Agent-Oriented Modelling: Software Versusthe World

EricYu
Faaulty of Information Studies
University of Toronto, Toronto, Canada M5S 3G6
yu@fis.utoronto.ca

Abstract. Agent orientation is currently pursued primarily as a software paradigm.
Software with charaderistics such as autonomy, socidity, readivity and go-
adivity, and communicaive and cooperative ailiti es are expeded to doffer greaer
functiondlity and higher quality, in comparison to ealier paradigms such as objed
orientation. Agent models and languages are thus intended as abstradions of
computational behaviour, eventualy to be redized in software programs. However,
for the succesdul applicaion d any software tedindogy, the software system nmust
be understood and analyzed in the mntext of its environment in the world. This
paper argues for a nation d agent suitable for modelli ng the strategic relationships
among agents in the world, so that users and stakeholders can reason abou the
implications of aternate techndogy solutions and socia structures, thus to better
dedde on solutions that addresstheir strategic interests and reeds. The discusson
draws on recet work in requirements engineaing and agent-oriented
methoddogies. A small example from telemedicine isused to ill ustrate.

1 Introduction

Agent orientation is emerging as a powerful new paradigm for computing. It offers
a higher-level abstradion than the ealier paradigm of objed orientation. Software
agents have aitonomy and are social; they communicae, coordinate, and cooperate
with each other to achieve goals [3, 26, 50]. As agent software technology is
maturing and entering into the mainstream, methods and techniques are urgently
needed to guide system development in a production setting. Agent-oriented software
engineaing has thus beacme one of the most adive aeas in agents reseach (seg e.g.,
[9, 48]). For ead application system, one neels to addressthe full range of software
engineaing isues — requirements, design, construction, validation and verificdion,
deployment, maintenance, evolution, legacy, reuse, etc. — over its entire product life
cycle.

Requirements engineaing is an espedally demanding, yet criticd, task for a new
technology such as agent-based software technology. Some alopters will have high
expedations of the new capabiliti es, while others may be wary of potential pitfalls.
Yet, most users will be unfamiliar with the new technology and unclea about its
implications and consequences. Consider the hedthcare domain. The patentials for
applying agent technology, along with other kinds of information technology, are far-
reading. One ca easly envisage software aents enhancing the information and
communication infrastructure by offering better semantic interoperability, loca
autonomy, dynamic management of resources, flexible and robust exception handling,
etc. Yet, it is by no means draightforward to go from idedized visions to viable
systems in adual contexts. In red-life gplicaion settings, there ae many competing

requirements, and dfferent interests and concerns from many stakeholders. As with
any software technology, ead stakeholder may be aking:
* What do| want the software to dofor me? What can it do for me? Would | be
better off to dothe job myself, or to delegate to another human, or to another
(type of) system?
 Can the software be trusted? Isit reliable? Will | have privagy?
» How dol know it will work? What if some function fail s— what aspeds of my
work will be jeopardized? How do | miti gate those risks?
» What knowledge and information does it depend on? Where do they come
from? How do | know they will be acarate and up-to-date, and eff edive?
Will my skill s and expertise cntinue to be valued?
* Will my job be eaier? tougher? Will my position be threaened? How will
my relationships with other people (and systems) change?

With agent technology, these isaues and questions are accetuated by its greaer
reliance on codified knowledge, by its sippaosed flexibility and adaptivity, and by its
autonomy (and thus posshly reduced perspicuity). Given their “intelligence”
cgpabiliti es, agent systems can be expeded to do more dedsion-making and problem
solving. How does one dedde what responsihiliti es to turn over to agent systems?
Agent technology (including multi-agent systems) opens up many more oppatunities
and choices. At the same time, the task of exploring and analyzing the space of
possbilities and their consequences has become much more complex.

The Requirements Engineaing (RE) area in Software Engineaing hes been
developing techniques for deding with these isaues. It has been recognized that poar
requirements had led to many system failures and discontinued projeds (sege e.g.,
[43]). Requirements engineaing focuses on clarifying and defining the relationship
between intended systems and the world. The introduction of a new system (or
modification of an existing one) amounts to a redistribution of tasks and
responsibilities among agents in the world — humans, hardware, software,
organizdional units, etc. Requirements engineging is therefore more than the
spedfication of behaviour, because the ultimate aiteria for system successis that
stakeholders goals are atieved and their concerns addressed.

Recent work in requirements engineeing hes thus adopted an agent-oriented
perspedive. The notion of agent in Requirements Engineeing, however, is about
agents in the world, most of which the software developer has no control over. The
purpose of introducing an agent abstradion (or any other abstradion) for
requirements modelling is to suppart elicitation, exploration, and analysis of the
systems-in-the-world, possble dternatives in how they relate to ead other, and the
pros and cons of the dternatives. The requirements enginee needs to help users and
stakeholders articulate their neads and concerns, explore dternatives, and understand
implications. Thus, while aents-as-software and agents-in-the-world may share
conceptual features, their respedive abstradions are introduced for different reasons
and serve different purposes. Charaderistics such as intentionality, autonomy, and
socidlity have different connotations and consequences when treaed as attributes of
software than as attributes of agents in the world. In propasing or choosing an agent
abstradion, different criteria and tradeoffs need to be mnsidered.

In this paper, we examine the notion of agent as applied to the modelli ng of agents-
in-the-world. In Sedion 3, we offer an outline of the i* framework as an example of
an agent-oriented modelling framework. Sedion 4 reviews the main contrasts
between the notion of strategic agent-in-the-world, versus that of agent-as-software.
In sedion 5, we discussrecentt related work in requirements engineaing and agent-
oriented methoddogies. In Sedion 6, we suggest a broader conception of AOSE not
exclusive to agent-oriented software, and argue that the strategic view of agents-in-
the-world should guide the entire software engineaing process

2 From Modéelling Software to Modélling the World

Most agent models and languages are intended as abstradions of computational
behaviour, eventualy to be redized as ®ftware programs. Such models are nealed
for spedfying and for constructing the software. Different kinds of models are
needed for different stages and aspeds of software engineaing. As agent technology
is maturing, attention is turning to the development of a full set of complementary
models, notations, and methods to cover the entire software lifegycle [9, 48].

In Requirements Engineaing, the need to model the world has long been
recognized, as requirements are aout defining the relationship between a software
system and its environment. The major adivities in requirements engineeing include
domain analysis, €licitation, negotiation & agreement, spedficaion, communication,
documentation, and evolution [47, 34]. Modelling and analysis techniques have been
devised to assist in these tasks.

The Structured Analysis tedhniques first popularized the use of systematic
approaches for expressng and analyzing requirements. The Structured Analysis and
Design Technique (SADT) focused on the modelling of adivities and data (inputs,
outputs, and control flows among adivities), and their hierarchicd decomposition
[40]. Dataflow diagrams include information stores, as well as external sources and
sinks, thus demarcating a system’s interfaces with its environment [12]. Complex
descriptions were reduced into structured sets of diagrams based on a small number of
ontologica concepts, thus allowing for some basic analysis. For example, one wuld
chedk completeness and consistency by matching input and output flows. Later on,
these tasks were supparted by CASE tods, athough suppart is limited by the degree
of formality in the models. These techniques continue to be widely used.

