BFQ) that specifies the operator’s preconditions. BFQs are defined inductively as follows. Atomic BFQs are either of the form \(t_1 = t_2 \) or \(R(t_1, \ldots, t_n) \), where \(t_i (i \in \{1, \ldots, n\}) \) is a term (i.e., either a variable, a function literal, or an object), and \(R \) is a predicate symbol. If \(\varphi \) is a BFQ, then so is \(Q.t \varphi \) for a variable \(t \), a type symbol \(Q \in \{\exists, \forall\} \). BFQs are also formed by applying standard boolean operators over other BFQs. Finally \(Eff(x) \) is a list of conditional effects, each of which can be in one of the following forms:

\[
\forall y_1 t_1 \cdots \forall y_n t_n, \varphi(x, \vec{y}) \Rightarrow R(\vec{x}, \vec{y}), \\
\forall y_1 t_1 \cdots \forall y_n t_n, \varphi(x, \vec{y}) \Rightarrow \neg R(\vec{x}, \vec{y}), \\
\forall y_1 t_1 \cdots \forall y_n t_n, \varphi(x, \vec{y}) \Rightarrow f(\vec{x}, \vec{y}) = obj,
\]

where \(\varphi \) is a BFQ whose only free variables are among \(\vec{x} \) and \(\vec{y} \). \(R \) is a predicate, \(f \) is a function, and \(\text{obj} \) is a function. After performing a ground operator or action \(O(\vec{c}) \) in a certain state \(s \), for all tuples of objects that may instantiate \(\vec{y} \) such that \(\varphi(\vec{c}, \vec{y}) \) holds in \(s \), effect (1) (resp. (2)) expresses that \(R(\vec{c}, \vec{y}) \) becomes true (resp. false), and effect (3) expresses that \(f(\vec{c}, \vec{y}) \) takes the value \(\text{obj} \). As usual, states are represented as finite sets of atoms (ground formulae of the form \(R(\vec{c}) \) or of the form \(f(\vec{c}) = \text{obj} \)).

Planning problems are tuples \((\text{Init}, \text{Goal}, \text{Obj}_s, \tau_p)\), where \(\text{Init} \) is the initial state, \(\text{Goal} \) is a sentence with quantifiers for the goal, and \(\text{Obj}_s \) and \(\tau_p \) are defined analogously as for domains.

Semantics: Fox & Long (2003) have given a formal semantics for PDDL 2.1. In particular, they define when a sentence is true in a state and what state trace is the result of performing a set of timed actions. A state trace intuitively corresponds to an execution trace, and the sets of timed actions are ultimately used to refer to plans. In the ADL subset of PDDL 2.1, since there are no concurrent or durative actions, time does not play any role. Hence, state traces reduce to sequences of states and sets of timed actions reduce to sequences of actions.

Building on Fox and Long’s semantics, we assume that \(s \models \varphi \) holds when sentence \(\varphi \) is true in state \(s \). Moreover, for a planning instance \(I \), we assume there exists a relation \(\text{Succ} \) such that \(\text{Succ}(s, a, s') \) iff \(s' \) results from performing an executable action \(a \) in \(s \). Finally, a sequence of actions \(a_1 \cdots a_n \) is a plan for \(I \) if there exists a sequence of states \(s_0 \cdots s_n \) such that \(s_0 = \text{Init}, \text{Succ}(s_i, a_{i+1}, s_{i+1}) \) for \(i \in \{0, \ldots, n-1\} \), and \(s_n \models \text{Goal} \).

Domain-Independent Heuristics for Planning

In sections to follow, we investigate how procedural DCK integrates into SOA domain-independent planners. Domain-independent heuristics are key to the performance of these planners. Among the best known heuristic-search planners are those that compute their heuristic by solving a relaxed STRIPS planning instance (e.g., as done in HSP (Bonet & Geffner 2001) and FF (Hoffmann & Nebel 2001) planners).

Such a relaxation corresponds to solving the same planning problem but on an instance that ignores deletes (i.e., ignores negative effects of actions).

For example, the FF heuristics for a state \(s \) is computed by expanding a relaxed planning graph (Hoffmann & Nebel 2001) from \(s \). We can view this graph as composed of relaxed states. A relaxed state at depth \(n + 1 \) is generated by adding all the effects of actions that can be performed in the relaxed state of depth \(n \), and then by copying all facts that appear in layer \(n \). The graph is expanded until the goal or a fixed point is reached. The heuristic value for \(s \) corresponds to the number of actions in a relaxed plan for the goal, which can be extracted in polynomial time.

Both FF-like heuristics and HSP-like heuristics can be computed for (more expressive) ADL planning problems.

A Language for Procedural Control

In contrast to state-centric languages, that often use LTL-like logical formulae to specify properties of the states traversed during plan execution, procedural DCK specification languages are predominantly action-centric, defining a plan template or skeleton that dictates actions to be used at various stages of the plan.

Procedural control is specified via programs rather than logical expressions. The specification language for these programs incorporates desirable elements from imperative programming languages such as iteration and conditional constructs. However, to make the language more suitable to planning applications, it also incorporates nondeterministic
constructs. These elements are key to writing flexible control since they allow programs to contain missing or open program segments, which are filled in by a planner at the time of plan generation. Finally, our language also incorporates property testing, achieved through so-called test actions. These actions are not real actions, in the sense that they do not change the state of the world, rather they can be used to specify properties of the states traversed while executing the plan. By using test actions, our programs can also specify properties of executions similarly to state-centric specification languages.

The rest of this section describes the syntax and semantics of the procedural DCK specification language we propose to use. We conclude this section by formally defining what it means to plan under the control of such programs.

Syntax

The language we propose is based on GOLOG (Levesque et al. 1997), a robot programming language developed by the cognitive robotics community. In contrast to GOLOG, our language supports specification of types for program variables, but does not support procedures.

Programs are constructed using the implicit language for actions and boolean formulae defined by a particular planning instance I. Additionally, a program may refer to variables drawn from a set of program variables V. This set V will contain variables that are used for nondeterministic choices of arguments. In what follows, we assume \mathcal{O} denotes the set of operator names from Ops, fully instantiated with objects defined in I or elements of V.

The set of programs over a planning instance I and a set of program variables V can be defined by induction. In what follows, assume ϕ is a boolean formula with quantifiers on the language of I, possibly including terms in the set of program variables V. Atomic programs are as follows.

1. nil: Represents the empty program.
2. s: Is a single operator instance, where $s \in \mathcal{O}$.
3. any: A keyword denoting “any action”.
4. σ: A test action.
5. $\sigma_1; \sigma_2$: A sequence of programs.
6. $\sigma_1; \sigma_2$: A conditional sentence.
7. $\text{while } \phi \text{ do } \sigma$: A while-loop.
8. σ^*: A nondeterministic iteration.
9. $(\sigma_1; \sigma_2)$: Nondeterministic choice between two programs.
10. $\pi(x\in \sigma)$: Nondeterministic choice of variable $x \in V$ of type $\tau \in T$.

Before we formally define the semantics of the language, we show some examples that give a sense of the language’s expressiveness and semantics.

- **while $\neg\text{clear}(B)$ do $\pi(b\text{-block}) \text{ putOnTable}(b)$**: While B is not clear choose any b of type block and put it on the table.
- **any*; $\text{loaded}(A, \text{Truck})$?**: Perform any sequence of actions until A is loaded in Truck. Plans under this control are such that $\text{loaded}(A, \text{Truck})$ holds in the final state.
- **$(\text{load}(C, P); \text{fly}(P, LA) \mid \text{load}(C, T); \text{drive}(T, LA))$**: Either load C on the plane P or on the truck T, and perform the right action to move the vehicle to LA.

Semantics

The problem of planning for an instance I under the control of program σ corresponds to finding a plan for I that is also an execution of σ from the initial state. In the rest of this section we define what those legal executions are. Intuitively, we define a formal device to check whether a sequence of actions σ corresponds to the execution of a program σ. The device we use is a nondeterministic finite state automaton with ε-transitions (ε-NFA).

For the sake of readability, we remind the reader that ε-NFAs are like standard nondeterministic automata except that they can transition without reading any input symbol, through the so-called ε-transitions. ε-transitions are usually defined over a state of the automaton and a special symbol ε, denoting the empty symbol.

An ε-NFA $A_{\varepsilon,I}$ is defined for each program σ and each planning instance I. Its alphabet is the set of operator names, instantiated by objects of I. Its states are program configurations which have the form (σ, s), where σ is a program and s is a planning state. Intuitively, as it reads a word of actions, it keeps track, within its state (σ, s), of the part of the program that remains to be executed, σ, as well as the current planning state after performing the actions it has read already, s.

