Tracking

Goal: Fundamentals of model-based tracking with emphasis on probabilistic formulations. Examples include the Kalman filter for linear-Gaussian problems, and maximum likelihood and particle filters for nonlinear/nonGaussian problems.

Outline

- Introduction
- Bayesian Filtering / Smoothing
- Likelihood Functions and Dynamical Models
- Kalman Filter
- Nonlinear/NonGaussian Processes
- Hill Climbing (Eigen-Tracking)
- Particle Filters

Readings: Chapter 17 of Forsyth and Ponce.
Matlab Tutorials: motionTutorial.m, trackingTutorial.m
Challenges in Tracking

Tracking is the inference object shape, appearance, and motion as a function of time.

Main players:

- what to model or estimate: shape (2D/3D), appearance, dynamics
- what to measure: color histograms, edges, feature points, flow, ...

Some of the main challenges:

- objects with many degrees of freedom, affecting shape, appearance, and motion;
- impoverished information due to occlusion or scale;
- multiple objects and background clutter
space / aerospace

smart toys

sports / kinesiology

non-rigid motions

surveillance

automatic control

human motion capture

biology (animal/cell/molecular)
A few basic properties of probability distributions will be used often:

- **Conditioning (factorization):**
 \[p(a, b) = p(a|b) p(b) = p(b|a) p(a) \]

- **Bayes’ rule:**
 \[p(a|b) = \frac{p(b|a) p(a)}{p(b)} \]

- **Independence:** \(a \) and \(b \) are independent if and only if
 \[p(a, b) = p(a) p(b) \]

- **Marginalization:**
 \[p(b) = \int p(a, b) \, da \quad , \quad p(b) = \sum_a p(a, b) \]
Probabilistic Formulation

We assume a state space representation in which time is discretized, and a state vector comprises all variables one wishes to estimate.

State: denoted \(x_t \) at time \(t \), with the state history \(x_{1:t} = (x_1, \ldots, x_t) \)
- continuous variables (position, velocity, shape, size, ...)
- discrete variables (number of objects, gender, activity, ...)

Observations: the data measurements (images) with which we constrain state estimates, based on observation equation \(z_t = f(x_t) \). The observations history is denoted \(z_{1:t} = (z_1, \ldots, z_t) \)

Posterior Distribution: the conditional probability distribution over states specifies all we can possibly know (according to the model) about the state history from the observations.

\[
p(x_{1:t} \mid z_{1:t})
\] (1)

Filtering Distribution: often we only really want the marginal posterior distribution over the state at the current time given the observation history. This is called the filtering distribution:

\[
p(x_t \mid z_{1:t}) = \int x_1 \ldots \int x_{t-1} p(x_{1:t} \mid z_{1:t})
\] (2)

Likelihood and Prior: using Bayes’ rule we write the posterior in terms of a likelihood, \(p(z_{1:t} \mid x_{1:t}) \), and a prior, \(p(x_{1:t}) \):

\[
p(x_{1:t} \mid z_{1:t}) = \frac{p(z_{1:t} \mid x_{1:t}) p(x_{1:t})}{p(z_{1:t})}
\]
Model Simplifications

The distribution $p(x_{1:t})$, called a prior distribution, represents our prior beliefs about which state sequences (e.g., motions) are likely.

First-order Markov model for temporal dependence (dynamics):

$$p(x_t | x_{1:t-1}) = p(x_t | x_{t-1})$$

(3)

The order of a Markov model is the duration of temporal dependence (a first-order model requires past states up to a lag of one time step).

With a first-order Markov model one can write the distribution over the state history as a product of transitions from time to the next:

$$p(x_{1:t}) = p(x_t | x_{t-1}) p(x_{1:t-1})$$

$$= p(x_1) \prod_{j=2}^{t} p(x_j | x_{j-1})$$

(4)

The distribution $p(z_{1:t} | x_{1:t})$, often called a likelihood function, represents the likelihood that the state generated the observed data.

