
1

Chapter

Architectural Design to Meet Stakeholder
Requirements

L. Chung', D. Gross'' & E. Yu''
Computer Science Program, University of Texas, Dallas, USA' & Faculty of Information
Studies, University of Toronto, Toronto, Ontario, Canada''

Key words: software architecture, rationale, stakeholders, organization modeling,
requirements, quality attributes, architectural properties, non-functional
requirements, process-oriented, softgoal, satisficing, design reasoning

Abstract: Architectural design occupies a pivotal position in software engineering. It is
during architectural design that crucial requirements such as performance,
reliabilit y, costs, etc., must be addressed. Yet the task of achieving these
properties remains a diff icult one. Senior architects with many years of
experience have to make difficult choices to meet competing requirements.
This task is made even more difficult with the shift in software engineering
paradigm from monoli thic, stand-alone, built -from-scratch systems to
componentized, evolvable, standards-based, and product line oriented systems.
Many well -established design strategies need to be reconsidered as new
requirements such as evolvabilit y, reusabilit y, time-to-market, etc., are
becoming more important. These requirements do not come from a single
source, but result from negotiations among many stakeholders. A systematic
framework is needed to help architects achieve quality requirements during
architectural design. This paper outlines an approach that formulates
architectural properties such as modifiabilit y and performance as “softgoals”
which are incrementally refined. Tradeoffs are made as conflicts and synergies
are discovered. Architectural decisions are traced to stakeholders and their
dependency relationships. Knowledge-based tool support for the process
would provide guidance during design as well as records of design rationales
to facilit ate understanding and change management.

2 L. Chung, D. Gross & E. Yu

1. INTRODUCTION

The importance of architectural design is now widely recognized in
software engineering, as evidenced by the recent emergence of seminal
reference texts e.g. (Shaw & Garlan, 1996; Bass, 1998) and several
international workshop series and special sessions in major conferences. It is
acknowledged, however, that many issues in software architecture are just
beginning to be addressed. One key task that remains a difficult challenge
for practitioners is how to proceed from requirements to architectural design.

This task has been made much more difficult as a result of today’s
changing software environment. Systems are no longer monolithic, built
from scratch, or operate in isolation. Systems built in the old paradigm have
contributed to the legacy system problem. Today’s systems must be
developed quickly, evolve smoothly, and interoperate with many other
systems. Today’s architects adopt strategies such as reusability,
componentization, platform-based, standards-based, etc., to address new
business level objectives such as rapid time-to-market, product line
orientation, and customizability. Two important aspects may be noted in this
shift in software engineering environment: (i) there have been significant
shifts in architectural quality objectives; and (ii) architectural requirements
are originating from a much more complex network of stakeholders.

System-wide software qualities have been recognized to be important
since the early days of software engineering. For example, (Boehm, 1976)
and (Bowen, 1985) classified a number of software attributes such as
flexibility, integrity, performance, maintainability, etc. It is well known that
these quality attributes (also referred to as non-functional requirements) are
hard to deal with, because they are often ill defined and subjective. The
recent flurry of activities on software architecture involving researchers and
practitioners have refocused attention on these software qualities since it is
realized that system-wide qualities are largely determined during the
architectural design stage (Boehm, 1992; Perry, 1992; Kazman, 1994; Shaw
& Garlan 1996; Bass, 1998). With the shift to the new, fast-cycled,
component-oriented software environment, priorities among many quality
objectives have changed, and new objectives such as reusability and
standards compliance are becoming more prominent. While performance
will continue to be important, it must now be traded off against many kinds
of flexibility. As a result, many architectural solutions that were well
accepted in the past need to be rethought to adapt to changes in architectural
objectives.

When systems were stand-alone and had definite lifetimes, requirements
could usually be traced to a small , well -defined set of stakeholders. In the
new software environment, systems tend to be much more widely

Architectural Design to Meet Stakeholder Requirements 3

interconnected, have a more varied range of potential customers and user
groups (e.g., due to product line orientation), may fall under different
organizational jurisdictions (at any one time, and also over time), and may
evolve indefinitely over many incarnations. The development organization
itself, including architects, designers, and managers, may undergo many
changes in structure and personnel. Requirements need to be negotiated
among stakeholders. In the case of architectural quality requirements, the
negotiations may be especially challenging due to the vagueness and open-
endedness of initial requirements. Understanding the network of
relationships among stakeholders is therefore an important part of the
challenge faced by the architect practitioner.

