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Abstract

The computation of optical ow relies on merging information available over an

image patch to form an estimate of 2D image velocity at a point. This merging process

raises a host of issues, which include the treatment of outliers in component velocity

measurements and the modeling of multiple motions within a patch which arise from

occlusion boundaries or transparency. We present a new approach which allows us to

deal with these issues within a common framework. Our approach is based on the use of

a probabilistic mixture model to explicitly represent multiple motions within a patch.

We use a simple extension of the EM-algorithm to compute a maximum likelihood

estimate for the various motion parameters. Preliminary experiments indicate that this

approach is computationally e�cient and can provide robust estimates of the optical

ow values in the presence of outliers and multiple motions. The basic approach can

also be applied to other problems in computational vision, such as the computation

of 3D relative motion, which require the integration of several partial constraints to

obtain a desired quantity.
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1 Introduction

The computation of optical ow relies on merging information available over an image patch
to form an estimate of 2D image velocity at a point. The well known aperture problem
for optical ow computations [11] states that, given information available from only a small
spatial aperture, we can expect to derive only a partial constraint on the image motion.
In order to fully constrain the optical ow we need to integrate several such constraints
obtained over a larger spatial neighborhood. As the size of this neighborhood grows there
is an increased likelihood that it will span an object boundary in the scene which will
result in multiple motions within the region. Multiple motions can also be the result of
transparency, highlights and shadows. In these situations, the assumption of a single motion
within the region results in inaccurate estimates of the optical ow. We relax the single-
motion assumption and, instead, assume that the motions within any particular region can
be described by a probabilistic mixture of distributions.

We observe that, when multiplemotions are present, the motion estimates within a region
form distinct clusters. We employ a simple extension of the EM-algorithm [14] to isolate these
clusters and estimate their likelihood. This approach has a number of bene�ts. Like robust
regression techniques [3], the approach allows us to robustly estimate the dominant motion
within a region. Morevoer, by assuming the motion is due to a mixture of distributions
we are able to recover multiple coherent motions and identify outlying measurements which
do not correspond to a coherent motion. The recovered information about the presence of
multiple motions may prove useful for the early detection of surface boundaries.

In this paper we describe the problems caused by multiple motions and briey review
previous approaches for dealing with them. We then introduce the theory of mixture models
and describe the EM-algorithm. This basic approach has more general applicability than
motion estimation and can be applied to other problems in computational vision, such as the
computation of 3D relativemotion, which require the integration of several partial constraints
to obtain a desired quantity. Here we illustrate the theory with a series of experiments with
natural image sequences containing motion boundaries, noise, and transparency. These
preliminary experiments indicate that this approach is computationally e�cient and can
provide robust estimates of the optical ow values in the presence of outliers and multiple
motions.

2 Integration of Partial Constraints

We consider the problem of estimating the optical ow from constraints available within a
particular image region. Let S(~x; t) denote an image sequence formed, possibly, by some
preprocessing of the original sequence I(~x; t). For example, S(~x; t) might be obtained from
a smoothed or �ltered version of I(~x; t). To extract motion information we apply the data
conservation constraint, which states that S is preserved locally in space and time in the
direction of image motion. That is, upon di�erentiating the conservation constraint

S(~x(t); t) = constant;

we obtain the \motion constraint equation"

~c(~x; t) � ~v(~x; t) = 0: (2:1)
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Here the \motion constraint vector", ~c(~x; t), is the spatiotemporal gradient of S, namely
~rS(~x; t), and ~v is a 3-vector representing the local image velocity. Usually ~v is taken to
be (v1; v2; 1), where v1 and v2 are the components of the 2-D image velocity in the image
directions x1 and x2, respectively.

The motion constraint equation (2.1) provides a single (linear) constraint on the two
unknowns v1 and v2, and is therefore insu�cient to determine a unique 2D image velocity.
This is commonly referred to as the aperture problem [11]. As a result, we are faced with
collecting several such constraints, say from a spatio-temporal neighborhood of the point
(~x; t), in an attempt to infer a particular 2D image velocity. Within this neighborhood one
typically assumes that the motion can be described by a single parametric model which is
commonly taken to be constant, a�ne, or quadratic. With this approach, the neighborhood
must be taken to be su�ciently large to include several constraints having di�erent orien-
tations. There are other constraints, however, on the choice of the \aperture" size which
require that the aperture be kept small. For example, our model of the motion typically
will only provide a good approximation to the true image motion over small neighborhoods.
Additionally, as the region size grows, it is more likely to contain multiple surfaces with
di�erent motions whose constraints will contaminate the single-motion estimate. We refer
to this dilemma surrounding the choice of aperture as the generalized aperture problem.