Formally, $A_{\varepsilon,I} = (Q, A, \delta, q_0, F)$, where Q is the set of program configurations, the alphabet A is a set of domain actions, the transition function is $\delta : Q \times (A \cup \{\varepsilon\}) \rightarrow 2^Q$, $q_0 = (\sigma, \text{Init})$, and F is the set of final states. The transition function δ is defined as follows for atomic programs.

$\delta([s, a], a) = \{[\text{nil}, s']\} \text{ iff } \text{Succ}(s, a, s'), \text{ s.t. } a \in A. \quad (4)$

$\delta([\text{any}, s], a) = \{[\text{nil}, s']\} \text{ iff } \text{Succ}(s, a, s'), \text{ s.t. } a \in A. \quad (5)$

$\delta(\phi?, s, \varepsilon) = \{[\text{nil}, s] \mid s \models \phi\}. \quad (6)$

Equations 4 and 5 dictate that actions in programs change the state according to the Succ relation. Finally, Eq. 6 defines transitions for $\phi?$ when ϕ is a sentence (i.e., a formula with no program variables). It expresses that a transition can only be carried out if the plan state so far satisfies ϕ.

Now we define δ for non-atomic programs. In the definitions below, assume that $a \in A \cup \{\varepsilon\}$, and that σ_1 and σ_2 are subprograms of σ, where occurring elements in V may have been instantiated by any object in the planning instance I.

$\delta(\sigma_1; \sigma_2, a) = \bigcup_{(\sigma_1, a), (\sigma_2, a)} \{[(\sigma_1, \sigma_2), s']\} \text{ if } \sigma_2 \neq \text{nil}. \quad (7)$

$\delta([\text{nil}; \sigma_2, s], a) = \delta([\sigma_2, s], a). \quad (8)$

$\delta([\phi \text{ then } \sigma_1; \sigma_2, s], a) = \begin{cases} \delta([\sigma_1, s], a) \text{ if } s \models \phi, \\ \delta([\sigma_2, s], a) \text{ if } s \not\models \phi. \end{cases} \quad (9)$

$\delta([\sigma_1; \sigma_2, s], a) = \delta([\sigma_1, \sigma_2], a) \cup \delta([\sigma_2, s], a). \quad (10)$

$\delta([\text{while } \phi \text{ do } \sigma_1, s], a) = \begin{cases} \{[\text{nil}, s]\} \text{ if } s \not\models \phi \text{ and } a = \varepsilon, \\ \delta([\sigma_1; \text{while } \phi \text{ do } \sigma_1, s], a) \text{ if } s \models \phi, \\ \delta([\sigma_1, s], a) \text{ if } a \neq \varepsilon \end{cases} \quad (11)$

$\delta([\sigma_1, s], a) = \delta([\sigma_1, s], a) \quad (12)$
Proof.

\[\delta([\sigma_1 \cup \sigma_2], s, \varepsilon) = \delta([\sigma_1, \sigma_2], s, \varepsilon) \cup \{[nil, s]\}, \quad (10)\]
\[\delta((\pi(t) \sigma_1, s), a) = \bigcup_{(o,t) \in \sigma_1 \cup \rho} \delta([\sigma_1 | x/o, s], a). \quad (11)\]

where \(\sigma_1 | x/o\) denotes the program resulting from replacing any occurrence of \(x\) in \(\sigma_1\) by \(o\). For space reasons we only explain two of them. First, a transition on a sequence corresponds to transitioning on its first component first (Eq. 7), unless the first component is already the empty program, in which case we transition on the second component (Eq. 8). On the other hand, a transition of \(\sigma^*_1\) represents two alternatives: executing \(\sigma_1\) at least once, or stopping the execution of \(\sigma^*_1\), with the remaining program nil (Eq. 9, 10).

To end the definition of \(A_{\sigma,I}\), \(Q\) corresponds precisely to the program configurations \([\sigma', s]\) where \(\sigma'\) is either nil or a subprogram of \(\sigma\) such that program variables may have been replaced by objects in \(I\), and \(s\) is any possible planning state. Moreover, \(\delta\) is assumed empty for elements of its domain not explicitly mentioned above. Finally, the set of accepting states is \(F = \{[nil, s] | s\ \text{is any state over } I\}\), i.e., those where no program remains in execution. We can now formally define an execution of a program.

Definition 1 (Execution of a program). A sequence of actions \(a_1 \cdots a_n\) is an execution of \(\sigma\) in \(I\) if \(a_1 \cdots a_n\) is accepted by \(A_{\sigma,I}\).

The following remark illustrates how the automaton transitions in order to accept executions of a program.

Remark 1. Let \(\sigma = (if\ \varphi\ then\ a\ else\ b;\ c)\), and suppose that \(Init\) is the initial state of planning instance \(I\). Assume furthermore that \(a, b,\) and \(c\) are always possible. Then \(A_{\sigma,I}\) accepts \(ac\) if \(Init \models \varphi\).

Proof. Suppose \(q \models_a q'\) denotes that \(A_{\sigma,I}\) can transition from \(q\) to \(q'\) by reading symbol \(a\). Then if \(Init \models \varphi\) observe that \([\sigma, Init] \models_a [nil; c, s_2] \models_e [nil, s_3]\), for some planning states \(s_2\) and \(s_3\).

Now that we have defined those sequences of actions corresponding to the execution of our program, we are ready to define the notion of planning under procedural control.

Definition 2 (Planning under procedural control). A sequence of action \(\vec{a}\) is a plan for instance \(I\) under the control of program \(\sigma\) if \(\vec{a}\) is a plan in \(I\) and is an execution of \(\sigma\) in \(I\).

Compiling Control into the Action Theory

This section describes a translation function that, given a program \(\sigma\) in the DCK language defined above together with a PDDL2.1 domain specification \(D\), outputs a new PDDL2.1 domain specification \(D_p\) and problem specification \(P_p\). The two resulting specifications can then be combined with any problem \(P\) defined over \(D\), creating a new planning instance that embeds the control given by \(\sigma\), i.e. that is such that only action sequences that are executions of \(\sigma\) are possible. This enables any PDDL2.1-compliant planner to exploit search control specified by any program.

To account for the state of execution of program \(\sigma\) and to describe legal transitions in that program, we introduce a few bookkeeping predicates and a few additional actions. Figure 1 graphically illustrates the translation of an exam-

\[1\text{We use } A \cdot B \text{ to denote the concatenation of lists } A \text{ and } B.\]
The inductive definitions for other programs σ are:

\[
C(\text{nil}, n, E) = ([], [], n)
\]

\[
C(O(\vec{t}), n, E) = ([], [(O(\vec{x}), \vec{t}, \text{Prec}_c(\vec{x}), \text{Eff}_c(\vec{x}))], n + 1) \text{ with }
\]

\[
\langle O(\vec{x}), \vec{t}, \text{Prec}_c(\vec{x}), \text{Eff}_c(\vec{x}) \rangle \in \text{Ops, } \vec{t} = r_1, \ldots, r_m,
\]

\[
\text{Prec}_c(\vec{x}) = (\text{state} = s_n \land
\bigwedge_{i \in \text{st}, r_i \in E} \text{bound}(r_i) \Rightarrow \text{map}(r_i, x_i) \land \bigwedge_{i \in \text{st}, r_i \notin E} x_i = r_i),
\]

\[
\text{Eff}_c(\vec{x}) = [\text{state} = s_n \Rightarrow \text{state} = s_{n+1}].
\]

\[
E(x) = [\text{state} = s_n \Rightarrow \text{bound}(x) \land \text{map}(x, x_i)]_{i \in \text{st}, r_i \in E}
\]

\[
C(\phi?, n, E) = (C(\text{test}(n, n + 1, E)), (\text{state} = s_n + 1)
\]

\[
C((\sigma; \sigma_2), n, E) = (L_1 \cdot L_2, L_1', L_2', n_2)
\]

\[
C((\sigma_1 | \sigma_2), n, E) = (L_1 \cdot L_2 \cdot X, L_1' \cdot L_2', n_2 + 1)
\]

\[
C(\text{while} \phi \text{ do } \sigma, n, E) = (L \cdot X, L', n_1 + 1)
\]

\[
C(\text{while} \phi \text{ do } \sigma, n, E) = (L \cdot X, L', n_1 + 1)
\]

\[
C((\text{while} \phi \text{ do } \sigma), n, E) = (L \cdot X, L', n_1 + 1)
\]

\[
C(\pi(x \rightarrow \sigma), n, E) = (L \cdot X, L', n_1 + 1)
\]

\[
C(\pi(x \rightarrow \sigma), n, E) = (L \cdot X, L', n_1 + 1)
\]

\[
\text{state} = s_n + 1,
\]

\[
\text{X} = [\text{Cnoop}(n, n + 1), \text{Cnoop}(n, n + 1), \text{Cnoop}(n, n + 1), \text{Cnoop}(n, n + 1)]
\]

The atomic program any is handled by macro expansion to above defined constructs.