As the size of the models grew, and the need for reuse becane recognized,
structuring mecdhanisms were introduced to manage the knowledge in the models and
to ded with complexity. For example, RML [21] provided for clasdficaion,
generalizdion, aggregation, and time. To strengthen analysis, various approaches to
formalizaion were introduced, acmmpanied by appropriate ontologicad
enhancements. For example, RML offered asertions in addition to adivities and
entities, and provided semantics based on trandation to first-order logic. Temporal,
dynamic, deontic and ather logics have dso been introduced for requirements
modelling [34]. Many of these features subsequently found their way into oljed-
oriented modelling (e.g., UML [41]), which padkages gatic and dynamic ontologies
together into one behavioural unit. However, the analysis done with these models

continue to be aout the behaviour and interadions. There ae no intentional concepts
or considerations of strategic dternatives.

The Composite Systems Design approach [16, 15] first identified the need to view
systems and their embedding environments in terms of agents that have coice An
agent’s dedsions and adions can placelimits on other agent’s freedom of adion. In
the KAOS framework [10], global goals are reduced through and/or refinement until
they can be adgned as responsibiliti es to agents. These become requirements for
systems to be built, or assuimptions about agents existing in the environment. Goal
modelli ng hes been incorporated into a number of RE frameworks[57]. They provide
incremental elicitation of requirements (e.g., [38]). They suppart the repeaed use of
“why, how, and how else” questions in the mnstructions of means-ends hierarchies,
to understand motivations, intents, and rationales [52]. They reved conflicts and help
identify potential resolutions [39]. Quality goals constrain choices in a design space
and can be used to guide the design process|g].

The introduction of goals into the ontology of requirements models represented a
significant shift. Previoudly, the world to be modelled consisted of entities and
adivities and their variants. The newer ontologies attributed goals to agents in the
world. In other words, to do requirements engineeing, it is not enough to attend to
the static and dynamic aspeds, one dso neal to adknowledge intentionality in the
world.

While recent research in requirements has given considerable dtention to goals, the
concept of agent has not been developed to the same extent. In particular, few RE
frameworks have daborated on or exploited concepts of agent autonomy, sociality,
etc. The logicd next step for RE is to go from goal-oriented requirements engineaing
to full-fledged agent-oriented requirements engineeing, to adknowledge the socia as
well astheintentional [54, 33]. The need for this gep is apparent as one wnsiders the
changing reture of systems and their environments. In the past, systems and their
environments were much more stable and well delineaed. Systems tended to be
developed in isolation in relation to ather systems. So the simplifying assumptions
were that global goals could be identified, and that differences could be resolved to
adhieve greament aaossthe system.

Today, most systems are extensively networked and distributed, operating under
multiple jurisdictions ead with their own mandates and prerogatives. Stakeholders
want locd autonomy but cooperate on spedfic ventures. They depend on ead other,
and on eadh other's gistems in multiply-conneded ways. They have limited
knowledge about ead other, and have limited influence and control over eat other.
The traditional mechanistic worldview needs to give way to a more sophisticated
socia worldview [55].

In the next sedion, we outline a modelling framework in which agents play a
central ontologicd role. The framework begins to address the more cmplex
relationships and isaues that arise in Requirements Engineeing. Agents-in-the-world
are taken to be intentional and semi-autonomous. They as®ciate with ead other in
complex socia relationships. Their identities and baundaries are contingent. They
refled upon their relationships in the world and strategize dout alternate
relationshipsin order to further their interests.

It must be recognized that the framework represents only one possble gproadh. In
adopting a richer ontology, one gains in expressvenessand analyticd power. On the

other hand, it places greader demands on €licitation and validation. So there ae
significant trade-offs that need to be wnsidered in the ntext of an overall
development methoddogy.

3 A Framework for M odelling Agents-in-the-World

Consider a home cae scenario in which a patient receves remote monitoring and
telemedicine services from one or more hedthcare service providers — hospitals,
physicians, nurses, pharmades, laboratories, clinics, emergency centres, consultants,
etc., ali ed to varying degrees but sometimes also in competition. Such arrangements
can potentially improve quality of care ad reduce overal hedthcare wsts, while
allowing patients to lead more normal lives at home. Agent technology can be used
to adiieve greder functionality, robustness and flexibility in such systems, for
example, by incorporating krowledge-based dedsion suppat and knowledge
discovery, by offering context-aware initiatives and failure recovery, by enabling
dynamic resource discovery, negotiation, and mediation, or by fadlitating
coll aboration among individuals and groups through multimedia and logistics uppart,
and cooperation among disparate systems. Patients get more austomized care while
hedthcare professonals are relieved of the more mundane aspeds of their tasks.

But how does one dedde what functiondlities the systems sould have? Who
should these systems be acountable to? How should responsihiliti es be divided
among them, and why? Do the stakeholders have @mmmon goals? Can the systems
function despite ongoing differences and competing interests? Clealy these
guestions would results in different answers for ead setting, depending on the
context. In ead setting, there wuld be numerous options to consider. Some may
appea workable initialy, but may turn out to be, upon further analysis, technicad
infeasible, or unacceptable to certain stakeholders. During requirements engineeaing,
it is important for all stakeholders, customers, users, system developers, and analysts
to understand ead other’s interests and concerns, to jointly explore options, and to
appredate the implicaions of alternative dedsions about the systems to be
constructed.

In the past, notations and methods in software development have focused more on
the spedficaion of systems after these dedsions have been made. Few of the
commonly used notations, e.g., UML, provide eplicit suppat for expressng,
analyzing, and supparting dedsions about these issues.

Today, systems and their surrounding context in the world are constantly changing.
Aside from rapid technologicd innovations, systems need to respond to frequent
changes in organizaional structures, business models, market dynamics, legal and
regulatory structures, public sentiments and cultural shifts. We need systematic
frameworks — models, methods, and tod's — to suppart the discovery of requirements,
analysis of their impli cations, and the exploration of alternatives.

The i* framework [53, 52] is used to model and analyze relationships among
strategic adors in a social network, such as human organizaions and ather forms of
social structures. Actors are semi-autonomous units whose behaviours are not fully

! Thishome cae setting is loosely based on[23].

controll able or predictable, but are regulated by social relationships. Most crucialy,
adors depend on ead other for goals to be atieved, tasks to be performed, and
resourcesto be furnished. By depending on someone dse, an ador may achieve goals
that would otherwise be unachievable. However, a dependency may bring along
vulnerabiliti es $nce it can fail despite social conventions sich as commitments. The
explicit representation of goals allows the exploration of alternatives through means-
ends reasoning. A concept of softgoal based on the notion of satisficing is used to
provide aflexibleinteradive style of reasoning.

Note that in the mntext of modelling the world, unlike the modelling of software
agents for the purpose of construction, qualities sich as autonomy and socidlity are
being externall y ascribed to some dementsin the world for the purpose of description
and analysis. Some seleded elements depicted in the models may end up being
implemented as ftware aents, others may materiadize & more cnventional
software, while many of them are, and will remain mostly human wetware. The
implementational construction of the adors isirrelevant to this level of modelli ng of
theworld. These considerationswill be further discussd in Sedion 4.

