
 1

Strategic Capability Modelling of Services

Lin Liu, Chi-hung Chi Zhi Jin Eric Yu
School of Software, Academy of Mathematics and Faculty of Information Studies,
Tsinghua University, Management Science, CAS, University of Toronto,
Beijing, China 100084, Beijing, China, 100080, Toronto, Canada, M5S 3G6

{linliu,chichihung}@tsinghua.edu.cn, zhijin@math.ac.cn, yu@fis.utoronto.ca

Abstract
This paper introduces a services modeling ontology

that describes Services requirements in terms of
strategic capabilities of an actor. We argue that the
modeling language together with heuristic rules-based
reasoning mechanism offer a potentially more
substantive approach to understand the nature of
service systems in a variety of social contexts.
Furthermore, understanding the underlying
assumptions and constructs through the use of the
services capability modeling framework will not only
inform researchers of a better design for
service-oriented systems, but also assist in the
understanding of intricate relationships between
different factors that services are situated in. We
present a few illustrative services situations as
proof-of-concept examples to illustrate the proposed
approach.

1. Introduction

The concept of services, having achieved
prominence in the context of Service-Oriented
Architecture and Web Services, is now gaining even
broader scope. IBM’s recent call upon Service Science,
Engineering, and Management [19] has pointed out a
promising paradigm for next generation business and
computing. It aims to investigate emerging issues in the
transformation of IT infrastructure and software

industry towards on-demand e-business and real-time
services. It calls for theories and practical techniques
from business, management, and information studies,
to most (if not all) major areas in computer science and
engineering. While there are different approaches to
services, one of the fundamental characteristics of the
service concept is its close tie with requirements –
requirements of service user, service provider together
with the constraints in the social-technical
environments. From this viewpoint, the eventual
success of services as a new business and
computational paradigm is determined by how well
requirements could be understood and addressed.

Why is RE for service so important, and difficult?
In essence, the requirements engineering process for
services are conducted in parallel and separately by the
multiple participants: Service Provider, Service
Requestor, and different Service Intermediaries. Before
binding, each of these actors only have knowledge
about themselves, knowledge about other actors are
partial and hypothetical. A service binding will take
place only if an agreement forms among the involved
parties. As a consequence, the more accurately an actor
understands others’ requirements in advance, the better
chance it has to form agreements with other actors. In
other words, in comparison to software product
development, service development needs to deal with
more uncertainties when mapping the solution space
into the problem space, since the latter’s scope and

 2

context are not as predetermined. It requires a
components-in-advance mode, but how do we know
what components to build if we don’t know the actual
requests? For instance, conventional off-the-shelf
software is usually general-purpose software that does
not take the variations of user requirements into full
consideration. The service concept implies inherently
customer orientation. Customization has to be done in
order to handle variations on functional and
non-functional requirements, on the composition of the
product, and on the operational environments. As a
consequence, this leads to the problem of what to
provide, how to provide, how much quality to provide,
and how to demonstrate the function and quality that
can be provided. Remember that planning and
performing of all these has costs. Requirements
engineering for service is therefore difficult.
 In order to handle the uncertainties in services
engineering, we propose to start by modelling the
strategic capabilities and needs of a service
organization. In this paper, we aim towards building an
automated reasoning framework for supporting open
multi-agent societies. In such societies, strategic actors
with services capabilities and requirements form social
networks in order to fulfill their needs, and to serve
others with service capabilities. Based on concepts
from the strategic actors modeling framework in i*, we
build a service modeling ontology to represent and
reason about alternative service strategies an actor
(representing an organization) can adopt. The
existing modelling constructs from the i* language are
mapped into elements of executable service-oriented
systems. The entire SOA process workflow (from
service publishing, request, discovery, selection to
binding) is captured by the framework to allow
automatic QoS-based service composition.

2. A Service Requirements Ontology Based

on Strategic Capability

In this section, we first define the terms in our service
requirements ontology, so that w can then provide
precise rules for reasoning. Basic concepts of the
service ontology include actor, actor’s service
capability, actor’s service requirements, actor’s
knowledge on service composition and on other actor’s
capability and requirements, actor’s actual behaviour of
performing a service, delegating a service to another
actor, and informing other actors of its requirements,
capability and knowledge. To move towards automated
support for services manipulation, we build a
formalism based on these concepts to set up the
services and analysis mechanism. We will not present
the graphical notation in this paper, in the interest of
space.
Definition 1. A = {a1, …, an} is a set of Actors. S=
{s1, …, sn} is a set of Services. Q = {q1, …, qn} is a set
of Quality attributes. These are primitive concepts of a
service setting.
Definition 2. ME = S → S, is a set of means-ends
relationships. Textually, we write s’→s, where s’
represents the end, and s represent the Means. DC = S
→ P S, is a set of decomposition relationships. Textually,
we use s→{s0,…, sn }.

