Quality Driven Software Migration: A Markov Model Approach
Ying Zou, Kostas Kontogiannis

Dept. of Electrical & Computer Engineering

University of Waterloo

Waterloo, ON, N2L 3G1, Canada

{yzou, kostas}@swen.uwaterloo.ca

Abstract
With the well-recognized advantages of Object-Oriented (OO) technology, it is a practical strategy to migrate the legacy systems in the procedural code into the OO paradigm. In the re-engineering community, a great effort has devoted to identify the reusable functionality from legacy systems. However, it is also of vital importance to ensue the software qualities during the migration process. In such a way, the transformations that damage the software quality can be detected in the early stage of the process.

To control the quality in the migration process, we propose a soft-goal dependency graph that elaborates the depender-dependee relations between the software quality attributes. Furthermore, the migration process model is abstracted and enhanced with the probability that achieves the software soft goals for each transformation. By utilizing the Markov Model, the best transformation path that can obtain the highest quality goals can be identified. In the end, a case study is discussed to evaluate the approach.

1. Introduction

Legacy systems are the archaic software that can be still in operation, but their implementation techniques are out of date and can poorly meet the contemporary requirements. To leverage the business values resident in such systems, it is of vital importance to migrate the legacy systems from their obsolete states into the desired status. While the advantages of the object-oriented technology have been widely recognized, it is an effective strategy to transform legacy software in the procedural code to the Object-Oriented (OO) platform. With the properties such information hiding, inheritance and polymorphism in OO, the essential assets of the systems can be easily reused and integrated with applications in a diversity of fields[1], including Web technologies, enterprise integration solutions, and third generation networks. At the same time, the life cycle of the systems is greatly extended with low cost.

In this context, the software reengineering communities have performed in-depth researches, and defined several methods in literature to extract the object models from the legacy systems. In overall, these approaches identify Abstract Data Types (ADT) as the first step to discover class candidates, based on such techniques as concept analysis [12, 13], cluster analysis [10, 11], slicing [16], data flow and control flow analysis [17], source code features [15], and documentation [14]. These efforts focus on recovering the reusable functionality from the legacy systems, and finally generating object-oriented code. However, the software quality control has not been taken into consideration. Furthermore, the migration processes can not ensure that the software qualities inherent in the original systems are kept at an equivalent level in minimal. In an extreme case, the migrant system might fail to achieve the original merits at all. For example, the comments on the original source code improve the understandability and maintainability; whereas, the deletion of comments in the target systems would demote such merits.

In this paper, we present our approach that monitors and evaluates the software qualities during the migration process. In this way, the defects in the migrant systems are detected in the early phases of the transformations. To achieve this goal, we proposed a software quality dependency graph that reflects the inter-dependencies among the quality attributes, and that associates the qualities with the source code features. Moreover, a set of metrics is collected and classified according to the specific software artifacts. In each state of transformations, a Markov model approach [9] is utilized to assess the impacts of a transformation on the qualities. The transformation that abates the quality goals is discarded. Therefore, an optimal transformation path, which satisfies the target quality requirements in the largest extend, is determined. Finally, the migration process is empirically driven by the quality goals.

The rest of the paper is organized as follows. Section 2 introduces the software quality characteristics and software metrics. Section 3 discusses the dependencies between software quality attributes in details. Section 4 describes the migration process model that we can calculate the impact on the software quality attributes, then, find the optimal transformation path. Section 5 provides case studies to apply the methodology proposed in the paper. In the end, section 6 concludes the paper.

2. Background

2.1. Software Quality Characteristics

Software quality is defined as features and characteristics of a software product that is conformance to the requirements and fitted to use. With respect to how the product is measured, the quality of a product consists of external attributes, such as performance, and internal attributes, for example, the complexity of data structures. The external attributes, mainly non-functional requirements, calibrate the product in its operational environment, where the product is put into use; meanwhile, the internal attributes, source code related features, can be measured purely in terms of the product itself even at the time that the product is still under the development. The internal attributes are cognitively relevant to the external attributes. For example, the high cohesion and low coupling reveal good internal qualities of a product, and eventually indicate the high maintainability of the produce per se.

International Standard for Software Product Quality Software (ISO/IEC 9126: 1991(E)) includes six main external attributes [18]: functionality, reliability, usability, maintainability, portability and efficiency. It has not included reusability, which has received much attention since last decade, especially with the widespread use of object oriented technology. Each of the characteristics is further described in different aspects as sub-characteristics. For example, the maintainability contains analyzability, changeability, stability and testability [18].

In our research, we investigated the dependencies between the sub-characteristics and the internal attributes, and moreover, elaborated the sub-characteristics with the internal attributes that can be evaluated by software metrics.

2.2. Software Metrics

Software metrics are quantitative measurement of certain characteristics of a development project, and are valuable to project management and engineering tools [19]. Software metrics can be classified into three categories[19]: product metrics, process metrics, and project metrics. Product metrics are used to measure the internal and external characteristics as mentioned in the above section. Process metrics are defined to improve the software development and maintenance process. The examples of process metrics include defect removal effort, defect detection, and defect fixing time. Project metrics calibrate the project characteristics and execution. Examples are the number of software development personnel, the staffing patterns over the life cycle of software, cost, schedule and productivity.