A second issue that must be faced is that the constraint (2.1) arises from an assumption
about the conservation of the image structure S(~x; t), and this assumption may sometimes
be inappropriate. In the simplest example, with S just taken to be the original image I, we
have the assumption that I(~x(t); t) is (locally) constant for paths (~x(t); t) moving with the
correct image motion. This constraint is clearly violated in many natural situations, such as
cases with shading variation, highlights, transparency, or occlusion boundaries. While more
e�ort can be spent on developing more sophisticated structure assumptions to deal with
some of these cases (as has been done, for example, by Fleet [6]), we cannot avoid the need
to make some assumption in connecting image structure to the motion of points in the scene.
When this assumption is violated we can expect our motion constraint vector, ~c(~x; t), to be
meaningless. Thus we should expect any method for the measurement of motion constraint
vectors to produce at least the occasional outlier, and therefore the method used for the
integration of these constraints must be robust to such outliers.

In summary, optical ow computation relies on a somewhat tenuous link to the motion of
the scene provided by assumptions about data conservation and, moreover, these assumptions
are insu�cient on their own to determine a unique image velocity. However, on the positive
side, in many situations of interest the desired ow �eld is spatially coherent over relatively
large regions of the image. For example, it has been shown that an a�ne ow model is a
reasonable approximation in many cases [1], such as for a smooth surface having a su�ciently
small variation in relative depth. If such a surface is textured then it can be expected to
give rise to a large number of motion constraint vectors, and thus the equations for the six
parameters of the a�ne ow can be massively redundant. In this sort of situation we should
expect to be able to compute an accurate representation of the ow �eld for the region.

Consider, for example, the situation that occurs when the spatial neighborhood is cen-
tered at a motion boundary. In this case, approximately half of the constraints will cor-
respond to one side of the boundary and half to the other. Such an example is shown in
Figure 2.1 where the bottom edge of the �gure is the v1 axis, the left edge is the v2 axis,
and the dark lines are the constraints lines, ~c(~x; t). In the �gure two \clusters" of constraint
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Figure 2.1: Constraint lines from di�erently moving surfaces within an aperture give rise to
distinct \clusters" of constraint line intersections.

intersections can be observed. If we assume a single translational motion over the region the
\optimal" motion estimate will lie somewhere between the two actual motions and will result
in a blurring of the ow �eld at the motion boundary. A similar situation results in cases
of multiple transparent motions and fragmented occlusion where no clear surface boundary
exists. These situations result in exactly the same type of clusters of constraints.

To cope with situations such as this we relax the single motion assumption in two ways.
First, we assume that a region may contain multiple coherent motions. We can think of these
multiple motions as corresponding layers [15] whose spatial extent may be the entire region.
Each layer contains a single consistent motion and each layer may be described by di�erent
parametric motion models. This is an important point since, in the case of transparency,
there is more than one motion at each point in the image corresponding to di�erent surfaces
in the scene. Second, we assume that multiple motions and noise will occasionally result in
constraint vectors which are outliers and, these should be identi�ed and rejected.

2.1 Previous Approaches

A host of techniques have been developed to deal with the generalized aperture problem
and outliers.1 Example techniques include the use of \adaptive windows" which adjust their
size and shape in an attempt to capture constraints from a single smooth surface patch
[16]. While such an approach cannot cope with transparency and fragmented occlusion,
the area-based regression approach of Bergen et al. [2] provides an iterative method for
recovering two transparent motions from three frames. For coping with motion boundaries,
an alternative approach is provided by regularization, in which the e�ective integration
domain for constraints on a single smooth surface is dictated implicitly through a smoothness
model and iteration. Smoothing over motion discontinuities is avoided either by explicitly
introducing boundaries (as line processes) [9] or by using weak continuity constraints [4]. To
cope with cases of fragmented occlusion, Darrell and Pentland [5] have proposed a method
for segmenting the motions into distinct layers. The use of multiple layers within a robust
regularization framework is discussed further in the chapter by Madarasmi and Kersten in
this volume [13].