Definition 3. f = A× Q × S → Int is a set of Quality of
Service functions. f(ai, qj, sk), in which ai ∈A, qj ∈Q, sk∈
S, describes the value of a quality attribute qj of a
service sk provided or required by actor ai.
Definition 4. For each actor a ∈ A, there is an FR⊆ A×
S representing the set of Functional Services Required
by a. There is also NFR⊆ A× Q × S× Int, representing
the set of Non-Functional Services Required by a.
Textually, we write Requires a s
Definition 5. For each actor a ∈ A, there is a FC ⊆ A× S
representing the set of Functional services that a is
capable of. There is also NFC⊆ A× Q × S× Int,

 3

representing the set of Non-Functional Services Can be
provided by a. We use Can a s.

Definition 6. For each actor a ∈ A, there is a K ⊆ A×
FC ∪NFC ∪FR ∪NFR representing the set of
Knowledge about services capabilities and
requirements. Textually, we use Know a x

Definition 7. O = {o1, …, on} is a set of applicable
Operations to a service context sc= <A, R, C, K >.
There are following basic types of operations: delegate,
tell, and perform.

1. delegate (a, s, b), represents that there is an
inter-actor delegation, where a, b ∈A, s∈S.

2. tell (a, y, b), represents an inter-actor
communication, where a, b ∈A, y∈
FR∪NFR∪FC∪ NFC.

3. perform a s, represents a service delivery, where
a∈A, s∈S.

For each delegation operation, we call the
delegating actor the delegator, and the actor who is
delegated upon the delegatee. By delegating a service
to another actor, an actor (the delegator) is able to be
served that it was not able, or not as easily or as well
otherwise. At the same time, the delegator becomes
vulnerable. If the delegatee fails to deliver the service,
the delegator would be adversely affected in its ability
to achieve its goals.

A world of services is an open environment, in
which each of the above sets can be updated
dynamically. In other words, actors will come into and
get out from the environment. New request will be
initiated or removed by actors; new capabilities will be
added into or removed by the actors. In such a highly
dynamic and distributed environment, automated
service discovery, service agreement formation, and
service selection has to be manipulated by certain
machine process-able rules and policies. Below, we
define some of the rules that can be applied under a
service context: sci= <A, R, C, K >.

Rule 2.1: Service Delivery Rule

If an actor a is capable of providing a service s, and
it also has the requirements of performing the service, it
can perform the service. The requirement could be
direct requirements of his own, or indirect requirements
from other service requestors, depends on how the
social rule of the service community are defined [20].
The operation “⇒” below is used as a production
operation, which means that if the condition on the left
holds, then action on the right hand can be triggered.
The operation is not mandatory, but is optional
according to the actor’s preference.

Actor (a) ∧ Service(s) ∧ Can a s ∧ Requires a s ⇒
perform a s.

Rule 2.2: Service Composition/Transformation Rule

If an actor a is capable of providing a set of services
{s1 …, sn }, and it also has knowledge on how to
compose or transform it into other more complex
service s0, then it is capable of providing the
transformed or composite service s0.

(1) OR composition through Means-ends link

Actor (a) ∧ Service (s0) ∧ …∧Service (sn) ∧ Know a
{ s1→s0, …, sn→s0 } ∧ Can a sj (1≤ j ≤n) ⇒ Can a s0.

(2) AND composition through Decomposes link

Actor (a) ∧ Service (s0) ∧ …∧Service (sn) ∧ Know a
(s0→ {s1 …, sn })∧ Can a s1∧…∧ Can a sn ⇒ Can a s0.

Rule 2.3: Request Decomposition/Transformation
Rule

If an actor a requires a services s, and it also has
knowledge on how to decompose or transform it into
other more concrete services {s1 …, sn }, then it can
request for those the transformed or component services
instead.

(1) AND decomposition

Actor (a) ∧ Service (s0) ∧ …∧Service (sn)∧ Know a (s0→
{s1 …, sn })∧ Requires a s0 ⇒ Requires a s1 ∧ …∧

 4

Requires a sn.

(2) OR decomposition

Actor (a) ∧ Service (s0) ∧ …∧Service (sn)∧ Know a
{ s1→s0, …, sn→s0 }∧ Requires a s0 ⇒ Requires a

s1∨…∨Requires a sn.

Rule 2.4: Publication Rule

An actor a may inform other actors about its request,
capability about a service. The rules given below shows
a possible strategy an actor may take during decision
making related to service publication. It is a rather
simplified example to show how the proposed
procedure works.

(1) Publish Request to Known Provider

Actor (a) ∧ Actor (b) ∧ Service (s) ∧ Requires a s ∧
Know a (Can b s) ⇒ tell (a, Requires a s, b) ∧ Know a
(Know b (Requires a s)).

