
Robust Estimation

Introduction. A common computational problem in vision is to esti-

mate the parameters of a model from image data.

Examples of parameterized models to be fit to image data include lines

and ellipses, camera calibration models, image motion models, 3D pla-

nar regions, 3D models, and human face models.

Key Difficulties:� The models must be fit to noisy image data.� Initial guesses for the models must be generated automatically.� Multiple occurrences of the models are often represented in the

data. But the number and types of models are typically unknown a

priori, and therefore must be determined from the data.� The data typically contains (structured) outliers, i.e., observations

that do not belong to the model being fitted. These must somehow

be ignored during the model fitting.

Reading on Estimation: See Chapter 15 of the text (skip section 15.6

for now).
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Working Example Problem: Fitting Lines

Example Problem: Find the best fitting line(s) to a set of image edgel

positions, � � ����	��

��������
For simplicity, we ignore edgel strengths and orientations here.
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Robust line estimator output. The Canny edgel positions
���� � 
 are

marked (red dots), along with the fitted line segments (green).
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Current Goals

We use the example of estimating image lines to:� Introduce robust M-estimation and show how it deals with outliers.� Discuss leverage points.� Introduce methods for generating initial guesses.� Introduce issues in model selection.

– We have more to say about this difficult issue later in this course.

Here we briefly consider selecting the number of models (i.e.,

lines), but not the model type (eg. lines versus curves).� Discuss the general types of errors to be expected.
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Perpendicular Error

The equation for points
�� on one infinite line � is,���� ���� � � � �

Here we normalize ��� �� ��� � �
. The error in an observed point

�� � (relative

to the line � ) is defined to be the perpendicular distance�! �� �#" ��%$&�('%) ��*� �� � � � �
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Note that the error perpendicular to the line is used. This is different

from linear regression models where the error is only in the + compo-

nent.

2503: Robust Estimation Page: 4



Least Squares Problem

Given a set of edgel positions
� � ����,�-
 ��.�/� , consider estimating the

line parameters  ��%$&�(' by minimizing the squared error0  ��%$��('1) ������  ��32 �� � � �('546$ for ��� �� ��� � � � (1)

By the theory of Lagrange multipliers, the solution must satisfy7�87  ��%$&�
$:9	'  ��;$��
$<9/' � �� $ for
8  ��=$&�
$<9/'%) 0  ��%$&�('?> 9� ��� �� ��� 4%> � ' �

The derivatives of
8

with respect to
��%$&� , and 9 give (respectively):������A@  ��32 �� � � �(' �� � > @ 9 �� � �� $

������A@  �� 2 ��	�;� �(' � � $
��� �� ��� 4 > �B� � �

(2)

These can be simplified using�C � �D ������ �� � $ E � �D ������  �� � > �C '& �� � > �C ' 2 $
namely the mean and covariance of the data.
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Least Squares Solution

From (2) it follows that the least squares solution  ��;$��(' must satisfyE �� � FG��;$ ��� � ��� � � $� � > ��32 �C � (3)

That is,
�� must be an eigenvector of E and � must be chosen such that

the estimated line passes through the mean of the points.

In order for the solution to be a local minimum, it can be shown that
��

must be the eigenvector for the minimum eigenvalue of E .

The solution is therefore unique and easy to compute. No initial guess

is required.
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Least Squares and Outliers

Unfortunately, least squares solutions are sensitive to outliers in the

data.

For example, consider the set of edgel point data
���� � 
 � ����� (red dots).
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The least squares estimate (blue line, above) is strongly influenced by

the small cluster of outliers.

This approach is therefore not directly suitable for fitting data with out-

liers or when multiple solutions are expected.
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Hough Transform

The Hough transform (HT) is an early method for dealing with outliers

and multiple solutions in parameter estimation problems.

For our working example, image lines
�� 2  IHJ' ��K� � � �

are parameter-

ized by H and � , with
��% IHJ' �  ML:N#OP IHJ'�$�ORQTS, IHJ'U' 2 .

A discrete voting space is formed by quantizing H V W � $YX�' and � . For

each edgel
�� � , and each discrete H[Z , we add one vote to the bin  IH
Z\$&�^]&'

which has minimal absolute error, that is��32_ IH�Z�' �� � � �^]3V W`>bac�Pd @ $&ae�Pd @ ' � (4)

Here ae� is the bin spacing for � .
Eqn. (4) dictates that each edgel

��f� votes for a sinusoidal curve in the

Hough space (see example below).