Various sets of product metrics are proposed to measure the specific software quality factors. Conventional metrics are procedural oriented and separates the measurement of data structures and functional behaviors. For example, McCabe metric and knot count metrics are based on control flow factors to measure the complexity. Information flow metrics, coupling and cohesion metrics use data flow factors to predict the modularity and functionality of a procedural program. However, these conventional metrics are not sufficient for the object-oriented paradigm, because the data structure and functional behaviors are combined together. Particularly, the new data and control abstractions are introduced. Several new metric suites for object-oriented metrics were proposed. Chidamber and Kemerer [20] six metric suite is used popularity to validate the inheritance, class complexity, method complexity, class coupling, and class cohesion. Li and Henry’s metric [21] suite defined additional metrics for coupling through inheritance, coupling through message passing and coupling through abstract data types. Lorenz and Kidd [22] collected object-oriented metrics based on smalltalk and C++ project. The threshold for each of the metrics was defined.

In the context of our research, we consider both conventional metrics and object oriented metrics. In this way, the transformation impacts on quality factors can be measured, compared and tracked throughout the whole migration process from the original procedural code to the target code in object-oriented paradigm.

3. Software Quality Dependencies

The primary objective of this study was to select appropriate software metrics that could anticipate quality attributes of interest, and guide the software migration process. To achieve the goal that migrant systems could bear on the desired qualities, the following analysis steps are adopted.

First, the desired external qualities and their constituent sub-characteristics are identified. In addition to the general attributes listed in the ISO standard [18], we include reusability, one of the crucial advantages of object-oriented paradigm.

[image: image1.wmf]Reusability

High

Modularity

Low

Complexity

Good

Documentation

Naming

Conventions

Global

Variables

High

Encapsulation

Public

attributes

Inline

Methods

Pivate (Protected)

attributes / # Total

Attributes

Funcationality

Function

Point

Accessors

Non-Accessors /

Tot Methods

Non-Accessors

High

Abstraction

Ref. To

Abstract

Classes

ratio of #

method

inherited

ratio of #

attributes

inherited

Inheritance

Program

Size

LOC

Class

Complexity

Weighted

Methods

per Class

Class

Entropy

Complexity

Inheritance

Level

Direct

Parent

Class

Ref. To

Abstract

Classes

Methods

Method

Complexity

Cyclomatic

Complexity

Method

Parameter

File

Level

Class

Level

Method

Level

Comment

Sections

Size of

Comment

Characters

Comments /

Attributes + # Methods

Comment Lines Per Method

/ LOC Per Mothod

Comments

Commented Methods

/ # Total Methods

High

Cohesion

Degree of

Connecitivity

of Elements

LCC

Infomation

Flow Inside

Class

LCOM

TCC

Narrow

Interface

Public

Methods

Method

Arguments

Public Methods

/ Total Methods

Method

Return Types

Connections

Direct Attribute

Based Coupling

Direct Class

Coupling

Method

Invocations

Aggregation

Local Variable

Types

Method

Parameter

Types

Method Return

Types

Low

 Coupling

Information Flow

Between Class

RFC

CBO

Polymorphic

Methods

DIC

Children

Overridden

Methods

Parents

Nesting

Level

Data

Structure

Nesting

Level

Inheritance

Depth

Figure 1: Reusability Dependency Graph

Second, the internal attributes for each of the sub-characteristics are investigated, and their dependencies are determined based on the software design principles. The internal attributes have visibly association with source code features. For example, as one of the general design rules, the shorter lines of code can reduce the complexity, an internal attribute; consequently, the less complexity hints easier testability, as one sub-characteristic of maintainability.

Third, a set of software metrics is gathered to predict the internal attributes, and eventually, the depended external attributes. The metrics are classified based on the measurement domain, and are associated with the internal attributes. Both procedural oriented metrics and object-oriented metrics are considered, as they reflects the same quality attributes about the software in different paradigms.

Finally, the code merits and defects that are the parameters to the metrics are collected. Such code features are crucial to drive the software quality, and determine which transformation is to use in the migration process. In our study, the objectives of the migration process are to reduce the original defects, keep the original merits, and increase qualities in the migrant systems

3.1. Soft-Goal Quality Dependency Graph

A soft-goal dependency graph is capable of capturing numerous kinds of constraints and dependencies, and it is suitable for describing software quality dependencies. In a nutshell, a goal graph is a network of nodes and edges. Each of the nodes represents a goal. The edge indicates a dependency between two nodes. When a node, N1, depends on N2, through a dependency edge E1, it means that N1 cannot achieve, or cannot efficiently achieve its goals if N2 is not able or willing to fulfill its commitment to E1 [23]. The dependent node does not specify how the depended node should do this. A soft goal dependency doesn’t sharply define the sub goals to be achieved. Whereas, there is a clear distinguishing between the dependers and dependees. In particular, soft goals are used to capture informal concepts, which the goal dependencies cannot be precisely defined as conditions [23]. For example, figure 1 and 2 show the graph to achieve the soft goals as reusability and maintainability.

According to the goal driven approach, the top-level goals are breakable, and are elaborated by their direct dependent goals. Binary relations, AND or OR, exist in the direct sub-goals. The AND relation determines the high-level goal is achieved if all of the sub-goals are satisfied. The OR relation asserts that the high-level goal is achieved when any one of the sub-goals is achieved [24].

