
Building a Lexical Knowledge-Base of Near-Synonym Differences

Diana Zaiu Inkpen and Graeme Hirst
Department of Computer Science,

University of Toronto
Toronto, Ontario, Canada M5S 3G4

fdianaz,ghg@cs.toronto.edu

Abstract
In machine translation and natural language generation,
making a poor choice from a set of near-synonyms can
be imprecise or awkward, or convey unwanted impli-
cations. Our goal is to automatically derive a lexical
knowledge-base from a dictionary of near-synonym dis-
criminations. We do this by classifying sentences accord-
ing to the classes of distinctions they express, on the basis
of words selected by a decision-list algorithm. Improve-
ments on previous results are due in part to the addition
of a coreference module.

1 Near-synonyms
Near-synonyms are words that are almost synonyms, but
not quite. They are not fully inter-substitutable,but rather
vary in their shades of denotation or connotation, or in the
components of meaning they emphasize; they may also
vary in grammatical or collocational constraints.

So-called “dictionaries of synonyms” actually contain
near-synonyms. This is made clear by dictionaries such
as Webster’s New Dictionary of Synonyms (Gove, 1984)
and Choose the Right Word (Hayakawa, 1994), which
list clusters of similar words and explicate the differences
between the words in each cluster. As a matter of ter-
minology, we use the word cluster to denote the set of
near-synonyms in a dictionary entry, plus the differences
among the near-synonyms of that entry. These dictionar-
ies are in effect dictionaries of near-synonym discrimi-
nations. Writers often turn to such resources when con-
fronted with a choice between near-synonyms, because
choosing the wrong word can be imprecise or awkward,
or convey unwanted implications. These dictionaries are
made for human use and they are available only on paper.

Near-synonyms are important for fine-grained distinc-
tions in MT systems. For example, when translating the
French word erreur to English, one of the near-synonyms
error, mistake, blunder, blooper, contretemps, goof, slip,
solecism could be chosen, depending on the context and
on the nuances that need to be conveyed.

DiMarco and Hirst (1993) analyzed the type of differ-
ences adduced in dictionaries of near-synonym discrimi-
nations. They found that only a limited number of types
were used, making it possible to formalize the entries in a
computational form. Edmonds (1999) designed a model

to represent near-synonyms, and he constructed by hand
the representations for nine clusters.

Our goal is to automatically derive a lexical knowledge
base (LKB) of near-synonyms from a dictionary of near-
synonym discriminations. We present our results for the
extraction of knowledge from the text of the dictionary,
and sketch our approach for the next step of dealing with
the concepts in the representations and a reorganization
of an existing ontology. Our goal is not only to automati-
cally extract knowledge from one dictionary of synonym
discriminations, but also to discover a general method-
ology which can be applied to any such dictionary with
minimal adaptation.

2 Edmonds’s model of lexical knowledge
Edmonds (1999) and Edmonds and Hirst (2000) show
that current models of lexical knowledge used in com-
putational systems cannot account well for the proper-
ties of near-synonyms. The conventional view is that the
denotation of a lexical item is represented as a concept
or a structure of concepts (i.e., a word sense is linked
to the concept it lexicalizes), which are themselves orga-
nized into an ontology. The ontology is often language-
independent, or at least language-neutral, so that it can be
used in multilingual applications. Words that are nearly
synonymous have to be linked to their own slightly dif-
ferent concepts. Hirst (1995) showed that such a model
entails an awkward taxonomic proliferation of language-
specific concepts at the fringes, thereby defeating the pur-
pose of a language-independent ontology. Such a model
cannot account for indirect expressions of meaning or for
fuzzy differences between near-synonyms.