An actor a may publish a request to a known
provider with the intention of building a service
agreement. A direct effect of this publication action is
that the publisher knows that the receiver of the message
will know about his requirement on this service. This
rule only considers the knowledge update from the
publisher’s side, knowledge update on the receiver’s
side is addressed by Rule 2.5.

(2) Publish Request to an Expert on Service
Transformation/Composition/Decomposition

Actor (a)∧Actor (b)∧Service (s) ∧ Service (s’) ∧
Requires a s∧ Know a (Know b (s’→s)) ⇒ tell (a,
Requires a s, b) ∧ Know a (Know b (Requires a s)).

An actor a may publish a request to a known expert,
who has knowledge on service composition,
decomposition, or transformation, with the intention of
knowing relevant steps of fulfilling a service. A direct
effect of this publication action is that the publisher
knows that the receiver of the message will know about
his requirement on this service.

(3) Publish Request to Service Registry (or Other
Information Intermediary)

Actor (a) ∧ Actor (b) ∧ Actor (x) ∧ Service (s) ∧ Service
(s’) ∧ Requires a s ∧ Know a (Know b ((Requires x s)∨
(Can x s) ∨ (Know x s’→s))) ⇒ tell (a, Requires a s, b) ∧
Know a (Know b (Requires a s)).

An actor a may publish a request to a known
information center, who might be a web services
registry, or simply another actor, who has knowledge on
capabilities, requests, knowledge on other unknown
actors, with the intention of knowing relevant
information of fulfilling a service. A direct effect of this
publication action is that the publisher knows that the
receiver of the message will know about his requirement
on this service.

(4) Request Broadcasting

Actor (a) ∧ Service (s) ∧ Requires a s ⇒ tell (a,
Requires a s, all) ∧ Know a (Know all (Requires a s)).

An actor a may broadcast a request with the
intention of obtaining relevant information of fulfilling
a service. A direct effect of this publication action is that
the publisher knows that the receiver of the message will
know about his requirement on this service.

(5) Publish Service to Known Requestor

Actor (a) ∧ Actor (b) ∧ Service (s) ∧ Can a s ∧ Know a
(Requires b s) ⇒ tell (a, Can a s, b) ∧ Know a (Know b
(Requires a s)).

An actor a may publish a service to a known
requestor, with the intention of building service
agreement. A direct effect of this publication action is
that the publisher knows that the receiver of the message
will know about his capability on this service.

(6) Publish Service to Known Expert on Service
Composition/Transformation

Actor (a) ∧ Actor (b) ∧ Service (s) ∧ Service (s’)∧ Can a
s ∧ Know a (Know b s→s’) ⇒ tell (a, Can a s, b) ∧ Know

 5

a (Know b (Can a s)).

An actor a may publish a service to a known expert,
who has knowledge on service composition,
decomposition, or transformation, with the intention of
knowing relevant steps of building a new service based
on existing ones. A direct effect of this publication
action is that the publisher knows that the receiver of the
message will know about his capability on this service.

(7) Publish Service to Information Intermediary

Actor (a) ∧ Actor (b) ∧ Actor (x) ∧ Service (s) ∧ Service
(s’) ∧ Can a s ∧ Know a (Know b ((Requires x s)∨ (Can x
s) ∨ (Know x s’→s))) ⇒ tell (a, Can a s, b) ∧ Know a
(Know b (Can a s)).

An actor a may publish a service to a known
information center, who might be a web services
registry, or simply another actor, who has knowledge on
capabilities, requests, knowledge on other unknown
actors, with the intention of knowing relevant
information of promoting a service. A direct effect of
this publication action is that the publisher knows that
the receiver of the message will know about his
capability on this service.

(8) Service Advertising

Actor (a) ∧ Service (s) ∧ Can a s ⇒ tell (a, Can a s, all)
∧ Know a (Know all (Can a s)).

An actor a may broadcast an advertisement of a
service with the intention of obtaining relevant
information of promoting a service. A direct effect of
this publication action is that the publisher knows that
the receiver of the message will know about his
capability on this service.

Rule 2.5: Knowledge Update Rule

∃ x∈ R∪ C∪ K∪ B, Actor (a) ∧ Actor (b) ∧ tell (a, x, b)
⇒ Know b x.

An actor will update his Knowledge when receive a
message about a requirement, a capability, a piece of

knowledge. A direct effect of this action is that the
receiver of the message will know about the relevant
information.

Rule 2.6 Knowledge Contradiction Resolution Rule

Actor’s knowledge from different sources may be
contradicting to each other, for more effective decision
making based on these knowledge, we need to resolve
these contradictions first.

(1) No Contradiction: Actor (a) ∧ Actor (b)∧ Know

b (Know a x) ∧ no Know b not x ⇒ Know b x.