[image: image2.wmf]Maintainability

High

Analysability

High

Changeability

High Testability

Good

Documentation

Naming

Conventions

Class

Level

Method

Level

Comment

Sections

Size of

Comment

Characters

Comments /

Attributes + # Methods

Comment Lines Per Method

/ LOC Per Method

Comments

Commented Methods

/ # Total Methods

Simple Code

Structure

Line of

Code

Low

Complexity

Low

Coupling

High

Cohesion

Polymorphism

Inheritance

High

Modularity

Statement

Coverage

Branch

Coverage

Low Change

Impact

Generalization

Polymorphic

Methods

Direct Children

Method

Complexity

Class

Complexity

Low

Coupling

Assocations

Aggregation

Inheritance

Method

Invocation

 # Global

Variable

References

 # Attribute

References

 # Method

Invocation

 # ADT

References

 # Parameter

ADT Types

 # Return ADT

Types

Children in

Sub-tree

Children

CBO

CBO No

Ancessor

CBO Is

Used By

CBO

Using

High Stability

High

Reuse

Percentage

of Reused

Code

Percentage

of Reused

Modules

Percentage of

Reused Modules

Without Revision

Global

Variables

High

Encapsulation

Public

attributes

Inline

Methods

Pivate (

Protected)

attributes / #

Total Attributes

Type

Change

Variable

Change

Addion

Deletion

Scope

Change

Method

Change

Implementation

Change

Return Type

Change

Signature

Change

Class

Change

Structure

Change

Low

Nesting

Level

Data

Structure

Nesting

Level

Inheritance

Depth

File

Level

Nesting

Level

Data

Structure

Nesting

Level

Inheritance

Depth

Figure 2: Maintainability Dependency Graph

In the context of our study, we tackle the software quality goal in four levels:

1) a sequence of external quality attributes as top-level goals;

2) a sequence of sub-characteristics as sub-goals to achieve each of the high-level quality factors;

3) a sequence of internal attributes as goals to achieve each of sub-characteristics;

4) a sequence of code features, as leaf goals, that affect the internal attributes.

3.2. Reusability Soft-Goal Dependency Graph

Reusability allows software entity such as modules and classes, to be reused in different projects without a significant effort in modification. Object-oriented (OO) software has claimed to be inherently more reusable than procedural software. However, most OO software was not specifically designed for reuse [2]. Therefore, such OO software has to be reengineered to improve the reuse potential. Instead, our research objective aims at obtaining high reusable OO code directly from the procedural code. More specifically, the transformation process is driven by the reusability soft-goals, shown in Figure 1. The quality factors to achieve reusability are identified according to rationale, investigation, and empirical studies in the literature.

Intuitively, a software component is more reusable when it is highly modularized, that is, the component is independent of the external components, and provides distinct functionality. On the other hand, software components need be changed in order to fit into use. Simplicity and good documentation can ease the modification effort, and therefore, attain reusability. We extensively identified various quality factors that indicate the high modularity, low complexity and good documentation. Details are discussed as below.

High Modularity

High modularity can be gained by the following factors:

· High encapsulation. The encapsulation emphases on the inclusive control of data defined in the module by eliminating the use of global variables and public attributes in OO.

· High functionality concentration. When a module provides comprehensive functionality, the generalization is decreased and modification efforts for other contexts increase. Therefore, the narrower the functionality, the more reusable the module.

· High abstraction. The concept of the abstraction can be applied by the usage of abstract data types, abstract classes, inheritance mechanism, and polymorphism methods. All these attributes reduce the redundant definitions in the software, achieve the generalization, and furthermore, enhance the reusability.

· High cohesion. Cohesion focuses on how tight the internal elements are bounded or related. Such attribute can be used to predict properties such as ease of debugging, ease of maintenance, and ease of modification. The cohesion is measured by a set of metrics, for example, information flow inside modules or classes, the degree of connectivity of the data elements in a module, or Lack Of Cohesion in Method (LOCM)[4].

· Low coupling. Coupling aims to minimize inter-module dependencies, including information flows between the modules, associations, aggregations, method invocations, and the abstract data type references.

· Narrow Interface. In general, interface elements consist of public methods, formal parameter types of methods, return types, and public variables. Keeping interface narrow limits the number of services that a module can provide, and require less knowledge about the module before the module is used. Furthermore, it makes the module easy to change by less exported interface elements.

Low Complexity

The complexity is influenced by the following quality factors:

· Small Program Size. The line of code quantifies the program size.

· Low Nesting Level. There are two criteria to determine the nesting level: class inheritance depth, and nested definition of data structures. It is intuitively clear that the module in the deeper nesting level is more difficult to reuse as the changes in higher level of modules can propagate down and have influence on the modules at the deeper level. Thus, the entity with the less levels of nesting indicates better quality for reuse.

· Low Method Level Complexity. It is fundamental to reduce a method complexity in order to simplify the program complexity. There are two ways to examine the method complexity, i.e. information flow and internal control structure. Information flow is considered to incur complexity by the number of parameters, types of parameters, and method invocation. The more control flows a method has, the harder they are to be understood, consequently the harder they are to be reused. For the complexity in control structure, cyclomatic metrics, for example, can be adopted.

· Low Class Level Complexity. Although class level complexity is specific to OO, the concept of a module with variables and methods shares some similarities with a class. Therefore, a model level complexity can be measured in the similar way as the class level. In Figure 1, several OO specific factors are listed. For example, the more method, the more complex the class. Since more codes are reuse, the inheritance reduces class complexity. However, it is preferable that the inheritance structure be a forest with board direct children, instead of a deep tree.

Good Documentation

Although the specification documents, design documents, and user manuals can ease of reuse, we focus on the source code based features. In this context, two identified characteristics achieve good documentation, that is, the consistent use of the same naming convention to call software elements, and the volumes of comments inside classes and methods. These two factors increase the understandability of the code, and consequently, ease of reuse.

3.3. Maintainability Dependency Graph

Software maintenance is a long-term and costly task long before the project is delivered. A great effort has been being devoted to minimize the expected software maintenance expenses. A consensus has emerged that “the maintainability of a software system is dependent on its design, in the procedural paradigm as well as in the OO paradigm [5]. To this end, we are more interested in directing the migration process to obtain a high maintainable OO code. As a result, it alleviates the future enhancement and perfection to the migrant system. Similar to reusability, we have derived a soft-goal graph for maintainability, shown in figure 2.