Edmonds (1999) modifies this model to account for
near-synonymy. The meaning of each word arises out of a
context-dependent combination of a context-independent
denotation and a set of explicit differences from its near-
synonyms. Thus the meaning of a word consists of both
a core sense that allows the word to be selected by a lexi-
cal choice process and a set of nuances of indirect mean-
ing that may be conveyed with different strengths. In this
model, a conventional ontology is cut off at a coarse grain
and the near-synonyms are clustered under a shared con-
cept, rather than linking each word to a separate concept.
The result is a clustered model of lexical knowledge. Each



(defcluster error_C
:syns (error_l mistake_l blunder_l slip_l

lapse_l howler_l)
:core (ROOT Generic-Error)

:periph ((P1 Stupidity) (P2 Blameworthiness)

(P3 Criticism (ATTRIBUTE (P3-1 Severity)))
(P4 Misconception) (P5 Accident)

(P6 Inattention))
:distinctions

((blunder_l usually medium implication P1)

(mistake_l sometimes medium implication
(P2 (DEGREE 'medium)))

(blunder_l sometimes medium implication
(P2 (DEGREE 'high)))

(mistake_l always medium implication

(P3-1 (DEGREE 'low)))
(error_l always medium implication

(P3-1 (DEGREE 'medium)))

(blunder_l always medium implication
(P3-1 (DEGREE 'high)))

(mistake_l always medium implication P4)
(slip_l always medium implication P5)

(mistake_l always low implication P5)

(lapse_l always low implication P5)
(lapse_l always medium implication P6)

(blunder_l always medium pejorative)
(blunder_l high concreteness)

(error_l low concreteness) (howler_l low formality)

(mistake_l low concreteness)))

Figure 1: Edmonds’s representation for the cluster error,
mistake, blunder, slip, lapse, howler.

cluster has a core denotation that represents the essential
shared denotational meaning of its near-synonyms. The
internal structure of each cluster is complex, represent-
ing semantic (or denotational), stylistic, and expressive
(or attitudinal) differences between near-synonyms. The
differences or lexical nuances are expressed by means
of peripheral concepts (for denotational nuances) or at-
tributes (for nuances of style and attitude). For example,
the structure for the near-synonyms of the word error,
built by hand by Edmonds (1999), is shown in Figure 1.

In this model, a cluster includes the following fields:
syns – a list of near-synonyms in the cluster; core – the
core denotation, or essential shared meaning of the near-
synonyms in the cluster, represented as a configuration of
concepts; periph – a set of peripheral concepts that ex-
tend the core denotation, and pertain to the differentiation
of the near-synonyms; and distinctions – the actual
distinctions between near-synonyms.

Building such representations by hand is difficult and
time-consuming, and Edmonds completed only nine of
them. Our goal is to automatically extract the content of
all the entries in a dictionary of near-synonym discrim-
inations, using a slightly simplified form of Edmonds’s
representation for the content of a cluster. We hypothe-
size that the language of the entries is sufficiently regular
to allow automatic extraction of knowledge from them.
The dictionary of near-synonym differences that we use
is Choose the Right Word (Hayakawa, 1994) (hereafter
CTRW). An example of text from this dictionary is pre-

absorb, assimilate, digest, imbibe, incorporate, ingest

These verbs, all relatively formal, indicate the taking in of one thing by
another. Absorb is slightly more informal than the others and has, per-

haps, the widest range of uses. In its most restricted sense it suggests the

taking in or soaking up specifically of liquids: the liquid absorbed by

the sponge. In more general uses absorb may imply the thoroughnessof

the action: not merely to read the chapter, but to absorb its meaning. Or

it may stress the complete disappearanceof the thing taken in within the

encompassing medium: once-lovely countryside soon absorbed by ur-

ban sprawl. Ingest refers literally to the action of taking into the mouth,

as food or drugs, for later absorption by the body. Figuratively, it des-

ignates any taking in and suggests the receptivity necessary for such a

process: too tired to ingest even one more idea from the complicated
philosophical essay she was reading. To digest is to alter food chem-

ically in the digestive tract so that it can be absorbed into the blood-

stream. In other uses, digest is like absorb in stressing thoroughness,

but is even more emphatic. [You may completely absorb a stirring play

in one evening, but you will be months digesting it.]

Figure 2: Part of an entry in CTRW. Copyright c1987.
Reprinted by arrangement with HarperCollins Publish-
ers, Inc.

Brill tagger

Parser (chunker)

Sentence breaker
XML markup

Text of the dictionary
(scanned in, OCR)

(differences inside each cluster)
Near-synonym clusters

Frequency counts
(nx, vx, ax, rx)

Information extractor
(coreference, comparisons)

DL algorithm

Figure 3: The architecture of the extraction system.

sented in Figure 2. After OCR scanning of CTRW and
error correction, we have marked up the structure of the
dictionary in XML.