The i* modelling framework consists of two types of models — the Strategic
Dependency (SD) model and the Strategic Rationale (SR) model.

3.1 Moddlingintentional relationships among strategic actors—the Strategic
Dependency model

The Strategic Dependency (SD) model is a graph, where eab node represents an
ador, and ead link between two adors indicates that one ador depends on the other
for something in order that the former may attain some goal. We cal the depending
ador the depender, and the ador who is depended upon the dependee The objed
around which the dependency relationship centres is cdled the dependum. An ador
is an adive entity that carries out adions to achieve goals by exercising its knowhow.
In the SD model, the internal goals, knowhow, and resources of an ador are not
explicitly modelled. The focusis on external relationships among adors.

Figure 1 shows a Strategic Dependency model of a (much simplified) telemedicine
setting. A Patient depends on a Healthcare Provider to have Sickness Treated. The latter
in turn depends on the patient to Follow a Treatment Plan. As the patient would like to
integrate the tregment into ather adiviti es, she wants the treament plan to be Flexible.
The hedthcare provider partly addresses this by monitoring vital signs remotely, with
the help o equipment on the patient site (Monitoring Agent), and a host system
(Monitoring System) that oversees a number of patients.

The SD model expreses what adors want from ead other, thus identifying a
network of dependencies. The intentional dependencies, in terms of wants and
abiliti es to med those wants, are expressd at a high level, so that details about
information and control flows and protocols are deferred. Even at this high level,
many issues are dready apparent. Healthcare Provider enables Patient to achieve the
Sickness Treated goal that the latter may not be &le to achieve on her own. In taking
advantage of this oppatunity, the depender becomes vulnerable to the dependency.
The model asdsts them in dedding whether their dependencies are accetable, or that
they should seek alternate arangements.

Regulator

Treated
[Sickness]

Follow
Treatment
Y Plan

Flexible
Treatment
Flan

rustworthy
[Healthcare
Svstern]

Accountable

vital Signe
[Fatien]

Monitoring

Abnormal System

Condifionshe
Recognized
[Patient]

Monitaring
Agent

Fig. 1. A Strategic Dependency model

Four types of dependencies are distingushed for indicaing the nature of the
freedom and control in the relationship between two adors regarding a dependum. In
a goal dependency, the depender depends on the dependeeto bring about a cetain
state of affairs in the world. The dependum is expressed as an as®rtional statement.
The dependeeis freeto, and is expeded to, make whatever dedsions are necessary to
adhieve the goal (the dependum). The depender does not care how the dependeegoes
about adhieving the goal. For example, Patient depends on Healthcare Provider to have
Sickness Be Treated. It is up to the Provider to choase how to trea the sickness as
long asthe goal is achieved.

In a task dependency, the depender depends on the dependee to cary out an
adivity. The dependum names a task which spedfies how the task is to be
performed, but not why. The depender has already made dedsions about how the
task is to be performed. Physician depends on Patient to Follow Treatment Plan,
described in terms of adivities and sub-adivities, passbly with constraints among
them, such as temporal precedence Note that atask description in i* is not meant to
be a omplete spedfication of the steps required to exeaute the task. It isa constraint
imposed by the depender on the dependee The dependeestill has freedom of adion
within those mnstraints.

In a resource dependency, the depender depends on the dependee for the
avail ability of an entity (physicd or informational). By establi shing this dependency,
the depender gains the &ility to use this entity as a resource A resource is the
finished product of some deliberation-adion process In a resource dependency, it is
assumed that there ae no open iswes to be aldresed or dedsions to be made. For
example, Vital Signs from the patient is treaed as a resource, as it is not considered
problematic to oktain.

In a softgoal dependency, a depender depends on the dependeeto perform some
task that meds a softgoal. A softgoal is smilar to a goal except that the aiteria of
successare not sharply defined a priori. The meaning of the softgoal is elaborated in
terms of the methods that are chosen in the course of pursuingthe goal. The depender

deddes what congtitutes stisfadory attainment (“satisficing’ [42]) of the goal, but
does 9 with the benefit of the depende€s knowhow. Whether a treament plan is
considered to be sufficiently Flexible is judged by the Patient, with the Healthcare
Provider offering alternate methods for achieving flexibility. Similary, Trustworthiness
of the hedthcare system, and Accountability of the healthcare provider are treaed as
softgoals, sincethere ae no clea-cut criteriafor their satisfadion.

The model also provides for three degrees of strength of dependency: open
(uncommitted), committed, and criticd. These gply independently on ead side of a
dependency.

Actors can assessthe desirability of aternate configurations of relationships with
other adors acording to what they consider to be significant to them. The viability
of a dependency can be analyzed in terms of enforceaility (Does the other ador
depend in return on me for something, diredly or indiredly?), assurance (Are there
other dependencies on that ador that would reinforce my confidencein the successof
that dependency?), and insurance (Do | have bad-ups or secnd sources in case of
failure?). Strategic dependencies can be analyzed in terms of loop and node patterns
in the graph.

The generic concept of strategic actor outlined above can be further diff erentiated
into the concepts of role, position, and agent [56]. A role is an abstrad coll edion of
coherent abiliti es and expedations. A position is a wlledion of roles that are
typicdly occupied by one aent. An agent is an ador that has concrete
manifestations suich as human, hardware, or software, or combinations thereof.
Agents, roles, and pasitions may also be mmpaosed into aggregate adors.

3.2 Moddling the reasoning behind strategic relationships—the Strategic
Rationale model

Whereas the Strategic Dependency model focuses on relationships between adors,
the Strategic Rationale (SR) model provides suppart for modelli ng the reasoning of
ead ador about its intentional relationships. The SR model is a graph whose nodes
are goals, tasks, resources, and softgoals. These may be @mnneded by means-ends
links or task-decomposition links. A goal may be a&wciated, through means-ends
links, with multiple, aternative ways for achieving it, usualy represented as tasks.
The means-ends links for softgoals, however, require more differentiation becaise
there can be various types of contributions leading to a judgement of whether the
softgoal is aufficiently met (“satisficing’). These include Make, Break, Help, Hurt,
Positive, Negative, And, Or, Unknown, and Equal [8]. Task-decompasition links provide
hierarchicd decompasition of tasks into subtasks, subgoals, resources, and softgoals
that make up the task.

Figure 2 is an SR mode showing some of the reasoning behind one possble
telemedicine arangement. It has been argued that current hedthcare systems are too
provider-centred, in that patients have little control over the information colleced
about them, and cannot participate dfedively in their own care.?