Conditional independence of observations:

$$p(z_{1:t} | x_{1:t}) = p(z_t | x_t) p(z_{1:t-1} | x_{1:t-1})$$

$$= \prod_{\tau=1}^{t} p(z_{\tau} | x_{\tau})$$

(5)

That is, we assume that the observations at different times are independent when we know the true underlying states (or causes).
Filtering and Prediction Distributions

With the above model assumptions, one can express the posterior distribution recursively:

\[
p(x_{1:t} | z_{1:t}) \propto p(z_{1:t} | x_{1:t}) p(x_{1:t})
= \prod_{\tau=1}^{t} p(z_{\tau} | x_{\tau}) \prod_{j=2}^{t} p(x_{j} | x_{j-1})
\propto p(z_{t} | x_{t}) p(x_{t} | x_{t-1}) p(x_{1:t-1} | z_{1:t-1}) \tag{6}
\]

The filtering distribution can also be written recursively:

\[
p(x_{t} | z_{1:t}) = \int_{x_{1}} \cdots \int_{x_{t-1}} p(x_{1:t} | z_{1:t})
= c \ p(z_{t} | x_{t}) p(x_{t} | z_{1:t-1}) \tag{7}
\]

with a prediction distribution defined as

\[
p(x_{t} | z_{1:t-1}) = \int_{x_{t-1}} p(x_{t} | x_{t-1}) p(x_{t-1} | z_{1:t-1}) \tag{8}
\]

Recursion is important:

- it allows us to express the filtering distribution at time \(t \) in terms of the filtering distribution at time \(t-1 \) and the evident at time \(t \).
- all useful information from the past is summarized in the previous posterior (and hence the prediction distribution).

Without recursion one may have to store all previous images to compute the filtering distribution at time \(t \).
Derivation of Filtering and Prediction Distributions

Filtering Distribution: Given the model assumptions in Equations (4) and (5), along with Bayes’ rule, we can derive Equation (7) as follows:

\[
p(x_t | z_{1:t}) = \int_{x_1} \cdots \int_{x_{t-1}} p(x_{1:t} | z_{1:t}) = \frac{1}{p(z_{1:t})} \int_{x_1} \cdots \int_{x_{t-1}} p(z_{1:t} | x_{1:t}) p(x_{1:t}) = c \int_{x_1} \cdots \int_{x_{t-1}} p(z_t | x_t) p(x_{1:t-1} | x_{1:t-1}) p(x_t | x_{t-1}) p(x_{1:t-1}) = c p(z_t | x_t) \int_{x_{t-1}} p(x_{1:t-1} | x_{t-1}) p(x_t | x_{t-1}) = c p(z_t | x_t) \int_{x_{t-1}} p(x_{1:t-1} | x_{t-1}) p(x_t | x_{t-1}) = c p(z_{1:t-1}) p(z_t | x_t) \int_{x_{t-1}} p(x_{1:t-1} | x_{t-1}) \cdot
\]

Batch Filter-Smoother (Forward-Backward Belief Propagation): We can derive the filter-smoother equation (9), for \(1 < \tau \leq t\), as follows:

\[
p(x_\tau | z_{1:t}) = \frac{1}{p(z_{1:t})} \int_{x_{1:\tau-1}} \int_{x_{\tau+1:t}} p(x_{1:t}) p(z_{1:t} | x_{1:t}) = c \int_{x_{1:\tau-1}} \int_{x_{\tau+1:t}} p(x_\tau) p(x_{\tau+1:t} | x_\tau) p(z_{1:\tau-1} | x_{1:\tau-1}) p(z_\tau | x_\tau) p(z_{\tau+1:t} | x_{\tau+1:t}) = c p(z_\tau | x_\tau) \int_{x_{1:\tau-1}} p(x_{1:\tau-1} | x_{1:\tau-1}) \int_{x_{\tau+1:t}} p(x_{\tau+1:t} | x_{\tau+1:t}) = c p(z_\tau | x_\tau) p(x_\tau | z_{1:\tau-1}) \int_{x_{\tau+1:t}} p(x_{\tau+1:t} | x_{\tau+1:t}) p(x_\tau | x_{\tau+1:t}) \cdot
\]
Filtering and Smoothing

Provided one can invert the dynamics equation, one can also perform inference (recursively) backwards in time:

\[
p(x_t | z_{t:t}) = c p(z_t | x_t) \int_{z_{t+1}} p(x_t | x_{t+1}) p(x_{t+1} | z_{t+1:t}) \]
\[
= c p(z_t | x_t) p(x_t | z_{t+1:t})
\]

That is, the distribution depends on the likelihood the current data, the inverse dynamics, and the filtering distribution at time \(t + 1 \).