If an actor has indirect knowledge about x, and it does
not have contradicting knowledge about x, then this
knowledge can turn to direct knowledge.

(2) Ignore: Actor (a) ∧ Actor (b)∧ Know b (Know a x)
∧ Know b not x ⇒ no Knowb x ∧ no Know b not x.

If an actor has indirect knowledge about x, and it does
have contradicting knowledge about x, then both pieces
of knowledge will be removed from the knowledge
base.

(3) Ask public opinion about a contradicting
knowledge

Actor (a) ∧ Actor (b)∧ Know b (Know a x) ∧ Know b not
x ⇒ tell (b, not x, all).

If an actor has indirect knowledge about x, and it does
have contradicting knowledge about x, then it will
broadcast its knowledge about x, to cause a conflict in
other actor’s knowledge base for a consensus.

(4) Confirm with the sender about a contradicting
knowledge:

Actor (a) ∧ Actor (b)∧ Know b (Know a x) ∧ Know b not
x ⇒ tell (b, not x, a).

If an actor has indirect knowledge about x, and it does
have contradicting knowledge about x, then it will send
its knowledge about x back to the knowledge source, to
cause a conflict in other actor’s knowledge base for a
debate.

 6

(5) Accept the sender’s knowledge although
contradicting:

Actor (a) ∧ Actor (b)∧ Know b (Know a x) ∧ Know b not
x ⇒ Know b x.

If an actor has indirect knowledge about x, and it does
have contradicting knowledge about x, but if it
considers the new indirect information has higher
certainty, then it will accept it any ways.

The five rules in Rule 2.6 are alternatives for an actor
to resolve knowledge conflict. They are applied
according to the preferences and contexts of decision
an actor encounters.

Rule 2.7: Service Agreement / Delegation Rule

Actor (a) ∧ Actor (b) ∧ Service (s) ∧ Requires a s ∧
Know a (Can b s) ∧ tell (b, s, a) ∧ satisficing(a, f(b,
q,s))⇒ delegate (a, s, b).

A service agreement is established when an actor a
has a requirement, and he knows that another actor b
could provide the service, and also receives a message
from b about his capability regarding the service. A
direct effect of a service agreement is a delegation
action.

Rule 2.8: Reciprocal Dependency Rule

Actor (a) ∧ Actor (b) ∧ Service (s) ∧ delegate (a, s, b) ∧
delegate (b, s’, a) ⇒ Requires b s.

A delegation will take effect to the delegatee only if
he believes that it is reciprocal. That is, he also needs
exchange-services from the requestor. In real world case,
general exchange for services could be payment, social
benefits, etc.

Rule 2.9: Capability Propagation Through
Delegation

 Actor (a) ∧ Actor (b) ∧ Service (s) ∧ delegate (a, s, b) ∧
Perform b s ⇒ Can a s .

A delegation will take effect to the delegator, only if
the delegatee performs the service provisioning

procedure. That is, if a delegatee does not deliver the
expected services, the fulfillment of the delegator’s
service request is problematic.

The reasoning procedure to be applied to a service
situation SC = <A, R, C, K > is to find a sequence made
up of links (k) applied to SC such that for each
Requiresa s→ Cana s.

The rules listed above build the basic reasoning
structure for the proposed formalism. By pursuing
further about usage of quality attributes, other service
composition/decomposition rules, formal models with
richer expressiveness can be built, and analyzed. For
instance, by explicitly representing quality
requirements, we will be able to reason about how
quality requirements can be used in service selection.
By considering scenarios that actor tells false
capabilities, knowledge, and beliefs out of malicious
intent, we will be able to model trust issues in the
service world.

3. Modelling Generic Service Patterns

3.1 A world of one party: the service
transformation model

To start, we may think of a strategic capability
model with only one actor. An example setting could be
the experience of IKEA. The organizational actor has
requirements to be fulfilled by itself, e.g., “IKEA
makes profit.” In the mean time, it possessed some
abilities, such as Furniture Design, Manufacture, and
Marketing etc. If IKEA is situated in conventional
closed enterprise mode, the organization has no one
else to rely on in fulfilling its required services. Thus, it
has to satisfy life requirements by itself. In such a
single party’s world, the issue of service turns into
self-consciousness to one’s own capabilities and
knowledge. If its capability and knowledge are
sufficient, its goals will be satisfied. One way to put
this situation down as an i* graphical representation is

 7

in [21], and the corresponding formal description and
reasoning is as follows:
SC10 := (Actor (IKEA), Requires IKEA Make Profit ,

Can IKEA Design, Can IKEA Manufacture, Can
IKEA Marketing, Knows IKEA {Designing,
Manufacturing, Marketing,…} → Make Profit).