A host of other techniques fall under the category of robust estimation [10] in which the
goal is to recover the dominant motion while treating the inconsistent constraints as outliers

1See [3] for a review.
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and reducing their inuence on the solution. The robust estimation framework introduced
by Black [3] has been applied to area-based regression techniques as well as correlation. The
framework also generalizes the regularization techniques by applying outlier rejection to both
the data conservation and spatial smoothness assumptions.

One problem with the robust statistical techniques is that, in cases of multiple motions,
they treat \secondary" structure as noise. In the previous �gure which contained multiple
motions, the robust techniques would accurately recover one of the two motions. An addi-
tional procedure would be needed to recognize that the \outliers" have a coherent structure
and that two motions are present. Our approach, as opposed to making the single-motion
assumption, explicitly models multiple motions and outliers, and hence is able to capture
the more complex structure present in the data.

A somewhat di�erent approach, referred to as \constraint line clustering", has been pro-
posed by Schunck [17]. The basic idea is that the redundancy in the motion constraint
vectors ~c(~x; t) arising from a smooth surface patch should be recognizable from the con-
straint vectors themselves. Indeed, for a patch moving with a nearly constant velocity, the
\constraint lines" will all nearly pass through the same point in the (v1; v2)-plane. There-
fore, given the constraints from an image patch, the idea is to seek such clusters of constraint
lines. If the cluster detection process could be designed to be insensitive to outliers, and if
the location of each identi�ed cluster could be made insensitive to other clusters in the data
set, then the approach should be able to provide accurate ow estimates without the need
for a detailed knowledge of the appropriate integration regions. We follow this general strat-
egy here, although our cluster detection process is quite di�erent than the one-dimensional
technique proposed by Schunck. In particular, Schunck does not model multiple motions
within a patch and therefore cannot detect and exploit information about multiple motions
when it exists.

3 Mixture Models of Flow

For a given image region we attempt to model the ow in terms of a handful of smoothly
varying layers. For example, ~v(~x;~a) may represent a constant velocity �eld for one layer, or
it could denote an a�ne ow where the components v1 and v2 are given by linear functions
of the image position ~x. In the �rst case the parameter vector ~a is 2-dimensional, while it is
6-dimensional in the a�ne case.2 Multiple motions within a particular patch are represented
by selecting more than one set of parameters ~a. However, note that at this stage of analysis
we have not modeled where in the image patch each of the various models are appropriate.
Thus transparent motion, with two di�erent velocity �elds realized over the whole patch,
will be initially modeled in the same way as an occlusion boundary. A subsequent level
of analysis is needed to determine which of these two interpretations is appropriate for a
particular patch.

We wish to consider �tting a layered ow model to the set of motion constraint vectors
measured within an image patch. In particular, we seek the parameter values ~an, n= 1; . . . ; N
for N possibly distinct smooth �elds, one for each layer. For the nth layer, the probability
of observing a constraint vector ~ck, given that the observation is at the spatial location ~xk,
is modeled by the \component probability" distribution pn(~ckj~xk;~an). In addition we also

2In practice, it is often useful to add parameters representing the uncertainty of ~a.
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have a model for outlier processes given by p0(~ck). Finally, the probability of selecting layer
n is given by the \mixture probabilities" mn, which are treated as further parameters we
need to �t. Together these pieces provide the overall probability of observing the constraint
~ck, namely

p(~ckj~xk; ~m;~a1; . . . ;~aN) =
NX

n=0

mnpn(~ckj~xk;~an): (3:1)

Here the mixture probabilities mn, for n = 0; 1; . . . ; N must sum to one.
Given a set of motion constraint vectors obtained within a patch at time t = t0, say

f~ck(~xk; t0)gKk=1, we seek parameter values f~angNn=1 and mixture probabilities fmngNn=0 which
provide amaximum likelihood �t to the data set. In particular, the log likelihood of generating
this set of observations from a speci�c model is

log L(~m;~a1; . . . ;~aN) =
KX

k=1

log p(~ckj~xk; ~m;~a1; . . . ;~aN): (3:2)