These trends suggest the need for frameworks, techniques, and tools that
can support the systematic achievement of architectural quality objectives in
the context of complex stakeholder relationships.

In this paper, we outline an approach which provides a goal-oriented
process support framework, coupled with a model of stakeholder
relationships. The paper includes simplified presentations of the NFR
Framework (Chung, 1998) and the i* framework (Yu, 1995). A web-based
information system example, incorporating a KWIC component, is used to
illustrate the proposed approach.

2. GOAL-ORIENTED PROCESS SUPPORT FOR
ARCHITECTURAL DESIGN

Consider the design of a web-based information system. There would be
a set of desired functionalities, such as for searching information, retrieving
it, scanning it, downloading it, etc. There would also be a number of quality
requirements such as fast response time, low storage, ease of use, rapid
development cycle, adaptabil ity to interoperate with other systems,
modifiability to offer new services, etc. The functional side of the
requirements are handled by many development methodologies, from
structured analysis and design, to recent object-oriented methods. Almost all
these methods, however, focus overwhelmingly, if not exclusively, on
dealing with functional requirements and design. While there is almost
universal agreement on the crucial importance of achieving the quality
requirements, current practice is often ad hoc, relying on after-the-fact
evaluation of quality attributes. Techniques for evaluating and assessing a
completed architectural design (“product”) are certainly valuable. However,
such techniques usually do not provide the needed step-by-step (“process”)
guidance on how to seek out architectural solutions that balance the many
competing requirements.

4 L. Chung, D. Gross & E. Yu

Complementary to the product-oriented approaches, the NFR Framework
(Chung, 1993, 1998) takes a process-oriented approach to dealing with
quality requirements. In the framework, quality requirements are treated as
(potentiall y conflicting or synergistic) goals to be achieved, and used to
guide and rationalize the various design decisions during the
system/software development. Because quality requirements are often
subjective by nature, they are often achieved not in an absolute sense, but to
a sufficient or satisfactory extent (the notion of satisficing). Accordingly, the
NFR Framework introduces the concept of softgoals, whose achievement is
judged by the sufficiency of contributions from other (sub-) softgoals.
Throughout the development process, consideration of design alternatives,
analysis of design tradeoffs and rationalization of design decisions are all
carried out in relation to the stated softgoals and their refinements. A
softgoal interdependency graph is used to support the systematic, goal-
oriented process of architectural design. It also serves to provide historical
records for design replay, analysis, revisions, and change management.

Figure 1. A softgoal interdependency graph showing refinements of quality requirements
based on topic and type

For the purpose of illustration, let us consider a small part of the example
in which a keyword in context (KWIC) system is needed. The KWIC system
is part of a web information system, used to support an electronic-shopping
catalog. Suppose the KWIC system architect is faced with an initial set of
quality requirements: “ the system should be modifiable” and “ the system
should have good performance” . In the aforementioned process-oriented
approach, the architect explicitly represents each of these as a softgoal to be
achieved during the architectural design process. Each softgoal (e.g.,
Modifiability [system]) is associated with a type (Modifiability) and a topic
(system), along with other information such as importance, satisficing status
and time of creation. Figure 1 shows the two softgoals as the top level nodes.

Architectural Design to Meet Stakeholder Requirements 5

As these high level requirements may mean different things to different
people, the architect needs to first clarify their meanings. This is done
through an iterative process of softgoal refinement which may involve
reviewing the literature and consulting with domain experts. After
consultation, the architect may refine Modifiability [System] into three
offspring softgoals: Modifiabili ty [Algorithm], Modifiability [Data
representation], and Modifiabil ity [Function]. This refinement is based on
topic, since it is the topic (System) that gets refined, while the softgoal type
(Modifiability) is unchanged. This step may be justified by referring to the
work by Garlan and Shaw (Garlan, 1993), who consider changes in
processing algorithm and changes in data representation, and to Garlan,
Kaiser, and Notkin (Garlan, 1992), who extend the consideration with
enhancement to system function. Similarly, the architect refines Performance
[System], this time based on its type, into Space Performance [System] and
Time Performance [System], referring to work by Nixon (Nixon, 1993).

