
Evolving System Architecture to Meet Changing Business Goals: an Agent and
Goal-Oriented Approach

 Daniel Gross & Eric Yu
 Faculty of Information Studies
 University of Toronto
 {gross, yu}@fis.utoronto.ca

Abstract

Today's requirements engineering approaches focus on
notation and techniques for modeling the intended
functionality and qualities of a software system. Little
attention has been given to systematically understanding
and modeling the relationships between business goals and
system qualities, and how these goals are met during
architectural design. In particular, modeling must
encompass changes to business goals over time and their
effects upon a system's architecture. This paper reports on
a case study, performed at a telecommunication company,
that illustrates the decision-making process regarding
architectural changes introduced into an existing switching
system product. A notation including goals, strategic
agents and intentional dependency relationships is used to
support the architectural modeling and reasoning.

Keywords:
Goal, architecture, non-functional requirement, architect-
ural evolution, knowledge-based design

1. Introduction
During architectural design, many of the quality aspects of
a system are determined. System qualities are often
expressed as non-functional requirements, also called
quality attributes [1,2]. These are requirements such as
reliability, usability, maintainability, cost, competitiveness,
time to market and the like. Many of these originate at the
business level, and are better viewed as business goals.
Achieving business goals is crucial for system success. As
business goals change, the system architecture needs to
evolve to ensure continued satisfaction of business goals.
Therefore, a systematic modeling framework needs to
support linking business goals to architectural design.

Goal-oriented approaches, such as the NFR framework
[3,4,5] that treats non-functional requirements as goals to
be achieved during the design process, took a significant
step in making explicit the relationships between quality
requirements and design decisions. The NFR framework
uses such goals to drive design [6], to support architectural
design [7,8], and to deal with change [9]. While providing a
systematic way to deal with the relationships between
quality requirements and design, this approach has only

limited support for dealing with the functional and
structural aspects of the system under development. More
recent approaches [8, 10] make a step to further incorporate
functional and structural aspects into the design process

This paper proposes a strategic agent-oriented and goal-
oriented approach that systematically relates business goals
to architectural design decisions and architectural structures
during software development and evolution.

This approach emphasizes goal modeling based on the
observations that business goals that represent or give rise
to non-functional requirements predominate during the
architectural design deliberation process, and that changes
in business goals may create a need to reevaluate and
evolve the architectures of software systems. Goals serve as
a guide in the search for design alternatives, and serve as
criteria for choosing among them.

This approach uses the agent concept to model human
organizations as well as technical components. The
rationale for using agents for modeling social concepts is
based on the observation that different stakeholders within
the development and deployment organizations may have
different business goals that they may wish to pursue.
These differences may give rise to conflicting interests and
rationales. By linking stakeholder goals to the design
decision-making process, it becomes possible to express the
positive and negative impacts of design decisions upon
those goals during software development and evolution [8].
Agents enable the various interests within an organization
to be expressed.

The rationale for using agents for modeling technical
concepts is based on the observation that the computational
elements within coarse-grained software structures, not
unlike those within organizational structures, represent
focal points for intentional properties, such as design goals
and capabilities. Agent concepts lend themselves well to
modeling and reasoning about the distribution of
capabilities and allocation of responsibilities within a
software system, and to show how computational elements
are intended to contribute to the overall goals and
objectives of the system and the business organization.

The approach uses the notion of strategic agents [15,16]
based on the observation that designers of subsystems,
concerned with achieving intended design goals, are at the

same time concerned with avoiding or at least mitigating
vulnerabilities that might be imposed on them by design
decisions taken within other subsystems. This approach
models such vulnerabilities, which designers negotiate
among themselves during the design process, and
highlights how others are expected to contribute in
achieving their respective subsystem design goals.

The approach is process-oriented, as it focuses on
supporting an iterative decision-making process during
design. Design goals are iteratively "reduced" to runtime
structures. This is based on the observation that designers
establish and refine architectural structures in an iterative
manner, where structures first introduced establish coarse-
grained partitioning of responsibilities, and iteratively
refine to structures that are sufficiently fine-grained to
guide implementation of the system.

Finally, based on the observation that designers often
reapply previously known design solutions to achieve
business- and system-related goals, this approach
emphasizes the need to support capturing, generalizing and
reapplying design knowledge. Previous design solutions
can be sought, based on goals they met, tradeoffs they
made, or system structures they created. This supports a
knowledge-based approach to design.