As mentioned above, given program σ, the return value $(L, L', n_{\text{total}})$ of $C(\sigma, 0, [])$ is such that L contains new operators for encoding transitions in the automaton, whereas L' contains restrictions on the applicability of the original operators of the domain. Now we are ready to integrate these new operators and restrictions with the original domain specification D to produce the new domain specification D_{σ}. D_{σ} contains a constrained version of the operators $O(\vec{x})$ of the original domain D also mentioned in L'. Let $[(O(\vec{x}), \vec{t}, \text{Prec}_c(\vec{x}), \text{Eff}_c(\vec{x}))]_{i=1}^n$ be the sublist of L' that contains additional conditions for operator $O(\vec{x})$. The operator replacing $O(\vec{x})$ in D_{σ} is defined as:

\[
\langle O(\vec{x}), \vec{t}, \text{Prec}_c(\vec{x}) \land \bigwedge_{i=1}^n \text{Prec}_c(\vec{x}) \land \bigwedge_{i=1}^n \text{Eff}_c(\vec{x})
\]

Additionally, D_{σ} contains all operator definitions in D. Objects in D_{σ} are the same as those in D, plus a few new ones to represent the program variables and the automaton’s states s_i ($0 \leq i \leq n_{\text{total}}$). D_{σ} inherits all predicates in D plus $\text{bound}(x), \text{map}(x, y)$, and function state.

The translation, up to this point, is problem-independent; the program specification P_{σ} is defined as follows. Given any predefined problem P over D, P_{σ} is like P except that its initial state contains condition $\text{state} = s_0$, and its goal contains $\text{state} = s_{\text{total}}$. Those conditions ensure that the program must be executed to completion.

As is shown below, planning in the generated instance $I_\sigma = (D, P_{\sigma})$ is equivalent to planning for the original instance $I = (D, P)$ under the control of program σ, except that plans on I_σ contain actions that were not part of the original domain definition (test, noop, and free).

Theorem 1 (Correctness). Let $\text{Filter}(\vec{a}, D)$ denote the sequence that remains when removing from \vec{a} any action not defined in D. If \vec{a} is a plan for instance $I_\sigma = (D, P_{\sigma})$ then $\text{Filter}(\vec{a}, D)$ is a plan for $I = (D, P)$ under the control of σ. Conversely, if \vec{a} is a plan for I under the control of σ, there exists a plan \vec{a}' for I_σ such that $\vec{a} = \text{Filter}(\vec{a}', D)$.

Proof. See the appendix.

Now we turn our attention to analyzing the succinctness of the output planning instance relative to the original instance and control program. Assume we define the size of a program as the number of programming constructs and actions it contains. Then we obtain the following result.

Theorem 2 (Succinctness). If σ is a program of size m, and k is the maximal nesting depth of $\pi(x \rightarrow t)$ statements in σ, then $|I_\sigma|$ (the overall size of I_σ) is $O(km)$.

Proof. See the appendix.

The encoding of programs in PDDL2.1 is, hence, in worst case $O(k)$ times bigger than the program itself. It is also easy to show that the translation is done in time linear in the size of the program, since, by definition, every occurrence of a program construct is only dealt with once.

Exploiting DCK in SOA Heuristic Planners

Our objective in translating procedural DCK to PDDL2.1 was to enable any PDDL2.1-compliant SOA planner to seamlessly exploit our DCK. In this section, we investigate ways to best leverage our translated domains using domain-independent heuristic search planners.

There are several compelling reasons for wanting to apply domain-independent heuristic search to these problems. Procedural DCK can take many forms. Often, it will provide explicit actions for some parts of a sequential plan, but not for others. In such cases, it will contain unconstrained fragments (i.e., fragments with nondeterministic choices of actions) where the designer expects the planner to figure out the best choice of actions to realize a sub-task. In the absence of domain-specific guidance in such unconstrained fragments, it is natural to consider using a domain-independent heuristic to guide the search.

In many domains it is very hard to write deterministic procedural DCK, i.e. DCK that restricts the search space in such a way that solutions can be obtained very efficiently, even using blind search. An example of such a domain is one where plans involve solving an optimization sub-problem. In such cases, procedural DCK will contain open parts (fragments of nondeterministic choice within the DCK), where the designer expects the planner to figure out the best way of completing a sub-task. However, in the absence of domain-specific guidance for these open parts, it is natural to consider using a domain-independent heuristic to guide the search.
In other cases, it is the choice of action arguments, rather than the choice of actions that must be optimized. In particular, fragments of DCK may collectively impose global constraints on action argument choices that need to be enforced by the planner. As such, the planner needs to be aware of the procedural control in order to avoid backtracking. By way of illustration, consider a travel planning domain comprising two tasks “buy air ticket” followed by “book hotel”. Each DCK fragment restricts the actions that can be used, but leaves the choice of arguments to the planner. Further suppose that budget is limited. We would like our planner to realize that actions used to complete the first part should save enough money to complete the second task. The ability to do such lookahead can be achieved via domain-independent heuristic search.

In the rest of the section we propose three ways in which one can leverage our translated domains using a domain-independent heuristic planner. These three techniques differ predominantly in the operands they consider in computing heuristics.

Direct Use of Translation (Simple) As the name suggests, a simple way to provide heuristic guidance while enforcing program awareness is to use our translated domain directly with a domain-independent heuristic planner. In short, take the original domain instance \(I \) and control \(\sigma \), and use the resulting instance \(I_w \) with any heuristic planner.

Unfortunately, when exploiting a relaxed graph to compute heuristics, two issues arise. First, since both the \(\text{map} \) and \(\text{bound} \) predicates are relaxed, whatever value is already assigned to a variable, will remain assigned to that variable. This can cause a problem with iterative control. For example, assume program

\[
\sigma_L \triangleq \text{while } \phi \text{ do } \pi(c\text{-crate}) \text{ unload}(c, T),
\]

is intended for a domain where crates can be only unloaded sequentially from a truck. While expanding the relaxed plan, as soon as variable \(c \) is bound to some value, action \(\text{unload} \) can only take that value as argument. This leads the heuristic to regard most instances as unsolvable, returning misleading estimates.

The second issue is one of efficiency. Since fluent \(\text{state} \) is also relaxed, the benefits of the reduced branching factor induced by the programs is lost. This could slow down the computation of the heuristic significantly.

Modified Program Structure (H-ops) The H-ops approach addresses the two issues potentially affecting the computation of the Simple heuristic. It is designed to be used with planners that employ relaxed planning graphs for heuristic computation. The input to the planner in this case is a pair \((I_r, \text{H-ops}) \), where \(I_r = (D_r, P_r) \) is the translated instance, and \(\text{H-ops} \) is an additional set of planning operators. The planner uses the operators in \(D_r \) to generate successor states while searching. However, when computing the heuristic for a state \(s \) it uses the operators in \(\text{H-ops} \).

Additionally, function \(\text{state} \) and predicates \(\text{bound} \) and \(\text{map} \) are not relaxed. This means that when computing the relaxed graph we actually delete their instances from the relaxed states. As usual, \(\text{deletes} \) are processed before \(\text{adds} \). The expansion of the graph is stopped if the goal or a fixed point is reached. Finally, a relaxed plan is extracted in the usual way, and its length is reported as the heuristic value. In the computation of the length, auxiliary actions such as tests and noops are ignored.

The un-relaxing of \(\text{state} \), \(\text{bound} \) and \(\text{map} \) addresses the problem of reflecting the reduced branching factor provided by the control program while computing the heuristics. However, it introduces other problems. Returning to the \(\sigma_L \) program defined above, since \(\text{state} \) is now un-relaxed, the relaxed graph expansion cannot escape from the loop, because under the relaxed planning semantics, as soon as \(\phi \) is true, it remains true forever. A similar issue occurs with the nondeterministic iteration. Furthermore, we want to avoid state duplication, i.e. having \(\text{state} \) equal to two different values at the same time in the same relaxed state. This could happen for example while reaching an if construct whose condition is both true and false at the same time (this can happen because \(p \) and not-\(p \) can both be true in a relaxed state).

This issue is addressed by the HOps operators. To avoid staying in the loop forever, the loop will be exited when actions in it are no longer adding effects. Figure 2 provides a graphical representation. An important detail to note is that the loop is not entered when \(\phi \) is not found true in the relaxed state. (The expression not-\(\phi \) should be understood as negation as failure.) Moreover, the pseudo-fluent \(fp \) is an internal variable of the planner that acts as a real fluent for the HOps. A similar approach is adopted for nondeterministic iterations, whose description we omit here.