Figure 3 presents the architecture of the extraction
module, which is described in the next sections. The ex-
traction component obtains the relevant information from
each sentence and produces the initial clusters, contain-
ing the peripheral concepts as simple strings. Some of our
preliminary results were presented in (Inkpen and Hirst,
2001). The results we present here are improved, the ex-
traction component has been revised, and a coreference
resolution module specific to CTRW has been added.

3 Distinctions among near-synonyms
¿From each sentence of the dictionary, the program needs
to extract the information relevant to the representation.
Following Edmonds’s analysis of the distinctions among
near-synonyms, we derived the class hierarchy of distinc-
tions presented in Figure 4. The top-level class DISTINC-
TIONS consists of DENOTATIONAL DISTINCTIONS, AT-
TITUDE, and STYLE. The last two are grouped together
in a single class, ATTITUDE-STYLE DISTINCTIONS, be-



SUGGESTION

IMPLICATION

DENOTATION

CONCRETENESS

FORCE

FORMALITY

PEJORATIVE

NEUTRAL

FAVORABLE

ATTITUDE-STYLE
DISTINCTIONS

DENOTATIONAL

DISTINCTIONS

DISTINCTIONS

ATTITUDE

STYLE

+frequency

FLORIDITY

FAMILIARITY

+frequency

+strength

Figure 4: The class hierarchy of distinctions. Rectangles
represent classes; ovals represent an attribute that a class
and its descendents have.

cause they present similar behavior from the point of
view of this research.

3.1 Denotational distinctions

Near-synonyms can differ in the frequency with which
they express a component of their meaning (e.g.,
Occasionally, invasion suggests a large-scale but
unplanned incursion), in the indirectness of the expres-
sion of the component (e.g., Test strongly implies an
actual application of these means), and in fine-grained
variations of the idea itself (e.g., Paternalistic may
suggest either benevolent rule or a style of govern-
ment determined to keep the governed helpless and
dependent).

For denotational distinctions, the tuples to be ex-
tracted have the form hnear-synonym, frequency,
strength, indirectness, peripheral-concepti.
The indirectness takes the values suggestion,
denotation, implication. It is signaled by many
words in CTRW, including suggests, denotes, implies,
and connotes. Strength takes the values low, medium,
high, and it is signaled by words such as strongly and
weakly. Frequency takes the values always, usually,
sometimes, seldom, never and is signaled by the
corresponding English words. Default values are used
when strength and frequency are not specified.

3.2 Attitudinal distinctions

A word can convey different attitudes of the speaker to-
wards an entity of the situation. The three attitudes rep-
resented in the model are pejorative, neutral, and
favorable. An example of a sentence in CTRW ex-
pressing attitudes is: Blurb is also used pejoratively to
denote the extravagant and insincere praise common in
such writing. This contains information about the pejo-
rative attitude, in addition to its information about deno-
tational distinctions.

The information extracted for attitudinal distinctions

has the form hnear-synonym, frequency, strength,
attitudei, where strength and frequency have the
same values and significance as in the previous section.

3.3 Stylistic distinctions

The information extracted from CTRW about
stylistic variations has the form hnear-synonym,
strength, stylistic-featurei, where the
stylistic feature has the values formality,
force, concreteness, floridity, and familiarity

(Hovy, 1990). The strength has the values low,
medium, high, indicating the level of the stylistic
attribute. Words that signal the degree of formality
include formal, informal, formality, and slang. The
degree of concreteness is signaled by words such as
abstract, concrete, and concretely.

4 The decision-list learning algorithm

In order to automatically create near-synonym represen-
tations, the program needs to extract relevant portions of
the text that are informative about these attributes. There-
fore, the goal is to learn for each leaf class in the hierarchy
a set of words or expressions in CTRW that characterizes
descriptions of the class. When classifying a sentence (or
fragment of sentence) the program has to decide which
leaf class it expresses, and also with what strength and
what frequency. We use a decision-list algorithm to
learn sets of words and patterns for the classes DENO-
TATIONAL DISTINCTIONS and ATTITUDE-STYLE DIS-
TINCTIONS.