At a local extrema, it can be shown that the parameters ~m and ~an for n = 0; . . . ; N must
satisfy

KX

k=1

qnk = �mn; (3.3a)

KX

k=1

qnk
@

@~an
log pn(~ckj~xk;~an) = 0: (3.3b)

Here the quantities qnk represent the \ownership probabilities", that is, the probability that
the kth constraint belongs to the nth layer. These ownership probabilities are de�ned by

qnk =
mnpn(~ckj~xk;~an)
PN

j=0mjpj(~ckj~xk;~aj)
: (3:4)

These equations (3.3) for a maximumlikelihood �t have been derived by a number of authors;
for further details see [14]. The �rst equation (3.3a) comes from the condition that the partial
derivative of log L with respect to the mixture proportion mn must be equal to the Lagrange
multiplier �. This Lagrange multiplier arises by imposing the constraint that the mixture
proportions must sum to one. The second equation is obtained simply by requiring that the
partial derivative of log L with respect to the parameters ~an must vanish.

These equations suggests an iterative algorithm, known as the EM-algorithm [14], for
obtaining a maximum likelihood �t for the parameters mn and ~an, for n = 0; . . . ; N . Given
an initial guess for these parameters we �rst estimate the ownership probabilities qnk for each
constraint belonging to each component. This is the expectation, or \E"-step, and simply
involves the evaluation of the right hand side of (3.4). Given these ownership probabilities
qnk, we need to �nd parameter values ~an which satisfy (3.3b). This is equivalent to performing
a maximization step, that is the \M"-step, on the expected value of the log probabilities
log pn(~ck). As we see below, for Gaussian distributions this maximization step can be easily
solved. The result is a simple iterative algorithm which is guaranteed to increase the log
likelihood of its �t each iteration.
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3.1 Mixtures of Constant Velocity Models

Our purpose in this paper is simply to demonstrate the utility of considering mixture models
of optical ow. As such we restrict our attention to the simplest case, in which the ow �eld
is decomposed into patches with the ow in each patch treated as constant velocity plus
noise. To deal with simple occlusion boundaries and transparency, we allow two di�erent
constant velocity layers to be extracted for each patch. As a result, we take N to be 2,
and take the parameters ~an to be simply ~vn, the 3-vector representing the constant velocity
of the model (recall that an image velocity is represented by the 3-vector (v1; v2; 1)). In
addition, we also attempt to identify outliers, corresponding to the 0th component of the
mixture. This component is, roughly speaking, modeled by a uniform distribution and does
not require any parameters to be �t other than its mixing proportion m0. Details of the
outlier model are given further below.

Given the choice of using noisy uniform ow in each patch, the next step is to de�ne the
component densities pn of the mixture distribution. For n > 0 (i.e. other than the outlier
process), pn(~ckj~vn) is meant to represent the likelihood of measuring the motion constraint
vector ~ck within a patch which has mean image velocity ~vn.

For the moment assume that the actual velocity is given by ~vn, then an exact constraint
vector ~ck would lie on the plane perpendicular to ~vn. In [6] it is shown that a reasonable
approximation for the distribution of errors in component velocitymeasurements is given by a
roughly Gaussian distribution for the angular error between ~ck and the plane perpendicular
to ~vn. The appearance of this angle should not be too surprising since, after all, we are
simply measuring the orientation of a surface in space and time. We will make an additional
assumption that this angular error distribution is independent of the actual image velocity
~vn and is roughly isotropic.3 Given these assumptions, the probability of observing ~ck, given
that the actual image velocity is ~vn, is modeled by a Gaussian distribution in d(~ck; ~vn) de�ned
by

d(~ck; ~vn) =
~ck � ~vn

jj~ckjj jj~vnjj :

Here d(~ck; ~vn) is simply the sine of the angular error which, for the small angles we are
concerned with here, is roughly equal to the angular error itself. An important point about
this error distribution is that it is only meant to model the measurements that are reasonably
accurate. While the actual error distributions have longer tails than one might expect from
such a Gaussian model (see [6]), this is not critical for our current situation since we also
incorporate a model for outliers as a separate component in the mixture model. In e�ect,
the longer tails are modeled by this outlier process, rather than by the above Gaussian
distribution.