 Applicable rules to SC10: rule 2.3 (1)--new, rule 2.2
(2)--new
Routine 1: step 1 - apply rule 2.3(1) ,
SC11 := (…, Requires IKEA Design, Requires IKEA
Manufacture, Requires IKEA Marketing…).
Applicable rules to SC11: rule 2.3 (1)--loop, rule 2.2
(1)--new
Routine 1: step 3 - apply rule 2.1,
SC12 := (… Perform IKEA Design, Perform IKEA
Manufacture, Perform IKEA Marketing …).
Applicable rules to SC12: rule 2.3 (1)--loop, rule 2.2
(1)--new, rule 2.1--new
Routine 1: step 4 - apply rule 2.2(1),
SC13 := (…Can IKEA Make Profit…).
Applicable rules to SC13: rule 2.3 (1)--loop, rule 2.2
(1)--loop, rule 2.1--new
Routine 1: step 4 - apply rule 2.1,
SC14 := (… Perform IKEA Make Profit…).
No new applicable rule to SC14. End of Routine 1.

Conducting analysis to the model above is to find
routines through which an actor can accomplish his
required services by means-ends reasoning on required
services. As we can see, Routine 1 is one possible
answer returned by the service reasoning procedure. A
routine consists of services that the actor is capable of
performing and the know-how knowledge represented
as links in i*, they can be organized into a rough action
plan, and related to the correspondence service
requirements.
3.2 From Informal to Formal Strategic
Delegation

A Strategic Dependency (SD) model in i* consists
of a set of actors linked together with dependency links.
Each dependency link between two actors indicates

that one actor depends on the other for certain service
such that the former may attain some goal. By
depending on another actor, an actor (the depender) is
able to achieve goals that it was not able to without the
dependency, or not as easily or as well. At the same
time, the depender becomes vulnerable. If the
depended actor fails to deliver the service, the depender
would be adversely affected in its ability to achieve its
goals. We are to model generic patterns of service
relationships in the following, and study the different
situations in the different service-oriented computing
environments.

A world of partner: A Service outsourcing model

Now consider the case, in which IKEA expands its
business abroad. In a world of partners, we assume that
there is no third party and zero advance knowledge is
available to either side. Conducting analysis to such
models is to find another actor through whom the
required services of an actor can be accomplished
through delegation. The basic assumption is that a
capable and trusted actor can be depended on for the
fulfillment of a service request an actor has. The model
shows the reasoning procedures of the two actors
regarding a service situation SC20:

In a physical world, knowledge about the
participants of a service relationship can be obtained
easily, for instance, Local Furniture Factory sees IKEA
getting popular world wide; so it believes that IKEA
has the capability of making profit with him together.
Such scenario works fine in a closed world where
people can meet face-to-face easily. However, when we
come to an open world where direct observation and
past experience are not available, how do we build a
relationship between the service participants? What
new problem do we need to deal with?
SC20 := (Actor (IKEA), Actor (Local Factory),
Requires Local Factory Design, Requires IKEA
Manufacture, Can IKEA Design, Can LocalFactory
Manufacture).

 8

Applicable rules to SC20: rule 2.4 (4)--new, rule 2.4
(8)--new
Routine 1: step 1 - apply rule 2.4 (5),
SC21 := (…, tell (Local Factory, Requires Local Factory
Design, IKEA), tell (IKEA, Requires IKEA Manufacture,
Local Factory) …).
Applicable rules to SC21: rule 2.4 (4)--loop, rule 2.4
(8)--new, rule 2.5-new
Routine 1: step 2 - apply rule 2.5 and rule2.6 (1) ,
SC22 := (…,Know IKEA Requires Local Factory Design,
Know Local Factory Requires IKEA Manufacture, …).
Applicable rules to SC22:, rule 2.4 (8)--new,
Routine 1: step 3 - apply rule 2.4(8) ,
SC23:= (…, tell (Local Factory, Can Local Factory
Manufacture, IKEA), tell (IKEA, Can IKEA Design,
Local Factory), …).
Applicable rules to SC23: rule 2.4 (5)--loop, rule 2.4
(9)--loop, rule 2.5--new
Routine 1: step 4 - apply rule 2.5 and rule2.6(1) ,
SC24:= (…, Know IKEA Can Local Factory Manufacture,
Know Local Factory Can IKEA Design,…).
Applicable rules to SC24: rule 2.7--new
Routine 1: step 5 - apply rule 2.7,
SC25:= (…, delegate(IKEA, Manufacture, Local
Factory), delegate (Local Factory, Design, IKEA), …).
Applicable rules to SC25: rule 2.8--new
Routine 1: step 6- apply rule 2.8,
SC26:= (…, Requires Local Factory Manufacture),
Requires IKEA Design, …).
Applicable rules to SC26: rule 2.1(1)--new
Routine 1: step 7- apply rule 2.1(1),
SC27 := (… Perform IKEA Design, Perform Local Factory
Manufacture…).
Applicable rules to SC27: rule 2.9--new
Routine 1: step 8- apply rule 2.9,
SC28 := (… Can IKEA Manufacture, Can Local Factory
Design,…).
Applicable rules to SC28: rule 2.1(1)--new
Routine 1: step 8- apply rule 2.1(1),
SC29 := (…Perform IKEA Manufacture, Perform Local

Factory Design,…).
No new applicable rule to SC28. End of Routine 1.