Figure 1 shows the two refinements. In the figure, a small "arc" denotes
an “AND” contribution, meaning that in order to satisfice the parent
softgoal, all of its offsprings need to be satisficed. As wil l be shown later,
there are also other contribution types, including “OR” and partial positive
(+) or negative (-) contributions. Contribution types are important for
deciding the satisficing status of a softgoal based on contributions towards it.

In parallel to the refinement of quality requirements, the software
architect will consider different ways of meeting the KWIC functional
requirements in the context of the web information system. At various points
during the design process, the architect will go through a number of
interleaving activities of componentization, composition, choice of
architectural style, etc. Each activity can involve consideration of
alternatives, where NFRs can guide selection, hence narrowing down the set
of architectural alternatives to be further considered.

For example, the architect can consider architectures with varying
numbers of (main) components: i) Input, Circular Shift, Alphabetizer and
Output; ii) Input, Line Storage, Circular Shift, Alphabetizer and Output and
so forth. Each choice will make particular contributions to the NFRs. With
either choice the architect can further consider alternatives about control, for
example, one with a Master Control and one without. Yet another decision
point might concern the way data is shared: sharing of data in the main
memory, sharing of data in a database, sharing of data in a repository with an
event manager and so forth. Figure 2 describe some of the above alternative
architectures using “conventional” block diagrams. The diagrams were
redrawn by one of the authors based on (Shaw & Garlan, 1996).

6 L. Chung, D. Gross & E. Yu

Figure 2. Architectural alternatives for a KWIC system

Let us assume that the architect is interested in an architecture which can
contribute positively to the softgoal Modifiability [Data representation], and
considers the use of an “Abstract Data Type” style of architecture, as
discussed by Parnas (Parnas, 1972) , and Garlan and Shaw (Garlan, 1993):
components communicate with each other by means of explicit invocation of
procedures as defined by component interfaces.

As the architect would learn sooner or later, the positive contribution of
the Abstract Data Type architecture towards modifiable data representation

Architectural Design to Meet Stakeholder Requirements 7

is made at the expense of another softgoal, namely the time performance
softgoal. Figure 3 shows the positive contribution made by the abstract data
type solution by means of “+” and the negative contribution by “ -”
contribution link.

The architect would want to consider other architectural alternatives in
order to better satisfice the stated softgoals. The architect may discover from
the literature that a “Shared Data” architecture typically would not degrade
system response time, at least when compared to the Abstract Data Type
architecture, and more importantly perhaps it is quite favorable with respect
to space requirements. This discovery draws on work by Parnas (Parnas,
1972), and by Garlan and Shaw (Garlan, 1993) who considered a Shared
Data architecture in which the basic components (modules) communicate
with each other by means of shared storage. Not unlike the Abstract Data
Type architecture, however, the Shared Data architecture also has some
negative influence on several other softgoals: a negative (-) impact on
modifiability of the underlying algorithm (process) and a very negative (--)
impact on modifiability of data representation.

Figure 3 shows both design steps along with the various contributions
that each alternative makes towards the refined softgoals. Note that the
diagram is build iteratively rather than in one step -- according to the
architectural “discovery process” of the architect.

Figure 3. Contribution of the Shared Data and Abstract Data Type architectures

8 L. Chung, D. Gross & E. Yu

Interestingly, Figure 3 shows tradeoffs between the architectural
alternatives that have been considered so far. The architect can continue to
consider other architectural alternatives, including hybrid solutions, or
decide which of the two better suits the needs of the stakeholders. How can
the architect go about doing the latter, if that is what she so desires? One
way to do the tradeoff analysis is by using the degree of criticality (or
priority, or dominance, or importance) of the quality requirements. In the
context of a particular web information system, for example, the
stakeholders might indicate that performance is more critical than
modifiability. In this case, then, the architect would choose Shared Data over
Abstract Data Type, since Shared Data is more satisfactory with respect to
both space and time performance, hence the overall performance
requirements (recall the “AND refinement”).

During the process of architecting, the architect needs to make many
decisions, most likely in consultation with stakeholders. As the above
discussion suggests, an interesting question is: “how can the architect
evaluate the impact of the various decisions?” The NFR Framework
provides an interactive evaluation procedure, which propagates labels
associated with softgoals representing their satisficing status (such as
satisficed, denied, undetermined, and conflict) across the softgoal
interdependency graph. Labels are propagated along the direction of
contribution, usually “upwards” from specific, refined goals towards high
level initial goals.