Since loops are guaranteed to be exited, the computation of H-ops is guaranteed to finish because at some relaxed state the final state of the automaton will be reached. At this point, if the goal is not true, no operators will be possible and a fixed point will be produced immediately.

For if’s, if the condition is both true and false at the same time, the then part is processed first, followed by the else part. The objective of this is avoidance of state duplication. However, this new interpretation of the if introduces a new problem. This problem occurs when, while performing the actions of one of the parts, no action is possible anymore. Intuitively, this could happen because the heuristics has chosen the wrong subprogram to execute actions from. Indeed, if there exists an execution of the program from state \(s \) that executes the “then” part of the if, it can happen that, during the computation of the heuristic for \(s \), the “else” part forces some actions to occur that are not possible. Under normal circumstances, the non existence of any possible action produces a fixed point. Because the goal is not reached on such a fixed point, the heuristic regards the goal as unreachable, which could be a wrong estimation.

![Figure 2: H-ops translation of while loops](image-url)
Figure 3: \textit{H-ops} translation for if-then-else. Action testesc(\phi) is possible if condition \phi is true. If condition \neg \phi is also true in the relaxed state, the testesc(\phi) does a fact escape_active that will enable the execution of continue and escape_t and escape_e. Actions escape_t and escape_e are possible only when no other actions are possible. This is checked using the pseudo-fluent _fp described in Figure 2. Action exitif is only possible if escape_active is true. Both the noop and the escape_e actions delete the fact escape_active. Nested if constructs are handled using a parameterized version of the escape_active predicate.

To solve this problem, HOps considers new “escape” actions, that are executable only when no more actions are possible. Escapes can be performed only inside “then” or “else” bodies. After executing an escape, the simulation of the program’s execution jumps to the else part if the escape occurs in the “then” part, or to the end of the if, if the escape occurs in the then part. Figure shows a graphical representation of the HOps generated for the if.

A Program-Unaware Approach (Basic) Our program-unaware approach (Basic) completely ignores the program when computing heuristics. Here, the input to the planner is a pair (I_\sigma, Ops), where I_\sigma is the translated instance, and Ops are the \textit{original} domain operators. The Ops operators are used exclusively to compute the heuristic. Hence, Basic’s output is not at all influenced by the control program.

Although Basic is program unaware, it can sometimes provide good estimates, as we see in the following section. This is especially true when the DCK characterizes a solution that would be naturally found by the planner if no control were used. It is also relatively fast to compute.

Implementation and Experiments

Our implementation\footnote{Available at www.cs.toronto.edu/kr/systems} takes a PDDL planning instance and a DCK program and generates a new PDDL planning instance. It will also generate appropriate output for the Basic and H-ops heuristics, which require a different set of operators. Thus, the resulting PDDL instance may contain definitions for operators that are used only for heuristic computation using the :h-action keyword, whose syntax is analogous to the PDDL keyword :action.

Our planner is a modified version of TLPLAN, which does a best-first search using an FF-style heuristic. It is capable of reading the PDDL with extended operators.

We performed our experiments on the \textit{trucks}, \textit{storage} and \textit{rovers} domains (30 instances each). We wrote DCK for these domains. For lack of space, we do not show the DCK in detail, however for trucks we used the control shown as

\begin{table}[h]
\centering
\begin{tabular}{|c|c|c|c|c|}
\hline
\textbf{Trucks} & \textbf{original} & \textbf{Simple} & \textbf{Basic} & \textbf{H-ops} & \textbf{blind} \\
\hline
\#n & 1 & 0.31 & 0.41 & 0.26 & 19.85 \\
\#s & 9 & 1 & 1 & 1 & 3 \\
\ell_{\min} & 1 & 1 & 1 & 1 & 1 \\
\ell_{\max} & 2.13 & 1.03 & 1.05 & 1.21 & 1.53 \\
\ell_{\text{avg}} & 4.59 & 1.2 & 1.7 & 1.7 & 1.24 \\
\hline
\textbf{Rovers} & \textbf{original} & \textbf{Simple} & \textbf{Basic} & \textbf{H-ops} & \textbf{blind} \\
\hline
\#n & 1 & 0.74 & 1.06 & 1.06 & 1.62 \\
\#s & 10 & 19 & 28 & 22 & 30 \\
\ell_{\min} & 1 & 1 & 1 & 1 & 1 \\
\ell_{\max} & 2.13 & 1.03 & 1.05 & 1.21 & 1.53 \\
\ell_{\text{avg}} & 4.59 & 1.2 & 1.7 & 1.7 & 1.24 \\
\hline
\textbf{Storage} & \textbf{original} & \textbf{Simple} & \textbf{Basic} & \textbf{H-ops} & \textbf{blind} \\
\hline
\#n & 1 & 1.2 & 1.13 & 0.76 & 1.45 \\
\#s & 18 & 18 & 20 & 21 & 20 \\
\ell_{\min} & 1 & 1 & 1 & 1 & 1 \\
\ell_{\max} & 2.13 & 1.03 & 1.05 & 1.21 & 1.53 \\
\ell_{\text{avg}} & 4.59 & 1.2 & 1.7 & 1.7 & 1.24 \\
\text{max} & 21.11 & 1.29 & 1.16 & 1.48 & 2.11 \\
\text{min} & 1 & 1 & 1 & 1 & 1 \\
\text{avg} & 4.59 & 1.2 & 1.7 & 1.7 & 1.24 \\
\hline
\end{tabular}
\caption{Comparison between different approaches to planning (with DCK). \#n is the average factor of expanded nodes to the number of nodes expanded by original (i.e., \#n=0.26 means the approach expanded 0.26 times the number of nodes expanded by original). \#s is the number of problems solved by each approach. \ell_{\text{avg}} denotes the average ratio of the plan length to the shortest plan found by any of the approaches (i.e., \ell_{\text{avg}}=1.50 means that on average, on each instance, plans where 50% longer than the shortest plan found for that instance). \ell_{\min} and \ell_{\max} are defined analogously.}
\end{table}

Not surprisingly, our data confirms that DCK helps to improve the performance of the planner, solving more instances across all domains. In some domains (i.e. storage and rovers) blind depth-first cycle-free search is sufficient for solving most of the instances. However, quality of solutions (plan length) is poor compared to the heuristic approaches. In trucks, DCK is only effective in conjunction with heuristics; blind search can solve very few instances.

We observe that \textit{H-ops} is the most informative (expands fewer nodes). This fact does not pay off in time in the experiments shown in the table. Nevertheless, it is easy to construct instances where the \textit{H-ops} performs better than Basic. This happens when the DCK control restricts the space of valid plans (i.e., prunes out valid plans). We have experimented with various instances of the storage domain, where we restrict the plan to use only one hoist. In some of these cases \textit{H-ops} outperforms Basic by orders of magnitude.

Summary and Related Work

DCK can be used to constrain the set of valid plans and has proven an effective tool in reducing the time required to generate a plan. Nevertheless, many of the planners that exploit it use arguably less natural state-centric DCK specification languages, and their planners use blind search. In this paper we examined the problem of exploiting procedural DCK with SOA planners. Our goal was to specify rich DCK naturally in the form of a program template and to
exploit SOA planning techniques to actively plan towards the achievement of this DCK. To this end we made three contributions: provision of a procedural DCK language syntax and semantics; a polynomial-time algorithm to compile DCK and a planning instance into a PDDL2.1 planning instance that could be input to any PDDL2.1-compliant planner; and finally a set of techniques for exploiting domain-independent heuristic search with our translated DCK planning instances. Each contribution is of value in and of itself. The language can be used without the compilation, and the compiled PDDL2.1 instance can be input to any PDDL2.1-compliant SOA planner, not just the domain-independent compiled PDDL2.1 instance. Each contribution is of value in and of itself. The language can be used without the compilation, and the compiled PDDL2.1 instance can be input to any PDDL2.1-compliant SOA planner, not just the domain-independent heuristic search planner that we propose. Our experiments show that procedural DCK improves the performance of SOA planners, and that our heuristics are sometimes key to achieving good performance.

Much of the previous work on DCK in planning has exploited state-centric specification languages. In particular, TLP (Bacchus & Kabanza 1998) and TALPLANNER (Kvarnström & Doherty 2000) employ declarative, state-centric, temporal languages based on LTL to specify DCK. Such languages define necessary properties of states over fragments of a valid plan. We argue that they could be less natural than our procedural specification language.