In addition to measurement noise within each patch, we also wish to accommodate the
deviations of the actual ow from our constant velocity approximation. This additional
variability is also modeled using angular errors from the mean velocity ~vn. This is chosen
simply for convenience, since the variance of this error can simply be added to the variance
of the measurement error, to obtain the following Gaussian model for the nth component

3The measurement scheme we use in Section 4 uses only two frames while the spatial support of the
component velocity measurements is considerably larger. Thus we would expect the spatial orientation error
to be smaller than the speed error, that is, the noise should not be isotropic. This could be taken into
account in a more detailed model.
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distribution

pn(~cj~v) = 1p
2��v

exp(�d2(~c;~v)

2�2v
): (3:5)

Here �2v is an estimate for the combined variance of the component velocity measurement
errors and the modeling error in assuming a uniform velocity within the patch.

Given this speci�cation of pn we can solve the maximization step in closed form. Recall
that this involves �nding a solution of (3.3b), for a �xed set of mixture probabilities mn

and ownership probabilities qnk. We omit the derivation, and simply state that the solution
is given by choosing the new approximation for ~vn as the eigenvector corresponding to the
minimum eigenvalue of the 3� 3 matrix

Dn �
KX

k=1

qnk
�2vjj~ckjj2

~ck ~c
T
k : (3:6)

This result is easy to justify intuitively. Consider the quadratic form

~v T
n Dn~vn =

KX

k=1

qnk
2�2v jj~ckjj2

(~ck � ~vn)2;

=
KX

k=1

qnk
2�2v

d2(~ck; ~vn);

which we recognize as minus one times the expected value of the exponent in the probability
distribution pn. By choosing the eigenvector ~vn associated with the minimum eigenvalue of
Dn we are simply maximizing the expected value of this exponent, as is standard in maximum
likelihood estimates.

3.2 Modeling Outlier Processes

The distribution p0(~ck) in the mixture is meant to model outliers. One common approach
is to choose p0 to be a Gaussian distribution with a large variance. The large variance
attempts to model the long tails in the typical error distributions for component velocity
measurements. Unfortunately, a single Gaussian outlier model is often insu�cient. For
example, an important case for motion estimation is the situation in which a patch overlaps
an occlusion boundary. In such a case we may obtain two \signal" distributions, with one
peak at the velocity of the foreground and a second peak at the velocity of the background.
Each of these peaks has the typical long tails, and moreover, measurements straddling the
boundary can provide constraints far from either peak. In order to model this behaviour
we would need at least two broad Gaussians to approximate the tails around the peaks,
and a third distribution to capture the yet more widely distributed responses scattered by
the occlusion boundary. The main point being that it is very unlikely that we can �nd a
reasonable model of the outlier processes in terms of a single Gaussian distribution.

It is worthwhile to consider the opposite extreme, where we use many Gaussian distribu-
tions to model the outlier distribution. As we show below, this leads to a computationally
simple implementation. Imagine that we covered the sphere of possible image velocities (rep-
resented by unit vectors) using Gaussians having a signi�cantly larger standard deviation
than �v, the standard deviation of the signals we are seeking. At any point on the sphere,
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Figure 3.1: A coherent motion is represented by a Gaussian with small variance while outliers
are represented by a tiling of broad Gaussian distributions. The dashed line represents an
outlier threshold which is an upper bound on the sum of the outlier distributions; in this case,
the intersection with the coherent motion distribution is set to be two standard deviations.

the sum of the values of all the Gaussians in this cover should be roughly given by a con-
stant, as is depicted in Figure 3.1. By using a larger standard deviation for this cover we
are constraining any �t of an outlier distribution to be a smoothly varying function over the
sphere. Appropriate mixture coe�cients for the various Gaussians, holding the means and
variances �xed, is provided by the ownership probabilities, qnk, for each broad Gaussian. As
we saw in the discussion of the E-step above, these quantities can easily be computed from
an equation of the form (3.4).

