Multiscale Image Transforms

Goal: Develop filter-based representations to decompose images
into component parts, to extract features/structures of interest, and
to attenuate noise.

Motivation:

e extract image features such as edges and corners
e isolate potentially independent image components
— different locations, scales, orientations
— independent measurement (evidence)

e redundancy reduction and image modeling for
— efficient coding
— image enhancement/restoration
— Image analysis/synthesis

e predictable behaviour under deformation
— through time (motion) or between views (stereo)

Examples:

e DFT/DCT (global and blocked)

e Gabor Transform, Gabor wavelets
e Haar Transform

e Laplacian Pyramid

e Steerable Pyramid

Readings: Chapters 7, 8, and Sections 9.1-9.2 of Forsyth and Ponce.
Matlab Tutorials: imageTutorial.m and pyramidTutorial.m.
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Linear Transform Framework

Projection Vectors: Let I denote a 1D signal, or a vectorized repre-
sentation of an image (sfoe RN), and let the transform be
a=PT. (1)
Here,
e a=lagy,..ay_1] € R are the transform coefficients.
e The columns oP = [p,, Py, .-, Pys_1) @re the projection
vectors: then!” coefficient,a,,, is the inner produ@mTf

e WhenP is complex-valued, we should replaPé by the
conjugate transpode*’

Sampling: The transfornP’ € RM*V s said to becritically sam-
pled when M = N. Otherwise it isover-sampled when M > N, or
under-sampled when M < N.

Basis Vectors: For many transforms of interest there is a correspond-
ing basis matriXB satisfying

I = Bi. (2)

The columnsB = [by, by, ..., by_1] are called basis vectors as they

form a linear basis foF:
M—-1

I = Do,

m=0
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Linear Transform Framework (cont)

Completeness

e the forward transform (1) is complete, encoding all imagecst
ture, if it is invertible.

e when critically sampled, it is complete B = (P?)~! exists.
e if over-sampled, the transform is complete-tink(P) = N.
In this caseB is not unique — one choice is the pseudoinverse

B=(P'P) P’

e if under-sampled, themank(P) < N and it is not invertible in
general.

Self-Inverting
o the transform is self-inverting ib,, = ap,, for some constant.

e in the critically-sampled, self-inverting case the tramsf is or-
thogonal (unitary), up to the constamn{e.g., the DFT).
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Global Transforms
Point-Sampled Representation

e The sampled representation from the CCD array. The projedtinctions are shifted im-
pulsesg(n — k,m — 1), which are, of course, orthogonal

e Problem:

— ldeal localization in space, but global in Fourier domain.
Therefore, no scale or orientation specificity.

— We also find significant correlations among samples

Fourier Transform (DFT)

DFT encodes image as a sumgbdbal sinusoids:e™*"

localized in Fourier domain

critically sampled for complex-valued signals

Problem: not localized in space.

Point-Sampled Fourier Domain
Basis Functions Basis Functions
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Gabor Transform

Joint Localization: Dennis Gabor (1946) showed that the Gaussian minimizes yoicertainty
(the product of variances) in space and Fourier domain.
The Fourier transform of a Gaussian function is a Gaussian:

1 6_:02/20.2

g(x) = Nor ;o g(w)

The product of their variances is 1.

— e—w202/2 )

Gabor Transform (aka the Gaussian windowed Fourier Transform):

e One applies a Gaussian window at a paing, m,), followed by a DFT (like a blocked
DFT/DCT transform, in which the image is broken into non+teeping square blocks on
which the DFT/DCT is applied, but with Gaussian window iast®f a square window):

Flg(n —ng,m—mg)I(n,m)]

e The resulting projection directions (often called Gabandiions), along with their Fourier
spectra are given by

pe(n) = g(n) ™" | prlw) = §lw —w)
Point-Sampled Fourier Domain Gabor Projection
Projection Functions Projection Functions Functions
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Gabor projection functions aseooth andcompact in both space and frequency domain. They are
complex-valued, and for smaller bandwidths (e.g., less #ra octave) they are approximately a

guadrature pair. The transform coefficients are also coxadued.

But these projection functions are non-orthognal, andékalting basis functions are not local, nor

well-behaved.
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Multiscale Image Transforms

Motivation: salient image structure occurs at multiplelessa

1) Objects and their parts occur at multiple scales:

3) Objects may project into the image at different scales:
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Self-Similar Multiscale Transforms

Goal: The filter support should grow with scale, and be well matched
to scale-dependent correlation lengths in images. Thesepation
should exhibit scale-invariant properties, as objectggotdo images

at different scales depending on distance from camera.

Scale Self-Similarity: Let the basis functions be dilations and trans-
lations of a “mother” function, so they all have the same shali-
fering in scale and position only.

Gabor Wavelet w f \ \/\[
Basis Functions

Self-Similar Transform

Spectra of Self-Similar Transforms

LN

! ®

frequency ® —

Space n —
Examples:
e Gabor wavelets
e Haar Transform

e Laplacian Pyramid
e Steerable Pyramid
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Haar Transforms

Originally described by A. Haar (1909). Each step creates ¢hannels: one simply averages
adjacent elements (i.e., low-pass channel); and one téfkeedce between adjacent elements (i.e.,
a high-pass channel). Both are down-sampled by 2.