2 The patient-centred scenarios draw on those of [45] and [30].

- -

.
~
. .
4 K
'I Marraal Quality O 3
rustworthy
’ Lifestyle Care [Healthcare
oh
A \ <
[

Healthcare
Provider

System]

Flexihle
Trealment
Plan

<
\\,

s, ¢
T
entred Carg Erovider-
entred Carg
W
s
tyl

- fianored
commadatirg [Patient]

Dai

Custornized
Treatment

Healthcare
Provider
Sofware

Agent

[Request]

.
i Personal
%Pa?tnnqgﬁ% yledical Data] [
" 1 Flan
Legitimate £y
Use Only
L s 2
- N =,

Fig. 2. A Strategic Rationale model showing some reasoning behind petient-centred care

troll Shtan
ontrolling
Access ideniy B

S ACCESE
Log

One way to adhieve patient-centred care is to have the full medicd records and
history of the patient controlled by the patient. A software agent ading in the interest
of the patient would grant accessto hedthcare providers for legitimate use. This
arrangement is in contrast to the arrent pradicein which ead provider generates and
keeps their own reaords, resulting in fragmented, partial views, delays and duplication
(e.g., the same lab tests repeaed at multiple sites). The integrated personal medicd
data would also alow the intelli gent asgstant to customize treament plans to suit the
spedfic needs and the lifestyle of the patient. The hedthcare provider monitors the
progressof the patient through her own software agent asgstants.

The SR modd for the Patient in Figure 2 shows that the patient has the goa of
Keeping Well, but is also concerned about Privacy, Quality Of Care, and maintaining a
Normal Lifestyle. The SR modelling constructs allow the systematic refinement of
these goals to explore ways for achieving them. According to the model, Privacy is
achieved if the medicd data is kept Confidential, and if Intrusion Is Minimized (And).
Confidentiality is sufficiently addressed (Make) if Access Is Restricted. The goal of
Keeping Well can be acomplished with Patient-Centred Care or with Provider-Centred
Care (means-ends links). Patient-Centred Care involves the subtasks of Follow
Customized Treatment Plan and Plan Life Activities. These subtasks have dependencies
with the Patient Assistant Software Agent.

The example model is grealy simplified but provides some hints on the types of
reasoning to be supparted. These include the raising of isaues, the identificaion and
exploration of alternatives, recognition of correlated isues (good and bad side-
effeds), and the settling of isaues. For example, while Patient-Centred Care contributes
positively to Privacy and Normal Lifestyle, its contribution to Quality Of Care is Unknown.
This suggests further elaboration and refinement of the Quality Of Care softgoa so that
the nature of the mntributions can be better assessed. Elaboration of this and other

goas may help discover other kinds of provider-centred and patient-centred care,
ead of which may have different contributions to the various goals.

We have presented i* in terms of a graphicd representation. i* modelling is
implemented on top d the Telos conceptual modelling language [31], which offers
knowledge structuring mechanisms (classfication, generalization, aggregation,
attribution, time). Generic knowledge mdified in terms of methods and rules provide
semi-automatic suppart from a knowledge base. A prototype tod has been developed
to suppart i* modelling. Further analysis suppart is being developed in the Tropos
projed [32].

4 Agentsin-the-World versus Agents-as-Software

Having reviewed i* as an example framework for modelli ng agents-in-the-world,
we now consider some of the key isales in designing such frameworks. These isaies
help clarify the distinctions between modelli ng agents in the world versus modelling
agents as oftware etities. We onsider the isaues of autonomy, intentionality,
sociality, identity and baundaries, strategic refledion, and rational self-interest.
While most of these isaues have their counterparts in agents-as-software, their
significance for modelli ng agents-in-the-world are quite diff erent.

41 Autonomy

Traditional requirements analysis techniques rely heavily on the modelling of
processes or interadions. Throughadivity diagrams, event sequence darts, etc., one
describes or prescribes what would or should happen urder various known conditi ons.
Red-life pradice, however, often departs from these idedizations [44] and frequently
require workarounds [19]. There ae many aspeds of the world over which one has
little control or knowledge, so it is hard to anticipate dl contingencies and be ale to
know in advance what responses are gpropriate.

Thus, in introducing autonomy into a model of agents-in-the-world, we ae
adopting a less $mplistic view of the world, so as to take uncertainties into acount
when judging the viability of proposed alternatives, such as different ways for
adhieving patient-centred care using software ggents. Agents-in-the-world need to be
aware of uncertainties around them. At the same time, they themselves are sources of
uncertainty in the world.

In devising a modelli ng scheme that adknowledges agent autonomy, the challenge
isto be aleto describe or prescribe ayent behaviour without preduding opennessand
uncertainties. Ini*, adorsare asumed to be aitonomous in the sense that the analyst
should not rule out any behaviour. An ador’'s dependencies and strategic interests
provide hints on the ador’s behaviour, but do not provide guarantees. Thus, one
would be well advised to adopt mechanisms for miti gating risks, based on an analysis
of vulnerabiliti es, e.g., badkup systems and procedures in case of failure in the patient
monitoring system. The dependency types in i* are used to dfferentiate anong the
types of freedoms that adtors have with regard to some spedfic asped of the world, as
identified by the dependum.

For agents-as-software, autonomy refers to the aility of the software to ad
independently without dired intervention from humans or other agents. It is adesired

property that must be mnsciously creaed in the software. It is a property only
adhievable with recett advances in software and artificia intelli gence technology.
For agents-in-the-world, autonomy is an inherent property, but it has been ignored in
the past for simplicity of modelling. Now we want it badk because we want to face
up to these more dallenging aspeds of the world. For software ajents, greder
autonomy implies more powerful software, which are likely to be more dallenging to
design and implement. For modelling the world, allowing gedaer autonomy in the
agent model means one would like to analyze the implications of greaer uncertainties
and variability in the world.

4.2 Intentionality

Conventional requirements analysis (e.g., as supparted by UML) assumes complete
knowledge and fully spedfies behaviour, so there is little need for intentional
concepts. To acount for uncertainties and openness in the world, however,
intentional concepts such as goals and beliefs can be very useful. In modelling
agents-in-the-world, we acribe intentionality to them so as to charaderize dternate
rediti esin the world. Some of these dternate rediti es are desirable, but an agent may
not know how to get there, or may not want to fix the path for getting there to alow
for flexibility. Intentional concepts thus allow agents to be described without
detaili ng spedfic actions in terms of processes and steps. Explicit representation of
goals allows motivations and rationales to be expressed. They allow “why” questions
to be raised and answered. Beliefs provide for the posshility that an agent can be
wrong in its assumptions about the world, and mechanisms to suppat revisions to
those assumptions.

For agents-as-software, intentionality is a property that is used to generate the
behaviour of the agent. For example, there may be data structures and internal states
that represent goals and beliefs in the software. For agents-in-the-world, we do not
need to presuppose intentionality in their internal mechanisms. Multi-agent modelli ng
allows different goals, beliefs, abiliti es, etc., to be dtributed to different agents. An
agent can be thought of as a locdity for intentionality. Instead of having a single
global colledion of goals, beli€f, etc., these ae dlocated to separate ayents. The agent
concept provides a locd scope for remnciling and making tradeoffs among
competing intentionality, such as conflicting goals and inconsistent beliefs.

4.3 Sociality

Traditional systems analysis views g/stems and their environments mechanisticdly.
They produce outputs from inputs, either as pre-defined processes or as readive
responses to control signals or events. Complexity and scdability is primarily dedt
with by compasition or decompasition, with the behaviour of the whole being
determined by the behaviour of the parts together with compasitional rules. When
systems and their environments have aitonomy, these asamptions no longer hold.
Active aitonomous entities in the world have their own initiatives, and are not
necessarily compliant with external demands or desires, such as those from a system
designer. Autonomous agents can choose to cooperate, or not, to varying degrees,
and on their own terms. A social paradigm is needed to cover the much richer kinds
of relationshipsthat exist in such settings.