In fact, it can be shown that an upper bound for the outlier probability is provided by
the case in which all of the mixture probability for the members of the cover is concentrated
on a single element of the cover, and this element is such that the constraint agrees with
its mean value. (We are free to play with the positioning of the elements in the cover,
since we are just seeking the value of this upper bound.) This upper bound can also be
obtained by simply using p0 to be the constant value provided by the cover, and treating the
mixture probability m0 as the probability of getting an outlier, integrated over all possible
positions. Using p0 and m0 in equation (3.4) gives an estimate q0k which is an upper bound
for the probability that constraint k belongs to the outlier distribution. The corresponding
algorithm for identifying outliers is thus trivial and it is conservative with respect to which
constraints are treated as signal rather than outliers.

All that remains is to discuss the choice of the constant p0. We �nd it convenient to
consider a situation in which the outlier probability should be about 1/2, and use this
situation to set p0. For example, consider a single Gaussian having a standard deviation
of �v, with a mixture probability of m0

1, while outliers account for the remaining data.
Moreover, assume that for this choice of mixture proportions, data a distance ��v from the
mean is to be assigned an outlier probability of 1/2. These parameters m0

1 and � are then
used to set the value of p0, which then remains �xed during the execution of the algorithm.
In particular, using (3.4) we �nd

p0 =
m0

1

(1 �m0
1)
p
2��v

exp(��2=2): (3:7)

In our experiments we use m0

1 = 0.9 and � = 2.5. In this case, when we have 10% outliers,
the quantity � dictates some trust in constraints coming within 2.5 standard deviations of
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our estimatedmean. However, as the mixture proportions change during the execution of the
algorithm, so will this region of trust; the region decreases with an increase in the percentage
of outliers even though p0 remains �xed.

3.3 Summary of the EM-algorithm.

Given a choice of the constants p0 and �v, the EM-algorithm proceeds as follows. First,
using (3.4) the ownership probabilities are computed according to the current values of the
mixture probabilities, ~m, and the current estimates for the mean velocities ~vn, n = 1; 2. The
mean velocity ~vn can then be updated by constructing the 3 � 3 matrices Dn, and �nding
the eigenvector associated with the minimum eigenvalue. This needs to be done for n = 1
and 2, but there is no need to �t any such parameters for the outlier process. Also, a new
set of mixture probabilities is obtained from (3.3a), followed by a renormalization to ensure
the sum of the mixture probabilities is one. Note that here we also update the mixture
probability m0 for the outlier process. This entire EM-iteration is repeated until the change
in the parameters is su�ciently small. For our experiments here we simply used 10 iterations,
which turned out to be more than su�cient.

4 Computational Examples

In order to demonstrate the feasibility of the approach we consider two real image sequences,
one of which involves a simple occlusion boundary, while the other involves transparency.
We examine the behaviour of our approach in areas of the images which contain multiple
motions as well as noisy regions and regions which do not conform to the simple uniform-
motion assumption.

From the wide range of di�erent measurement strategies for component velocities or,
equivalently, for the motion constraint vectors ~ck, we chose a phase-based approach. In
previous work a similar method has been shown to provide reasonably accurate component
velocities, with a low outlier rate [6]. The particular approach we use is based on only two
consecutive frames, and the actual component velocity measurement method is similar to the
phase-based stereo disparity measurement scheme discussed in [12]. Briey, the basic steps
in the component velocity measurement are to �rst convolve each frame with the complex
band-pass �lter G2 + iH2, for each of four di�erent spatial orientations of the �lter kernel
[8]. This kernel is chosen because it is compact (eg. the �ne-scale version is 9 � 9), has
a simple analytical form, and the real and imaginary parts nearly form a quadrature pair.
Two di�erent spatial scales were used, one tuned to a spatial wavelength of 4 pixels while
the other is tuned to a wavelength of 8. The complex responses of these convolutions were
sampled at the rate of 1/4 of the wavelength and quantized to 8 bits. The spatiotemporal
phase derivatives were calculated using these subsampled and quantized results. The phase
derivatives in the x1, x2 and t directions supplied the coe�cients of the motion constraint
vector ~ck. Points at which the complex convolution response was below 4% of the maximum
possible value were discarded (since responses at this low level have been crudely quantized
to only a few di�erent gray levels), as were points where the phase and amplitude derivatives
failed the test for a singularity neighborhood [7]. Finally, in order to bring the two frames
into rough alignment, the frames were sometimes spatially shifted by an integral multiple of
the �lter spacing. The appropriate shift was easily obtained by applying the mixture model
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Figure 4.1: The Pepsi Can image sequence. The mixture approach is applied to the boxed
regions of the scene (numbered 1 to 4 from left to right).