Though not described as DCK specification languages there are a number of languages from the agent programming and/or model-based programming communities that are related to procedural control. Among these are EAGLE, a goal language designed to also express intentionality (dal Lago, Pistore, & Traverso 2002). Moreover, GOLOG is a procedural language proposed as an alternative to planning by the cognitive robotics community. It essentially constrains the possible space of actions that could be performed by the programmed agent allowing non-determinism. Our DCK language can be viewed as a version of GOLOG. Further, languages such as the Reactive Model-Based Programming Language (RMPL) (Kim, Williams, & Abramson 2001) – a procedural language that combines ideas from constraint-based modeling with reactive programming constructs – also share expressive power and goals with procedural DCK. Finally, Hierarchical Task Network (HTN) specification languages such as those used in SHOP (Nau et al. 1999) provide domain-dependent hierarchical task decompositions together with partial order constraints, not easily describable in our language.

A focus of our work was to exploit SOA planners and planning techniques with our procedural DCK. In contrast, well-known DCK-enabled planners such as TLP and TALPLANNER use DCK to prune the search space at each step of the plan and then employ blind depth-first cycle-free search to try to reach the goal. Unfortunately, pruning is only possible for maintenance-style DCK and there is no way to plan towards achieving other types of DCK as there is with the heuristic search techniques proposed here.

Similarly, GOLOG interpreters, while exploiting procedural DCK, have traditionally employed blind search to instantiate nondeterministic fragments of a GOLOG program. Most recently, Claßen et al. (2007) have proposed to integrate an incremental GOLOG interpreter with a SOA planner. Their motivation is similar to ours, but there is a subtle difference: they are interested in combining agent programming and efficient planning. The integration works by allowing a GOLOG program to make explicit calls to a SOA planner to achieve particular conditions identified by the user. The actual planning, however, is not controlled in any way. Also, since the GOLOG interpreter executes the returned plan immediately without further lookahead, backtracking does not extend over the boundary between GOLOG and the planner. As such, each fragment of nondeterminism within a program is treated independently, so that actions selected locally are not informed by the constraints of later fragments as they are with the approach that we propose. Their work, which focuses on the semantics of ADL in the situation calculus, is hence orthogonal to ours.

Finally, there is related work that compiles DCK into standard planning domains. Baier & McIlraith (2006), Cresswell & Coddington (2004), Edelkamp (2006), and Rintanen (2000), propose to compile different versions of LTL-based DCK into PDDL/ADL planning domains. The main drawback of these approaches is that translating full LTL into ADL/PDDL is worst-case exponential in the size of the control formula whereas our compilation produces an addition to the original PDDL instance that is linear in the size of the DCK program. Son et al. (2006) further show how HTN, LTL, and GOLOG-like DCK can be encoded into planning instances that can be solved using answer set solvers. Nevertheless, they do not provide translations that can be integrated with PDDL-compliant SOA planners, nor do they propose any heuristic approaches to planning with them.

Acknowledgments We are grateful to Yves Lespérance.
and the ICAPS anonymous reviewers for their feedback. This research was funded by Natural Sciences and Engineering Research Council of Canada (NSERC) and the Ontario Ministry of Research and Innovation (MRI).

References

Proofs
We here provide the proofs of the two theorems, that is, we prove the correctness (soundness and completeness) of our translations, and we prove the succinctness of the resulting PDDL planning instance.

Correctness (Theorem 1)
We divide our proof into two parts: a soundness and a completeness result. Throughout the proof, we denote by \(I_{\sigma,n,n'} \) the planning instance that results by first invoking \(C(\sigma, n, \{\}) \) and then following the remaining steps of the compilation, if such a call to \(C \) returns \((L, L', n') \) for some \(L \) and some \(L' \). Moreover, \(I_{\sigma,n,n'}' \)’s initial state requires \(state = s_n \) in the initial state, and the goal requires \(state = s_{n'} \). Note that \(I_{\sigma} \), as it is defined in the compilation section, corresponds to \(I_{\sigma,0,n_{\text{init}}} \).

We start by proving a few intermediate results.

Lemma 1. Let \(\sigma \) be a program, let \(I \) be a planning instance with initial state \(Init \), and let \(I_{\sigma,n,n'} \) be the instance generated by the compilation with the usual operator lists \(L \) and \(L' \). Assume \(\sigma_1 \) is a subprogram of \(\sigma \), such that \(C(\sigma_1, n_1, E_1) \) was invoked during the top-level compilation, returning \((L_1, L_1', n_1') \). Finally, let \(\bar{a} = a_0a_1\cdots a_p \) be a plan for \(I_{\sigma,n,n'} \). If \(a_j \) is an action such that \(Succ(Init, a_0\cdots a_j, s') \) and \(s' \models state = s_k \), for some \(s' \) and some \(k \) such that \(n_1 \leq k < n_1' \), then \(a_j \) is an instance of an operator in \(L_1 \cdot L_1' \).

Proof. Assume that \(a_j \) is an instance of an operator in \(L \cdot L' \) but not in \(L_1 \cdot L_1' \). Since all operators that were generated by \(C \) while compiling a subprogram of \(\sigma' \) are also in \(L_1 \cdot L_1' \), there must be another subprogram of \(\sigma \), say \(\sigma'' \), that is not a subprogram of \(\sigma' \) such that the compilation of \(\sigma'' \) generated an operator not in \(L_1 \cdot L_1' \) that is possible when \(state = s_k \). The recursive definition of the \(C \) operator does not admit this. If \(\sigma' \) and \(\sigma'' \) are two non-overlapping subprograms, the new preconditions that restrict the \(state \) variable are defined in such a way that they can never overlap for the same value of \(state \). \(\square \)

The following lemma intuitively states that a plan for a program contains sub-plans for all executed sub-programs.

Lemma 2. Let \(\sigma \) be a program with no program variables. Let \(I \) be a planning instance with initial state \(Init \), and let \(I_{\sigma,n,n'} \) be the instance generated by the compilation. Assume \(\sigma_1 \) is a subprogram of \(\sigma \), such that \(C(\sigma_1, n_1, \{\}) \) was invoked during the compilation of \(\sigma \), returning \((L_1, L_1', n_1') \). Furthermore, let \(\bar{a} = a_0a_1\cdots a_p \) be a plan for \(I_{\sigma,n,n'} \) such that, when executed in \(Init \), generates the sequence of states \(s_1s_2\cdots s_p \). Finally, assume there exist two integers \(i \) and \(j \), such that \(0 \leq i \leq j \leq p \) and such that \(s_i \models state = s_{n_1} \), \(s_j \models state = s_{n_1'} \), and for all \(r \) such that \(i < r < j \), \(s_r \models state = s_u \) with \(n_1 \leq u < n_1' \).

Then, for any planning instance \(I' \), which is just like \(I \) except that the goal is empty, we have that
Lemma 3. $\tilde{a}' = a_0 a_{i+1} \cdots a_j$ is a plan for I'_{σ',n_1,n'_1}, which is the instance that results from compiling σ' by calling $C(\sigma_1,n_1,[])$ on I'.

Proof. By Lemma 1, actions in $a_i a_{i+1} \cdots a_j$ are instances of operators in I'_{σ',n_1,n'_1}. Moreover, since the initial state of I'_{σ',n_1,n'_1} is s_i, the sequence \tilde{a}' is also executable on I'_{σ',n_1,n'_1}, as while executing \tilde{a}' on I'_{σ',n_1,n'_1} the planning states traversed are identical to those states traversed while performing the subsequence \tilde{a}' of \tilde{a} in $I_{\sigma,n,n'}$. Finally, after performing \tilde{a}', we reach a state where $state = s_{n'_1}$, and hence \tilde{a}' is a plan for I'_{σ',n_1,n'_1}.

We are now ready to prove the soundness part of the theorem.

Proof of Theorem 1:

\Rightarrow (Soundness):

Given a plan \tilde{a} for instance $I_{\sigma} = (D_{\sigma}, P_{\sigma})$, show that $Filter(\tilde{a}, D)$ is a plan for $I = (D, P)$ under the control of σ.

We prove this in several steps.

Lemma 3. Let σ be a program, $I = (D, P)$ a planning instance, and \tilde{a} a plan for planning instance $I_{\sigma} = (D_{\sigma}, P_{\sigma})$. Then $Filter(\tilde{a}, D)$ is a plan for I.

Proof: Note that the preconditions of actions in D_{σ} are strictly more restrictive than their counterparts in D, as the original preconditions are conjoined with additional ones. Thus, whenever an action a of D_{σ} is executable in a state s and a is a domain action as opposed to any of the newly introduced bookkeeping actions, then the corresponding action a' in D is executable in s as well. Further, note that the additional effects of a in D_{σ} compared to a' in D only affect the new bookkeeping predicates and functions (bound, map, and state). Therefore, since the initial and goal state of I_{σ} differ from their counterparts in I only in terms of these bookkeeping predicates and functions, $Filter(\tilde{a}, D)$ achieves the goal of P and thus $Filter(\tilde{a}, D)$ is a plan for $I = (D, P)$.