Sacial agents have redprocd dependencies and expedations on ead other. They
tend to have multi-lateral relationships, rather than one-way relationships. Agent A
can exped agent B to deliver on a aommitment becaise B has goals and interests that
A can help fulfil or med. Redprocity can be indired, mediated via other agents. In
general, social relationships exist as networks and petterns of relationships that
involve multi-lateral dependencies. In mecdhanistic atificial systems, where one
designer oversees interadion among parts, it is more mmmon to see master-dave
relationships that go one-way.

Social agents typicdly participate in multiple relationships, with a number of other
agents, at the same time or at different times. In medanistic systems as portrayed in
most traditional models, relationships are narrowly focused around intended
functions.

Conflicts among many of the relationships that an agent participates in are not
ealy resolvable. There may be anflicts or potential conflicts arising from the
multi ple relationships that an agent engages in. In traditional approaches, competing
demands nedl to be reconcil ed in order for requirements to be defined, then frozen for
system development and implementation. 1n a more fluid and open environment, the
demands of various agents may ke changing and may not be fully knowable.
Agents may also build new relationships with other agents and dsolve eisting ones.
The management of conflicts is an ongoing one. Therefore it beames necessary to
maintain an explicit representation of the cmpetinginterests and their conflicts.

Agent relationships form an urbounded network. There ae no inherent limits on
how far the impad of dependencies may propagate in a network of agents. In
considering the impad of changes, one may ask: Who else would be dfeded? Who
will benefit, who will be hurt? Who can help me improve my position? These
guestions may lead to the discovery of agents not previously considered.

Cooperation among agents cannot be taken for granted. = The potential for
successful cooperation may be asesed through the analysis of agents goals and
beliefs. Tedniques are needed to suppat the analysis of various aspeds of
cooperation, including synergy and conflict among gals, how to dscover shared
goals, and how goals may change.

For software ajents, sociality refers to properties that must be aeded in the
software to enable them to exhibit richer behavioural patterns. For agents-in-the-
world, sociality refers to the a&nowledgement of the complex rediti es in the world.
Instead of abstrading them away as in ealier modelli ng paradigm, we try to device
modelli ng constructs and analysis techniques that encompassthem.

4.4 ldentity and Boundary

In a social world, identities and baundaries are often contingent and contentious.
Many social or organizaiona problems arise from uncertainties or disputes about
boundaries and identities. For example, software aents working on behalf of or in
cooperation with hedthcae workers need to ded with a cmplex array of
organizational roles, positions, and profesgons, often with sensitive relationships
among them. Reguirements analysis needs to be @le to ded with these, to arrive &
viable systems.

Boundaries and identities change, usualy as a result of ongoing social processes
such as wcidizaion, negotiation, and power shifts. Tednicd systems often

introduce drupt changes in boundaries and identities, as they redlocae
responsibilities and powers. Agents-in-theworld are @ncerned about their
boundaries, and may attempt to change them to their advantage. Boundaries may be
based on concrete physicd materia criteria, or abstrad concepts such as
responsibilities. Ini*, dependums srve & ador boundaries at an intentional level.
The boundaries are movable a dependums can be brought “inside” an acdor or moved
“outside” dong means-ends hierarchies in the Strategic Rationale model. The i*
congtructs of role, position, and agent distinguish among abstrad and concrete adors,
and provide mappings acossthem.

In models for agents-as-software, isaues of identity and baundary can be much
simpler, if al the aents are within the cntrol of a designer. They would be
determined by design criteria such as functional spedalty, coordination efficiency,
robustness flexibility, etc. However, if the gents in a multi-agent system are
designed and controlled by different designers and operators, and are thus
autonomous in the social (agents-in-the-world) sense, then the more complex social
notions of identity could be gplicable.

45 Strategic Refledivity

Traditional requirements models are typicdly used to express one way — the
intended way — in which the system will operate in the world. Even if a space of
aternatives was explored in arriving at the requirements, there is little
representational or reasoning suppart for navigating that space With today’s g/stems
undergoing frequent changes, the need to suppat evolution and to avoid legacy
problemsiswell recognized.

Reasoning about aternative arangements of technicd systems in the world is a
refledive process Agents need to refer to and compare alternate ways of performing
tasks, rather than exeauting the tasks without question. The refledive process is
strategic becaise agents want to determine which changes would better serve their
dtrategic interests. For example, patients want hedthcare technologies that improve
the quality of care while proteding their privacy. Hospitals may want greder
efficiency without increased dependence on high-cost professonals.

During requirements analysis, strategic refledion is caried out by the human
stakeholders, asdsted by requirements analysts. In software agents, this kind of
strategic refledion can potentially be done & runtime by the software. This
charaderistic requires higher sophisticaion to be built i nto the software (seg e.g., [1])
and is not yet a mmmon feaure. Strategic refledion is, however, a fairly basic need
at the requirements gage.

46 Rational Sdf-interest

Most languages for modelling and requirements anaysis (e.g., UML) do not
provide eplicit suppat for rationales. Since their ontologies do not include
autonomous agents-in-the-world, the rationales, even if made explicit, would likely be
a rationalization of the many contributions that led to the eventual requirements for a
new system. In treding systems and environments as a multi-agent world, we try to
explicae the preferences and dedsions of ead stakeholder in terms of rational self-
interest. Each agent seleds those options that best serve its interests. This
assumption provides a nvenient idedizaion for charaderizing agents whose

behaviour are otherwise unpredictable. Note that rational self-interest does not imply
selfishness as an agent can have dtruistic goals.

The modell er attributes rationality and coherence to agents-in-the-world in order to
draw inferences about their behaviour. However, the inferences are limited by
incomplete and imperfed knowledge. The rationality is bounded and partial. The
agent construct can be viewed as a scoping mechanism for delineding the exercising
of rationality within alimited locd scope.

In contrast, for software agents, rationality is a regime for governing the behaviour
of the software acording to internal states of goals and beliefs. Again, it is a
characteristic that needsto be explicitly built i nto the construction of a software agent.

47 Summary

To summarize, agent concepts are useful both for software cnstruction and for
modelli ng the world. However, abstradions for agents-as-software and agents-in-the-
world came aout with different motivations, premises, and oljedives, and thus can
differ in ontology.

For software gents, the objedive is to creae anew software paradigm that would
make software more powerful, more robust, and flexible. The redizaion of software
agent charaderistics requires greaer sophistication in the implementation technol ogy,
which areidedly hidden urder the ggent abstradion.

In contrast, in devising some mncept of agent for modelling the world, we
remgnize that the world aready exists in its full complexity. Earlier modelling
paradigms have alopted abstradions that removed too much of that complexity,
resulting in ontologies that are too impoverished for deding with today’s problems.
The aent abstradion is used to being badk some of that complexity and richnessto
suppart appropriate kinds of modelli ng and analysis.