The accumulation of votes for all the edgels
�� � provides the Hough

transform g .
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Hough Example

For example, the Hough transform for only the three blue edgels below

is shown on the right.
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The maximum number of votes here is @ , not h , since the three edgels

are not precisely colinear. The centers of the bins with @ votes provide

the parameters for blue lines below.
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Increasing the bin size ae� would allow

one (or more) bins to have votes from

all three edgels. In practice, selecting

appropriate bin sizes for the HT can be

tricky.
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Hough Example (Cont.)

The Hough transform for all the edgels in the previous example is

shown on the right. Note the symmetry g  iH
Zj$&�^]&' � g  IH�Zf� X%$->k�^]&' ,
which is due to the symmetry of the error � � �� 2  IHJ' ��l� � .
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Three strong peaks are visible in the HT, corresponding roughly to the

three line segments apparent in the data. (Enlarge the neighbourhood

of these peaks when viewing an electronic copy.)
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the image data.
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Hough Transform Summary

The Hough transform is a reasonable approach for simple data, for

which clear peaks can be expected. However,� Goldilocks’ problem: It is difficult to set appropriate bin sizes:

– Too large: Poor resolution of parameters.

– Too small: Peaks in HT broken into pieces, each with fewer

votes.

– Just right: Isolated peaks at appropriate parameter values.� Poor detector performance (i.e. the trade-off between false posi-

tives and false negatives). In noisy and/or cluttered examples many

extraneous bins can have vote counts comparable to, or larger than,

the counts for the desired models.� In practice, fractional votes for neighbouring Hough bins are also

included to help smooth the HT and reduce discretization artifacts.� The number of bins grows exponentially with the dimension of the

unkown parameters (eg. �_m for � bins in each of n dimentions).

For more complex data sets, a much better alternative is to use robust

M-estimation, which we discuss next.
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Robust M-estimation

We seek line parameters  ��;$&�(' which (locally) solve the minimization

problem opQTS 0  ��%$��('&$ for ��� �� ��� � � $ (5)0  ��%$��('1) ������rq  s�! �� �t" ��%$&�('U' � (6)

Here q  u�#' is the “estimator”, which provides a cost for any given error� . Common choices include:

q  u�#' � � 4 $ Least squares (LS) estimator,

q  u�#' � � � � $ � � estimator,

q  u�#' � � 4v 4 � � 4 $ Geman-McLure (GM) estimator.
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Properties of Estimators

Definition: Given the estimator q  s�#' we define the functions:w  u�#' � n qn �  u�#'&$ influence function,xl u�#' � �� n qn �  s�#'�$ weight function.
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The influence function
w  u�#' describes the sensitivity of the overall es-

timate  ��%$&�(' on data with error � . Note that, unlike LS, the influence

functions for � � and GM are bounded. Moreover, GM is a ‘redescend-

ing estimator’, that is,
w  u�#'%y �

as � � � y z .

As we show below, xl u�#' provides the weights in the iteratively

reweighted least squares algorithm used to solve for the unknown line

parameters  ��%$&�(' . Note that xl u�#'%) @ (i.e., constant) for LS.
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Objective Function Examples: LS and {}|
Given a data set

����f�P
 ������ , we can plot the objective function
0  ��1 IHJ'�$��('

for
��1 IHJ' �  ML:N#O- IHJ'�$.O^QTSf iH~'R' 2 . Note that, since

��1 IH�� X�' � > ��; IHJ' , the

objective function is periodic in H with
0  ��1 IH�� X�'&$��(' � 0  ��% iH~'&$->k�(' .
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The LS estimator always provides a unique local minimum (blue line

in top figure). The L1 estimator can have multiple local minima. In this

case, there are two local minima (red lines in top figure).

These surfaces (and the fits above) indicate the significant influence of

data with large errors.
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Objective Function Examples: GM( � � � )
In contrast, for the GM estimator the influence of a data point with large

error (essentially) vanishes. For the same data as before:
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For the GM estimator, the objective function exhibits three strong local

minima (see the green lines below). The outer pair of the four deep

valleys apparent above are actually parts of the same valley, due to

periodicity in H . There are many weaker local minima (red lines below).
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Objective Function Examples: GM, Varying �
Increasing v in the GM-estimator smooths the objective function:
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� Note there are fewer local minima for larger v . (We show all the

local minimum beyond minor fluctuations.)� As v is increased, outliers receive greater weights, and therefore

the bias in the estimates often increases (eg. bottom right plot).� As v y z the objective function can be shown to approximate the

one for least squares (with a unique solution).
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Robust Objective Function and the Hough Transform

The robust objective function
0  IH�$��(' is closely related to a smoothed

Hough transform.