Taken the definition in the ISO/IEC 9126: 1991(E), maintainability has four sub-characteristics: analyzability, changeability, stability and testability. Furthermore, we identified the inter attributes that achieve these four sub-characteristics, as elaborated below.

High Analyzability

High analyzability facilities to diagnosis of deficiencies or causes of failures, or to identify the parts to be modified [18]. It requires less effort for these tasks on the simple code structure and good documentation. The sub-goal, simple code structure is further explained as follows:

· Simple Code Structure. Not surprisingly, high modularity and low complexity can result in simple code structure. High modularity makes the code structure clear and lessens the effort to comprehend. As the same goal set up for the reusability in figure 1, code complexity can be measured by several factors such as size, the method complexity, and class complexity. It is worth noticing that polymorphism is introduced, for reason that the cognitive effort is alleviated by that the developer dose not have to figure out the existing methods in order to add new operations [6]. Conversely, excessive nesting levels lead to the difficulty in understanding the code after three or four level [7].

High Changeability

Changeability bears on the effort to modify the program for the environment, remove the fault, and enhance for the new requirements [18]. The following attributes are identified to contribute to changeability.

· Low Nesting Level. Low nesting level puts loose constraints to modify, especially, the components in the higher level, and accordingly, the changeability increases.

· Low Coupling. It is desirable that the component to be modified has as less as possible dependencies on other components. Thus, the ripple of modification can be kept in the small scale, and maintenance effort is reduced.

· Low Change Impact. When a variable changes its type or a class changes its name, the impact of such a change is used to measure the efforts to modify other components. The analysis of change impacts can be performed based on the design documents and questionnaires [8]. Figure 2 illustrates factors [5] that lead to the change impact. Obviously, the addition of software elements will not cause the change impact.

High Stability

Stability bears on the risk of unexpected effects of modifications [18]. We have identified two factors to support the high stability.

· High Encapsulation. Encapsulation is achieved through information hiding, which hides all the essential characteristics of a component, such as the attributes and the implementation of its methods. This separation of the contractual interface from the concrete implementation improves the stability. By this reason, the internal modification will not result in changes in outside the component.

· High Reuse. The library code and the existing ancestor classes have been thoroughly tested and posses less faults over the long time. Accordingly, the reuse of such entities ensures that the software is more stable than the utilization of the newly developed components.

High Testability

Testability bears on the effort needed for validating the modified software [18]. The code that has no jump

[image: image3.wmf]S

2

S

1

S

0

S

3

0.6

0.4

0.6

0.4

0.4

0.6

Figure 3: A Markov Model Example

statements or no excessive use of the decision statements makes itself simple, therefore requires low effort to test. The test suites are carried out to evaluate the testability. There are three commonly used measurement to test coverage, that is, statement coverage, branch coverage and logical path coverage [7].

3.4. Quality Measurement

For each of the internal attributes in the soft-goal dependency graph, a set of metrics is collected and combined to measure the attributes in different aspects. It is worth to mention that the parameters of the metrics expose the critical code features that have effects on the software quality, and therefore, they are listed as the leaves in the graph.

4. Software Quality Driven Transformation Process

The soft-goal dependency graph systematically identifies the inter-related properties, and provides a guideline to measure the desired qualities. But it is only suitable to assess the qualities in each static state. To drive the transformation to approach the state with desired attributes, the migration process is further constructed by the combination of Markov Model and soft-goal driven graph.

4.1. Basic Theory on Markov Model

Markov models are directed graphs labeled by probability scores. For example, shown in Figure 3, the blank circles are referred as states with names in the center. The arcs represent the transitions from one state to another, and are denoted with the possibilities. The filled dots are the starting point and the ending point, respectively. The Markov model provides an excellent way to abstract a continuous and complex process into a relatively easily computable form.

As shown in the Figure 3, the process can go through different paths to reach the end states, such as:

S0 S1 S3.
S0 S2 S3,
S0 S1 S1 S3, and

S0 S2 S2 S3.
With the probabilities labeled on the arcs, different sequences have different changes of occurring. The probabilities of happening for each of the sequence are:

S0 S1 S3 = 0.6 (0.6 = 0.36,

S0 S2 S3 = 0.4 (0.4 = 0.16,
S0 S1 S1 S3 = 0.6 (0.4 (0.6 = 0.144, and

S0 S2 S2 S3 = 0.4 (0.6 (0.4 = 0.096.
Therefore, the most possible path has been found out.

4.2. Migration Process Model

Conceptually, the software migration process can be modeled as a sequence of states, s0, s1, …, si, si+1, …, sn, and a sequence of transformations, t01, t02, …, tij, ti,j+1, …, tnn, where tij is the transformation from si to sj. Each state, si, and represents the outcome of the system at time t. The states abstracts the software with characteristics, pertaining to Abstract Data Types (ADTs) and their connections. The transformations, tijs, identify object models from the procedural code represented in the first state, s0, and go through a series of transitions util the final OO system represented in the state, sn, is met. We hypothesis that each transform, tij, causes changes to si and results in sj. Based on the software quality in the state, si, and sj, we predict the transformation, tij can achieve the quality goals with the probability of pij. Therefore, each of the transformation, tij is associated with a probability, pij. The probabilities for all the states can be represented as matrix shown in (1).

[image: image4.wmf]÷

÷

÷

÷

÷

ø

ö

ç

ç

ç

ç

ç

è

æ

=

nn

n

n

n

n

p

p

p

p

p

p

p

p

p

A

...

...

...

...

...

...

...