Smoothing distribution (forward-backward belief propagation):

\[
p(x_t | z_{1:t}) = \frac{c}{p(x_t)} p(z_t | x_t) p(x_t | z_{1:t-1}) p(x_t | z_{t+1:t}) \quad (9)
\]

The smoothing distribution therefore accumulates information from past, present, and future data.

Batch Algorithms: Estimation of state sequences using the entire observation sequence (i.e., using all past, present & future data):

- the filter-smoother algorithm is efficient, when applicable.
- storage/delays make this unsuitable for many tracking domains.

Online Algorithms: Recursive inference (7) is causal. Estimation of \(x_t \) occurs as soon as observations at time \(t \) are available, thereby using present and past data only.
Likelihood Functions

There are myriad ways in which image measurements have been used for tracking. Some of the most common include:

- **Feature points:** E.g., Gaussian noise in the measured feature point locations. The points might be specified *a priori*, or learned when the object is first imaged at time 0.

- **Image templates:** E.g., subspace models learned prior to tracking, or brightness constancy as used in flow estimation.

- **Color histograms:** E.g., mean-shift to track modes of local color distribution, for robustness to deformations.

- **Image edgels or curves.** E.g., with Gaussian noise in measured location normal to the contour.
Temporal Dynamics

Linear dynamical models:

- Random walk with zero velocity and Gaussian process noise:
 \[x_t = x_{t-1} + \eta_d, \quad \eta_d \sim \mathcal{N}(0, C) \]

- Random walk with zero acceleration and Gaussian process noise
 \[
 \begin{pmatrix}
 x_t \\
 \vec{v}_t
 \end{pmatrix} =
 \begin{pmatrix}
 1 & 1 \\
 0 & 1
 \end{pmatrix}
 \begin{pmatrix}
 x_{t-1} \\
 \vec{v}_{t-1}
 \end{pmatrix} +
 \begin{pmatrix}
 \eta_d \\
 \vec{e}_d
 \end{pmatrix}
 \]
 where \(\eta_d \sim \mathcal{N}(0, C_x) \) and \(\vec{e}_d \sim \mathcal{N}(0, C_v) \).

- For second- and higher-order models it is common to define an augmented state vector, for which a first-order model can be formulated. E.g., for a second-order model defined by
 \[x_t = Ax_{t-1} + Bx_{t-2} + \eta_d \]
 one can define
 \[
 \vec{y}_t \equiv \begin{pmatrix}
 x_t \\
 x_{t-1}
 \end{pmatrix}
 \]
 for which the equivalent first-order augmented-state model is
 \[
 \vec{y}_t = \begin{pmatrix}
 A & B \\
 I & 0
 \end{pmatrix} \vec{y}_{t-1}
 \]

 Typical observation model: \(z_t = f([I \ 0] \cdot \vec{y}_t) + \text{Gaussian noise.} \)
Dynamical Models

There are many other useful dynamical models. For example, harmonic oscillation can be expressed as

\[
\frac{d^2 x}{dt^2} = -x
\]

or as a first order system with

\[
\frac{d \bar{u}}{dt} = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \bar{u}, \quad \text{where} \quad \bar{u} \equiv \begin{pmatrix} x \\ v \end{pmatrix}
\]

A first-order approximation yields:

\[
\bar{u}_t = \bar{u}_{t-1} + \Delta t \frac{d \bar{u}}{dt} + \begin{pmatrix} \eta \\ \epsilon \end{pmatrix}
\]

\[
= \begin{pmatrix} 1 & \Delta t \\ -\Delta t & 1 \end{pmatrix} \bar{u}_{t-1} + \begin{pmatrix} \eta \\ \epsilon \end{pmatrix}
\]