Our decision-list (DL) algorithm (Figure 5) is tai-
lored for extraction from CTRW. Like that of Collins and
Singer (1999), our program learns two kinds of rules:
main rules (for words that are significant for distinc-
tion classes) and auxiliary rules (for frequency words,
strength words, and comparison words). We also ex-
tract patterns and relevant words for the classes DENO-
TATIONAL DISTINCTIONS and ATTITUDE-STYLE DIS-
TINCTIONS, similar to the domain-specific lexicon ex-
traction of Riloff and Jones (1999).

In order to obtain input data, we replace all the near-
synonyms in the text of the dictionary with the term NS;
then we chunk the text with Abney’s chunker (Abney,
1996). The training set E is composed of all the verb
phrases, noun phrases, adjectival phrases, and adverbial
phrases (denoted vx, nx, ax, rx, respectively) that occur
more than a threshold t times (where t = 3 in our experi-
ments). (We prefer to use a chunker rather than a parser,
because the sentences are long and contain lots of coor-
dinations that a parser cannot reliably handle.)

The program learns rules of the form: word x is signifi-
cant for the given class with confidence h(x). All the rules
x! h(x) for that class form a decision list that allows us
to compute the confidence with which new patterns are
significant for the class. The confidence of a word x is



Input: Set E of training examples, class, main seed
words for class, part-of-speech (pos) for words that are
to be in mainDL, and pos for words that are to be in
auxDL.

Output: Two decision lists for the given class: main de-
cision list (mainDL) and auxiliary decision list (auxDL),
plus list E0 of patterns for the class. (Each decision list
contains rules of the form x ! h(x), meaning that the
word x is significant for that class with confidence h(x)
computed by Equation 1.)

1. Set N = 10, the maximum number of rules to be in-
duced at each step.

2. Initialization: Set the mainDL to the set of main seed
words (with confidence 0.99). Set E0 to empty set.

3. Add to mainDL those words in chunks from E that
have the same stem as any words already in mainDL.
(For example, if suggest is in mainDL, add suggests,
suggesting, suggested, suggestion.)

4. Select examples (chunks) from E�E0 that contain
words in mainDL, and add them to E0.

5. Use E0 to compute more auxiliary rules. For each
word x not in any DL, compute the confidence h(x)
using Equation 1. Take the N highest values and add
them to auxDL.

6. Select more examples from E�E0 using auxDL, and
add them to E0. Stop if E0 is unchanged.

7. Using the new E0, compute more main rules. For
each word x not in any DL, compute the confidence
h(x). Take the N highest values and add them to
mainDL.

8. Go to step 3 unless E0 is unchanged.

Figure 5: The decision-list learning algorithm.

computed with the formula:

h(x) =
count(x;E0)+α
count(x;E)+ kα

(1)

where E0 is the set of patterns selected for the class, and
E is the set of all input data. Following Collins and
Singer (1999), we set k= 2, because we partition into two
sets (relevant and irrelevant for the class). α = 0:1 is a
smoothing parameter. So, we count how many times x is
in the patterns selected for the class compared to the total
number of occurrences in the training data.

The idea behind the algorithm is that starting with a
few main rules (seed words), the program selects exam-
ples containing them and learns a few auxiliary rules. Us-
ing these it selects more examples and learns new main
rules. It keeps iterating until no more rules are learned.

We apply the DL algorithm for each of the classes
DENOTATIONAL DISTINCTIONS and ATTITUDE-STYLE

DISTINCTIONS. For the former, the input to the algo-
rithm is: the set E of all chunks, the main seed words

(suggest, imply, denote, mean, designate, connote), the
restriction that the part-of-speech (pos) for words in main
rules be verbs and nouns, and the restriction that the pos
for words in auxiliary rules be adverbs and modals. For
the latter, the input to the algorithm is: the set E of all
chunks, the main seed words (formal, informal, pejora-
tive, disapproval, favorable, abstract, concrete), and the
restriction that the pos for words in main rules be adjec-
tives and nouns and in auxiliary rules be adverbs.