To prove that the action sequence $Filter(\tilde{a}, D)$ is also a plan under the control of σ, we have to show that the automaton $A_{\sigma,t}$ accepts it. We do this by induction over the structure of the program σ.

Lemma 4. Let σ be a program without the $\pi(x,t)$ construct, $I = (D, P)$ a planning instance, and \tilde{a} a plan for planning instance $I_{\sigma,n,n'} = (D_{\sigma}, P_{\sigma})$. Then $Filter(\tilde{a}, D)$ is an execution of σ in I.

Proof: Throughout this proof we will refer to the compilation result $C(\sigma,n,E) = (L,L',n')$ used to construct $I_{\sigma,n,n'}$. Since there are no $\pi(x,t)$ constructs, we can assume that the E argument of C is always empty and can ignore any bound and map preconditions and effects upon these predicates for now. The program does not contain any program variables.

The proof proceeds by induction over the structure of σ as follows:

$\sigma = nil$: By definition of C, both L and L' are empty, and therefore no operators are included in D_{σ}. Thus the plan must be empty. The empty plan is accepted by $A_{\sigma,t}$, because $[nil, s]$ is a final state.

$\sigma = a, a \in A$: By definition of the translation, the only operator in D_{σ} is action a. Thus, the only potentially possible action in any state where $state = s_n$ is a. Since the goal, by construction, requires $state = s_{n+1} = [a]$, and a must be possible in the initial state. From Eq. 4 we know that $[a]$ is accepted by $A_{\sigma,t}$.

$\sigma = \phi$: By definition of the translation, the only operator in D_{σ} is test$_{\lambda,n_1,n_1}$, which is potentially possible in any state where $state = s_n$. Since the goal, by construction, requires $state = s_{n+1}, a = [test_{\lambda,n_1}]$, and since this is a plan, we know that its preconditions are satisfied in the initial state, hence init $\equiv \phi$ and thus $A_{\sigma,t}$ accepts $[\lambda]=Filter([test_{\lambda,n_1}],D)$ by Eq. 6.

These are the base cases. Now for the induction steps:

$\sigma = (\sigma_1; \sigma_2)$: Assume that $C(\sigma_1,n,E)$ and $C(\sigma_2,n_1,E)$ where invoked while compiling σ, for some n_1.

By construction of I, any plan $\tilde{a} = a_0 a_1 \cdots a_m$ for I_{σ} can be partitioned into two parts \tilde{a}_1 and \tilde{a}_2 such that $\tilde{a} = \tilde{a}_1 \tilde{a}_2$, and such that $state = s_{n_1}$ in the state s' that results after performing \tilde{a}_1 over I_{σ}.

Let us define $I' = I$, then, by Lemma 2, \tilde{a}_1 is a plan for I'_{σ,n_1,n_1}. Moreover, let us define I'' as a planning instance whose initial state is s' but with no information about the state. By Lemma 2, \tilde{a}_2 is a plan for I''_{σ_2,n_1,n_2}.

By induction hypothesis we know that the automaton $A_{\sigma_1,t}$ accepts any plan for I'_{σ_1,n_1,n_1} for I'. Analogously, $A_{\sigma_2,t}$ accepts any plan for I''_{σ_2,n_1,n_2}. It now follows from the definition of δ (Eq. 7) and a similar argument as in the proof for Lemma 2 that $\tilde{a}_1 \tilde{a}_2$ is also accepted by $A_{\sigma,t}$.

$\sigma = (\sigma_1|\sigma_2)$: From the definition of C we know that any plan for I_{σ,n,n_2+1} must start with either $noop_{\lambda,n_2+1}$ or $noop_{\lambda,n_2}(n_2+1)$.

After that, by induction hypothesis and Lemma 2, the only possible action sequences are those that are plans for I_{σ_2,n_1+1,n_1} or I_{σ_2,n_1+1,n_2}. These sequences are accepted by their respective automata $A_{\sigma_2,t}$ and $A_{\sigma_1,t}$. By its definition, the language accepted by $A_{\sigma,t}$ is the union of the two languages of these automata, and the additional $noop$ actions are filtered out.

$\sigma = if \phi then \sigma_1 else \sigma_2$: From the definition of C for this case we know that any plan for I_{σ,n,n_2} must start with either $test_{\lambda,n_2'}$ or $test_{\lambda,n_2''}$, with $n'_1 = n_1 + 1$ and $n''_1 = n_1 + 1$, depending on whether ϕ holds in the initial state. After that, by induction hypothesis and Lemma 2, the only possible action sequences are those that are plans for $I_{\sigma_2,n_2',n_2'}$ or $I_{\sigma_2,n_2'',n_2''}$. These sequences are accepted by their respective automata $A_{\sigma_2,t}$ and $A_{\sigma_1,t}$, by induction hypothesis. By its definition, the language accepted by $A_{\sigma,t}$ is the one accepted by the former if ϕ holds in the initial state, and otherwise the language of the latter. The $noop$ and $test$ actions are filtered out.

$\sigma = while \phi do \sigma'$: From the definition of C for this case we know that any plan for I_{σ,n,n_2}, with $n' = n_1 + 1$, must start with either $test_{\lambda,n_2'}$, with $n''_1 = n_1 + 1$, if ϕ holds in the initial state, or $test_{\lambda,n_2''}$, otherwise. In
the former case, by Lemma 2, the only action sequence possible will start with a plan for $I_\sigma^{a'}(x_{\mathcal{v}})$, which, by induction hypothesis, is accepted by the automaton $A_{\sigma',t}$, followed by $noop_{j_1,2}$, which, inductively, implies that it is followed by a plan for $I_\sigma^{a''}(n,n')$. By definition of $A_{\sigma',t}$, in the case where $s \models \phi$, it accepts sequences which begin with sequences accepted by $I_\sigma^{a''},n,n_1$, followed by any other sequence accepted by $A_{\sigma',t}$. Otherwise, if ϕ does not hold initially, test p_{j_2,n_2}', which is possible when ϕ doesn’t hold, leads to a final state of $I_\sigma^{a''},n,n_2$ and the filtered plan is empty. Analogously $A_{\sigma',t}$ accepts the empty language if ϕ doesn’t hold. Thus, $A_{\sigma',t}$ accepts any plan for $I_\sigma^{a''},n,n_2$.

$\sigma = a''^*$: From the definition of C for this case and Lemma 1 we know that any plan for $I_\sigma^{a''},n,n_2$ must either consist of $noop(n,n_2)$, which after filtering results in the empty plan which is trivially accepted by $A_{\sigma',t}$, or a plan for $I_\sigma^{a''},n,n_1$ followed by $noop_{t_1,n},n$, and recursively, any other plan for $I_\sigma^{a''},n,n_1$. In the latter case, by induction hypothesis, any such plan is accepted by the sequence of automaton $A_{\sigma',t}$, and $A_{\sigma',t}$, which precisely means the definition of $A_{\sigma',t}$.

Now for the case with program variables.

Lemma 5. Let σ be a program, possibly with $\pi(x,t)$ constructs, $I = (D,P)$ a planning instance, and \bar{a} a plan for planning instance $I_\sigma = (D_\sigma,P_\sigma)$. Then $\text{Filter}(\bar{a},D)$ is an execution of σ in I.

Proof: The proof proceeds by induction over the number of $\pi(x,t)$ constructs in σ.

If σ is program variable free ($\pi(x,t)$ does not occur), then, trivially by Lemma 4 the proposition holds.

Assume $\sigma = \pi(x,t)\sigma'$, and let $a' = a_0a_1 \cdots a_n$ such that $\sigma'[\{\text{free}_{\pi}(x)\}]$ is a plan for I_σ. First, we prove that there exists an $\sigma = a_0a_1 \cdots a_n$ is a plan for $I_\sigma(x,t)$. I. We assume that the state trajectory generated when performing $aa_1 \cdots a_n$ in $Init$ is $ss_1 \cdots s_n$. Observe the actions in the plan cannot delete $map(x)$ or delete $\text{bound}(x,a)$. Furthermore, if $\text{bound}(x,a)$ is true in a certain state, no action will add $\text{bound}(x,a')$ for any a' different from a. Hence, there exists a j ($0 \leq j \leq n$) such that

- $s_i \models \text{map}(x)$ and $s_i \models \text{bound}(x,o)$, for any $o \in Objs$ and any $j < i$.
- $s_i \models \text{bound}(x)$ and $s_i \models \text{map}(x,v)$ for all i s.t. $j \leq i \leq n$ and some $v \in Objs$.