In many cases it is useful to learn a suitable model of state dynamics. There are well-know algorithms for learning linear auto-regressive models of variable order.
Kalman Filter

Assume a linear dynamical model with Gaussian process noise, and a linear observation model with Gaussian observation noise:

\[x_t = A x_{t-1} + \eta_d, \quad \eta_d \sim \mathcal{N}(0, C_d). \quad (10) \]
\[z_t = M x_t + \eta_m, \quad \eta_m \sim \mathcal{N}(0, C_m) \quad (11) \]

The transition density is therefore Gaussian, centred at mean \(A x_{t-1} \), with covariance \(C_d \):

\[p(x_t \mid x_{t-1}) = G(x_t; A x_{t-1}, C_d). \quad (12) \]

The observation density is also Gaussian:

\[p(z_t \mid x_t) = G(z_t; M x_t, C_m). \quad (13) \]

Because the product of Gaussians is Gaussian, and the marginals of a Gaussian are Gaussian, it is straightforward (but tedious) to show that the prediction and filtering distributions are both Gaussian:

\[p(x_t \mid z_{1:t-1}) = \int_{x_t} p(x_t \mid x_{t-1}) p(x_{t-1} \mid z_{1:t-1}) = G(x_t; x_t^-, C_t^-) \quad (14) \]
\[p(x_t \mid z_{1:t}) = c p(z_t \mid x_t) p(x_t \mid z_{1:t-1}) = G(x_t; x_t^+, C_t^+) \quad (15) \]

with closed-form expressions for the means \(x_t^- \), \(x_t^+ \) and covariances \(C_t^- \), \(C_t^+ \).
Kalman Filter

Depiction of Kalman updates:

- Posterior at $t-1$
- Data
- Incorporate data
- Deterministic drift
- Stochastic diffusion
- Prediction at t
Kalman Filter (details)

To begin, suppose we know that $\mathbf{x} \sim \mathcal{N}(\mathbf{0}, C)$, and let $\mathbf{y} = A\mathbf{x}$. Since \mathbf{x} is zero-mean, it is clear that \mathbf{y} will also be zero-mean. Further, the covariance of \mathbf{y} is given by

$$
E[\mathbf{y}\mathbf{y}^T] = E[A\mathbf{x}\mathbf{x}^T A^T] = A E[\mathbf{x}\mathbf{x}^T] A^T = AC A^T
$$

(16)

Now, let’s use this to derive the form of the prediction distribution. Let’s say that we know the filtering distribution from the previous time instant, $t-1$, and let’s say it is Gaussian with mean \mathbf{x}_{t-1}^+ with covariance C_{t-1}^+.

$$
p(\mathbf{x}_{t-1} \mid \mathbf{z}_{1:t-1}) = G(\mathbf{x}_{t-1}; \mathbf{x}_{t-1}^+, C_{t-1}^+) .
$$

(17)

And, as above, we assume a linear-Gaussian dynamical model,

$$
\mathbf{x}_t = A \mathbf{x}_{t-1} + \mathbf{\eta}_d , \quad \mathbf{\eta}_d \sim \mathcal{N}(0, C_d) .
$$

(18)

From above we know that $A \mathbf{x}_{t-1}$ is Gaussian. And we’ll assume that the Gaussian process noise $\mathbf{\eta}_d$ is independent of the previous posterior distribution. So, 18 is the sum of two independent Gaussian random variable, and hence the corresponding density is just the convolution of their individual densities. Remember that the convolution of two Gaussians with covariances C_1 and C_2 is Gaussian with covariance $C_1 + C_2$. With this, it follows from (17) and (18) that the prediction mean and covariance of $p(\mathbf{x}_t \mid \mathbf{z}_{1:t-1})$ in (14) are given by

$$
\mathbf{x}_t^- = A \mathbf{x}_{t-1}^+ , \quad C_t^- = A C_{t-1}^+ A^T + C_d .
$$

This gives us the form of the prediction density.