1

0

1

11

10

0

01

00

(1)

Not surprisingly, the Markov Model can be further leveled up and applied in the process of software migration, in order to recognize the best path that approaches the possibly highest software quality. However, there are two issues remaining before utilizing the Markov Model, that is, the quality measurement and the probability for each transition.

4.3. Quality Prediction

Before we discuss the measurement of the probability of a transformation towards the soft-goals, we define the rules as following:

Rule 1:
Every transformation tij cause at least one change that results in the transit from the source state si to the contiguous state sj.

Rule 2:
The change is constrained to the identified features presented in the leaves of the soft-goal graph, discussed in Section 3.

Rule 3:
Two states, si and sj are distinct, if there are differences in the terms of types of ADTs, the members of ADTs, and the connections between the ADTs.

In the simplest case, only one goal is pursued in the migration process. For each goal, a group of attributes are related and can be collected as criteria for the evaluation. For the state si, the values of these attributes can be represented as a vector, (a1, a2, …, ak, …, am), i.e. ak represents one attribute in the numeric format. As stated in Rule 1, a transformation makes changes to states. As a consequence, the transformation may cause ak increases, decreases, or keeps the same. Specially, it results in an impact on the quality goal either positively, negatively, or unchanged. The more positive impacts, the higher possible the transformation can achieve the quantity goals. Therefore, we propose the following formula 2 to evaluate the possibility gl’, with of which a transformation tij achieves the goal, Gl.

[image: image5.wmf]å

å

å

-

=

Attribute

Impact

Negative

Impact

Positve

'

l

g

(2)

For example, high abstraction achieves high modularity, and consequently reusability. As identified in Figure 1, the high abstraction is examined by the count of the following features.

1. number of references to abstract classes,

2. ratio of inherited methods,

3. depth of inherited children,

4. number of children,

5. number of overridden methods,

6. number of parents, and

7. ratio of inherited attributes

si has the attribute vector vi, (3, 0.4, 1, 3, 2, 1, 0.2). After tij, sj has the attribute vector vj, (4, 0.5, 1, 2, 3, 1, 0.2). So the pij = 3/7.

In some cases that the negative impacts are over positive impacts, we take the logarithm of the result. Therefore, the formal 2 is modified as following.

[image: image6.wmf]å

å

å

-

å

å

å

-

+

=

Attribute

Impact

Negative

Impact

Positve

attribute

Impact

Negative

Impact

Positve

1

e

e

g

l

(3)

It is also important to note that the one goal is achieved by all the sub-goals. To consider all the effects of the sub-goals, we derived the formula 4 that combines the contribution from the sub-goals. In a general circumstance, we assume that each of the sub-goals is equivalent, and therefore each with a equal proportion. In other cases, some sub-goals are more important than others. Based on the importance, the weights are determined by the users, and added as the coefficient to each of the corresponding probabilities.

[image: image7.wmf]å

+

å

=

=

=

R

l

l

l

R

l

l

l

g

c

g

c

ij

e

e

q

0

0

1

(4)

where R is the total number of the goals, cl is the coefficient for each gl, qij is the probability for the transformation tij to achieve all the goals.

Finally, the formula 4 can be applied recursively at different levels. As discussed so far, we focus on only one major goal, either reusability or maintainability. In addition, using formula 4, we can calculate the overall possibility that achieve both quality goals by providing gl with the individual probability that attain each of the major goal, say reusability. It is worth to note that the probability
[image: image8.wmf]ij

q

 is only dependent upon the immediately preceding states
[image: image9.wmf]i

S

, and not upon other previous states.

4.4. Best Transformation Path

Based on the probability chain in the Markov Model, the probability of different transformation paths can be calculated. To get the path with the highest probability to achieve the goals, the brute force can be always used to identify all the possible paths. In another way, this problem can be solved by Viterbi algorithm [9], which finds the single best path with highest probability based on a dynamic programming method. In Viterbi algorithm,
[image: image10.wmf])

(

t

j

d

 is defined as the best score (highest probability) at time t along a single path that ends in state sj. The score can be recursively calculated with the formula 5:

[image: image11.wmf]Encapsulation

<

NPA

,

NGV

,

PAR

>

, where

NPA:

 Number of Public Attribute

NGV:

Number of Global Variable

PAR:

 Private Attributes Ratio

Abstraction

<MIR, NPM, DIC, NC, NOM, NP, AIR>

, where

MIR:

 Method Inherited Ratio

NPM:

Number of Polymorphic Method

DIC:

 Depth of Inherited Children

NC

:

 Number of Children

NOM:

 Number of Overriden Methods

NP:

 Number of Parents

AIR:

 Attribute Inherited Ratio

Cohesion

<IFIC>

, where

I

FIC:

Information Flow Inside Class

Coupling

<CBO, IFBC, DCC, NMI, NLVT, NMPT, NMRT>

, where

CBO:

 Coupling between Objects

IFBC:

 Information Flow Between Classes

DCC:

 Direct Class Coupling (count of the different number of classes that a

class is directly related by attribute declarations and parameters in methods.)

NMI:

 Number of Method Invocations in other classes

NLVT:

 Number of Local Variable Types from other classes

NMPT

:

 Number of Method Parameter Types from other classes

NMRT:

 Number of Method Return Types from other classes.

Figure 4: Software Goals and Metric Sets

[image: image12.wmf])

)

1

(

(

max

)

(

1

ij

i

N

j

j

p

t

t

×

-

=

£

£

d

d

(5)

The optimal path can be found by backtracking if the index j of the
[image: image13.wmf])

1

(

-

t

j

d

 that maximizes
[image: image14.wmf])

(

t

j

d

 in a vector. This vector
[image: image15.wmf])

(

t

j

j

, defined in (6) is simply a pointer to the best preceding state si. The details can be found in [9].