I Y ....””} T

Properties:

critically-sampled and self-inverting (orthogonal)

local in space (compact) but not continuously differerigab

broad ringing frequency spectrum due to top-hat spatiatieww and therefore massive alias-
ing in each band (like blocked DCT).

very efficient to compute with pyramid scheme and addition

Analysis / Synthesis Diagram:

0L 20 Lot ey
[Ho(w) [ 2} !mHeotw)H
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Analysis/Synthesis system diagram for
a 2-level cascaded pyramid filter bank

This is an analysis-synthesis diagram for a general 2-leastaded pyramid (where the low-pass
portion is further filtered). 1t shows the recursive constian of the transform. For the Haar trans-
form, hy andh, are low-pass and high-pass filters that compute sums aratatiffes (respectively)
of adjacent pixels. Moreove(;;(w) = H;(—w), and so the transform can be shown to be self-
inverting. Finally, although there is aliasing in the indwal channels of the Haar transform, one
can show that, upon reconstruction, the aliasing in thestomm channels cancels, so reconstruction
is exact.
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2D Haar Transforms

Recursive design of 2D Haar basis functions:

L L

grey: 0
white: 1
black: -1

m
"

Separable 2D filters:

(1 1) (1

1

1
1

(1-1) (1)(1 1) (1

Idealized band-splitting in the frequency domain:

Wy

2503: Multiscale Image Transforms Notes: 9



Gaussian Pyramid

Sequence of low-pass, down-sampled imaggsl;, ..., Iy].
Usually constructed with a separable 1D ketnet [hy, hs, hs, hy, hs),
and a down-sampling factor of 2 (in each direction):

In matrix notation (for 1D) the mapping from one level to trexbhas
the form:

(1 000 0 .
- - 00100 -
1k+1:le: 0000 1 —h - lk

down-sampling  convolution

Typical weights for the impulse response from binomial Gomts

1
h=—I1,4,6, 4, 1]
16
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Gaussian Pyramid (cont)

Example of original image and four more pyramid levels:

Properties of Gaussian pyramid:
e used for multi-scale edge estimation
e efficient for computing coarse-scale images (only separaiap
kernels are used)
¢ highly redundant (coarse-scale information is duplicatefine
scale images)

2503: Multiscale Image Transforms Page: 11



Laplacian Pyramid

Over-complete decomposition based on difference-of-ssggilters;
the image is recursively decomposed into low-pass and hggipands
(like the Haar Transform).

e Each band of the Laplacian pyramid is the difference betvwsen
adjacent low-pass images of the Gaussian pyra[ﬁbidfh e TN].
That is:

b, = I, — Ely,

whereE TkH Is an up-sampled, smoothed versioﬁml (so that
it will have the same dimension 53 le.,

1000
. —g— 000 0 ~
El, = - 0100 | P
g 000 0

convolution up-sampling

Often the filters used to construct the Gaussian and Laplacia
pyramidsg andh, are identical.

TheLaplacian pyramid with L levels is given byby, b1, ..., by_1, 1.].

The representation is overcomplete by a factor of roughglfof 2D
images (i.e., 1 +1/4 + 1/16 + ... = 4/3).
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Laplacian Pyramid (cont)

Construction of the Laplacian bands:

The transform coefficients are the pixel values of these esag
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Laplacian Pyramid (cont)

Construction: of [by, by, ..., br_1, 1].

—

ly =

-

I = RI,
b, = I — El,y,

e

Reconstruction: of I is exact (for any filters) and straightforward:

—

I, = by+El,

I =1,
System Diagram: shows the filters and sampling steps used for
pyramid construction, and then image reconstruction frioenttans-
form coefficients. Gaussian pyramid levels are computeagusin )

(with spectrumH (w)). Filter g(n) (with spectrumG(w)) is used with
up-sampling so that adjacent Gaussian levels can be stdatrac

byln]

Hw) | 2/ 21 — Gw)

I[n]

(+—

| — byln]

ly[n]

Hw)— 2|

21— Gw)

Analysis/synthesis diagram for a 2-layer Laplacian pyramid
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Laplacian Pyramid Filters

In practice:

e often use same filters fdr andg (i.e., we apply the same operators for smoothing and inter-
polation in construction and reconstruction)
e use separable lowpass filters (for efficiency)

e desire isotropy foh andg so all orientations handled the same way.
Constraints on 5-tap lowpass filterh:
e even-symmetry means that taps are (%, %, ag, &, %2).

e assume thaic signal is preserved, i.é.(0) = 1:

2
h0) = > h(n)e " = ag+a1+ay

n=-—2

e assume that spectrum decays to 0 at fold-over rate}(iz.= 0:

2
h(r) = Z h(n)e '™ = ag — ay + ap

n=—2

e Soa; = ag + ap = 0.5, and there is one free constraint. For example, chagse % thenh

is the binomial 5-tap filter:

1
hn) = 75 (1,4,6,4,1)

Historical remark on name of pyramid: The well-known Laplacian filter (isotropic second
derivative) is given by

*f  Pf
2 p— —_—
Vifwy) = 55 + o
For Gaussian kernelg(z; o) = ﬁ e /20%

d*g(x;0)  dg(x;o)

2 0T Fa (9(x;0) — g(z;0 + Ac))

That s, if the low-pass filtek used to create the Laplacian pyramid is Gaussian, then thladian
pyramid levels approximate the second derivative of thegeret different scales.
2503: Multiscale Image Transforms Notes: 15



Laplacian Pyramid Projection Vectors:

L

T
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T

Laplacian Projection Vectors Fourier Spectra
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Laplacian Pyramid Basis Vectors:

‘M” “M‘

A

Laplacian Basis Vectors
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Uses of Laplacian Pyramid: Coding

Multiscale image representations are natural for imagengodnd
transmission. The same basic ideas underly JPEG encoding.

Approach: Use quantization levels that become more coarse as one
moves to higher frequency pass bands.

¢ high frequency coefficients are more coarsely coded (@ éeywer
bits) than lower frequency bands.

e vast majority of the coefficients are in high frequency bands

¢ this quantization matches human contrast sensitivitygind)

Advantages:
e eliminates blocking artifacts of JPEG at low frequenciesase
of the overlapping basis functions.

e approach also allows for progressive transmission, sowelass
representations are reasonable approximations to thesimag

e coding and image reconstruction are simple

0.03 0.1 0.31
bits per pixel
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Uses of Laplacian Pyramid: Restoration (Coring)

Transform coefficients for the Laplacian transform areroftear zero.
Significantly non-zero values are generally sparse.

Histograms of transform coefficients are often well appmaded by
a so-called "generalized Laplacian” density,~1/*" , where

e L is usually between 0.7 and 1.2
e s controls the variance A

e peaked at 0, with heavy tails g R R

Coring:

¢ set all sufficiently small transform coefficients to zero,
¢ leave others unchanged, and possibly clip at large magstud

A
new

Original image + additive Cored image
noise (SNR = 9dB) (SNR = 13.82dB)
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Uses of Laplacian Pyramid: Image Compositing

Goal: Seamlessly stitch together images into an image mosaig (i.e
register the images andblurring the boundary), by smoothing the
boundary in a scale-dependent way to avoid boundary astfac

Method:

e assume images (n) and I,(n) are registered (aligned) and let
m1(n) be a mask that is 1 at pixels where we want the brightness
from [;(n) and O otherwise (i.e., where we want to ef@n)).

e create Gaussian pyramid for, (1), denoted /y(ni), [y (1), ..., [z (1)}
e create Laplacian pyramids fér(n) and/>(nii), denoted by

{bl’o(ﬁ), e bl,L—l(ﬁ)a ll,L(ﬁ)} and {bz’o(ﬁ), e bQ,L_l(ﬁ), ZQ’L(ﬁ)}
e create blended pyramifb o(1i), ..., by r—1(11), lo (1) } where

boj(R) = by (0) (1) + by (1) (1 — (1))
lO’L(ﬁ> = ll,L(ﬁ) ZL(ﬁ) -+ ZQ’L(ﬁ) (1 —ZL(ﬁ)>

e collapse blended pyramid to reconstruct the composite@mag
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Uses of Laplacian Pyramid: Enhancement

Goal: Create a high fidelity image from a set of images take with
different focal lengths, shutter speeds, etc.

e Images with different focal lengths will have different igere-
gions in focus.

e Images with different shutter speeds may have differentrast
and luminance levels in different regions.

Approach:

e Given pyramids for two imagek (i) and/,(n), construct 2 or 3
levels of a Laplacian pyramid:

{bl’()(ﬁ), e bl,L—l(ﬁ>7 ll’L(l’_l’>} and {bzo(ﬁ), e [)2’[/_1(1’_1’>7 ZQ’L(I_D}

e atlevelj, define amaske(n) thatis 1 whenb, ;(n)| > |by;(n)|
and O elsewhere.

e then form the blended pyramid with levéis; 7] given by
bo,j(N) = m(1i) by ;(n) + (1 —m(ii)) by ;(n)

e average the low-pass bands from the two pyramids.

Composite
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Further Readings

Books on Sections on Image Transforms:
Kenneth R Castlemamigital Image Processing Prentice Hall, 1995

Brian A Wandell,Foundations of Vision, Sinauer Press, 1995

Papers on Image Transforms and their Applications:

Peter J Burt and Edward H Adelson, A multiresolution sphvith application to image mosaics.”
ACM Trans. on Graphics, V. 2(4), 1983, pp. 217-236.

Peter J Burt and Edward H Adelson, "The Laplacian pyramid asrapact image codelEEE
Trans. on Communications, V. 31(4), 1983 pp. 532-540.

Eero P Simoncelli and Edward H Adelson, "Subband transfdrmsSubband Image Coding
(ed.) John Woods. Kluwer Academic Publishers, Norwell, M3®Q.
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