We claim that $a_0a_1 \cdots a_n$ is a plan for $I_\sigma(x,t)$. The proof for the claim is split in two parts: (a) we prove that the sequence $a_0a_1 \cdots a_n$ is legally executable in $I_\sigma^{a''}(x,t)$, then (b) we prove that it reaches the goal.

For proving (a), note that the only difference between I_σ and $I_\sigma^{a''}(x,t)$ is the preconditions of some of its operators. For each occurrence of $\text{bound}(x) \rightarrow \text{map}(x,x_i)$ (for some x) in an operator in I_σ there is an occurrence of $x_i = v$ in $I_\sigma^{a''}(x,t)$. It is easy to see that the preconditions of the first $j - 1$ actions of the sequence, $a_0a_1 \cdots a_{j-2}$, are satisfied in $I_\sigma^{a''}(x,t)$, Indeed, note that because $\text{bound}(x)$ is not added by these actions in I_σ, by the definition of C, it means that the subformula of the precondition of the operator of I_σ that evaluated to true at that point is identical to that of the respective operator in $I_\sigma^{a'}(x,t)$. Now let’s focus on action a_{j-1}. This action adds $\text{bound}(x)$ and $\text{map}(x,v)$. By the construction of C this means that the precondition evaluated $\text{bound}(x) \rightarrow \text{map}(x,x_i)$ to be true in the state were a_{j-1} was performed (this happens because $\text{bound}(x)$ is false). Because after performing a_{j-1}, $\text{map}(x,v)$ is added, it means that the parameter x_i of the operator took value v, while satisfying all additional preconditions. On the other hand, in $I_\sigma^{a''}(x,t)$, the condition to be checked by the respective operator is instead $x_i = v$, which we can make true while satisfying additional preconditions of the operator, because a_{j-1} was executable in I_σ. For the remaining part of the sequence, $a_ja_{j+1} \cdots a_n$, the proof is analogous. When performed in I_σ, some of these actions will evaluate $\text{bound}(x) \rightarrow \text{map}(x,x_i)$ to true, with the side effect of making the parameter x_i equal to v. On the other hand, in $I_\sigma^{a''}(x,t)$, the same effect is achieved by the explicit $x_i = v$ in the precondition. Hence, the precondition in $I_\sigma^{a''}(x,t)$ will also be satisfied.

The proof for (b) is straightforward. Since the goal does not mention any bookkeeping predicates, the sequence a_k produces the same state in $I_\sigma^{a''}(x,t)$ as $a_k' = \{\text{free}_{\pi}(x)\}$. Thus, the plan \bar{a} is legally executable in I_σ.

The proof now follows from Lemma 4.

Proof of Theorem 1 (continued):

\Leftarrow (Completeness):

Given a plan \bar{a} for I under the control of σ, show that there exists a plan \bar{a}' for I_σ, such that $\bar{a} = \text{Filter}(\bar{a}',D)$.

The proof again proceeds by induction over the structure of the program σ, and again we first show the case for programs without $\pi(x,t)$ constructs, i.e. without program variables.

Lemma 6. Let σ be a program without the $\pi(x,t)$ construct, $I = (D,P)$ a planning instance, and \bar{a} a plan for I under the control of σ, then there exists a plan \bar{a}' for $I_\sigma^{a'}$ such that $\bar{a} = \text{Filter}(\bar{a}',D)$.

Proof: We will again refer to the compilation result $C(\sigma,n,E) = (L,L',n')$ used to construct $I_\sigma^{a'}$, and occasionally also to variables occurring in the particular compilation case considered in the induction proof. Again, since there are no $\pi(x,t)$ constructs, we can assume that the E argument of C is always empty and can ignore any bound and map preconditions and effects upon these predicates for now. The program does not contain any program variables.

By assumption we know that $A_{\sigma,t}$ accepts the plan \bar{a}. The induction over the structure of σ is as follows:

- $\sigma = \text{nil}$: $A_{\sigma,t}$ only accepts the empty language, since there are no transitions defined for the nil program, but $[\text{nil},s]$ is an accepting state for any state s over I. Thus $\bar{a} = \text{nil}$. Since both initial an goal state of $I_\sigma^{a'}$ only require state s_n on top of the original initial and goal state of I, and $n' = n$, $\bar{a}' = \text{nil} = \text{Filter}(\bar{a}',D)$.

- $\sigma = a, a \in A$: In this case $\bar{a}' = [a]$. Since in the compilation E is empty, the preconditions of the operator corresponding to a in $I_\sigma^{a'}$ are the same as those for a in I, except
that state = s_n has to hold. This condition is easily fulfilled by the fact that the initial state of I_{σ,n,n'} states just this. Also, a goal state of I_{σ,n,n'} is reached after executing a in I_{σ,n,n'}, since the new operator, by definition of C has state = s_{n+1} as an effect, which, by construction, is the only additional requirement in the goal state of I_{σ,n,n'} compared to I. Thus a is a plan for I_{σ,n,n'}, and trivially a = Filter(\vec{a}, D).

σ = φ? Again, the plan has to be the empty sequence, since this is the only one accepted by A_{σ,1}. Also, by definition of A_{σ,1}, the initial state Init of I satisfies φ. Let a' = [test_n,n']. This is a plan for I_{σ,n,n'} because by its construction in the definition of Ctest its precondition is state = s_n ∧ φ. This is satisfied since the initial state of I_{σ,n,n'} is like that of I plus the assertion that state = s_n. Since φ cannot mention the new special fluent state its truth value does not differ between the initial state of I_{σ,n,n'} and that of I itself. Further, test_n,n' sets state = s_n' as its only effect (E is empty), thus satisfying the goal of I_{σ,n,n'}. Finally, a = [] = Filter([test_n,n'], D).

These are the base cases. Now for the induction steps:

σ = (σ_1; σ_2): We start this case by stating an intermediate result where we use δ(σ, a) to denote the repeated transition of δ over the actions of the sequence a.

Claim: If a is accepted by A_{σ,1}, then a can be decomposed into two parts \vec{a}_1 and \vec{a}_2 such that \vec{a} = \vec{a}_1 \vec{a}_2, and such that \{nil; \vec{a}_1, s'\} ∈ δ(\vec{a}_1; σ_1,init, a_1), for some s' and such that \{nil, s''\} ∈ δ(\vec{a}_2, s'). Intuitively, this means that the automaton's state \{nil; \vec{a}_2, s''\} is part of an accepting path of states for a. Proof. Straightforward (but lengthy) by induction on the structure of σ_1.

Let us assume that a = \vec{a}_1 \vec{a}_2, for \vec{a}_1 and \vec{a}_2 as defined above. Furthermore let us define I_1 as an instance just like I except that its goal is to get to state s' (as defined above). Moreover, we define I_2 to be just like I but such that its initial state is s''. Observe now that \vec{a}_1 and \vec{a}_2 are clearly accepted by A_{σ_1,1} and A_{σ_2,1}. Indeed, this follows straightforwardly from the claim and the fact that the transition function for A_{σ_1,1} and A_{σ_2,1} is a subset of the transition function for A_{σ,1}.

By induction hypothesis, there are plans \vec{a}_1', \vec{a}_2', for I_{σ_1,n_1,n'} and I_{σ_2,n_2,n'} for any two integers n_1, n_2, such that \vec{a}_1 = Filter(\vec{a}_1', D) and \vec{a}_2 = Filter(\vec{a}_2', D). Choosing n_2' = n_1' as defined by the compilation of σ_1 with parameter n = n_1, we get that the initial state of I_{σ_2,n_2,n'} is a goal state of I_{σ_1,n_1,n'} and thus \vec{a} = \vec{a}_1' \vec{a}_2' is a plan for I_{σ,n,n'}. Since the concatenation does not introduce any new actions we get a = Filter(\vec{a}, D).

σ = (σ_1|σ_2): By definition, A_{σ,1} accepts the union of the sets of plans for σ_1 and σ_2, i.e. a is accepted by either A_{σ_1,1} or A_{σ_2,1}. Assume it is a plan under the control of σ_1 (i.e., it is accepted by A_{σ_1,1}). By induction hypothesis there is a plan \vec{a}_1 for I_{σ_1,n_1,n'} for any integer n_1, such that \vec{a} = Filter(\vec{a}_1', D). Then \vec{a} = [noop_n,n(n+1)] \cdot \vec{a}_1'.

σ = if φ then σ_1 else σ_2: Depending on whether or not Init = φ, a is a plan under the control of σ_1 or σ_2, i.e. it is either accepted by A_{σ_1,1} or A_{σ_2,1}. Assume Init = φ. Then, a is accepted by A_{σ_1,1}, and by induction hypothesis, there is a plan \vec{a}_1 for I_{σ_1,n_1,n'} for any integer n_1 s.t. \vec{a} = Filter(\vec{a}_1', D). Then \vec{a}_1 = [test_n,n+1] \cdot \vec{a}_1' \cdot [noop_n,n,n'] is a plan for I_{σ,n,n'} and by definition of Filter we have a = Filter(\vec{a}', D). Analogously when Init ≠ φ, a = [test_n,n+1] \cdot \vec{a}_2' \cdot [noop_n,n,n'] is a plan for I_{σ,n,n'} and again a = Filter(\vec{a}', D).