Theorem. Suppose q  u�#' is a smooth redescending estimator such as

GM, with q  s�#'1y �
as � � � y z . Let g  IH Z $&� ] ' be the Hough transform

of
D

edgels using small bin sizes a#H and ac� . Consider the discrete

1D filter kernel �  u�.]:' obtained by sampling
� > q  u�(' at ��] � � ae� , � �� $<� � $<� @ $ ���-� . Define �  iH�Z\$&�^]:' �  ��� 4 g '& IH�Zj$��^]<' �

Here � 4 denotes convolution with respect to the second argument. So�  IH Z $�� ] ' is simply g  IH Z $�� ] ' blurred in the � -direction by q  u� ] ' . Then0  IH Z $�� ] ' � D > �  IH Z $�� ] ',� �� ua
HG� ac�('�$
as a#H�$&ae�}y �

. That is, the blurred Hough transform
�

approximates0
, up to a sign change and additive constant.

The smoothness of
0  IH�$��(' is useful for locating local minima precisely.

Indeed, as mentioned above, the HT is often smoothed in practice.

Moreover, on the next few pages we show how to find local minima

without densely sampling the objective function, which can provide a

considerable computational savings over HT.
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Weighted Mean and Covariance

We wish to find local minima of
0  ��%$��(' without densely sampling the

parameter space. For estimators with bounded weight functions, the

weighted mean and covariance of the data are useful, namely�C � �� ������ xl u� � ' �� � $ (7)

E � �� ������ xl u� � ': �� � > �C '& �� � > �C '\2A$ (8)

where �k) � ������ x� s� � ' and � � ) �� 2 �� � ��� . We show in the subsequent

notes that a necessary condition for  ��=$&�(' to be a solution of (5) is thatE �� � FG��%$ (9)� � > ��32 �C $ ��� �� ��� � � � (10)

where
F

is the minimum eigenvalue of the @l� @ covariance matrix E .

Properties of the solution:� E typically depends on  ��=$&�(' through the weights xl u� � ' (as does�C ), and therefore (9) is a nonlinear eigenvalue problem for
�� .� For the LS estimator, the weights are constant (i.e., x � � @ ) and

(9) is the linear eigenvalue problem we saw in (3).� Eqn. (10) states that the fitted line must pass through the weighted

mean
�C (i.e.,

�� 2 �C � � � �
).
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Notes: Minimizing the Objective Function

Suppose ������� is an estimator with a bounded weight function �/����� . We wish to minimize �_�i������ � ,
subject to the constraint � �¡�� �¢� �l� . A standard approach for such a constrained optimization problem

is to introduce a Lagrange multiplier £ , and consider¤ �i�������� £�� � �A�i��-��� ��¥¦£P�§�¢�¡�� � � ¨e¥ � �M©
A necessary condition for �i��[��� � is that this Lagrangian

¤
has a stationary point at �i�������� £�� , that isª ¤ª �i��[����� £&� �i��-����� £&� � �« ©

For �_�i������ � as in (5) the derivatives of
¤

with respect to ������ , and £ give (respectively):¬s­ ��r®t¬ �¯_� ¥ 4 £e�� � �« �¬ �¯B° ��r®±¬�� � « �� �¡�� � � ¨ ¥ �²� « © (11)

Here ¬²³µ´µ¶·�¸&¹ ���º� · � is the sum of the weights for errors � · ³ �� ° �» · ®¼� , �¯½³ ¹¾ ´3¶·�¸&¹ ���º� · �¿�» · is the

weighted mean of the data À<�» ·\Á ¶·�¸&¹ , and ­k³ ¹¾ ´ ¶·�¸&¹ ���º� · �¿�» · �» °· is the weighted correlation matrix.

Solving the second equation for � gives � � ¥t�¯ ° �� . Substituting this into the first equation gives the

(nonlinear) eigenvalue problem for �� , ¬4 � ­ ¥Â�¯ �¯B° �Ã�� � £c�� © (12)

A short calculation shows that the weighted covariance matrix in (8) satisfies Ä � ­ ¥Â�¯ �¯ ° . There-

fore (12) takes the desired form, Ä?�� �bÅ �� , for
Å%� 4 £&Æ ¬ . Finally, it can be shown that the objective

function is locally minimized only when �� is chosen to be the eigenvector for the minimum eigenvalue

of Ä .
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Iteratively Reweighted Least Squares Algorithm

Given an initial guess for the line parameters,  �� « $&� « ' , we can update it

as follows:� Compute the weights x � � xl �� 2« �� � � � « ' .� Compute
�C and E as in (7) and (8).� Set

�� to be the eigenvector for the minimum eigenvalue of E .� Set � � > �� 2 �C .