The next section describes the modeling approach. Section
three introduces the case study. Section four illustrates the
modeling approach using the case study. Section five
discusses the case study results, while section six concludes
and points to future work.

2. An agent & goal-oriented approach

In order to relate business goals to the architectural
decision-making process, and to the architectural structures
during design, the modeling approach proposes the
following main categories of features. Each category is
represented as a separate view. All views are iteratively
constructed during analysis and design.

• The design process view expresses how business goals
relate to architectural choices and how changes in
business goals invalidate architectural choices, and
provides the basis for removing them to choose among
alternative design options. This includes support for
expressing alternative design paths, and relates
alternative choices to the business and system goals
that are traded-off against each other.

• The structural view provides an architectural
description during design that expresses the principal
roles played by architectural design elements within a
system, and how roles are composed during the design
process to arrive at the system design. Architectural
elements are characterized by their capabilities, their
expectations of other elements, and how they
contribute in achieving system- and business-related

goals. The notation of this view is taken from the
strategic dependency model of the i* framework [15].

This view provides architectural descriptions of the
system at several levels of abstraction, and how these
are related to each other during the design process.
This includes expressing architectural structures at
different stages of completion, together with a
description of where architectural structures need
further refinement through design decision-making.

• The organizational view identifies stakeholders and
their goals, and expresses how they depend on each
other and on the emerging system design to achieve
their goals. This includes support for deducing during
the design process how, and upon whom, design
choices have an effect. Due to space limitations, this
view is not diagrammed in this paper.

This approach also provides knowledge-based support by
enabling capturing, storage, retrieval and guidance in
reapplying relationships between goals and design
elements, when similar goals need to be met during future
design efforts.

The organizational view is used to capture the pertinent
stakeholders and their business and system related goals.
Goals related to functional abilities provide the basis for
system requirements, while goals related to business and
system qualities provide the basis for non-functional
requirements. Goals from the organizational view can be
used as a starting point when constructing the design
process view.

The design process view is used to construct a goal graph
during the development process. The goal graph is used to
search for and generate alternative design solutions. Goals
denoting functional abilities are refined to alternative
design options. Goals denoting non-functional requirements
(called softgoals) are used to systematically drive the
search for alternative solutions and to determine how each
alternative solution relates to pertinent business- and
system-related qualities, and to their respective
stakeholders described in the organizational view.

The structural view is constructed in accordance with
refinements of the goal graph. Existing or new design
elements introduced within the structural view are related
to architectural decisions described in the goal graph.
Alternative refinements provide the basis for searching and
identifying refinements within the goal graph.

3. The case study introduced

The case study was performed during the fall of 1999 at a
multi-national telecommunication company. We studied a
project that intended to utilize WAP/WML1 technology to

1 WAP - Wireless Application Protocol, WML - Wireless Markup
Language

provide Internet browsing and service provision capabilities
to telephone sets 2 , which would require architectural
changes within their "flagship" switching system.

Figure 1: Telephone system architecture
Figure 1 shows the principal architectural elements of the
telephone system analyzed during this study. The call
control subsystem is responsible for all aspects of a
telephone session: establishing calls; enabling features
such as call forwarding, call waiting and the like; and
terminating calls. All these are implemented by the "phone"
process within the call control subsystem. Call control is
also responsible for providing to users the set-up
functionality for all desired services and features of the
telephone set. The "setup" process within the call control
subsystem implements this function. Call control is
considered the main user application running within the
switching system. Figure 1 also shows the peripheral
component, which is a proprietary hardware device that
connects proprietary telephone sets to the switching
system; and the virtual peripheral components, which is
software on standard PC-based hardware that emulates a
peripheral device for "intelligent" telephone sets. These
intelligent telephone sets are connected through a standard
IP-based environment (such as an in-house LAN) to the
virtual peripheral. The principal architectural question was
to find where to place the WML browser component within
the components or subsystems of the current telephone
system architecture.

1. Within call control
2. Within the virtual peripheral3
3. Within the "intelligent" telephone set

It was assumed that the WML browser would be one of
many future applications that would be made available on
the telephone sets. The question discussed, therefore, was
to find where future applications would reside within the
telephone system, and what component or subsystem would

2 Although WAP is used for mobile devices, the project considered its use
for their non-mobile telephone sets.
3 The “regular" peripheral, and the "dumb" phone devices did not support
the addition of browser software.

control what application would interact at what time with
the telephone set.