σ = while φ do σ': The induction step for this case is itself by induction. We refer to this induction as "inner induction", and to the other as "outer induction". The inner induction is on the length of the action sequence a.

As our inner base case, assume that Init ≠ φ, then a = []. In this case, we have that \vec{a} = Filter([test_n,n'], D). This concludes the proof for the inner base case.

Now, as our inner induction hypothesis, we assume the theorem holds for all sequences of action whose length is strictly less that k. Now assume |a| = k. In this case, we have that Init = φ, and then a = a_1\cdot a_2 = Filter([a_1', a_2'], D) is a plan for I_{σ,n,n'} for any integer n, because by construction the precondition for this test action is φ ∧ state = s_n, and its effect asserts state = s_n'. Also \vec{a} = Filter([test_n,n'], D). This concludes the proof for the inner base case.

Finally, if a = Filter(\vec{a}', D), we require an inner induction on the length of a. Assume that a = [], then [noop_n,n,n'] is a plan for I_{σ,n,n'} and trivially a = Filter([noop_n,n,n'], D). This concludes the proof for the base case of the inner induction. Assume now for the inner induction case that the theorem holds for all sequences of length less than k, where |a| = k. In this case, a = a_1 a_2 where a_1 is accepted by A_{σ_2,1} and a_2 is accepted by A_{σ_1,1}, where I' is like I except that the initial state is the state reached after executing a_1 in Init. Then, by outer induction hypothesis there is a plan a_2' for I_{σ',n_3,n_2}, for any integer n_2, such that a_2' = Filter([a_2'], D). Choosing n_2 = n and n_3 = n + 1, we get that a = [test_n,n+1] a_2', where a_2' = Filter([a_2'], D). This concludes the proof for the outer base case.
two induction hypotheses and the fact that \(\text{noop} \cdot n \) is filtered out, \(\vec{a} = \text{Filter}(\vec{a}, D) \).

Now for the case with program variables.

Lemma 7. Let \(\sigma \) be a program over a planning instance \(I = (D, P) \) (possibly containing \(\pi(x,t) \) constructs), and \(\vec{a} \) a plan for \(I \) under the control of \(\sigma \), then there exists a plan \(\vec{a}' \) for \(\mathcal{I}_{\sigma,n,n'} \) such that \(\vec{a} = \text{Filter}(\vec{a}', D) \).

Proof: The proof proceeds by induction over the number of \(\pi(x,t) \) constructs occurring in \(\sigma \). The base case, where this number is zero, is given by Lemma 6.

Otherwise, assume \(\sigma = \pi(x,t), \sigma' \) for some arbitrary other program \(\sigma' \) over \(I \). By the definition of \(\mathcal{A}_{\sigma,I} \), \(\vec{a} \) is accepted by some automaton \(\mathcal{A}_{\sigma|_{x/o},I} \) where in \(\sigma \) all occurrences of \(x \) are replaced by some (but in all occurrences the same) \(o \) such that \((o,t) \in \tau_D \cup \tau_P \). We show that (i) \(\vec{a}' = \vec{a} \cdot [\text{free}_{\mathcal{N}_I}(x)] \) is a plan for \(\mathcal{I}_{\sigma,n,n'} \) for any integer \(n \), where \(n_1 \) is defined in the compilation of \(\sigma \) using \(n \) as the integer parameter. We further need to show that (ii) in a state \(s' \) reached after performing \(\vec{a} \) in any state \(s \) that satisfies \(\lnot \text{bound}(x) \land \lnot (\exists y) \text{map}(x,y) \), we again get \(s' \models \lnot \text{bound}(x) \land \lnot (\exists y) \text{map}(x,y) \). Obviously, the initial state \(\mathcal{I}_{\text{Init}} \) has this property for all program variables occurring in \(\sigma \).

(i) By assumption \(\vec{a} \) is accepted by \(\mathcal{A}_{\sigma|_{x/o},I} \) for some \(o \), i.e. after replacing all occurrences of \(x \) in \(\sigma \) with \(o \), and is a plan for \(I \). By induction hypothesis and Lemma 6 there exists a plan \(\vec{a}'_1 \) for \(\mathcal{I}_{\sigma|_{x/o},n,n'} \) for any integer \(n \) such that \(\vec{a} = \text{Filter}(\vec{a}'_1, D) \). We show that this is also a plan for \(\mathcal{I}_{\sigma,n,n'} \) after minor modifications to the occurring test actions, and which in particular do not result in a different result when applying \(\text{Filter} \). Compile \(\sigma \) as defined using \(C(\sigma, n, [\]) = (L, L', n') \). For any test action occurring in \(\vec{a}'_1 \) whose corresponding operator definition in \(L \) has \(x \) as a formal parameter, add \(o \) as an additional argument at the position where \(x \) appears in the operator definition, creating a new sequence \(\vec{a}_2 \). We show that this sequence is a plan for \(\mathcal{I}_{\sigma,n,n'} \). Let \(a_1 \) be the first action in \(\vec{a}_2 \) whose corresponding operator definition in \(L \) has \(x \) as a formal parameter. The corresponding actual parameter is \(o \). Then, since in the initial state \(s \) of \(\mathcal{I}_{\sigma,n,n'} \) we have that \(s \models \lnot \text{bound}(x) \land \lnot (\exists y) \text{map}(x,y) \), \(s \) satisfies the preconditions of \(a_1 \), because the only preconditions on top of those defined in \(\mathcal{I}_{\sigma|_{x/o},n,n'} \) are \(\text{bound}(x) \rightarrow \text{map}(x,o) \). The action will further have as an effect \(\text{bound}(x) \land \text{map}(x,o) \). Hence, all following actions \(a_k \) in \(\vec{a}_2 \) whose corresponding operator in \(L \) has \(x \) as a formal parameter, will also be possible and have the same effects as in \(\mathcal{I}_{\sigma|_{x/o},n,n'} \) (by construction of \(\sigma|_{x/o} \)), because also they have \(o \) as actual parameter, and since \(\vec{a}_2 \) cannot mention any action \(\text{free}_{\mathcal{N}_I}(x) \), for any \(i \), we have for all states \(s'' \) visited later on during the execution of \(\vec{a}_2 \) that \(s'' \models \text{bound}(x) \land \text{map}(x,o) \) which entails the preconditions of \(a_k \) in \(\mathcal{I}_{\sigma,n,n'} \). Since further only the truth value of \(\text{bound} \) and \(\text{map} \) are changed compared to the effects in \(\mathcal{I}_{\sigma|_{x/o},n,n'} \), the goal, which by construction doesn’t mention either of these predicates, is reached at the end. Hence, \(\vec{a}_2 \) is a plan for \(\mathcal{I}_{\sigma,n,n'} \). Also

\[\vec{a} = \text{Filter}(\vec{a}_2 \cdot [\text{free}_{\mathcal{N}_I}(x)], D). \]

(ii) Clearly, since for any \(n_i, \text{free}_{\mathcal{N}_I}(x) \) has $\lnot \text{bound}(x) \land (\forall y).\text{map}(x,y)$ as an effect, any state \(s' \) reached after executing \(\vec{a}_2 \cdot [\text{free}_{\mathcal{N}_I}(x)] \) in any other state satisfies this. \(\square \)

Theorem 1 then follows directly from Lemmata 5 and 7 for \(n = 0 \) and \(n_{\text{final}} \) as defined by the compilation \(C(\sigma, 0, [\]) = (L, L', n_{\text{final}}) \).

Succinctness (Theorem 2)

Proof of Theorem 2:

The compilation of each programming construct, as defined by \(C \), introduces a constant number of new operators into \(\mathcal{I}_\sigma \) or extends the definition of one of the operators of \(I \) with a constant number of additional preconditions and effects. In all cases, the size of the new preconditions and effects is bounded by a constant factor in the number of elements of \(E \). From the definition of \(C \) for \(\pi \) it follows that the maximal length of \(E \) occurring during the compilation of \(\sigma \) is exactly the number of nested \(\pi \) constructs, \(k \). Hence, if the program has size \(n \), then there are no more than \(n \) programming constructs. Since also each construct is considered exactly once by \(C \), there can be no more than \(n \) operators in \(\mathcal{I}_\sigma \), each of size \(O(k) \). Hence, overall \(\mathcal{I}_\sigma \) has size \(O(k \cdot n) \).