3.3 A World with Deception: A Service Model on
Trust

The publication rules set given in Rule 2.4 is based
on an assumption that the actors in the system are
telling the truth, but this may not be the case in the real
world. Assume that there is an actor who lies about his
capability to obtain another actor’s service. We may
extend the framework with action rules such as the
following:

Publish false capability:
Actor (a) ∧ Actor (b) ∧ Service (s) ∧ no Can a s ∧ Know

a Requires b s ⇒ tell (a, Can a s, b).
The service situation can evolve into the one

represented by the following graphical model:

Establish black list:
Actor (a) ∧ Actor (b) ∧ Service (s) ∧ delegate (a, s, b) ∧
no perform b s ⇒ Know a not Can b s.

From this model we can see that the proposed
formalism can be used to describe different domain
assumptions, operational rules in a service environment.
By analyzing the differences between systems showing
desired properties, and those allowing undesirable
behaviors, a designer will be able to build mechanisms
reflecting the right control schema.

3.4 A World with Circle of Trust: Service
Selection based-on Community Feedback

As mentioned in the previous sections, in an open
environment, direct knowledge about others actor is
very hard to obtain. And sometimes, decide if another
actor is trustworthiness on providing a service are not
two value black-or-white assertions, but vectors using
discrete values to represent varying levels of
confidence. For instance, we may adopt a trust scoring
schema to quantify the confidence level of beliefs
circulated within the service network.
i. At the beginning, the trust level of all actors is 0.

 9

ii. Whenever an actor successfully delivers a service,

its trust level to the service user will be increased
by 1.

iii. When an actor fails to deliver a delegated service,
its trust level will be decreased by 5 or to –1
whichever is higher.

iv. Whenever an actor recommends a provider who
delivers a service successfully, its trust level to the
service requestor will be increased by 1.

v. Whenever an actor recommends a provider who
fails to deliver a service, its trust level to the
service requestor will be decreased by 1.

vi. The confidence level of a recommendation is
based on the recommender’s confidence to the
content, and the recommender ’s confidence level
to the receiver of the recommendation.
Naturally, we may consider defining a function of

each of the knowledge in K of a service situation SC,
whose domain is A ∪ B, with range being Integer:
Rule 2.10: Trust Function Management Rules

1. Set initial Trust value between actors (in response
to rule (i) above):

Actor (a) ∧ Actor (b) ∧ no f (a, Trust, b) ⇒ f(a,
Trust, b) = 0

2. Compute Trust value of a received recommendation
(in response to rule (vi) above):

∃ x∈ R∪ C∪ K∪ B, Actor (a) ∧ Actor (b) ∧ tell (a,
x, b) ⇒ f(b, Trust, x) = f(b, Trust, a) × f(a, Trust, x).

∃ x∈ R∪ C∪ K∪ B, Actor (a) ∧ Actor (b) ∧ tell (a,
x, b) ∧ Know b x ⇒ f’(b,Trust, x) = f(b, Trust, x) ×
f(b,Trust, a) × f(a, x).

3. Compute Trust after a service (in response to rule
(ii, iii, iv, v) above):

Actor (a) ∧ Actor (b) ∧ Service (s) ∧ delegate (a, s,

b) ∧ perform b s ⇒ f’ (a, Trust, Can b s) =f (a, Trust,
Can b s) +1 .
∃ x∈ R∪ C∪ K∪ B, Actor (a) ∧ Actor (b) ∧ tell (a, x, b)
∧ no Perform b s ⇒ f’ (a, Trust, Can b s) = f (a,Trust,
Can b s) –5, if f (a, Trust, Can b s) ≥ 4; f’ (a,Trust, Can b
s) = -1 , otherwise.

Actor (a) ∧ Actor (b) ∧ Actor (x) ∧ Service (s) ∧
delegate (a, s, b) ∧ perform b s ∧ tell (x, Know x Can b s,
a) ⇒ f’ (a, Trust, x) = f (a, Trust, x) +1 .
Actor (a) ∧ Actor (b) ∧ Actor (x) ∧ Service (s) ∧
delegate (a, s, b) ∧ no perform b s ∧ tell (x, Know x Can

b s, a) ⇒ f’ (a, Trust, x) = f (a, Trust, x) - 1 .
4. Select a service according to trust level:

Actor (a) ∧ Actor (b) ∧ Actor (x) ∧ Service (s) ∧
Requires a s ∧ Know a Can b s ∧ Know a Can x s ∧
tell (b, s, a) ∧ f (a, Trust, Can b s) ≥ f (a, Trust, Can

x s) ≥ 0 ⇒ delegate (a, s, b).
The rules defined above are to illustrate that the

proposed formalism can be easily used and extended to
represent a qualitative trust management mechanism.
Other qualitative or quantitative mechanisms for
service representation, evaluation, or management, can
be modeled and analyzed by similar means.