Figure 2 shows how moving from old to new business
goals relates to the systems’ architecture evolution path. In
particular it shows:
• How business goals impact the architecture of a

software system. This is shown by the impact links
(straight arrows).

• How the current architecture may evolve to the
different alternative architectures, each providing
different support for adding and controlling new
applications. This is shown through architectural
evolution links (curved arrows).

• How alternative architectures resemble specializations
of a common architectural pattern. This is shown
through inheritance links (dotted arrows).

The "curved" links between the architectural alternatives in
figure 2 show how "far" the proposed alternative
architectures evolve away from the current set of business
goals, toward the ideal appliance-based architecture that
best achieves the new set of business goals.

Figure 2: Architectural evolution paths

4. Illustrating the modeling approach
Figure 3 shows part of a goal graph produced during the
case study. In the top half of the diagram are pertinent
business goals that were voiced by stakeholders. The
bottom half of the diagram shows design goals, and the
architectural solution elements proposed.

The design goal service_creation_infrastructure_be-
_WML_based, shown by the oval modeling element,
denotes the overall functional goal to provide the current
telephone system with a service creation infrastructure
based on WAP/WML technology. This design goal is
decomposed, through means-ends links, into the three
alternative architectural design solutions. Means-ends links
relate alternative design solutions (means) to design goals
(ends). The design solutions proposed were master-

_controlled_WML_based_infrastructure, shared_con-
troller_based_WML_infrastructure, and appliance-
_based_WML_infrastructure, each denoted by the
hexagonal “design task” symbol.

The first architectural solution, master_controlled-
_WML_based_infrastructure, is further decomposed,
through task decomposition links, into design solution
elements that describe how the WAP/WML architectural
elements are added to the current switching system
architecture. Since the switching system itself runs on
Windows NT, this solution suggests adding the WML
browser within the Windows NT environment outside of
the switching system. It adds a Browser proxy component
within call control as another user state process, and
pertinent Browser state information within the user state
manager subsystem of call control.

Figure 3 shows how all of these design elements relate
through contribution or correlation links to business- or
system-related quality goals. A contribution link shows that
the design solution was chosen to achieve a business or
system goal, while a correlation link denotes a side effect a
design solution has on a goal. Both links can be either
sufficiently or insufficiently positive, or to some extent, or
sufficiently negative, to reject a design option. These
degrees of contribution are denoted by the plus and minus
signs, and dots within figure 3. They are used to evaluate
design solutions through qualitative reasoning, and to direct
the exploration of further design alternatives. Placing the
browser within Windows NT, for example, has a
sufficiently positive effect on reusing commercial software
code, which reduces time to market. Placing browser proxy
code within the user state process subsystem of call control
allows maintaining architectural integrity, which in turn
reduces time to market. Maintaining architectural integrity
also aids in reducing the complexity of software code,
which in turn reduces the cost of software development.
However, placing the browser proxy within call control has
a sufficiently negative impact on the architectural evolution
goals for the switching system, by further entrenching the
current architectural principles — rather than moving away
from them or at least creating “evolvable” components that
are reusable within next generation telephone systems.

In the middle of figure 3 we can see that for the
shared_controller_based_WML_infrastructure design
task two alternative design options were identified. This is
shown by refining the design task into a corresponding
design goal, WML_infrastructure_be_shared_con-
troller_based, to denote that this design task, when further
explored, raises further design alternatives. This design
goal is then refined into the two alternatives:
stateless_shared_controller_WML_infrastructure and
stateful_shared_controller_WML_infrastructure.
Figure 3 shows how stateful_shared_controller_WML-

_infrastructure is further refined, through task
decomposition links, into design elements that are proposed
as additions to the current switching system architecture.
Each one of these design elements contributes to business
and system goals. Figure 3 does not show all contribution
or correlation links identified during the case study, but
only the most pertinent ones for our discussion. For
example, it shows that placing the Browser within the
virtual peripheral contributes positively to the architectural
evolution goal (namely the ability to provide “evolvable”
state manager components to future switching systems).
Adding the stream interpreter component, which is another
design element, both affects adversely the performance of
telephone sets attached to the system, and increases the
likelihood of processing errors due to the difficulty of
interpreting data streams without all the knowledge of its
meaning, which resides within call control.

