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The Problem to be Addressed

Distributions we wish to sample from often
have strong dependencies.

Markov chain sampling must therefore
proceed in small steps.

In commonly-used schemes (eg, Gibbs
sampling), these small steps will take the
form of a random walk.

Result: If the distribution spans a distance
L, and we take steps of size d, we will
need around (L/d)? steps to obtain an
independent point using the Markov chain.

Solution: Suppress the random walk. We
then need only around (L/d) steps. This
can be a very large improvement.



Two Ways to Suppress Random Walks

Hybrid Monte Carlo (Duane, Kennedy,
Pendleton & Roweth 1987) can suppress
random walks when sampling from many
continuous distributions.

Hybrid Monte Carlo uses a dynamical
simulation of a fictitious physical system, in
which “momentum’” keeps things going in the
same direction. A number of variations are
possible (eg, Horowitz 1991, Neal 1993).

Overrelaxation (Adler 1981, Barone &
Frigessi 1990, Green & Han 1992, Neal 1995)
appears less general than hybrid Monte Carlo,
but may have advantages in some contexts.



An Illuminating Special Case:

Sampling from a Uniform Distribution

Consider sampling uniformly from some region
of ®™. We could try several standard methods:

Gibbs sampling: Successively sample from
conditional distributions along the axes.

The Hit & Run method: Sample from
conditional distributions along randomly
chosen directions.

Single-variable Metropolis: Propose
changes in one variable at a time.

Simple multi-variable Metropolis: Propose
changes in all variables at once, from some
simple distribution.

All these methods will explore the region by a
random walk, and will be slow in difficult cases
(high dimensionality, high dependencies).



Gibbs Sampling for a 2D Example

For the 2D example below, I have assumed
that Gibbs sampling is local to one conditional
mode, since jumping to a different mode
would be unlikely in higher dimensions.

Single-variable Metropolis behaves similarly.



Simple Multi-Variable Metropolis
for the 2D Example

I assume below that the proposal distribution
IS narrow enough to keep the acceptance rate
high. For 2D problems, a very wide proposal

distribution, with very low acceptance rate, is
actually better, but this is not true in higher

dimensions.

The hit & run method behaves similarly in
high-dimensional problems.



Suppressing Random Walks when
Sampling from a Uniform Distribution

We can often avoid doing a random walk by
either of two methods:

e Move some distance from the current
point, starting off in some direction, and
reflecting when we reach the boundaries.

e Do overrelaxed updates along each axis in
succession.

These are special cases of the more general
Hybrid Monte Carlo and overrelaxation
methods. We assume for the moment that all
required computations can be done exactly.

To ensure ergodicity, we may mix in other
updates (eg, Gibbs sampling or single-variable
Metropolis) — but not too often, or we will
not suppress random walks for long enough.



Sampling Using Exact Reflection
for the 2D Example

Algorithm for sampling with reflection:

1. Choose a velocity vector from a spherical
Gaussian distribution.

2. Travel for a pre-determined time with that
velocity, except that when you hit a
boundary, change direction by reflection.

3. Let the endpoint of this trajectory be the
new state.



Sampling Using Exact Overrelaxation
for the 2D Example

Algorithm: For each coordinate axis, in turn:

1. Compute the intersection points with the
boundary, moving in the direction of this
coordinate axis.

2. Find the mid-point of these intersections.

3. Move from the current state to the state
the same distance from the mid-point, but
on the opposite side.




Reflection vs. Overrelaxation

e Reflection requires computation of the
normal vector at the boundary.

Overrelaxation requires only computation
of intersection points.

e Reflection is a rotationally-invariant
algorithm; overrelaxation is not.

Overrelaxation changes only one variable
at a time in the original coordinate system.
This sometimes allows computational
savings.

e Reflection works well in some situations
where overrelaxation works poorly.

One way of looking at overrelaxation is as
a cheap approximation to reflection.



A 3D Example for Which
Overrelaxation Does Not Work

Imagine a circular disk in three dimensions,
drawn in projection below, with the coordinate
axes pointing out of the page. AS you can see,

trying to sample using overrelaxation fails
completely!
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A Fix for Overrelaxation?