In either case, there is choice in what agent abstradion to adopt. For software
agents, we want a ancept of agent that fully embodes the behaviour to be generated.
We nedl to consider the feasibility of implementation, and the difficulty of verifying
implementation against the spedficaion. For modelli ng agents-in-the-world, we want
rich enough description of the world (expressvenesg to allow us to make the
distinctions that we want, leading to analyses that matter in stakeholders dedsion
making. We do not want more detail than we can use, since there ae ®sts in
elicitation and validation, and paential for errors.

5 Reated Work

Most of the aurrent work in Agent-Oriented Software Engineering (AOSE)
originated from the programming and Al/DAI systems construction perspedive. As
the technology infrastructure matures, attention is increasingly being paid to software
engineaing and application methoddogy isues. The focus therefore a@ntinues to
have astrong systems construction flavour, with a gradual broadening to encompass
contextual adivities such as requirements engineaing.

The predominant notion of agent in the aurrent AOSE literature is therefore that of
agent-as-software. Methodologicd frameworks have focused mostly on the “analysis
and design’ stages (e.g., [51, 2, 6, 27]). Requirements are ssumed to be given, at

least as informal descriptions. The analysis gage nstructs a model of the intended
behaviour of the software system.

The importance of requirements is beginning to be recognized, with attention being
paid to the eanbedding environment. However, they are typicdly spedfied in terms of
behavioural interactions, as in conventional requirements approaches. The notion of
agent employed is gill that of agent-as-software. For example, notions of autonomy,
intentionality, etc., are those asociated with the software, not with agents-in-the-
world outlined in Section 4. Alternatives during requirements analysis, as viewed by
strategic agents-in-the-world, are not explicitly addressed.

Social and organizational concepts are goplied to software gents, not to agents in
the world (e.g., [58, 36, 11, 13, 35]). Seledive agpeds of sociality are built into the
agent software, with the purpaose of enhancing the caabiliti es of the software, as
oppased to the richer analysis of the environment for the purpase of defining the right
technicd systemto huild.

When refledion is used, it is as a omputational mechanism in software agents
(e.g., [1]), not used by stakeholders to refled on strategic implications of aternative
arrangements of technicd systemsin their environment.

In Requirements Engineaing, agents have served as a modelli ng construct without
asauming the use of agent software & the implementation technology. The mncept of
agent has been elaborated to varying degrees. For example, the EKD methoddogy [5]
contains many of the mncepts neaded for agent-oriented modelling, but does not
explicitly ded with issues of agent autonomy and sociality. Agents appea in one of
six interconneded submodels: the Goal model, the Concepts model, the Business
Rules model, the Business Process model, the Actors and Resources model, and the
Tedhnicd Components and Requirements model. The KAOS approach [47] (also
mentioned in Sedion 2) offers a detailed formal framework for €liciting and refining
goas urtil they are reduced to operations that can be asdgned to agents. The
openness and autonomy of agent adions is not considered when generating or
evaluating alternatives. Agents interad with ead other non-intentionally, so they do
not have rich socia relationships. Both EKD and KAOS can be said to be more goal-
oriented than agent-oriented.

Action-Workflow is a notation and method for modelling cooperative work [29].
The basic unit of modelling is a workflow between a austomer and a performer. The
customer-performer relationship is charaderized in terms of a four-phased loop,
representing the stages of propcsing, agreeng, performing, and acceting. Eadc
phase involves different types of communicaion ads which can be analyzed using
Speedt Acts theory. This framework has a stronger orientation to ded with the social
nature of agents, espedaly their reliance on commitments and the potential for
bre&kdowns. Intentional structures sich as goals or means-ends relationships are not
explicitly represented, so there is no suppat for refledion or shifting boundaries of
responsibiliti es.

Many other techniques in Requirements Engineaing bea close relations to agent
modelli ng, e.g., managing multi ple viewpoints [17], deding with inconsistencies [20],
supparting tracedility [25] and negotiation [39], and scenario analysis [24].

While the i* framework arguably goes farthest in addressng agent modelli ng issues
in the spirit of this paper, many open isaues remain, both in theoreticd and pradicd
aress. Recent work that have built on or extended i* include the incorporation of

temporal constraints to suppat simulation and verification [18, 49], development
methoddogies [14, 46], and multi-perspedive modelling [37, 28].

The Tropas projed [32, 7, 4] aimsto develop a software development methoddogy
that would cary the requirements ontology (based on i*) as far downstream as
possble, to ensure that the resulting software would be requirements-driven. Agent
orientation is assumed throughout all the development stages. Formal techniques are
being developed to suppart analysis at various stages.

6 Engineering of Agent-Oriented Software vs. Agent-Oriented
Engineering of Software

The predominant interpretation of the phrase “Agent-Oriented Software
Engineaing’ isthat of the engineering of software that uses the agent concept as the
core computational abstradion. However, it is also pcsshble to conceve of the use of
agent concepts to suppat the software engineeing process without necessarily
committing a priori to a software ayent technology implementation. For the purpose
of distinction, we could refer to the two conceptions of AOSE as EAOS and AOES
respedively.

Agent-oriented techniques for requirements engineaing, as exemplified by the i*
framework, suggests that agent concepts can be used profitably without prejudging
the implementation technology. We have agued that isues of autonomy,
intentionality, sociality, etc. are just as relevant in requirements engineaing as in
software @nstruction, thoughin somewhat diff erent senses.

A basic tenet in software engineeing is to defer commitments on design and
implementation dedsions as much as possble, so as not to over-constrain those
dedsions unrecessarily. Conventional models and languages in software engineaing
— for requirements gedficaion, architecural design, detailed design, programming,
configuration, etc. — do not allow for the explicit representation of open dedsions,
freedoms and constraints, and argumentation about them. While eab stage or
adivity in software engineeing requires considerable deliberation and dedsion-
making, the notations can only expressand record the results of dedsion processs.
Current notations provide hardly any suppat for the communicaion of intentional
content among software enginees, e.g., design intents and rationales. Intermediate
products in software engineaing are passd on from one stage to another only after
they are fully reduced to non-intentional representations, e.g., input/output
relationshipsin architedural block diagrams.

Agent abstradions and models offer the expressveness and flexibility that
conventional notations ladk. Today's increasingly fast-paceal and fluid demands in
software engineeing suggests that agent abstradions could be useful for supparting
software engineaing processs in general. This is the premise behind the Tropos
projed [32, 7, 4]. Agent-based ontologies are used for representing requirements,
architedures, and detailed designs. Intentional models involving goals and beliefs
provide higher-level descriptions that allow suitable degrees of freedom. The
ontologies that are gpropriate ae those for modelli ng agents-in-the-world. For the
most part, the subjed matter in software engineaing adivities are not (yet) software
artefads, but their preaursors. While exeautable software would eventualy emerge,

many of the key engineeing processes occur at the ealier stages where relationships
among ealier design artefads (e.g., architedural blocks or design modules) are
worked out. The gpropriate ontology is therefore not a computational ontology for
madiine exeaution, but a world ontology in which there ae many human dedsion
makers and stakeholders, exploiting oppatunities, mitigating vunerabiliti es, and
choosing among alternatives acording to strategic interests. The i* framework is
used as the starting point for the Tropos projed.