Because of the subjective nature of quality requirements, the software
architect will want to explain and justify her decisions throughout the
softgoal refinement process. This can be done in the NFR Framework using
“claims” . Claims can be attached to contributions (links in the graph) and to
softgoals (nodes). Claims can themselves be justified by further claims.
These rationales are important for facilitating understanding and evolution.
For example, Shared Data may by and large have advantage over Abstract
Data Type with respect to space consumption. This general relationship,
however, may need to be argued for (or against), in the context of the
particular web information system. If, for example, the volume of the data to
be maintained by the system is low, the relative advantage of Shared Data
may not matter much. If this is indeed the case, the expected data volume
can then be used as a claim against the relationship: “Shared Data makes a
strong positive (++) contribution towards meeting space requirements” . This
might then lead the architect to choose Abstract Data Type as the ultimate
architecture.

Figure 4 shows a softgoal interdependency graph for the KWIC system,
taken from work by Chung, Nixon and Yu (Chung, 1995) which is based on
(Garlan, 1993) and Garlan, Kaiser, and Notkin (Garlan, 1992).

Architectural Design to Meet Stakeholder Requirements 9

Figure 4. A softgoal interdependency graph for the KWIC system

3. MEETING DIFFERENT STAKEHOLDER
REQUIREMENTS

We now illustrate the need to relate organizational context to the process,
and consequently the outcomes, of architectural design. The illustration will
be done through three scenarios, which will show that different sets of
stakeholder concerns are transformed by the architectural design process into
different architectural choices for information systems. More specifically,
each different set of stakeholders and their concerns leads the architects to
reason about different quality concerns, make and evaluate different design
decisions, and finally leads, in our case, to the most appropriate architectural
designs to be used in a particular web-based information system context.

10 L. Chung, D. Gross & E. Yu

3.1 Scenario 1

An e-shopping software vendor specializes in offering software products
which can be used in advertising, selling, and shipping goods and services in
an Internet-based virtual market. The products should generate, among other
things, e-catalogs so that any internet user can search for goods using a web-
browser. The e-catalog architect realizes that she needs a software system
which can generate an index, here an alphabetized list of the words in the
descriptive text of each catalog item such that each word in the list is
associated with a list of all catalog items pertaining to that word. Such a li st,
however, is just what a KWIC system generates. Hence, the e-catalog
architect asks a KWIC component architect to buil t an indexing system. This
is a brief description of the essential functional aspect of the scenario. We
will shortly describe the quali ty aspect of the scenario, along with more
details of the functional aspect.

Figure 5. Organizational context for the e-catalog application

Figure 5 depicts the relationships among the three types of stakeholders,
using the i* framework proposed by Yu (Yu, 1994). The i* framework
allows for the description of actors and their dependencies in organizational
settings. A circle represents an actor (e.g., e-shopping vendor) who may be
dependent on some other actor (e.g., e-catalog architect) to achieve some of
its goals (e.g., developing an e-catalog application). Not unlike the NFR
Framework, the i* framework also distinguishes a quality requirement,

Architectural Design to Meet Stakeholder Requirements 11

denoted by a cloud li ke shape (to suggest softness), from a functional one,
denoted by a rectangle. In the i* framework , a dependency is described by a
directed link between two actors. This type of graph is called a Strategic
Dependency model in the i* framework (the other type of graph in i* -- the
Strategic Rationale model will not be discussed in this paper).

In the current scenario, the e-shopping vendor depends on the e-catalog
architect to deliver an e-catalog application, who in turn depends on the
KWIC component architect to deliver an indexing system.

This kind of diagram shows where requirements originate. It also serves
as a basis for determining what kind of negotiated delegations should take
place, how different architectural decisions affect the various stakeholders,
and possibly what kind of requirements to allocate to, and how to partition
the system into, sub-systems and components. Just like a softgoal
interdependency graph, it becomes a basis for justification and
system/software architectural evolution.