For example, for the class DENOTATIONAL DISTINC-
TIONS, startingwith the rule suggest! 0:99, the program
selects examples such as these (where the numbers give
the frequency in the training data):

[vx [md can] [vb suggest]]--150
[vx [rb sometimes] [vb suggest]]--12

Auxiliary rules are learned for the words sometimes and
can with confidence factors given by the count of these
words in the current set of selected examples compared
with the count in the rest of the set of examples. Using
the new auxiliary rules for the words sometimes and can,
the program selects more examples such as these:

[vx [md can] [vb refer]]--268

[vx [md may] [rb sometimes] [vb imply]]--3

¿From these new main rules are learned, for the words re-
fer and imply. Using new main rules, more auxiliary rules
are selected—for the word may, and so on.

The ATTITUDE and STYLE classes had to be con-
sidered together because both of them use adjectival
comparisons. Examples of ATTITUDE-STYLE DISTINC-
TIONS class are these:

[ax [rbs most] [jj formal]]--54
[ax [rb much] [more more] [jj formal]]--9

[ax [rbs most] [jj concrete]]--5

For this example, main rules contain the words formal
and concrete, and auxiliary rules much, more, and most.

5 Extracting knowledge from CTRW
5.1 Classification and extraction
After we run the DL algorithm for the class DENOTA-
TIONAL DISTINCTIONS, the words in the list mainDL
are manually split into three classes: SUGGESTION, IM-
PLICATION, and DENOTATION. Some words can be in-
significant for any class (e.g., the word also) or for the
given class; therefore they are classified as the class
OTHER and filtered out. We repeat the same procedure for
frequenciesand strengthswith the words in auxDL.
The words classified as OTHER and the patterns that do
not contain any word from mainDL are ignored in the
next processing steps.

After we have run the algorithm for the class
ATTITUDE-STYLE DISTINCTIONS, the words in the list
mainDL have to be split into two classes: ATTITUDE and
STYLE. ATTITUDE is split into FAVORABLE, NEUTRAL,
PEJORATIVE. STYLE is split into FORMALITY, CON-
CRETENESS, FORCE. Frequencies can be computed



from the auxDL list. Strengths will be computed by
the module that resolves comparisons.

The knowledge-extraction component takes each sen-
tence in CTRW and tries to extract one or more pieces of
knowledge from it. It considers what near-synonyms the
sentence fragment is about, what the expressed distinc-
tion is, and with what frequency and relative strength. If
it is a denotational distinction, then the peripheral con-
cept involved must also be extracted. This module is very
minimal for the moment. It relies on tuples hsubject, verb,
objecti extracted by the chunker. Heuristics are used to
correct cases when the information in the tuple is not ac-
curate. When tuples are not available, it relies on pat-
terns for the classes DENOTATIONAL DISTINCTIONS and
ATTITUDE-STYLE DISTINCTIONS. Heuristics are used
to extract the subject and object in this case. Improve-
ments on our previous work include heuristics to retrieve
compound-subjects of the form NS and NS and NS, NS,
and NS. In order to determine the leaf class, we use the
manual partitions of the rules in the mainDL of the two
classes.

5.2 Coreferences and comparisons
Coreference resolution has been added since our earlier
report (Inkpen and Hirst, 2001). We applied the same DL
algorithm to retrieve expressions used to refer to near-
synonyms or groups of near-synonyms. When running
the algorithm with the seeds noun, word, term, verb, ad-
verb, adjective, the expressions retrieved look like these:

[nx [dtp these] [nns verbs]]--330

[nx [dt the] [jj other] [nns adjectives]]--43

[nx [dt the] [vbg remaining] [nns nouns]]--28

The auxiliary words include: the, three, both, preced-
ing, previous, remaining, other. By assigning meaning
to these auxiliary words, more coreferences are resolved.
Any time the subject is one of the main words (noun,
word, term, verb, adverb, adjective, preposition, nouns,
words, terms, verbs, adverbs, adjectives, pair), if there is
an auxiliary word, the meaning is modified accordingly.
For example, the expression the remaining verbs will
cause the program to compute the set of near-synonyms
of that entry not yet processed at that point.