4. Related work

The approach proposed in this paper mainly
synergizes ideas from three major areas: knowledge
representation and reasoning in autonomous agents
systems, requirements modeling and analysis, and
semantic web services. In conventional knowledge
engineering and AI, various subject logics and social
ontologies to represent belief, knowledge, desire, and
intention of autonomous agents have been proposed
[10, 11, 12, 13, 14, 17]. Our work aims to adopt
theoretical results from this area and build a practical
framework for the service-oriented computing
paradigm. Thus, we will mainly focus on the specific
needs, assumptions, rules and reasoning mechanism for

 10

the service setting. Existing requirements modeling
frameworks [15, 16] emphasize on capture and elicit
the requirements in the problem domain. It usually
takes a top-down refinement way of thinking. However,
the open, dynamic, continuous system environment
needs to have a model integrating high-level abstract
requirements models with concrete executable service
manipulating mechanisms seamlessly. By representing
service request and service capability in a compatible
ontology, we aim towards a holistic solution to the
problem.

The Web Service Modeling Ontology (WSMO) [3]
provides a conceptual framework focusing on the
functional and behavioral aspects of a Web service.
Comparing WSMO, the concepts and reasoning
mechanism proposed in this paper emphasis on
strategic actor’s knowledge and decision making about
the capability of other actors, rather than a
straightforward description about web services
behaviors and constraints. This is based on the
assumption that actors participate a service are strategic.
That is, an actor has his own intended requirements on
service functionality and quality to fulfill, which may
only partially knowable to other actors. The ontology
proposed in this paper is a natural complementary to
DAML-OIL [4], since it describes web services in a
higher level of abstraction. Instead of focusing on the
static structure of a service implementation, it describes
service from a service requestor’s perspective, i.e.,
from the intended usage angle.

QoS attributes are the key to dynamically selecting
the services that best meet user needs. In order to
supplement the deficiency of lacking effective means
for expressing its quality of service, quite a few QoS
ontologies have been proposed in recent literature, such
as [5], which address dynamic service selection via an
agent framework coupled with a QoS ontology. With
these approaches, participants can collaborate to
determine each other’s service quality and
trustworthiness. This, in essence, targets at the same

goal with our approach. Another related work on
non-functional aspects of web services is DAML-QoS
[2], which is a complementary to DAML-S ontology
for providing a better QoS metrics model. The
difference is similar to our analysis above, i.e., their
ontologies look service as passive objects, but we
consider services as active agents with intentions and
preferences. [7, 8, 9] examine the development of
generic ontologies for Quality of Service (QoS) by
consensus, which can be considered as knowledge and
quality evaluation rules in the framework proposed in
this paper.

Discovering and assembling individual Web
Services into more complex new and user-centric web
processes is an important challenge. In [6], Web
Services composition techniques by using their
ontological descriptions and relationships to other
services are proposed. An automatic composition
technique is used to check semantic similarities
between interfaces of individual services while taking
the service qualities into consideration. The ontology
proposed in this paper can be used to help the
composition of individual services, and also the
decomposition of service requirements. Taking such a
two-ways thinking, alternative ways to satisfy user’s
service requirements can be taken into consideration.

In [18], Penserini et al. propose to use the Tropos
requirements methodology to support services
design, identification, composition, and binding. The
concept of service capability is defined as
Means-ends links and Contribution links in the i*
framework. Tropos design steps such as
goal-decomposition, dependency handshake, are
now considered as service-agents’ decision making
actions. Specifically, top-down goal analysis is used
for service identification; bottom-up goal analysis is
used for service composition. The idea of using
Tropos in service requirements engineering is
promising, and having the same basis with this paper.
The major difference lies in that capabilities are

 11

defined as links in their work, while capabilities in
this paper correspond to the concept of task in i*,
links are considered with knowledge. The
incorporation of capability and knowledge have
better potential in addressing uncertainty and partial
knowledge, and conflict of interest of actors.