Let us now describe the structural view, and how it relates
to the modeling elements in the goal graph. Figure 4 shows
the structural view of the master_controlled_WML-
_based_infrastructure design alternative, and how it
relates to the generic device sharing architecture. The top
part of figure 4 shows the structures defined for the device
sharing architecture. These are the shared_device, the
device_controller and the application agent. An agent
represents a computational component during design. It
encapsulates the design goals it achieves, the capabilities it
provides, the capabilities it offers to other parts of the
system, and the quality constraints it depends on. Figure 4
shows how the design of each agent depends on other
agents through goals, tasks and resource dependencies. For
example, the resource dependency data_stream between
the application and the device_controller agent denotes
the expectation of each agent to receive such a data stream
from the other during runtime. The goal dependency
exclusive_ownership_granted between the application
and the device_controller agent denotes the expectation of
the application agent that the device_controller agent will
provide it with exclusive access to the data stream received
from, and sent to the shared_device. This expectation
expressed by the goal dependency is a design goal that is
directed from the application agent toward the
device_controller agent. The dependency does not
prescribe how the device_controller agent will achieve
this design goal, but only expects that it will be achieved
during further design. Furthermore, the goal dependency
denotes that it is up to the designer of the
device_controller to decide how to achieve that design
goal, and thus how to implement such exclusive ownership
over data streams within the device controller component.
The two softgoal dependencies, performance and
minimize_processing_errors are quality attributes that
the application agent depends on and wishes to have
satisfied. These quality attributes serve as design
constraints imposed by the application agent on the

device_controller agent in its exploration of design
alternatives. Only those design alternatives that provide

good performance and minimize processing errors are
deemed acceptable to the application agent.

Figure 3: Goal graph denoting a design process with alternative architectural choices
For completeness, let us mention the send_state-
_changed_commands task dependency between the
device_controller and the shared_device. A task
dependency denotes a design goal having constraints to a
particular implementation. In our example, the
device_controller agent expects the shared_device
agent to send commands reflecting state change
information, and expects that such commands will appear
within the data stream.

This example highlights the difference between a
structural view expressed in an agent-oriented manner and
the common blocks-and-arrows diagrams. It shows how
agents in conjunction with strategic dependencies are
used to represent computational elements where design
goals still exist and a design process still needs to unfold.
Goal dependencies direct further design deliberations,
while softgoals provide a means to constrain the selection
of future proposed design alternatives in terms of quality

requirements that need to be achieved within the system
or the organization. Task dependencies provide a means
to constrain design to exhibit particular functional
features. Blocks-and-arrows diagrams represent final
design choices and do not guide where and how further
design choices need to be made.

The top part of figure 4 further shows that the
device_controller agent is made out of three sub-agents,
the command_interpreter, state_manager and
data_stream_redirector agents, each performing part of
the controller tasks. The command_interpreter scans the
incoming data stream from the shared_device for
commands to switch applications. The state_manager
maintains a record of what application currently “owns”
the shared device, and what application needs to be
activated based on incoming commands. Finally, the
data_stream_redirector agent directs the data stream
between the shared device and the application that

currently has exclusive ownership. Any architecture that
makes use of this generic device-sharing architecture
needs to incorporate these three agents within its design.
The bottom part of figure 4 shows how this device sharing
architecture, and in particular how these three components
within the device_controller agent, are allocated within
the master_controlled_WML_based_infrastructure
architectural alternative described in the goal graph in
figure 3. It shows the call_control agent and its two sub-
agents, the I/O_handler and the user_services agent.
User_services is part of the user state processes
subsystems and denotes all services available within call
control. The user_services agent depends on
I/O_handler to provide it with exclusive_telephone-
_set_ownership and to receive a user_input_data. The
I/O_handler in turn depends on the user_services to
receive signal&response_data, which it directs to the
telephone_set agent. The telephone_set depends on
the I/O_handler to be shared, and to receive signal (i.e.
commands in telephone set terminology) and response
data streams.