approach �rst to the wavelength 8 case, and using the results to choose the appropriate shift
for the wavelength 4 case.

4.1 An Occlusion Boundary

Component velocities were obtained for the Pepsi can sequence in Figure 4.1. As suitable test
cases for our mixture model approach we chose various 32 � 32 image patches, as depicted
in Figure 4.1. The camera motion is purely translational and the image motion is to the
left with speeds ranging roughly between 1.6 and 0.7 pixels/frame (for the can and the
background, respectively). In all cases we take the standard deviation of the mixture model
within a patch to be �v = 0.2 pixels/frame.

The second patch from the left in Figure 4.1 is roughly centered on an occlusion boundary,
and we begin our discussion with this patch. A third of all the motion constraints obtained
for this patch are depicted in Figures 4.2d. Note the presence of the two clusters associated
with the motions on either side of the boundary which are made clearer in Figures 4.2a and
b where the two clusters are shown separately. The two white \X"'s mark the peaks of the
extracted mixture model for this example, while the convergence to these peak values is
illustrated by black in \X"'s in Figure 4.2d. This rapid convergence behaviour was typical
in all our tests and moreover the convergence appeared to be rather insensitive to the initial
guess. The recovered velocities were (�1:53;�0:02) for the portion of the can, and (�0:70;
0:01) for the background. The mixture probabilities were (m0;m1;m2) = (0:03; 0:67; 0:30)
for the outliers, the can, and the background, respectively. The method has clearly recovered
the velocities of both sides of the occlusion boundary without di�culty.

A couple of additional points can be made using this same patch. Figure 4.2a shows all
the constraints deemed to have an ownership probability for the �rst motion larger than 0.4
(i.e. q1k > 0:4), with the darkness of the constraint lines increasing with the probability
that the constraint belongs to the �rst motion. A similar plot is given in Figure 4.2b for the
constraints having an ownership probability larger than 0.4 for the second motion. Clearly
the mixture components have picked out appropriate clusters of constraints. Note that
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Figure 4.2: Region 2 (see text).

constraint lines that are roughly horizontal, and pass close to both peaks, have low ownership
probabilities. This is appropriate since these constraints are roughly equally likely to arise
from either motion, and thus their probabilities for any particular motion is close to 1/2.
This illustrates the competition between the various components in the mixturemodel for the
ownership of each constraint. There are only a handful of constraint lines that are outliers
and are depicted in Figure 4.2c. Finally, in Figures 4.2e and 4.2f we show the spatial
distribution of responses for the horizontal velocity v1(~x) and the ownership probabilities
q2k(~x), respectively, for ~x varying over the patch. The general spatial distribution of the
ownership probabilities reects the structure and location of the occlusion boundary within
the patch. To show the area of support for each motion, we have depicted the maximally
probable horizontal velocity in Figure 4.2e (the white areas are regions where there were no
component velocities, due to low amplitude or removal by the singularity neighborhood test).
The majority of incorrectly classi�ed pixels arise in areas where the ownership probabilities
are near 1/2 (seen as neutral gray areas in Figure 4.2f ).

The results for the other patches in Figure 4.1 are shown in Figure 4.3. Consider the
results for Region 3 (the third patch from the left in the image) which contains only the single
motion of the can. In this case, the mixture model collapses both peaks onto the same point,
given by the velocity (�1:61;�0:006) pixels/frame. This value is in excellent agreement with
the velocity obtained for the can in the Region 2, indicating that the presence of the second
motion there did not signi�cantly perturb the responses.