Note that the computed  ��%$&�(' is not necessarily a local minima of (5),

since
�C and E were computed using  �� « $&� « ' instead of  ��%$&�(' .

Resetting  �� « $�� « ' to be the newly computed  ��;$��(' , we iterate the above

steps until the update of both
�� and � are small.

This is known as the iteratively reweighted least squares (IRLS) algo-

rithm. See the Matlab tutorial robustDemo.m (available from the

course homepage) for a demonstration.
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Example Results

For the GM estimator (with v equal to the standard deviation of the

noise for the edgels near the dominant line) the iterations of the IRLS

algorithm are shown below (black lines). The initial guesses (green)

and the converged states (blue) are also shown.
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The solution on the left indicates the outliers have been rejected, while

the iterations on the right show the algorithm converging to one of sev-

eral undesirable local minimum. How can we avoid these?
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Analysis of Influence

To understand these extraneous local minima it is useful to first con-

sider the influence of outliers in detail.

Given a solution  �� « $&� « ' of (5), we consider the effect of one

additional outlier
�� � ® � . We wish to estimate the perturbation to the

solution caused by this outlier. The size of this perturbation will deter-

mine the influence of that outlier.

To simplify the analysis, we freeze the weights for the orig-

inal data, x � � xl �� 2« �� � � � « ' for Ç � � $ �-��� $ D , and set x � ® � �xl �� 2« �� � ® � � � « ' . With all these weights frozen, we seek the solution

of the weighted least squares problemoÈQTS 0pÉµÊeË  ��%$&�
$�Ì&'�$ for ��� �� ��� � � $ (13)0 ÉµÊeË  ��;$&�
$&Ì�'%) Í ������ xÎ�@  ��µ2 �� � � �('¿45Ï�� Ì x � ® �@  ��32 �� � ® � � �('54 �
(14)

For Ì � �
we recover the equations (9) and (10) for the original solution �� « $�� « ' , while for Ì � �

the solution is the first update of the IRLS

algorithm when it is given the additional data point
�� � ® � and the initial

guess  �� « $&� « ' .
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Influence of Outliers on Line Parameters

Theorem. Let
w � ® � � w  �� 2« �� � ® � � � « ' be the influence function

evaluated at
�� � ® � , and

�Ð « be a unit vector tangent to the initial line (i.e.,�Ð «±Ñ �� « ). Then the optimal solution  ��1 uÌ&'�$��e sÌ�'U' of (13) satisfiesn �n Ì,ÒÒÒÒ¡Ó � «
� > w � ® �� $ (15)n ��n Ì ÒÒÒÒÔÓ � «
� > w � ® � F � > F 4 'R� �Ð « �Ð 2«  �� � ® � > �CÕ'&$ (16)

where � ) � � ����� x � , �C � �¬ � � ����� x � �� � , and
F � Ö F 4 are the two

eigenvalues of E � � � ����� x �  �� � > �CÕ': �� � > �C ' 2 .

The proof of this theorem is left to the reader.

Observations:� Eqn. (15) shows n �Pd n Ì is proportional to
w  u�#' , motivating the name

‘influence function’ for
w  s�#' .� Eqn. (15) shows the sense in which � is stable when

w  u�#' is bounded.� Eqn. (16) shows
�� may not be stable, even for a bounded influence

function
w  u�#' (since � �Ð « 2  �� � ® � > �CÕ' � may be large). In addition,

notice the effect of
F �	> F 4 , which measures the eccentricity of the

original data points.� Points
�� � ® � for which � w � ® � �Ð « 2  �� � ® �Î> �CÕ' � is large are called

leverage points.
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Controlling Leverage

The previous Theorem shows that even a redescending estimator such

as GM is not robust to leverage points.

The figure on the right on p.21 provides an example where the estimator

failed to reject the cluster of outliers in favour of points on the domi-

nant line. For some initial guesses, this cluster has enough leverage to

unduly influence the computed solution.

A simple strategy for dealing with leverage points is:

1. Estimate the distribution of data support along the fitted line (eg.

project the weights x � from
�� � onto the line and blur to get a

smooth function).