Figure 4: Abstract device sharing architecture
and concrete master controlled WML
infrastructure
Figure 4 further shows that the master_controlled-
_WML_based_infrastructure architecture is a
specialization of the generic device sharing architecture.
The telephone_set agent is a shared_device, the
I/O_handler is a device_controller, and user_services
is an application. These relationships or "mappings" are
denoted by "ISA" links. When mapping agents from the
generic device sharing architecture to the more concrete
master-controller architecture, the corresponding
dependency links among agents may also be mapped. For
example, the data_stream dependencies among the
shared_device and the device_controller agents are

created between their “counterparts”, the telephone_set
and the I/O_handler agents, albeit often renamed to fit
the domain meaning of those dependencies. Mapping
dependencies, through ISA links, from abstract to more
concrete architectures is a design activity that needs
judgment of designers. Unlike “conventional” inheritance,
ISA links denote possible mappings available. Designers,
in conjunction with the design process view, decide
whether and what dependencies to map onto what agents,
and what domain meaning and possible further
constraining specializations to provide.

Sub-agents are also "inherited" from the abstract
architectural view to the more concrete one. The
state_manager, user_input_data_redirector and
change_command_interpreter that are part of the
I/O_handler are all inherited from the device-
_controller agent. All these agents are allocated as
described by design elements within the goal graph in
figure 3, to achieve good performance and to minimize
processing errors. Both good performance and
minimizing processing errors are achieved by maintaining
the centralized way that incoming signals from the
telephone sets are interpreted, and by not having external
computational elements performing similar tasks
elsewhere. The other alternatives described in the goal
graph allocate the state_manager, data_stream-
_redirector and command_interpreter differently
within the system to make different tradeoffs among these
quality requirements, in particular to create an
architecture that is more favorable to the architectural
evolution goals. Finally, figure 4 shows that the
WML_Browser_proxy agent is considered as a part of
user services, since it is considered as an application,
and in this architecture alternative, applications run within
user services.

Let us now illustrate how the stateless and the stateful
shared controller-based architectures are derived, through
design steps described in the goal graph, from the generic
device sharing architecture. We will see how goals and
softgoal dependencies provide guidance in exploring
alternatives during the design process. Each design task
within the goal graph (denoted by the hexagonal symbol)
refers to the structural view. Refining such tasks either
through means-ends links or task-decomposition links
into sub-tasks prompts the creation of additional
components within the structural view. Goals and
softgoals, both within the goal graph and within the
structural views, guide the search for alternative design
refinements.

The “legacy system with new extensions” structural view
in figure 5 denotes an abstract architecture for extending
legacy systems with new functionality. It defines two
principal agents, the legacy_system and the
new_system_extension agent. The goal and softgoal

dependencies between these two agents describe the
design expectations each agent has of the other, which
should be fulfilled during the subsequent design efforts.
In particular, the view shows that the legacy_system
agent is concerned with performance and
maintain_architectural_integrity. On the other hand, the

new_system_extension agent is concerned with
creating “evolvable components” within the legacy
system. These are components that are designed both to
be implemented within the legacy system and to be reused
within new systems (“next generation systems”) that will
comply with evolved system architectures.

Figure 5: Shared-controller architecture alternatives
As discussed earlier, the goal graph in figure 3 shows that
the WML_based_service_creation_infrastructure
design solution can be achieved through three different
architectures, each one based on a different specialization
of the generic device-sharing architecture. Choosing this
design task corresponds to consolidating the generic
device-sharing architecture and the “legacy system with
extension architecture” into the shared controller
architecture structure described in figure 5. Note that
choosing the shared controller architecture already
achieves quality goals, such as creating evolvable

controller components. This is shown in figure 3 through
a contribution link from shared_controller_based-
_WML_infrastructure to the evolvable [controller]
softgoal. Having achieved this softgoal, further goals and
softgoals are now identified that need to be achieved
within the shared controller design, namely evolvable
[state_manager], evolvable [stream_interpreter] and
evolvable [stream_redirector] components. These are
identified through the structure of the controller agent as
shown in the structural view. The need to now achieve

these softgoals is shown by these softgoals and their
contribution links in figure 3.

This shared-controller architecture introduces the
shared_controller agent, which is composed of the
new_controller agent and a legacy_controller agent. It
further introduces two application agents, the
new_application and legacy_application agents. The
dependencies among new_application and
new_controller, and legacy_application and legacy-
_controller agents, correspond to the dependencies
defined among the application and device_controller
agents within the generic device-sharing architecture.
These are inherited according to the inheritance links
defined between the agents of both structural views. This
shared-controller architecture provides architectural
structure for any system that wishes to provide two focal
points of control, for which legacy applications control is
provided within the legacy system and for new
applications control is provided within an additional
component or subsystem.