A possible fix for cases where overrelaxation
does work: Instead of doing updates for each
axis is turn (ie, 1 2 3) do a sequence of updates
picked at random instead — eg, 1 2 1 3:

OVERHEAD VIEW
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B = Point near bottom of disk

T = Point near top of disk

We persist with one such update sequence for
a while, then pick another at random, which
will take us in a new direction.



Methods for Non-Uniform Distributions

Reflection and overrelaxation for uniform
distributions are related to corresponding
methods for more general distributions.

Reflection is a special case of Hybrid Monte
Carlo, in which motion occurs as in a physical
system. For MCMC use, the dynamics is
naturally described in the Hamiltonian
formulation, which highlights the volume
conservation property needed for validity.

Overrelaxation when conditional distributions
are Gaussian is easily done by Adler’'s (1981)
method. We update component z; as follows:

vh = pi + alzi—w) + o (1—a?)?n

where u; and aZ-Q are the mean and variance of
the conditional distribution of x; given xz; : j # 1,
and n is a Gaussian random variate with mean
zero and variance one.



Problems with Existing Methods

Hybrid Monte Carlo works very well, but
requires calculation of derivatives, and needs
careful tuning of stepsize and trajectory length
parameters.

Adler’'s overrelaxation method often works
well, but does not apply when conditional
distributions are non-Gaussian.

Brown and Woch (1987), Creutz (1987),
Green and Han (1992), and Fodor and Jansen
(1994) all propose more general overrelaxation
methods, but all these have an uncontrolled
probability of rejection, which can undermine
suppression of random walks.

I proposed overrelaxation method based on
order statistics that never rejects (Neal 1995),
but it is not always easy to apply.



From Non-Uniform to Uniform:
The Slice Sampling Approach

We can sample any continuous distribution by
sampling uniformly from the region under its
density function, or a multiple thereof, f(z).

In Slice Sampling (Neal, in preparation), we
sample under the density function as follows:

1. Sample uniformly from the vertical interval
[0, f(x)], giving a “slice point”, s.

2. Do some update that leaves invariant the
uniform distribution over the ‘slice”,
{z . f(z) = s}, producing a new state z'.

Applied to each variable in turn, slice sampling
can be used instead of Gibbs sampling, when
the latter is hard to implement, with step (2)
sampling uniformly (or approximately so).

Step (2) can instead involve reflection or
overrelaxation, as described previously.



OQutside Reflection with Fixed Steps

In practice, computing exact intersection
points where reflection occurs may be difficult.
We can instead take fixed-sized steps, and

reflect when we find ourselves outside the
slice:

We could take many steps, then accept/reject
based on whether we're outside at the end.

Or we could step only to the next inside point,
rejecting if this takes too many steps (the

velocity is retained if we accept, negated if we
reject).



Inside Reflection with Fixed Steps

Alternatively, we can take fixed-sized steps
and reflect from the inside point when the
next step takes us outside the slice:

We must reject if the reverse trajectory would
not take us outside at the same spot.

We could do many steps, rejecting them all if
necessary, or take one step at a time. In the
latter case, we retain the velocity if we accept,
negate it if we reject.



Overrelaxed Slice Sampling

To do an overrelaxed update using slice
sampling, we first find an interval containing
part of the slice:
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We then bisect the two outermost steps to
narrow down the edge of the slice as much as
desired:

Finally, we flip to the opposite side of the
middle:

We will have to reject if the new point is
outside the slice, but the probability of
rejection can be made arbitrarily small for
unimodal distributions.



Issues in Comparing Methods

e Convenience of use — eg, are there
parameters that have to be set carefully?

e ADbility to exploit special features of the
distribution — eg, fast re-calculation when
just one variable is changed.

e Behaviour as the degree of dependence
iInCreases — eg, increasing correlation for
Gaussian distributions.

e Behaviour as dimensionality increases —
eg, by replication of independent copies of
the system.



Which Methods are Most Promising?

e Hybrid Monte Carlo works very well, if you
take the time to tune it carefully.

e Some form of overrelaxation seems
attractive as a more convenient alternative
to Hybrid Monte Carlo, which might also
be more efficient in some circumstances.
Overrelaxed slice sampling is perhaps the
most generally applicable form.

e I've only begun to play with multivariate
slice sampling using inside and outside
reflection. Optimistically, one could hope
for the advantages of Hybrid Monte Carlo,
but with less tuning required.