Since software engineaing work continues to rely heavily on human social
processes, a full development of the AOES vision should include the many human
players in a software engineaing projeds as full-fledged agents (or adors in i*
terminology). Human agents, roles, and pasitions would be interwoven with those
representing the emerging artefads. As the software development process unfolds,
new adors and relationships would be aeded, existing ones evolve, others dislve.
The aents-in-the-world modelling paradigm allows a uniform representation of
madiine axd human processes. This would suppart, for example, reasoning about
whether an adivity should be done & run-time or at development time, by human or
by machine. These would be indicaed as alternate boundaries among adors in i*.
This conception of AOES s currently being explored [22].

Many software engineaing challenges are not only technicd, but socia and
organizdional, eg., reusability, maintainability, evolvability, comprehensibility,
outsourcing, componentization, etc. A representation and engineaing framework that
provides full and equal treament to technicd artefads as well as to human processes
(including krowledge management and human capital considerations) can potentially
offer afuller account of software engineaing, aswell as more dfedive solutions.

While the general vision of AOES is independent of software implementation
technology, the greaest benefit is obtained when the implementation does employ
software ggent technology. This would allow certain open dedsions to be deferred to
runtime to be exeauted by the ayent software. Which ones to defer would be a
frequent question that occurs throughout the development process AOES modelli ng
frameworks and todls $ould provide suppart for addressng such questions.

7 Conclusions

Agent orientation can contribute to software engineeing in more ways than one.
We have outlined a notion of agent from the viewpoint of requirements engineeaing,
which focuses on the relationship between systems and their environments in the
world. This notion of agent benefits from the development of the ayent-as-software
concept, but is distinct from it. We have outlined some major distinctions in terms of
key agent properties such as autonomy and sociality. Because of the differences in
context and oljedivesin different stages and aspeds of software engineeing, it is not
surprising that differing agent abstradions have developed. However, as
requirements engineaing turns to facethe new challenges raised by agent software
technology, and as ftware aents aaquire greaer abiliti es to reason strategicdly
about themselves and the world, one can exped closer links between conceptions of
agents-as-software and agents-in-the-world. These ae topics of ongoing reseach.

Acknowledgements. Financial suppart from the Natural Sciences and Engineeing
Reseach Council of Canada, Communications and Information Technology Ontario,
and Mitel Corporation are gratefully adknowledged.

References

1. Barber, K.S., Han D.C,, Liu, T.H.: Strategy Seledion-based Meta-level Reasoning for of
Multi-Agent Problem Solving. . In: Ciancaini, P., Woodldridge, M.J. (eds): Agent-
Oriented Software Engineaing: AOSE 200Q Ledure Notes in Computer Science, Vol.
1957 Springer-Verlag. (2001) 269284

2. Bauer, B., Miller, JP., Odell, J: An Extension d UML by Protocols for Multi agent
Interadion. Proc. 4th Int. Conf. on Multi-Agent Systems. IEEE Computer Society. (2000
207-214

3. Bradshaw, J. (ed.): Software Agents. AAAI Press(1997)

4. Bresciani, P., Perini, A., Giunchiglia, F., Giorgini, P., Mylopouos, J.: A Knowledge Level
Software Engineaing Methoddogy for Agent Oriented Programming. Proc. 5th Int. Conf.
on Autonamous Agents, Montred, Canada. (2001

5. Bubenko, J, Brash, D., Stirna, J:. EKD User Guide. (1998. Avalable &
ftp://ftp.dsv.su.selusers/js/ekd_user_guide.pdf

6. Caire, C., Garijo, F., Gomez, J., Pavon, J., Led, F, Chainho, P, Keaney, P., Stark, J.,
Evans R., Massonet, P.: Agent Oriented Analysis Using MESSAGE/UML. In thisvolume.

7. Castro, J., Kolp, M., Mylopouos, J.: A Requirements-Driven Development Methodology,
13th International Conference on Advanced Information Systems Engineaing
(CAISE'01), Interlaken, Switzerland. LNCS Vol. 2068 Springer-Verlag (2001) 108123

8. Chumg, L., Nixon, B.A., Yu, E., Mylopodos, J.. NonFunctiona Requirements in
Software Engineaing. Kluwer Academic Publishers. (2000

9. Ciancaini, P., Woddridge, M.J. (eds): Agent-Oriented Software Engineeing: First Int.
Workshop, AOSE 200Q Limerick Ireland, June 10, 2000 Ledure Notes in Computer
Science, Vol. 1957 Springer-Verlag. (2001

10. Dardenne, A., van Lamsweade, A., Fickas, S.: Goa-Direded Requirements Acquisition,
Science of Computer Programming. 20 (1-2): (1993 3-50

11. Deastani, M., Jonker, C., Treur, J. A Requirement Spedficaion Language For
Configuration Dynamics Of Multi-Agent Systems. In this volume.

12. DeMarco, T.: Structured Analysis and System Spedficaion. New York: Yourdon, (1978

13. Dignum, V., Weigand, H., Xu, L.: Agent Societies. Towards Frameworks-Based Design.
In this volume.

14. Dubds, E., Yu, E., Petit, M.: From Early to Late Formal Requirements: a ProcessControl
Case Study. Proc. 9th Int. Workshop on Software Spedficaion and Design, Ise-Shima,
Japan. IEEE Computer Society (1999 34-42

15. Feaher, M.S,, Fickas, SF., Helm, B.R.: Compasite System Design: The Good News And
The Bad News, Procealings of Fourth Annual KBSE Conference, Syraause. (1991) 16-25

16. Feaher, M.S.: Language Suppat For The Spedficaion And Development Of Composite
Systems. ACM Trans.on Programming Languages and Systems, 9(2): (1987 198234

17. Finkelstein, A., Sommerville, I.: The Viewpoints FAQ: Editoria - Viewpoints in
Requirements Engineaing. |EE Software Engineeing Journal, 11(1): (1996 2-4

18 Gans, G., Jarke, M., Kethers, S., Lakemeyer, G., Ellrich, L., Funken, C., Meister, M.:
Requirements Modeling for Organizaiion Networks: A (Dis-)Trust-Based Approad. 5th
IEEE Int. Symp. on Requirements Eng., Toronto, Canada. (2007)

19. Gass, L.: Socid Conceptions of Knowledge and Action: DAI Founcktions and Open
Systems Semantics. Artificia Intelli gence 47(1-3): (1997 107-138

20.

21

22.

23.

24,

25.

26.

27.

28.

29,

30.

31

32

33.

34.

35.

36.

37.

38.