Now we describe the quality concerns of the stakeholders. To start with,
the e-shopping vendor expects the application software system to be easy to
use. The vendor also has other concerns. As the catalog items is expected to
grow quite rapidly, storage space resource is a very important concern, as is
fast response time. Also shown in Figure 5 is a multiple-vendor support,
namely, allowing for the integration of catalogs that reside on various server
machines in physically remote vendor organizations. The exclamation marks
denote the criticality of a quality. The highest priority is assigned to two
exclamation marks, medium priority to one, and low priority none.

As a matter of fact, the li st of quality requirements and their criticalities
is determined through cooperation between the e-catalog architect and the e-
shopping vendor who go through a process of recursive refinements, in the
manner of the previous section, which may also require the KWIC
component architect’s involvement at least occasionally. The list then
becomes what is commonly known as the user requirements.

When the user requirements are more or less satisfactory, the e-catalog
architect directs her attention more towards defining the system
requirements, whose clarification may need more of the KWIC component
architect’s involvement than before. The system requirements may inherit
some of the user requirements more or less directly, such as good space and
response time requirements. The system requirements will also come from
the system’s perspective. For example, the “ease of use” requirement now
may be translated more specifically into interactivity (such as configuring
indexing options dynamically) and extensibility (such as allowing for the use
of international language character sets, categorical search and phonetic
search). Another system requirements that might be considered is the
modifiability requirement, here for changing the overall algorithm which

12 L. Chung, D. Gross & E. Yu

builds those indices transparently in a distributed setting. The criticalities
may also change, due to the new requirements and the derived requirements.
For example, in the presence of the extensibility requirement, which is new,
the criticality of the good time performance requirement is lowered from
critical to medium.

With the organizational context in place, the KWIC component architect
uses the process-oriented NFR Framework to refine the quality softgoals,
consider architectural design alternatives, carry out tradeoff analysis and
evaluate the degree to which softgoals are satisficed, all in consideration of
the context. The top portion of Figure 6 represents those softgoals that
originated from the e-shopping vendor, and are negotiated and delegated
through the e-catalog architect to the KWIC architect. The relative criticality
values are preserved in the softgoal interdependency graph. Figure 6 shows
the result of the process whereby the architect has arrived at four
architectural alternatives in an attempt to satisfice the stated softgoals.

Figure 6. A softgoal interdependency graph for the e-catalog KWIC Component

Importantly, the diagram in figure 6 shows a number of claims, which
derive from the knowledge of the organizational context, and which are used
to argue for, or against, the types of softgoal criticalities and interdepencies,
and consequently in softgoal evaluation and selection among architectural

Architectural Design to Meet Stakeholder Requirements 13

alternatives. For example, using the Shared Data architectural style is
expected to have a very good contribution towards space performance. The
architect uses the organizational context diagram (figure 5) to find some
argument in support (or denial) of that particular contribution. In the current
scenario, for example, the architect argues for the validity of the contribution
by pointing to the e-shopping vendor who wants the system to have the
ability to handle a rapidly growing number of catalog items. This claim is
denoted by the “S1” arrow in figure 6.

Despite the significant savings by the Shared Data architecture in data
storage, however, the Implicit Invocation architecture seems to be the most
promising for achieving extensibility of function, which is as critical as
space performance. Furthermore, Implicit Invocation helps modifiabil ity of
processes, in contrast to Shared Data, although there is a tie between the two
concerning interactivity. Although not well met by Implicit Invocation, time
performance is of low criticality. Taking all these into account, the KWIC
architect chooses the Implicit Invocation as the target architectural design.

3.2 Scenario 2

A system administrator wants to offer the user a help facility which can
retrieve all the documents that have some keyword in their description, as
indicated by the user. The administrator, thus, asks a system architect to
build such a help facili ty. The system architect, in turn, asks a KWIC
component architect for an indexing software system, after realizing that the
facility is essentially a KWIC system such as used the Unix “man –k”
command.

Similar to figure 5 for scenario 1, we may now describe the three types of
stakeholders using the i* framework, together with the functional and quality
requirements that the stakeholders delegate among themselves, together the
various criticalities of each of the requirements. And analogous, to figure 6
for scenario 1, the architect iteratively builds an NFR softgoal
interdependency graph in which she further refines the various quality
requirements and argues for or against certain claims. These analogous
figures for scenario 2 are not shown for lack of space, but some fragments of
the functional and quality requirements as well as the (soft) goal
interdependencies related to this scenario appear in figure 7 and 8.