2. Determine a contiguous region of support along the fitted line, that

is, an interval of support without any large gaps.

3. Reduce the weights x � in the IRLS algorithm for points
�� � sig-

nificantly beyond the extent of contiguous support (eg. set such

weights to
�
).

We show an example of this next.
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Leverage Example

We can reduce leverage problems by controlling the support interval

within the robust line estimation algorithm.
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Iteration 2

Iterations 0 to 2 above. Current line estimate (black). Edgels with sig-

nificant weights (blue). The estimate for a contiguous region of support

is also shown (green segment).
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The remaining iterations 3 to 5, at which point the algorithm has con-

verged.
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Successive Estimation

This approach can be applied to find lines one at a time:
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The first fitted segment is shown (above left), along with edgels having

significant robust weights (blue). These edgels are removed from the

active data set (red). A second line segment is fit (above right) to the

remaining edgels, and the new supporting edgels (blue) are removed.
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Remaining Edgels

This successive fitting process continues until no further lines with con-

tiguous support regions can be fit to the remaining edgels.
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Outline of a Robust Line Estimation Algorithm

1. Initial Guess.� Randomly sample from the data. Eg. Set  �� « $�� « ' according the

the position and orientation of a sampled edgel.

2. Iterative Fitting.� Use the iteratively reweighted least squares algorithm to fit the

line parameters. Maintain information about the support (from

the data) for the line along its length, and use it to downweight

data likely to cause leverage problems.

3. Verification.� Given a converged solution, decide whether that line has suffi-

cient data support (eg. consider the sum of the weights). Dis-

card the solution if it has insufficient support.

4. Model Selection.� For each verified line segment, remove the edgels which pro-

vide significant support for it from the data set. Repeat steps 1

through 4.

See page 2 and the next two pages for sample results. Similar strategies

can be applied to many other estimation problems, as we discuss later.
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Linefinder Results

Edgel positions are shown in red above, with fitted lines in green. (In

the electronic copy try expanding the view of small regions, such as the

rocking chair, to see the fit in detail)
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Linefinder Results

Parkbench Image Colour-coded Edgel Orientation

Orientation Tensor Estimated Lines

Random seeds for lines were obtained by sampling the edgels only

within oriented regions (i.e., red regions in bottom-left plot).
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Types of Errors

There are instances of several general types of errors visible in the pre-

vious line finder results:� Drop-outs. Parts or all of a true line that are missing in the estima-

tion results.� False positives. An estimated line which does not correspond to

any combination of true lines.� Over-segmentation. Breaking one true line into several estimated

segments (possibly colinear, parallel or otherwise).� Under-segmentation. Joining two or more true lines into one es-

timated segment.� Parameter noise. Small errors in the position and orientation esti-

mates.� Model-type errors. The somewhat inappropriate use of our cur-

rent model (i.e., line segments fitted to edgels) for curves, texture,

or thin bars in the image. More generally, model-type errors occur

when the system can fit several types of models (eg. curves versus

lines), but selects the wrong choice.
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Evaluation of Results

We have not provided any quantitative evaluation of the results which,

almost certainly, would provide invaluable data. Why not?

What should we use for ground truth? Human data? Synthetic data?

How should the results from different line-finder algorithms be com-

pared? What evaluation metric should be used? Different algorithms

which use the line finder results can be expected to vary in their sensi-

tivity to different types of errors.

In the end what matters is how cost-effective various algorithms are

when included in a working robot. (For an example of this style of

assessment, see Doughtery and Bowyer, 1998, Objective evaluation of

edge detectors using a formally defined framework.)

Here we simply punt (i.e., accept our current gains and move on).
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Robust Estimation: Summary

For the estimation of model parameters from image data:� A redescending M-estimator, such as the Geman-McLure estima-

tor, downweights the influence of data with large errors.� The use of such an estimator leads to a non-linear optimization

problem for the model parameters.� The optimization problem typically has multiple local minima, some

of which provide useful estimates while others are extraneous.� The iteratively reweighted least squares algorithm provides one

way to find local minima of the resulting objective function.� Leverage points can significantly skew the parameter estimates,

and can be controlled by limiting the spatial extent of the data be-

ing fit. This can also reduce the number of extraneous minima.� Initial guesses can be generated by randomly sampling the data

(see RANSAC). Another approach uses continuation with decreas-

ing v (see deterministic annealing and graduated non-convexity).� One way to choose the number of models is to iteratively fit indi-

vidual models, removing the data providing support for each model

before fitting the next (see also Bayesian model selection).
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