GhezZ, C., Nuseibeh, B.: Guest Editoriad - Managing Inconsistency in Software
Development. IEEE Transadions on Software Engineaing 24(11): (1998 906907
Greenspan, S.: Requirements Modelling: The Use of Knowledge Representation
Techniques for Requirements Spedficaion, Ph. D. thesis, Dept. of Computer Science,
Univ. of Toronto (1984

Gross D., Yu, E.: Evolving System Architedure to Med Changing Business Goals: an
Agent and Goal-Oriented Approach. ICSE-2001Workshop From Software Requirements
to Architedures (STRAW), Toronto, Canada. (2001 13-21

Inverardi, P. et al.: The Teleservices and Remote Medicd Care System (TRMCS): Case
Study for the Tenth International Workshop on Software Spedficdion and Design
(IWSSD-10) (2000 http://www.ics.uci.edwiwsgd/case-study.pdf

Jarke, M., Kurki-Suonio, R.: Guest Editorial - Speda Issue on Scenario Management.
|EEE Transadions on Software Engineaing, 24(12): (1998 1033-1035

Jarke, M.: Requirements Tradng - Introduction. Communicaions of the ACM, 41(12):
(1998 32-36

Jennings, N.R., Sycaa, K., Wooldridge, M.: A Roadmap o Agent Reseach and
Development. Autonamous Agents and Multi-Agent Systems, 1 (1998 7-38

Kendall, E.AA.: Agent Software Engineaing with Role Moddlling. In: Ciancaini, P.,
Wooldridge, M.J. (eds): Agent-Oriented Software Engineaing: AOSE 200Q Ledure
Notesin Computer Science, Vol. 1957 Springer-Verlag. (2001 163170

Kethers, S.: Multi-Perspedive Modeling and Analysis of Cooperation Processes. Ph.D.
thesis. Technicd University of Aachen (RWTH), Germany. (2001)

Medina-Mora, R., Winograd, T., Flores, R., Flores, F.: The Action Workflow Approac to
Workflow Management Techndogy. Proc. Computer-Suppated Cooperative Work. ACM
Press (1992 281-288

Miksch, S., Cheng, K., Hayes-Roth, B.: An Intelli gent Asdstant For Patient Hedth Care,
Proc. of the First Int. Conf. on Autonamous Agents (Agents97) ACM Press (1997 458
465

Mylopodos, J.,, Borgida, A., Jarke, M., Kourbarakis, M.: Telos. A Language for
Representing Knowledge Abou Information Systems. ACM Trans. on Information
Systems 8(4) (1990 325-362

Mylopodos, J., Castro, J.: Tropcs: A Framework for Requirements-Driven Software
Development In J. Brinkkemper, A. Solvberg (eds.), Information Systems Engineaing:
State of the Art and Reseach Themes, Ledure Notes in Computer Science, Springer-
Verlag (2000 261-273

Mylopoudos, J.: Information Modeling in the Time of the Revolution. Information Systems
23(3-4): (1998 127-155

Nuseibeh, B.A., Easterbrook, S. M.: Reqguirements Engineging: A Roadmap. In:
Finkelstein, A.C.W. (ed): The Future of Software Engineaing. (Companion volume to the
proceealings of the 22nd Int. Conf. on Software Engineaing, ICSE'00. IEEE Computer
Society Press (2000

Omicini A.: SODA: Societies And Infrastructures In The Analysis And Design of Agent-
based Systems. In: Ciancaini, P., Wooldridge, M.J. (eds): Agent-Oriented Software
Engineaing: AOSE 2000 Ledure Notes in Computer Science, Vol. 1957 Springer-
Verlag. (2001) 185194

Parunak, H.V.D., Odell, J.: Representing socia structuresin UML. In this volume.

Petit, M.: A Multi-Formalism and Componrent-Based Approac to the Forma Modeling of
Manufaduring Systems Requirements. Ph.D. thesis. University of Namur, Belgium.
(2000

Potts, C., Takahashi, K., Anton, A.: Inquiry-Based Requirements Analysis. |IEEE
Software, March (1994 21-32

39.
40.
41.
42,
43,
44,
45,

46.

47.

48

49,

50.
51

52.

53.

54.

55.

56.

57.

58.

Robinson, W.N., & Volkov, S. Suppating the Negotiation Life-Cycle. Communications
of the ACM, 41(5): (1998) 95-102

Ross D.T.: Structured Anaysis (SA): A Language for Communicding Idess. IEEE
Transadions on Software Engineeing, SE-3(1) (1977 16-34

Rumbaugh, J., Jambson, I., Booch, G.: The Unified Modedling Language Reference
Manual, Addison-Wesley (1998)

Simon, H.A.: The Sciences of the Artificia. MIT Press(1969.

Standish Group: Software Chaos (1995 http://www.standishgroup.com/chaos.html
Suchman, L.: Plans and Situated Actionss The Problem of Human-Madine
Communication. Cambridge University Press(1987)

Szolovits, P., Doyle, J., Long, W.J., Kohane. |., Pauker, S.G.: Guardian Angel: Patient-
Centered Hedth Information Systems. Technicd Report MIT/LCS/TR-604 (1994
Taveter, K.: From Descriptive to Prescriptive Models of Agent-Oriented Information
Systems. 3rd Int. Workshop on Agent-Oriented Information Systems. Interlaken,
Switzerland. (2001

van Lamsweeade, A.. Requirements Engineaing in the Yea 200Q A Reseach
Perspective. Proc. 22ndInt. Conf. on Software Engineaing, June 200Q Limerick, Ireland
(2000 5-19

Wagner, G., Lespérance Y., Yu, E., (eds): Agent-Oriented Information Systems 200Q
Proceadings of the 2nd International Workshop. Stockholm, June 200Q iCue Publishing,
Berlin (2000)

Wang, X., Lespérance Y.: Agent-Oriented Requirements Engineeing Using ConGolog
and i*. 3rd Int. Workshop onAgent-Oriented Information Systems. Montred, Canada.
(2001

Weiss G. (ed.): Multiagent Systems. MIT Press(1999

Wooaldridge, M., Jennings, N.R., Kinny, D.: The Gaia Methoddogy for Agent-Oriented
Anaysis and Design. Journal of Autonamous Agents and Multi-Agent Systems 3 (3):
(2000 285312

Yu, E.: Moddling Strategic Relationships for Business Process Reengineaing. Ph.D.
thesis. Dept. of Computer Science, University of Toronto. (1995

Yu, E.. Towards Modelling and Reasoning Suppat for Early-Phase Requirements
Engineaing. Proc. of the 3rd IEEE Int. Symp. on Requirements Engineaing (1997 226-
235

Yu, E.: Why Agent-Oriented Requirements Engineaing. In: Proc. of the 3rd Int.
Workshop onRequirements Engineaing: Founditions for Software Quality. Barcdona,
Catalonia. E. Dubads, A.L. Opdahl, K. Pohl, eds. Presses Universitaires de Namur (1997
Yu, E.: Agent Orientation as a Modelli ng Paradigm. Wirtschaftsinformatik 43(2) (200J)
123132

Yu, E., Mylopodos, J.: Understanding "Why" in Software Process Moddlling, Analysis,
and Design, Proc. 16th Int. Conf. Software Engineaing, Sorrento, Italy, (1994 159168
Yu, E., Mylopodos, J.: Why Goal-Oriented Requirements Engineeaing, Proc. of the 4th
Int. Workshop onRequirements Engineaing: Foundations of Software Quality, Pisa, Italy.
E. Dubas, A.L. Opdahl, K. Pohl, eds. Presses Universitaires de Namur (1998 15-22
Zambordli, F., Jennings, N.R., Wooldridge, M.: Organisational Abstradions for the
Analysis and Design of Multi-Agent Systems. In: Ciancarini, P., Woadldridge, M.J. (eds):
Agent-Oriented Software Engineaing: AOSE 200Q Ledure Notes in Computer Science,
Vol. 1957 Springer-Verlag. (2001) 235251