Now, let’s turn to the filtering distribution. That is, we wish to combine the prediction distribution with the observation density for the current observation, \mathbf{z}_t, in order to form the filtering distribution at time t. In particular, using (15), with (13) and the results above, it is straightforward to see that

$$
p(\mathbf{x}_t \mid \mathbf{z}_{1:t}) \propto p(\mathbf{z}_t \mid \mathbf{x}_t) p(\mathbf{x}_t \mid \mathbf{z}_{1:t-1})
$$

$$
= G(\mathbf{z}_t; M\mathbf{x}_t, C_m) G(\mathbf{x}_t; \mathbf{x}_t^-, C_t^-) .
$$

(19)

(20)

Of course the product of two Gaussians is Gaussian; and it remains to work out expressions for its mean and covariance. This requires somewhat tedious algebraic manipulation.
While there are many ways to express the posterior mean and covariance, the conventional solution defines an intermediate quantity called the Kalman Gain, \(K_t \), given by

\[
K_t = C_{t-1}^M T (MC_{t-1}^M T + C_m)^{-1}.
\]

Using the Kalman gain, one can express the posterior mean and variance, \(x_t^+ \) and \(C_t^+ \), as follows:

\[
x_t^+ = x_t^- + K_t (z_t - Mx_t^-),
\]

\[
C_t^+ = (I - K_t M) C_t^- = (I - K_t)C_t^- (I - K_t)^T + K_t C_m K_t^T.
\]

The Kalman filter began to appear in computer vision papers in the late 1980s. The first two main applications were for (1) automated road following where lane markers on the highway were tracking to keep a car on the road; and (2) the estimation of the 3D structure and motion of a rigid object (or scene) with respect to a camera, given a sequence of point tracks through time.

R.E. Kalman
Non-linear / Non-Gaussian Systems

Tracking problems are rarely linear/Gaussian. Posterior and prediction distributions are usually nonGaussian, and often they are multimodal. The reasons for this include, among other things,

- image observation models are often nonlinear with heavy-tailed noise so that we can cope with outliers, complex appearance changes, and the nonlinearity of perspective projection.
- temporal dynamics are often nonlinear (e.g., human motion)
- scene clutter and occlusion, where many parts of the scene may appear similar to parts of the object being tracking

For example:

Background clutter and distractors. Nonlinear dynamics.
Extended and Unscented Kalman Filters

Extended Kalman Filter (EKF): For nonlinear dynamical models one can linearize the dynamics at current state; that is,

\[
\tilde{x}_t = f(\tilde{x}_{t-1}) + \tilde{\eta}_d \approx A \tilde{x}_{t-1} + \tilde{\eta}_d,
\]

where \(A = \nabla f(\tilde{x}) \mid_{x=x_{t-1}} \) and \(\tilde{\eta}_d \sim \mathcal{N}(0, C_d) \). One can also iterate the approximation to obtain the *Iterated Extended Kalman Filter (IEKF).* In practice the EKF and IEKF have problems unless the dynamics are close to linear.

Unscented Kalman Filter (UKF): Estimate posterior mean and variance to second-order with arbitrary dynamics [Julier & Uhlmann, 2004]. Rather than linearize the dynamics to ensure Gaussian predictions, use exact 1st and 2nd moments of the prediction density under the nonlinear dynamics:

- Choose *sigma points* \(x_j \) whose sample mean and covariance equal the mean and variance of the Gaussian posterior at \(t \)
- Apply nonlinear dynamics to each sigma point, \(y_j = f(x_j) \), and then compute the sample mean and covariances of the \(y_j \).
Hill-Climbing

Rather than approximating the posterior (fully), just find local posterior maxima at each time step. One might also compute the curvature of log posterior at maxima to get local Gaussian approximations.