CTRW often expresses stylistic or attitudinal features
relative to other near-synonyms in the cluster. Such com-
parisons are easy to resolve because we consider only
three levels (low, medium, high). We explicitly tell the
system which words represent what absolute values of
the corresponding feature (e.g., abstract is at the low end
of CONCRETENESS), and how the comparison terms in-
crease or decrease the absolute value (e.g., less abstract
could mean a medium value of CONCRETENESS).

6 Results and evaluation
CTRW contains 912 clusters, with a total of 14,138 sen-
tences, from which we derive the lexical knowledge base.
Our program is able to extract knowledge from 7450 of
the sentences.

Table 1: Precision (P) and recall (R) of the baseline, our
earlier system, and our present system.

Baseline Earlier Present
system system

P R P R P R
All con- .40 .23 .61 .43 .66 .62
stituents
Class .49 .28 .68 .48 .71 .68
only

An example of final results, corresponding to the sec-
ond, third, and fourth sentences in Figure 2, is this:

habsorb,usually, low, FORMALITYi
habsorb,usually, medium, SUGGESTION, the

taking in of liquidsi
habsorb,sometimes, medium, IMPLICATION,

the thoroughness of the actioni

In order to evaluate the final results, we randomly se-
lected 25 clusters. We built by hand a standard solution
to be compared with the results of our algorithm and with
the results of a baseline algorithm. The baseline algo-
rithm chooses the default values whenever it is possible;
it is not possible for peripheral concepts (the direct ob-
ject in the sentence) and for the near-synonyms the sen-
tence is about (the subject in the sentence). The baseline
algorithm relies only on tuples extracted by the chunker
to extract the subjects and the objects.

The measures we use for evaluating each piece of in-
formation extracted from a sentence fragment are preci-
sion and recall. In our case, the results we need to eval-
uate have four constituents (for ATTITUDE-STYLE DIS-
TINCTIONS) and five constituents (for DENOTATIONAL

DISTINCTIONS). There could be missing constituents
(except strength and frequency which take default
values). Precision is the number of correct constituents
found (summed over all the sentences in the test set) di-
vided by the total number of constituents found. Recall
is the total number of correct constituents found divided
by the number of constituents in the standard solution.

Table 1 presents the evaluation of the 25 randomly se-
lected clusters. The first row of the table presents the re-
sults as a whole (all the constituents of the extracted lex-
ical knowledge-base). Our system increases precision by
0.26 and recall by 0.39 over the baseline. The second row
of the table gives the results when only the (leaf) class of
the distinctions expressed in CTRW is considered. In this
case our system and the baseline algorithm attain higher
precision, probably because the default class DENOTA-
TION is the most frequent in CTRW.

Our system attains much better recall (0.21 more) than
the earlier system presented in (Inkpen and Hirst, 2001)
because it resolves coreferences. It is able to retrieve in-
formation about groups of near-synonyms referred to, for
example, by the expression the remaining words. Small
improvements in precision are due to better heuristics in
the extractor component.



A problem in comparing the knowledge extracted from
a sentence with the corresponding knowledge in the stan-
dard solution is the fact that often there are several pieces
of knowledge to be aligned with several pieces in the
standard solution. Our evaluation method aligns pieces
of knowledge that are about the same near-synonym.
Sometimes the near-synonym is extracted incorrectly or
is missing, misleading the alignment. This is one possi-
ble explanation of the relatively low figures in Table 1.

7 Future work
The initial clusters we computed do not include the core
denotations and the peripheral concepts. The peripheral
concepts are implicitly there, but they are still strings (the
literal noun phrases). In the results from the previous sec-
tion, the peripheral concepts involved are thoroughness
and taking in liquids. Peripheral concepts could be more
complex: they can have attributes with discrete or numer-
ical values. For each cluster we have to implement the
following steps:

1. Deciding which senses of each near-synonym are
the ones actually involved in the cluster. (It may
be necessary to group these senses together.) This
would help to decide what the core denotation of the
cluster is. Sometimes the first sentence of the clus-
ter states this. If not, maybe the most general near-
synonym can help deciding the core denotation.

2. Deciding which are the peripheral concepts for the
cluster. In this step, all distinctions extracted for the
cluster are inspected. This step involves deciding
what part of the noun phrase is relevant (the head
and some of the adjectives).

3. Obtaining the final form of the cluster structure—
that is the distinctions for each near-synonym—and
adding new lexical items if necessary.