Taking all contributions of each architectural style into account, together
with the various criticalities of the softgoals to be achieved, the architect
might want to choose the Pipe and Filter architectural style as the most
promising one.

14 L. Chung, D. Gross & E. Yu

3.3 Scenario 3

A reuse manager is appointed by product line management to oversee the
development of various systems in the organization. As it happens, the
KWIC architect, the e-catalog architect and the help file system architect all
work in the same organization. The reuse manager asks the KWIC architects
to consider reuse as a critical priority and to maximize reuse of all
components developed in that organization.

This scenario is especially interesting as it introduces a stakeholder (the
reuse manager) whose global quality concern of having reusable components
prompts the KWIC architect to find a solution that represents the union of
quality concerns of all other architects, as well as taking into account each of
their intended customer (the e-shopping vendor and the man administrator).

Essentially, figure 7 shows a merge of all stakeholders’ quality softgoals
discussed in the previous scenarios. In addition it show that reuse manager
depends on the KWIC system architect to build a system that delivers and
maximizes the use of reusable components for all development activities in
that organization. Not shown are product line management stakeholders,
who depend on the reuse manager for reduced development costs.

Figure 7. Organizational context for the Reuse requirement

For each of the two previous scenarios a different architectural solution
style was chosen according to the specific kind of organizational context and
its derived set of requirements. To find a reusable component solution the
KWIC component architect will need to re-negotiate the delegated
requirements with each of the involved stakeholders to overcome the
stakeholders conflicting requirements. Perhaps the KWIC architect will also
need to renegotiate the degree of reusability with the reuse manager.

Now that the architect has an organizational understanding (of which
quality requirements and criticalities originated from which stakeholders,

Architectural Design to Meet Stakeholder Requirements 15

and what network of relationships exists among the stakeholders), the
architect now proceeds to use the NFR framework to evaluate, and further
argue for or against the various architectural styles. During the evaluation,
the architect renegotiates conflicting quality requirements and criticalities
with the affected stakeholders and finds an architectural solution that makes
acceptable trade-offs. Figure 8 shows the result of the architectural design
process. (The "broken" lines are not part of the NFR Framework graphical
notation, but are used in this paper to avoid cluttering the diagram with links
not directly related to the architectural styles shown to be evaluated. The "e"
subscript stands for the e-catalog architects point of view, while the "h"
subscript stands for help file system architect's point of view).

Figure 8. A softgoal interdependency graph for the Reuseable KWIC Component

The figure shows the architect evaluating the Implicit Invocation style for
meeting the quality requirements originating from the e-catalog architect, the
help file system architect and the reuse managers. While evaluating the
Implicit Invocation style the architect may renegotiate with the help file
system architect her demand for "Unix compliance" which, for her, would be
better dealt with when using the Pipe & Filter style. The organizational
context (such as the “approval” dependency that the architects have on the

16 L. Chung, D. Gross & E. Yu

reuse manager), will make the negotiating parties more forthcoming when
concessions to their requirements and/or criticalities are needed.

4. DISCUSSION AND RELATED WORK

As pointed out by Garlan and Perry (Garlan, 1994), architectural design
has traditionally been largely informal and ad hoc. Our proposal is aimed at
rectifying some of the manifested symptoms by taking a more disciplined
approach to architectural design. In particular, our proposal is aimed at
improving our ability to understand the rationales behind architectural
choices, hence making the system more easily traceable and evolvable. We
have illustrated how to carry out a finer-grained analysis, and the
comparison of architectural designs by considering quality-related concerns
of multiple stakeholders and their interdependencies.

Our proposal draws on concepts that have been identified as essential to
portray architectural infrastructure, such as elements, components, and
connectors as suggested by Perry and Wolf (Perry, 1992), Garlan and Shaw
(Garlan, 1993), Abowd, Allen, and Garlan (Abowd, 1993), and Robbins,
Medvidovic, Redmiles and Rosenblum (Robbins, 1998). In our view, our
emphasis on quali ty concerns and stakeholder interdependencies are
complementary to efforts directed towards identification and formalization
of concepts for functional architectural design.