E.g., Eigen-Tracking [Black & Jepson, ’96]:

- Assume we have learned (offline) a subspace appearance model for an object under varying pose, articulation, and lighting:

\[B(x, c) = \sum_k c_k B_k(x) \]

- During tracking, we seek the image warp parameters \(a_t \), at each time \(t \), and the subspace coefficients \(c_t \) such that the warped image is *explained* by the subspace; i.e.,

\[I(w(x, a_t), t) \approx B(x, c_t) \]

- A robust objective function helps cope with modeling errors, occlusions and other outliers:

\[E(a_t, c_t) = \sum_x \rho(I(w(x, a_t), t) - B(x, c_t)) \]

- Initialize the estimation at time \(t \) with ML estimate from time \(t-1 \).

Eigen-Tracking

Test Results:

Figures show superimposed tracking region (top), the best reconstructed pose (bottom left), and the closest training image (bottom right).
Sequential Monte Carlo

For many problems ambiguity is sufficiently problematic that we must maintain a better representation of the filtering distribution.

Monte Carlo: Approximate the filtering distribution \mathcal{P} with samples drawn from it, $\mathcal{S} = \{x^{(j)}\}_{j=1}^{N}$. Then, use sample statistics to approximate expectations under \mathcal{P}; i.e., for functions $f(x)$,

$$E_{\mathcal{S}} [f(x)] \equiv \frac{1}{N} \sum_{j=1}^{N} f(x^{(j)}) \xrightarrow{N \to \infty} \int f(x) \mathcal{P}(x) \, dx \equiv E_{\mathcal{P}} [f(x)]$$

But, we don’t know how to draw samples from our posterior $p(x_t | z_{1:t})$.

Importance Sampling: If one draws samples $x^{(j)}$ from a *proposal distribution*, $Q(x)$, with weights $w^{(j)}$, then

$$E_{\mathcal{S}} [f(x)] \equiv \sum_{j=1}^{N} w^{(j)} f(x^{(j)}) \xrightarrow{N \to \infty} E_{Q} [w(x) \, f(x)]$$

If $w(x) = \mathcal{P}(x)/Q(x)$, then the weighted sample statistics approximate the desired expectations under $\mathcal{P}(x)$; i.e.,

$$E_{Q} [w(x) \, f(x)] = \int w(x) \, f(x) \, Q(x) \, dx$$

$$= \int f(x) \, \mathcal{P}(x) \, dx$$

$$= E_{\mathcal{P}} [f(x)]$$
Particle Filter

Approximate the posterior distribution, \(p(x_t | z_{1:t}) \), using a weighted sample set, \(S = \{ x_t^{(j)}, w_t^{(j)} \} \); that is, with a collection of point probability masses at locations \(x_t^{(j)} \) with weights \(w_t^{(j)} \).

Sequential Monte Carlo: The approximation is updated each time instant, incorporating new data, and possibly re-sampling the set of state samples \(x^{(j)} \).

Key: Exploit the form of the filtering distribution,

\[
p(x_t | z_{1:t}) = c \, p(z_t | x_t) \, p(x_t | z_{1:t-1})
\]

and the facts that it is often easy to evaluate the likelihood, and one can usually draw samples from the prediction distribution.

Simple Particle Filter: If we sample from the prediction distribution

\[
Q = p(x_t | z_{1:t-1})
\]

then the weights must be \(w(x) = c \, p(z_t | x_t) \), with \(c = 1 / p(z_t | z_{1:t-1}) \).
Simple Particle Filter

Step 1: Sample the approximate posterior $p(x_{t-1} \mid z_{1:t-1})$ given the weighted sample set $\mathcal{S}_{t-1} = \{x_{t-1}^{(j)}, w_{t-1}^{(j)}\}$. To do this, treat the N weights as probabilities and sample from the cumulative weight distribution; i.e., draw sample $u \sim \mathcal{U}(0, 1)$ to sample an index i.

![Cumulative Weight Distribution](image)

Step 2: With sample $x_{t-1}^{(i)}$, the dynamics provides a distribution over states at time t, i.e., $p(x_t \mid x_{t-1}^{(i)})$. A fair sample from the dynamics,

$$x_t^{(j)} \sim p(x_t \mid x_{t-1}^{(i)})$$

is then a fair sample from the prediction distribution $p(x_{t-1} \mid z_{1:t-1})$.