A key question during the following design task is how
exactly control is shared between the new_controller and
legacy_controller agents such that the right tradeoffs are
found among 1) maintaining the architectural integrity of
the legacy system 2) optimizing performance of the
system 3) providing further evolvable components 4)
reducing change to the legacy controller and, finally, 5)
reuse of existing software within the system. All these
quality requirements are described in figure 5. The first
ones (1-2) are inherited from the dependencies between
the new_system_extension and legacy_system
agents. The others (3-5) are represented by the
dependencies between the new_controller and
legacy_controller agents.

Figure 5 shows the structural view of the major
components of the stateful shared controller and the
stateless shared controller architectural alternatives. The
goal graph in figure 3 shows how each alternative trades-
off differently the above-mentioned quality requirements.
Figure 5 shows in what way each alternative differs, in
terms of allocating the device_controller sub-agents
inherited from the generic device-sharing architecture
between the new_controller and the legacy_controller.
The stateful architectural alternative inherits all sub-
agents to both the legacy and new controllers. The
stateless architectural alternative inherits only the
data_stream_redirector to the new controller (denoted
by the stateless_new_controller), and makes it
dependent on an enhanced version of the
legacy_controller agent. This enhanced agent processes
commands, manages the state of new applications and
notifies the stateless controller of when to redirect and
stop redirecting data streams. Figure 5, thus, demonstrates
how dependencies among agents, in conjunction with the

goal graph in figure 3, serve as criteria for searching and
evaluating further alternative architectural designs.

5. Discussion

The requirements engineering research community has
recognized the importance of goal modeling [11, 12, 13,
15,16,17]. However, goals are typically used to guide the
establishing of requirements or designing of business
processes, and serve as criteria for requirements
completeness. The approach expounded in this paper
recognizes the need to utilize goals during analysis and
during the design process. This aids in representing the
"unfolding" of the design decision process over time.
Goals during design provide a focal point for unmet
design requirements without (over) committing to
particular design solutions.

This approach allows representing the many stages of
completion through which design solutions move, and the
stakeholder or system goals still to be addressed during
further design. Goals denoting quality requirements
provide an effective means for denoting constraints over
further design efforts, and criteria for choosing among
alternatives. Research in architectural design has given
rise to notations that emphasize the compositional and
behavioral aspect of coarse-grained system structures
[14]. Quality attributes, or non-functional requirements,
were identified as key driving forces, and rationales for
different compositional system configurations. However,
their treatment is often informal and not included in the
architectural design notation. Both research communities
recognize the importance of such links. However, little
research has been done so far in bridging the requirements
and architectural design gap.

The concepts of business goals and their relationships to
functional and non-functional system requirements are not
clear-cut. In this paper we took the stance that business
goals are purposes that the business organization desires
to achieve, both in the short and in the long term. Such
goals are not necessarily tied to one product, but may
relate to all product portfolios developed, maintained and
evolved in the organization. Such goals originate from a
variety of organizational and marketplace stakeholders.
They are used to negotiate and determine functional and
non-functional requirements, and, as we have seen, also
architectural design decisions. For the purpose of
modeling the architectural evolution process we did not
feel the need to make a clear distinction between goals
that originated from the business level and goals that
represented system requirements. Both are seamlessly
linked together through contribution (and correlation)
links, and reside within the context of business and
system development stakeholders. Precise boundaries
might be needed for areas such as contracting and other
legal purposes.

During the case study it was observed that the generic
device-sharing architecture pattern, although being
technical in nature, lent itself well to describing
alternative business models pursued by the organization.
System architectures that assigned the application and
control components to one computational element in the
target architecture pursued a centralized business model.
Architectures that distribute these components, in
particular among computational elements belonging to
applications or devices under the jurisdiction of other
organizations, pursue a decentralized and distributed
business model. During the case study, the design
decision to allow the organization's telephone sets to be
operated by providers of competing switching systems
would pursue both an open and decentralized business
model.

An important feature of the "mapping" mechanism
proposed is its ability to determine conformance among
architectures. When changing the design of the concrete
architecture, it can be determined whether it still
conforms or violates one or more of the abstract
architectures from it took over components and
dependencies from. For example, figure 5 does not show
how the WML browser proxy appeared within the
switching system architecture. Two architectural patterns
were, in fact, applied. One is the abstract architecture
describing the WAP/WML reference architecture, which
defines the WML browser agent, and the other describes
how proxy components are utilized when wishing to split
components among two spatial locations, while
maintaining both parts as a logical computational unit.
The structural view, in conjunction with the goal graph,
allows representing such relationships among various
"reference architectures" and how and why each
contributes to the establishing of solution architectures.