Concerning the role of quality requirements, design rationale, and
assessment of alternatives, the proposal by Perry and Wolf (Perry, 1992) is
of close relevance to our work. Perry and Wolf propose to use architectural
style for constraining the architecture and coordinating cooperating software
architects. They also propose that rationale, together with elements and
form, constitute the model of software architecture. In our approach,
weighted properties of the architectural form are justified with respect to
their positive and negative contributions to the stated NFRs, and weighted
relationships of the architectural form are abstracted into contribution types
and labels, which can be interactively and semi-automatically determined.

Boehm (Boehm, 1992), and Kazman, Bass, Abowd, and Webb (Kazman,
1994) have argued convincingly for the importance of addressing quality
concerns in software architectures. Kazman, Bass, Abowd, and Webb
(Kazman, 1994) propose a basis (called SAAM) for understanding and
evaluating software architectures, and gives an illustration using
modifiability. This proposal is similar to ours, in spirit, as both take a
qualitative approach, instead of a metrics approach, but differs from ours

Architectural Design to Meet Stakeholder Requirements 17

since SAAM is product-oriented, i.e., they use quality requirements to
understand and/or evaluate architectural products.

In comparing architectural alternatives, it is intuitively appealing to use a
tabular format. For example, in (Garlan & Shaw, 1993), a table is used to
present the quality evaluations of four architectural alternatives. Such a table
can be interpreted as depicting contributions from the architectural
alternatives to the quality attributes treated as goals. In our study, we
illustrated the importance of context and the need to trace design decisions to
stakeholder requirements. Our approach suggests that the tabular
representation of design alternatives and quality attributes is not sufficiently
expressive.

We might consider extending the tabular representation by distinguishing
quality requirements that come from different stakeholders, and by adding
more explanatory notes such as the claims in the softgoal interdependency
graphs.

Our approach emphasizes explicitly representing and using the quality
concerns of multiple interacting stakeholders during the design of software
architectures. Our approach is thus similar to the on-going work by Boehm
and In (Boehm, 1996), who explore a knowledge-based tool for identifying
potential conflicts among quality concerns early in the software/system life
cycle, and using quality requirements in examining tradeoffs involved in
software architectural design. Stakeholders such as user, maintainer,
developer, customer, etc., are mapped to quality attributes in a graph. Our
approach goes further by indicating that stakeholder requirements can be
traced through a network of dependency relationships in an organizational
model.

5. CONCLUSIONS AND FUTURE WORK

Achieving architectural quality requirements is a key objective in
architecture-based approaches to software engineering. Quali ty requirements
vary according to context and need to be negotiated among stakeholders. We
have outlined a systematic approach for representing and addressing quality
requirements during architectural design. The design reasoning is related to
context through an organization model of stakeholder dependencies.

Using an extended version of the famili ar KWIC example, we have
illustrated how architectural decisions might vary depending on context, and
how the design process can be guided and assisted using appropriate
notational and reasoning support. The historical records of design decisions
and rationales will facilitate understanding and evolution.

18 L. Chung, D. Gross & E. Yu

We have been working on tools to support the approach. These include
facilities for generating and maintaining the graphs, for propagating labels,
and for design revision. Knowledge for addressing specific quality
requirements are codified in knowledge bases to assist in the refinement of
goals. Known interactions among quality requirements are codified as
correlation rules for detecting conflicts and synergies.

This paper represents a first step in an attempt to provide a systematic
architectural design support framework that takes organizational and
stakeholder relationships into account. We have drawn on the NFR
framework for dealing with software quality requirements, and the i*
framework for modelling and reasoning about strategic actor relationships.
In future work, we intend to further elaborate on issues specific to
architectural design, and to better integrate architectural design reasoning
and organizational relationships reasoning.

REFERENCES

Abowd, G., Allen R. and Garlan, D.(1993) “Using Style to Understand Descriptions of
Software Architectures” , Software Engineering Notes, 18(5): 9--20, Proc. of SIGSOFT
`93: Symposium on the Foundations of Software Engineering.

Boehm, B. W. (1976) “Software Engineering” , IEEE Transactions on Computers, 25(12), pp.
1226-1241

Bass, L., Clements P. and Kazman, R. (1998) Software Architecture in Practice, SEI Series in
Software Engineering, Addison-Wesley.

Boehm, B. and Scherlis, B(1992) “Megaprogramming” , Proc. the DARPA Software
Technology Conference.