4. Reorganizing the ontology, if necessary.

If we use WordNet the disambiguation problem is dif-
ficult. There are too many senses for each word (for ex-
ample, six senses for error, eight for absorb). We need
to disambiguate to see what are the senses closely re-
lated to the peripheral concept. We have to group together
senses which are very similar. The WordNet hierarchy
has to be reorganized to accommodate the clusters of
near-synonyms. From this point of view, Mikrokosmos
(Mahesh and Nirenburg, 1995) is better because there are
few senses for a word; closely related senses were merged
into one sense when the ontology was built.

Other future work will focus on improving the results
of the extraction module. Most mistakes are due to the
wrong extraction of the subject and direct object of some
sentences. We need to experiment with a different parser
to see if more reliable subjects and objects can be ex-
tracted for this particular type of text. An alternative is
to split complex sentences into simple sentences.

Another direction of further research is to extend Ed-
monds’s representation to be able to represent all the

distinctions adduced in CTRW. Examples of knowledge
which do not fit in the current representation are informa-
tion about generic versus specific near-synonyms and lit-
eral versus figurative meanings of near-synonyms.

Finally, a more-realistic evaluation of the lexical
knowledge-base will have to be done in the context of an
MT or NLG system.

Acknowledgments
We thank Suzanne Stevenson for useful discussions and com-
ments on this work. We are grateful to HarperCollins Publish-
ers, Inc. for permission to use CTRW in our project. Our work
is financially supported by the Natural Sciences and Engineer-
ing Research Council of Canada and the University of Toronto.

References
Steven Abney. 1996. Partial parsing via finite-state cascades.

In Proceedingsof the 8th EuropeanSummer School in Logic,
Language and Information, Robust Parsing Workshop.

Michael Collins and Yoram Singer. 1999. Unsupervised
models for named entity classification. In Proceedings of
the Conference on Empirical Methods in Natural Language
Processing and Very Large Corpora.

Chrysanne DiMarco and Graeme Hirst. 1993. Usage notes as
the basis for a representation of near-synonymy for lexical
choice. In Proceedings of 9th annual conference of the
University of Waterloo Centre for the New Oxford English
Dictionary and Text Research, pp. 33–43.

Philip Edmonds. 1999. Semantic representations of near-
synonyms for automatic lexical choice. Ph.D. thesis,
University of Toronto. http://www.cs.toronto.edu/compling/
Publications/Abstracts/Theses/EdmondsPhD-thabs.html

Philip Edmonds and Graeme Hirst. 2000. Reconciling fine-
grained lexical knowledge and coarse-grained ontologies
in the representation of near-synonyms. In Proceedings of
the Workshop on Semantic Approximation, Granularity, and
Vagueness, Breckenridge, CO.

P.B. Gove, editor. 1984. Webster’s New Dictionary of Syn-
onyms. G.&C. Merriam Co.

S.I. Hayakawa. 1994. Choose the Right Word. HarperCollins
Publishers, Second edition.

Graeme Hirst. 1995. Near-synonymy and the structure of
lexical knowledge. In Working notes, AAAI Symposium
on Representation and Acquisition of Lexical Knowledge:
Polysemy, Ambiguity, and Generativity, Stanford, pp. 51–56.

Eduard Hovy. 1990. Pragmatics and language generation.
Artificial Intelligence, 43:153–197.

Diana Zaiu Inkpen and Graeme Hirst. 2001. Experiments on
extracting knowledge from a machine-readable dictionary
of synonym differences. In Computational Linguistics and
Intelligent Text Processing, Alexander Gelbukh (ed.), LNCS
2004, Springer, pp. 265–280.

Kavi Mahesh and Sergei Nirenburg. 1995. A situated ontology
for practical NLP. In Proceedingsof Workshop on Basic On-
tological Issues in Knowledge Sharing, International Joint
Conference on Artificial Intelligence, Montreal, Canada.

Ellen Riloff and Rosie Jones. 1999. Learning dictionaries for
information extraction by multi-level bootstrapping. In Pro-
ceedings of the 16th National Conference on Artificial Intel-
ligence, Orlando, FL, pp. 474–479.