[image: image16.wmf])

)

1

(

(

max

arg

)

(

1

ij

j

N

j

j

p

t

t

×

-

=

£

£

d

j

(6)

5. Experiments

To investigate the correctness of the quality driven approach presented in this paper, we have analyzed and migrated the AVL tree library.

The proposed goal driven approach is used to examine the rules we proposed in the previous papers [25], where procedural code written in C is migrated into object-oriented paradigm. In most of the cases, one state has only one following state after one transformation. In the other cases, one state can be driven into multiple states based on different transformation decisions. Therefore, the goal driven approach is especially useful in the latter cases, where it is applied to find the state with highest qualities.

5.1. Quality Goals and Metric Collection

For this case study, we focus on the examination of the achievement of such quality goals as high encapsulation, high abstraction, and high cohesion and low coupling. These internal attributes consequently achieve the reusability and maintainability. For each of the internal attributes, a set of metrics is collected according to the soft-goal dependency graph shown in Figure 1, 2. The attribute vector is defined as shown in Figure 4.

[image: image17.png][software Mi

avif3-dump.xml

File Objectity GenerateCode Help

Object Models

Ubl_btNodePtr “Parent,
ubi_btNode dumrmy,
ubl_biNodePtr dummy_

dumrmy,

f(Node1->Link[01]) Parent= &({Node1->Link01 J1Link(gnf(Node1->genden); else]
ReplaceNods(Parent, Node1, dumrmy_|

Classes’ {[[Data Members wn Methods Conflict Methods’
sampleRec Ubi_btNode "Link| 3, | [Debalance =] [ubi_aviRemove
ubi_btNode char gender, || [Replacenode lSwanNodes
ubi_btRoot ehar balance] | |SubSlide ubi_btRemove
Neighbor ubi_btinsert
ubi_btPrey ubi_aviinsert
ubi_biFirst
ubi_btNext
ubi_binithode
(TreeFing |
static void SwapNodes(ubi_biRootPtr RootPtr, Ubi_btNodePir Nodet, ubl_btNor

p)

Figure 5: System State with Initial Classes

Table 1: Coupling Measurements

[image: image18.png]Assigned | CBO | IFBC | DCC NLVT | NMPT | NMRT | g 2
Class

Tbi_btHode | -3 0 0 0 0 014285 | 4643%
Tbi_btRoot | -15 | - 0 3 0 S071429 | 3286%

Table 2: Cohesion Measurement

	Assigned

Class
	IFIC
	
[image: image19.wmf]'

l

g

	
[image: image20.wmf]l

g

	Ubi_btNode
	+9
	1
	73.11%

	Ubi_btRoot
	0
	0
	50%

Table 3: Accumulative Result

	Assigned Class
	
[image: image21.wmf]ij

q

	Ubi_btNode
	64.51%

	Ubi_btRoot
	 60.21%

5.2. Transformations and State Evolutions

Briefly, the objectification process can be separated into three consequent transformations. First of all, the first transformation focuses to achieve high encapsulation of the state, where the procedural code is broken into ADTs. The data members of ADTs are generated from the data members of user defined struct types, and they are changed into private attribute scope. Each of the global variables is encapsulated into an individual ADT. The methods are attached to ADTs based on the parameter types, return types and global variable usage. The initial results of ADTs are shown in Figure 5. Comparing with the initial state, which is represented in the procedural code, the transformation improved the encapsulation by eliminating public attributes, global variables and achieving private attribute ratio to 1. Therefore the

[image: image22.png]avif3-dump.xml _[o] x]

File Objectity GenerateCode Help

-Classes- : -Data Members- ~Own Methods- Conflict Methods-
[sampleRec || {[ubi_biNode *Link{3]; | [ubi_biiniNode
lubi_otNode || [cnar gender, || [TreeFing

ubi_otRoot || |[enar balance;|| [CompareFunc

ource:

static void SwapNodes(ubi_biRootPtr RootPtr, Ubl_btNodePlr Nodet,
Ubl_btNodePtr “Parent,
ubi_btNode dumrmy,
Ubl_biNodePtr durmmy_p

dumrmy,

Figure 6: System State without Methods in Conflicts

[image: image23.png]01

ubi_btRoot

root

o

ubi_bthlade

ubi_biCormpFunc

ubi_btActionRin

ubi_btKilNodeRtn

SampleRec]

PrintNode

KillNode

Compare
Func

Figure 7: Final System State

encapsulation vector is <+, +, +>, where “+” means the transformation gives positive impacts of the software quality. The other three goals are not applicable for this transformation, because the measurements for the procedural code and OO code are not in the same scope.

Figure 5 illustrates the initial break-down of the system in three classes: SampleRec, ubi_btNode and ubi_btRoot. The most right column reveals the conflicted methods that can be attached to the multiple classes in the first transformation. Therefore, the state can be driven into multiple states by attaching the conflicted methods in different ADTs. For example, SwapNode is a method in conflicts, and can be either assigned to either ubi_btNode or ubi_btNode. Thus, two states are created. In this case, the choice of the states are based the probability that achieve the goals, high cohesion inside class and low coupling between classes.
Table 1 shows the changes of the software quality on coupling if the method, swapNode is assigned to either class. According to the formula 2 and 3, the
[image: image24.wmf]'

l

g

and
[image: image25.wmf]l

g

are calculated. Table 2 illustrates the impact on cohesion. By formula 4, the accumulative results of the change on both goals are calculated, as shown in Table 3. Thus, the SwapNode is assigned to ubi_btNode, because it has higher probability to achieve the software goals. The rest of the conflicted methods can be resolved in the same way. In the end, the Figure 6 shows the state without methods in conflicts.
In the final transformation, the inheritance and polymorphic methods are identified. The state of the system is shown in Figure 7. In this transformation, the abstraction goal is considered. Because the metrics used for cohesion and coupling do not take the inheritance into account, and the encapsulation vector is kept intact. By examining the result system, the impact of the transformation for abstraction can be derived as <+, +, +, +, +, +, +>. Therefore, the transformation approaches the quality goals.