Boehm, B. and In, H.(1996) "Aids for Identifying Conflicts Among Quality Requirements",
Proc. International Conference on Requirements Engineering, (ICRE96), Colorado, April
1996, and IEEE Software, March 1996.

Bowen, T. P. , Wigle, G. B. and Tsai, J. T. (1985) “Specification of Software Quali ty
Attributes” , Report RADC-TR-85-37, vol. I (Introduction), vol. II (Software Quali ty
Specification Guidebook), vol III (Software Quali ty Evaluation Guidebook), Rome Air
Development Center, Griffiss Air Force Base, NY, Feb. 1985.

Chung, L.K.(1993) “Representing and Using Non-Functional Requirements: A Process-
Oriented Approach” . Ph.D. Thesis, Dept. of Computer Science, Univ. of Toronto, June
1993. Also Technical Report DKBS--TR--93--1.

Chung, L.K. Nixon, B. and Yu, E.(1995) “Using Non-Functional Requirements
to Systematically Select Among Alternatives in Architectural Design", Proc., 1st Int.

Workshop on Architectures for Software Systems, Seattle, April 24-28, 1995., pp. 31-43.
Chung, L.K. Nixon, B. A., Yu, E and J. Mylopoulos(1998), Non-Functional Requirements in

Software Engineering, Kluwer Publishing (to appear).
Garlan D. and Shaw, M.(1993) “An Introduction to Software Architecture Advances in

Software Engineering and Knowledge Engineering: Vol. I, World Scientific Publishing
Co.

Garlan, D., Kaiser, G. E. and Notkin, D. (1992) “Using Tool Abstraction to Compose
Systems”, IEEE Computer, Vol. 25, June 1992. pp. 30--38.

Architectural Design to Meet Stakeholder Requirements 19

Garlan, D. and Shaw, M. (1993) “An Introduction to Software Architecture", in Advances in
Software Engineering and Knowledge Engineering: Vol. I, World Scientific Publishing
Co.

Garlan, D. and Perry, D.(1994) “Software Architecture: Practice, Potential, and Pitfalls",
Proc. 16th Int. Conf. on Software Engineering, pp. 363--364.

Kazman, R, Bass, L., Abowd, G. and Webb, M. (1994) “SAAM: A Method for Analyzing the
Properties of Software Architectures", Proc. Int. Conf. on Software Engineering, May
1994, pp. 81--90.

Nixon, B. A.(1993) “Dealing with Performance Requirements During the Development of
Information Systems.'', Proc. IEEE Int. Symp. on Requirements Engineering, San Diego,
CA, January 4--6, Los Alamitos, CA: IEEE Computer Society Press, pp. 42--49.

Parnas, D. L. (1972) “On the Criteria to be Used in Decomposing Systems into Modules",
Communications of the ACM, Vol. 15, Dec. 1972, pp. 1053--1058.

Perry, D. E. and Wolf, A. L. (1992) “Foundations for the Study of Software Architecture",
ACM SIGSOFT Software Engineering Notes, 17(4), pp. 40--52.

Robbins, J. E. , Medvidovic, N., Redmiles, D. F. and Rosenblum, D. S. (1998) “ Integrating
Architecture Description Languages with a Standard Design Method", Proc. 20th Int.
Conf. on Software Engineering, pp. 209--218.

Shaw, M. and Garlan, D. (1996) “Software Architecture: Perspectives on an Emerging
Discipline”, Prentice Hall .

Yu, E. S. K. and Mylopoulos, J. (1994) “Understanding ̀ ”Why'” in Software Process
Modell ing, Analysis, and Design.” , Proc., 16th Int. Conf. on Software Engineering,
Sorrento, Italy, May 1994, pp. 159--168.

Yu, E.(1995) “Modelli ng Strategic Relationships for Process Reengineering” , Ph.D. Thesis,
Dept. of Computer Science, Univ. of Toronto.

APPENDIX

The KWIC problem statement (Parnas, 1972): “The KWIC [Key Word in
Context] index system accepts an ordered set of lines; each line is an ordered
set of words, and each word is an ordered set of characters. Any line may be
“circularly shifted” by repeatedly removing the first word and appending it
at the end of the line. The KWIC index system outputs a list of all circular
shifts of all lines in alphabetical order.”