Step 3: Given the samples $x_t^{(j)}$, the weights are $w_t^{(j)} = c p(z_t \mid x_t^{(j)})$:

- $p(z_t \mid x_t^{(j)})$ is the data likelihood that we know how to evaluate.
- Using Bayes’ rule one can show that c satisfies

$$\frac{1}{c} = p(z_t \mid z_{1:t-1}) = \int p(z_t \mid x_t) p(x_t \mid z_{1:t-1}) \, dx_t \approx \sum_j p(z_t \mid x_t^{(j)})$$

Using the approximation, the weights become normalized likelihoods (so they sum to 1).
Particle Filter Remarks

One can think of a sampled approximation as a sum of Dirac delta functions. A weighted sample set $\mathcal{S}_{t-1} = \{x_{t-1}^{(j)}, w_{t-1}^{(j)}\}$, is just a weighted set of delta functions:

$$p(x_{t-1} | z_{1:t-1}) = \sum_{j=1}^{N} w^{(j)} \delta(x_{t-1} - x_{t-1}^{(j)})$$

Sometimes people smooth the delta functions to create smoothed approximations (called Parzen window density estimates).

If one considers the prediction distribution, and uses the properties of delta functions under integration, then one obtains a mixture model for the prediction distribution. That is, given a weighted sample set \mathcal{S}_{t-1} as above the prediction distribution in (8) is a linear mixture model

$$p(x_t | z_{1:t-1}) = \sum_{j=1}^{N} w^{(j)} p(x_t | x_{t-1}^{(j)})$$

The sampling method on the previous page is just a fair sampling method for linear mixture models.

For more background on particle filters see papers by Gordon et al (1998), Isard and Blake (IJCV, 1998), and by Fearnhead (Phd) and Liu and Chen (JASA, 1998).
Particle Filter Steps

Summary of main steps in basic particle filter:

\[
\begin{align*}
\text{sample} & \quad \text{sample} & \quad \text{normalize} \\
p(x_{t-1} \mid z_{1:t-1}) & \rightarrow p(x_t \mid x_{t-1}) & \rightarrow p(z_t \mid x_t) & \rightarrow p(x_t \mid z_{1:t}) \\
\text{posterior} & \quad \text{temporal} & \quad \text{likelihood} & \quad \text{posterior} \\
\text{dynamics} & \quad & & \\
\end{align*}
\]

Depiction of the particle filter process (after [Isard and Blake, '98]):
Particle Filter Example

State: 6 DOF affine motion

Measurement: edge locations
 normal to contour

Dynamics: second-order Markov

Computation: 1000 particles
 with re-sampling every frame

[Isard and Blake, ’98]

Depiction of the posterior distribution evolving through time.
Particle Explosion in High Dimensions

The number of samples \(N \) required by our simple particle filter depends on the effective volumes (entropies) of the prediction and posterior distributions.

With random sampling from the prediction density, \(N \) must grow exponentially in state dimension \(D \) if we expect enough samples to fall on states with high posterior probability.

E.g., for \(D \)-dimensional spheres, with radii \(R \) and \(r \), \(N > \left(\frac{R}{r} \right)^D \)

Effective number of “independent” samples (a rough diagnostic):

\[
N_e = \frac{1}{\sum_j (w(j))^2}
\]
3D People Tracking

Goal: Estimate human pose and motion from monocular video.

Model State: 3D kinematic tree with 6 global degrees of freedom and 22 joint angles

Likelihood & Dynamics: Given the state, \(s \), and camera model, 3D marker positions \(X_j \) project onto the 2D image plane to locations

\[
d_j(s) = T(X_j; s).
\]

Observation model:

\[
\hat{d}_j = d_j + \eta_j, \quad \eta_j \sim \mathcal{N}(0, \sigma_m^2 I_2).
\]

Likelihood of observed 2D locations, \(D = \{\hat{d}_j\} \):

\[
p(D | s) \propto \exp\left(-\frac{1}{2\sigma_m^2} \sum_j ||\hat{d}_j - d_j(s)||^2\right).
\]

Smooth dynamics:

\[
s_t = s_{t-1} + \epsilon_t.
\]

where \(\epsilon_t \) is isotropic Gaussian for translational and angular variables.
3D People Tracking

Estimator Variance: expected squared error (from posterior mean), computed over multiple runs with independent noise.