In general, given a single motion within a patch, the situation is not this simple with
both mixture components collapsing to a point. For example, in the patches on the extreme
left and right (Regions 1 and 4) which both contain a single motion, the mixture model
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Figure 4.3: Constraint lines for Regions 1, 3, and 4. The top row shows the constraints
corresponding to the dominant motion and the \X" marks the recovered motion (note that
there is only a single motion in these regions). The bottom row shows the outliers (none for
Region 3 and many in the noisy Region 4).

initially converges to descriptions having two di�erent peak locations. Region 1 contains
a planar surface slanted away from the camera. In this case, our simple assumption of
uniform motion over the region is not a good approximation to the true motion and the
resulting constraint lines do not form a tight cluster. When we assume that two uniform
motions are present the method recovers horizontal component velocities of �1:4 and �1:0
pixels/frame, while the vertical components are essentially zero. The distance between these
two motions, however, is only 2�v, which is not a su�cient spread in order for the sum of
the two Gaussian distributions to have more than a single peak. A similar situation occurs
in Region 4 on the far right of the image. In this region there is a considerable amount of
noise in the measurements, with 17% of the constraints labeled as outliers. In this noisy
situation the mixture model also chooses a pair of velocities roughly separated by 2�v and,
thus, a unimodal distribution.

These observations suggest a simple decision criterion for whether the velocities within
a patch belong to a single layer. In particular, we consider the criteria that the minimum
probability on the line connecting the two peaks must be at least half the height of the peaks
in order to be merged. This criterion can also be based on the Mahalanobis-distance between
the two peaks. When we recognize that the motions within a region should be merged we
rerun the EM-algorithm assuming a single motion and outliers. The results for Regions 1
and 4 are shown in Figure 4.3.

Figure 4.4 shows the result of applying the mixture model approach over the entire image
in 32 � 32 patches which are separated from each other by 8 pixels in both directions. We
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Figure 4.4: Mixture models applied to the entire Pepsi-can image (see text).

use a simple uniform motion model within the patches and begin by assuming two coherent
motions and outliers. After convergence, we apply the above decision criteria to determine if
there is one motion or two within each patch. The horizontal component of the ow is shown
in Figure 4.4a (in the same format as Figure 4.2e where white indicates no information, and
the magnitude of the dominant motion is displayed in shades of gray). The regions containing
two well-separated motions are shown in Figure 4.4b (in the same format as Figure 4.2f ).
Note that most of the boundary of the can has been identi�ed, along with a few incorrectly
classi�ed regions in which the ow is quite noisy.

4.2 Transparency

We next consider a case of additive transparent motion in which a face is reected in the
glass covering an Escher print (Figure 4.5a). The entire image was treated as a single region,
two uniform translational motions were assumed, and a noise estimate of �v = 0:1 was used.
The initial motion constraints were computed with wavelength 8.4 The recovered motion
parameters were (�3:31; 0:02) for the Escher print and (�0:79; 0:01) for the reection of the
face.

The accuracy of these motion parameters can be evaluated by performing a simple com-
putation. We compute the di�erence between the second image and the �rst image shifted
by one set of motion parameters. This has the e�ect of canceling the intensity structure
which is consistent with the motion and revealing the structure of the other surface. Figures
4.5b and c show the results obtained by canceling the e�ect of the moving print and reection
respectively. These results obtained from two frames compare favorably with those of [2]
which required three frames to recover the two motions.

4A large wavelength was necessary to simultaneously compute constraints for both motions since they
di�er by approximately 2.5 pixels.
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Figure 4.5: Where's Jim? Transparency sequence containing the reection of a mystery
vision researcher (see text).

5 Conclusion

We have examined the problems posed by multiplemotions and outliers in the intergration of
motion information over a spatial neighborhood. We relax the assumption of a single motion
and, instead, view image regions as containing multiple layers corresponding to surfaces
with di�erent image motions. We also cope with outliers which can decease the accuracy
of the recovered ow. To achieve this we introduced the idea of using mixture models
for integrating noisy constraints when there are multiple interpretations and we provided
details of the EM-algorithm for computing the maximum-likelihood estimate of the motion
parameters. Our experiments demonstrate the feasibility of the approach and indicate that
it is computationally e�cient and can provide robust estimates of the optical ow values in
the presence of outliers and multiple motions.
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