As a summery, after each of the transformations, the impacts on the quality goals are measured. At each time, the states with highest quality scores are selected to apply the next transformation. Therefore, the finally system with highest quality is achieved. Although this case study only describes three transformations, each state can be further established in the hierarchy where the state is elaborated with series sub-states and sub-transformations. For example, the methods in conflicts are resolved by a sequence of sub-transformations and sub-states.

6. Conclusion

Quality control is a critical issue in the process of software migration and it ensures the migration process is driven into the desired stages. In this paper, we proposed the reusability and maintainability soft-goal dependency graphs that boil down to the source code features, the critical criteria to measure the higher-level soft goals. Moreover, the migration process is abstracted into states and transformation based on the Markov model. A set of formulas is proposed to quantify the transformation impacts on the desired goals.

The approach predicts the software qualities in the each phrase of the migration. It provides a dynamical way to evaluates the migration process with respect to predetermined soft-goals. Furthermore, it gives a deterministic probability value to choose the appropriate state to move the migration. Therefore, the final state with the highest quality is obtained.

References

[1]
Aniello Cimitile, et.al, “Identifying Objects In Legacy Systesm Using Design Metrics”, The Journal of Systems and Software 44 (1999), Elsevier.

[2]
L.H. Etzkorn, W.E. Hughes Jr., and C.G. Davis, “Automated reusability quality analysis of OO legacy software”, Information and Software Technology 43 (2001), Elsevier.

[3]
Sen-Tarng Lai and Chien-Chiao Yang, “A Software Metric Combination Model for Software Reuse”.

[4]
Shyam R. chidamber and Chris F. Kemerer, “A Metrics Suite for Object Oriented Design”, IEEE Transactions on Software Engineering, Vol 20, No. 6, June 1994.

[5]
M. Ajmal Chaumun, et. al, “Design Peroperies and Object-Oriented Software Changeability”.

[6]
David P. Tegarden, and Steven D. Sheetz, “Effectiveness of Traditional Software Metrics for Object-Oriented Systems”, IEEE 1992.

[7]
Sen-Tarng Lai, Chien-Chiao Yang, “A Software Metric Combinatin Model for Software Reuse”.

[8]
Lionel C. Briand, Christian Bunse, and John W. Daly, “ A Controlled Experiment for Evaluating Quality Guidenlines on the Maintainability of Object-Oriented Designs”, IEEE Transactions on Software Engineering, Vol 27, No. 6, June 2001.

[9]
Paul van Alphen & Dick R. van Bergem, “Markov Models and Their Application in Speech Recognition”.

[10]
H. Muller, M. Orgun, S. Tilley, and J.Uhl, A reverse Engineering Approach To Subsystem Structure Identification, In Journal of Software Maintenance: Research and Practive, 5(4): 181-204, 1993.

[11]
S. Mancoridis, B.S. Mitchell, Y. Chen, and E. R. Gansner, Bunch: a clustering tool for the recovery and maintenance of software system structures, In Proc. Of International Conference on Software Engineering, 1999.

[12]
C. Lindig and G. Snelting, “Assessing Modular Structure of Legacy Code Based on Mathematical Concept Analysis”, In Proc. Of International Conference on Software Engineering, 1997.

[13]
H. A. Sahraoui, W. Melo, H. Lounis, F. Dumont, “Applying Concept Formation Methods To Object Identification In Procedural Code”, In Proc. Of 12th Conference on Auotmated Software Engineering, 1997.

[14]
Letha H. Etzkorn, Carl G. Davis, “Automatically Identifying Reusable OO Legacy Code”, Computer, IEEE, October, 1997.

[15]
K. Kontogiannis, P. Patil, “Evidence Driven Object Identification in Procedural Systems’’. STEP’99, September 1999, pp. 12-21.

[16]
Filippo Lanubile, and Giuseppe Visaggio, “Extracting Reusable Functions by Flow Graph-Based Program Slicing”, IEEE Transactions on Software Engineering, Vol. 23, No. 4, April, 1997.

[17]
De Lucia, G.A. Di Lucca, A.R. Fasolino, P. Guerra, S. Petruzzelli, “Migrating Legacy Systems toward Object-Oriented Platforms”, 1997, IEEE.

[18]
International Standard for Software Product Quality Software (ISO/IEC 9126: 1991).

[19]
Stephen H. Han, “Metrics and Models in Software Quality Engineering”, Addison-Wesley, 1995.

[20]
S.R. Chidamber, C.F. Kemerer, “A Metrics Suite for Object Oriented Design”, IEEE Transaction, Software Engineering, 1994.

[21]
W. Li, and S. Henry, “Object-Oriented Metrics Which Predict Maintainability”, Journal of Systems Software, 1993.

[22]
M. Lorenz and J. Kidd, “Object-Oriented Software Metrics”, PTR Prentice-Hall, Englewood Ciffs, New Jersey, 1994.

[23]
Lionel Briand, et. al, “Characterizing and Accessing a Large-Scale Software Maintenance Organization”, http://www.cs.umd.edu/projects/SoftEng/ESEG/papers/CS-TR-3354.pdf

[24]
Ladan Tahvildari, Kostas Kontogiannis, John Mylopolous, “Requirements-Driven Software Reengineering", 8th IEEE Working Conference on Reverse Engineering (WCRE 2001), Stuttgart, Germany, pp. 71-80, October 2001.