6. Conclusion and future work

The case study highlighted the need for a modeling
approach that supports modeling and analyzing how
business goals relate to the architectural decision-making
process, and how changing business goals give rise to
alternative architectural choices and solution structures. It
illustrated the need to describe the organizational
stakeholders, their goals, and how these are affected by
alternative choices during the design process. The case
study highlighted the utility of goal modeling for
expressing alternative design choices, and to serve as
criteria during design deliberation. It showed the utility of
using agents and goal concepts for modeling architectural
solution structures. Agents were used to describe
architectural distribution of capabilities, while goals were
used as a focal point for expressing where within
architectural structures further design choices needed to
be made. Future work needs to focus on refining the
integrated modeling framework, further formalizing the

relationships among its diagrams, and investigating how
its abstraction and mapping facilities can support
knowledge-based tools that provide systematic design
guidance and analysis support.

6. Acknowledgements
We like to thank the anonymous reviewers for their
valuable comments; Tauba Staroswiecki, Douglas
Anderson for their proof reading; and CITO, NSERC and
our industrial research partner for their financial support.

7. References
[1] Boehm BW. Characteristics of software quality. North-
Holland Pub. Co., Amsterdam New York 1978.
[2] Bowen TP. Wigle GB. Tsai JT. Specification of software
quality attributes (Report RADC-TR-85-37).
[3] Chung L. Representing and using non-functional
requirements: a process-oriented approach. Department of
Computer Science University of Toronto. Toronto 1993.
[4] Chung L. Nixon B. Yu E. et al. Non-functional requirements
in software engineering. Kluwer Academic, Boston 2000.
[5] Mylopoulos J. Chung L. Nixon B. Representing and using
nonfunctional requirements: a process-oriented approach. IEEE
Transactions on Software Engineering 1992; 18(6).
[6] Chung L. Nixon B. Yu E. Using quality requirements to
systematically develop quality software. Proceedings of the 4th
Int. Conf. on Software Quality. McLean, VA, USA. 1994.
[7] Chung L. Nixon B. Yu E. Using non-functional
requirements to systematically select among alternatives in
architectural design. Proceedings of the First International
Workshop on Architecture for Software Systems. Seattle,
Washington. 1995.
[8] Chung L. Gross D. Yu E. Architectural design to meet
stakeholder requirements. In: Donohue, P(ed.). Software
architecture. Kluwer Academic Publishers. San Antonio, Texas,
USA 1999. pp 545-564.
[9] Chung L. Nixon B. Yu E. Dealing with change: An approach
using non-functional requirements.
[10] D. Gross, E. Yu, From Non-Functional Requirements to
Design through Patterns, Requirements Engineering. (to appear).
[11] A. I. Anton, "Goal-based Requirements Analysis." Proc.2nd
IEEE Int. Conf. Requirements Eng. April 1996.
[12] A. Dardenne, A. van Lamsweerde and S. Fickas, Goal-
Directed Requirements Acquisition, Science of Computer
Programming, 20, pp. 3-50, 1993.
[13] S. Jacobs and R. Holten, "Goal-Driven Business Modelling
– Supporting Decision Making within Information Systems
Development," Proc. Conf. On Organizational Computing
Systems, Milpitas, Calif. 1995, pp. 96-105.
[14] Shaw, M. and Garlan, D. (1996) “Software Architecture:
Perspectives on an Emerging Discipline”, Prentice Hall.
[15] Yu E. Modelling strategic relationships for process
reengineering. Ph.D. thesis, Dept. of Computer Science,
University of Toronto. 1995.
[16] E. Yu Agent Orientation as a Modelling Paradigm,
Wirtschaftsinformatik. 43(2) April 2001. pp. 123-132.
[17] E. Yu and J. Mylopoulos `Why Goal-Oriented
Requirements Engineering', Proceedings of the 4th Int.
Workshop on Requ. Engineering: Foundations of Software
Quality (8-9 June 1998, Pisa, Italy). E. Dubois, A.L. Opdahl, K.
Pohl, eds. Presses Universitaires de Namur, 1998. pp. 15-22