With N fair posterior samples, estimator variance decreases like $1/N$, but here there is no such decrease. Better samplers are necessary.

E.g., Hybrid Monte Carlo Filter [Choo & Fleet 01]: A particle filter with Markov chain Monte Carlo updates is more efficient.
Use the Current Observation to Improve Proposals

The proposal distribution Q should be as close as possible to the posterior P that we wish to approximate. Otherwise,

- many particles will have weights near zero, contributing very little to the posterior approximation;
- we may even fail to sample significant regions of the state space, so the normalization constant c can be wildly wrong.

For visual tracking, the prediction distribution $Q = p(x_t \mid z_{1:t-1})$ often yields very poor proposals, because dynamics are often very uncertain, and likelihoods are often very peaked by comparison.

One way to greatly improve proposals is to use the current observation; e.g., let

$$Q(x_t) = D(x_t) \ p(x_t \mid z_{1:t-1}) , \ \text{with} \ w(x_t) = \frac{c \ p(z_t \mid x_t)}{D(z_t \mid x_t)}$$

where $D(x_t)$ is some continuous distribution obtained from some low-level detector (e.g., Gaussian modes at locations of classifier hits).
Explain All Observations

Don’t compare different states based on different sets of observations.

- If one hypothesizes two target locations, \(x_1 \) and \(x_2 \), and extracts target-sized image regions centered at both locations, \(I_1 \) and \(I_2 \), it makes no sense to say \(x_1 \) is more likely if \(p(I_1 \mid x_1) > p(I_2 \mid x_2) \).

- Rather, use \(p(I \mid x_1) \) and \(p(I \mid x_2) \) where \(I \) is the entire image.

One might therefore explain the entire image, or use likelihood ratios. E.g., assume that pixels \(I(y) \), given the state, are independent, so

\[
p(I \mid x) = \prod_{y \in D_f(x)} p_f(I(y) \mid x) \prod_{y \in D_b(x)} p_b(I(y))
\]

where \(D_f(x) \) and \(D_b(x) \) are disjoint sets of foreground and background pixels, and \(p_f \) and \(p_b \) are the respective likelihood functions.

Divide \(p(I \mid x) \) by the background likelihood of all pixels (i.e., as if no target is present):

\[
p(I \mid x) \propto \frac{\prod_{y \in D_f(x)} p_f(I(y) \mid x) \prod_{y \in D_b(x)} p_b(I(y))}{\prod_y p_b(I(y))} = \frac{\prod_{y \in D_f(x)} p_f(I(y) \mid x) \prod_{y \in D_b(x)} p_b(I(y))}{\prod_{y \in D_f(x)} p_b(I(y) \mid x) \prod_{y \in D_b(x)} p_b(I(y))}
\]

\[
= \prod_{y \in D_f(x)} \frac{p_f(I(y) \mid x)}{p_b(I(y))}
\]
Conditional Observation Independence

What about independence of measurements?

Pixels have dependent pixel noise because

- models are wrong (most noise is model error)
- failures of tracking features are dependent
- overlapping windows used to extract measurements

Likelihood functions are often more sharply peaked than they ought to be.
Summary and Further Remarks on Filtering

- posteriors must be sufficiently constrained, with some combinations of posterior factorization, dynamics, measurements, ..

- proposal distributions should be non-zero wherever the posterior distribution is non-zero (usually heavy-tailed)

- proposals should exploit current observations in addition to prediction distribution

- likelihoods should be compared against the same observations

- sampling variability can be a problem
 - must have enough samples in regions of high probability for normalization to be useful
 - too many samples needed for high dimensional problems (esp. when samples drawn independently from prediction dist)
 - samples tend to migrate to a single mode (don’t design a particle filter to track multiple objects with a state that represents only one such object)
 - sample deterministically where possible
 - exploit diagnostics to monitor effective numbers of samples
Further Readings