[25]
Ying Zou, Kostas Kontogiannis, “A Framework for Migrating Procedural Code to Object-Oriented Platform”, in the proceedings of 8th Asia-Pacific Software Engineering Conference, Macau SAR, China, December 4-7, 2001.
PAGE

_1074352535.vsd
Reusability�

High
Modularity�

Low
Complexity�

Good
Documentation�

High
Encapsulation�

Low
 Coupling�

High
Cohesion�

High
Abstraction�

Program
Size�

Class Complexity�

Method
Complexity�

File
Level�

Class
Level�

Method
Level�

Comment Sections�

Size of Comment Characters�

Comments /
Attributes + # Methods�

Comment Lines Per Method
/ LOC Per Mothod�

Comments�

Naming
Conventions�

Commented Methods
/ # Total Methods�

Narrow
Interface�

Public attributes�

Global
Variables�

Inline Methods�

Pivate (Protected) attributes / # Total Attributes�

Funcationality�

Function
Point�

Accessors�

Non-Accessors /
Tot Methods�

Public Methods�

Method Arguments�

Public Methods / Total Methods�

Non-Accessors �

Ref. To Abstract Classes�

ratio of # method inherited�

ratio of # attributes inherited�

Inheritance�

Degree of Connecitivity of Elements�

TCC�

LCC�

Infomation Flow Inside Class�

Information Flow Between Class�

Connections�

RFC�

CBO�

Direct Attribute Based Coupling�

Direct Class Coupling�

Method
Invocations�

Aggregation�

Local Variable Types�

Method Parameter Types�

Weighted Methods per Class�

Class Entropy Complexity�

Inheritance
Level�

Direct Parent Class�

Ref. To Abstract Classes�

Methods�

Cyclomatic Complexity�

Method Parameter�

LOC�

LCOM�

DIC�

Method Return Types�

Polymorphic
Methods�

Children�

Method
Return Types�

Overridden
Methods�

Nesting
Level�

Parents�

Data
Structure Nesting Level�

Inheritance
Depth�

_1074816363.unknown

_1074816997.unknown

_1075032120.unknown

_1074817433.unknown

_1074816484.unknown

_1074805322.unknown

_1074816338.unknown

_1074697152.vsd
S0�

�

S2�

S1�

S3�

�

�

�

0.6�

0.4�

0.6�

0.4�

0.6�

0.4�

_1072651296.unknown

_1072790782.unknown

_1072790838.unknown

_1074352069.vsd
Maintainability�

High Analysability�

High Changeability�

High Stability�

High Testability�

Good
Documentation�

Naming
Conventions�

Class
Level�

Method
Level�

Comment Sections�

Size of Comment Characters�

Comments /
Attributes + # Methods�

Comment Lines Per Method
/ LOC Per Method�

Comments�

Commented Methods
/ # Total Methods�

Simple Code
Structure�

Line of Code�

Low Complexity�

Low Coupling�

High Cohesion�

Polymorphism�

Inheritance�

High
Modularity�

Statement Coverage�

Branch Coverage�

High Reuse�

Low Change Impact�

Low
Coupling�

Low Nesting Level�

Assocations�

Aggregation�

Inheritance�

Method
Invocation�

 # Global Variable
References�

Data
Structure Nesting Level�

Inheritance
Depth�

Percentage of Reused Code�

Percentage of Reused Modules�

Percentage of Reused Modules Without Revision�

Variable Change�

Addion�

Deletion�

Type
Change�

Scope
Change�

Method Change�

Implementation Change�

Return Type
Change�

Signature Change�

Class Change�

Structure Change�

Global
Variables�

High
Encapsulation�

Public attributes�

Inline Methods�

Pivate (Protected) attributes / # Total Attributes�

Generalization�

Polymorphic Methods�

Direct Children�

 # Attribute
References�

 # Method
Invocation�

 # ADT
References�

 # Parameter ADT Types�

 # Return ADT Types�

Children in Sub-tree�

Children�

CBO�

CBO No Ancessor�

CBO Is Used By�

CBO Using�

Method
Complexity�

Class
Complexity�

File
Level�

Nesting
Level�

Data
Structure Nesting Level�

Inheritance
Depth�

_1072790808.unknown

_1072652201.unknown

_1072652733.unknown

_1072652214.unknown

_1072651315.unknown

_1072630647.unknown

_1072643813.vsd
Encapsulation <NPA, NGV, PAR>, where
	NPA: Number of Public Attribute	NGV: Number of Global Variable
	PAR: Private Attributes Ratio
Abstraction <MIR, NPM, DIC, NC, NOM, NP, AIR>, where
	MIR: Method Inherited Ratio	NPM: Number of Polymorphic Method
	DIC: Depth of Inherited Children	NC: Number of Children
	NOM: Number of Overriden Methods	NP: Number of Parents
	AIR: Attribute Inherited Ratio
Cohesion <IFIC>, where
	IFIC: Information Flow Inside Class
Coupling <CBO, IFBC, DCC, NMI, NLVT, NMPT, NMRT>, where
	CBO: Coupling between Objects	IFBC: Information Flow Between Classes
	DCC: Direct Class Coupling (count of the different number of classes that a
	class is directly related by attribute declarations and parameters in methods.)
	NMI: Number of Method Invocations in other classes
	NLVT: Number of Local Variable Types from other classes
	NMPT: Number of Method Parameter Types from other classes
	NMRT: Number of Method Return Types from other classes.�

_1072377209.unknown