5. Conclusion

In this paper, we propose a service requirements
ontology that is based on the actors' strategic capability.
Although it is a preliminary proposal explaining our
ideas for the basic conceptual structure, we feel that
unlike other work on service ontology, our proposal
focuses on represent explicitly the knowledge and
subjective decision-making on service publication,
discovery, negotiation, and selection rather than the
traditional concept decomposition. Both the formal
service requirements ontology and its automatic
reasoning rules are given. Example models and
reasoning traces are also given to illustrate the
usefulness of our proposal. Results from our study are
important because it contributes not only to the
theoretical study of SOA but also forms the basis for its
future implementation and deployment. The proposed
model ontology can be easily implemented and
extended to support most kinds of automatic reasoning
for qualitative or quantitative QoS-based service
selection, which including those objective ones,
encompassing reliability, availability, and
request-to-response time, or those that are fairly
subjective focusing on user experience, and
preferences.

Acknowledgements.

This work receives financial support from the National
Natural Science Foundation of China (Grant no.
60503030), Basic Research Foundation of Tsinghua
National Laboratory for Information Science and
Technology (TNList), and the National Basic Research

and Development 973 Program (Grant
no.2002CB312004).

References

[1] T. Erl. Service-Oriented Architecture: Concepts,

Technology, and Design. Published by Prentice Hall, August

2005.

[2] C. Zhou, L.T. Chia, B.S. Lee. DAML-QoS Ontology

for Web Services. Proceedings of the International

Conference of Web Services, 2004.

[3] H. Lausen, A. Polleres, D. Roman. Web Service

Modeling Ontology (WSMO). W3C Submission, June 2005.

[4] Jeff Heflin, James Hendler. Dynamic Ontologies on the

Web, Proceedings of 17th National Conference on Artificial

Intelligence (AAAI-2000). 2000.

[5] E. Michael Maximilien, Munindar P. Singh. A

Framework and Ontology for Dynamic Web Services

Selection. IEEE Internet Computing, September/October

2004, pp.84-93.

[6] I. B. Arpinar, R. Zhang, B. Aleman and A. Maduko.

Ontology-Driven Web Services Composition. Proceedings of

the IEEE E-Commerce Technology, July 6-9, San Diego, CA,

2004.

[7] G. Dobson, R. Lock. Developing an Ontology for QoS.

Proceedings of the 5th Annual DIRC Research Conference,

2005, pp. 128-13

[8] G. Dobson. QoSOnt: an Ontology for QoS in

Service-Centric Systems. Proceedings of the Conference on

e-Science All Hands Meeting 2005, Nottingham, September

2005.

[9] C. Zhou, L.T. Chia, B.S. Lee. Service Discovery and

Measurement based on DAML QoS Ontology. Proceedings

of the World Wide Web Conference 2005, pp. 1070-1071.

[10] Rao, A.S. and Georgeff, M.P. (1991). Modeling

rational agents within a BDI architecture. In: R. Fikes and E.

Sandewall (eds.), Proceedings of the Second Conference on

Knowledge Representation and Reasoning, Morgan Kaufman,

pp.473-484.

 12

[11] Shoham, Y. and Cousins, S.B. (1994). Logics of mental

attitudes in AI: a very preliminary survey. In: G. Lakemeyer

and B. Nebel (eds.) Foundations of Knowledge

Representation and Reasoning, Springer Verlag, pp. 296-309.

[12] Wooldridge, M. and Jennings, N.R. (1995). Agent

theories, architectures, and languages: a survey. In: M.

Wooldridge and N.R. Jennings, Intelligent Agents, Lecture

Notes in Artificial Intelligence, Vol. 890, Springer Verlag,

Berlin, pp. 1-39.

[13] Jaakko Hintikka, et al. Knowledge and Belief: An

Introduction to the logic of the two notations. Cornell

University Press, 1962.

[14] Yu, E. Towards Modeling and Reasoning Support for

Early-Phase Requirements Engineering. Proceedings of the

3rd IEEE International Symposium on Requirements

Engineering (RE'97) Jan. 6-8, 1997, Washington D.C., USA.

226-235.

[15] Yu, E. & Liu, L. Modeling Trust for System Design

Using the i* Strategic Actors Framework. In: Trust in

Cyber-Societies - Integrating the Human and Artificial

Perspectives. R. Falcone, M. Singh, Y.H. Tan, eds.

LNAI-2246. Springer,2001. pp.175-194.

[16] S. Kethers, G. Gans, D. Schmitz, D. Sier: Modelling

Trust Relationships in a Healthcare Network: Experiences

with the TCD Framework. In Proceedings of the Thirteenth

European Conference on Information Systems, May 2005,

Regensburg, Germany.

[17] Cristiano Castelfranchi, Rino Falcone, Giovanni

Pezzulo: Cooperating through a Belief-based Trust

Computation. WETICE 2003: 263-268.

[18] L. Penserini, A. Perini, A. Susi, and J. Mylopoulos.

From Stakeholder Intentions to Software Agent

Implementations.In Proceedings of the 18th Conference On

Advanced Information Systems Engineering (CAiSE’06),

number 4001 in LNCS. Springer-Verlag, 2006.
[19] J. Spohrer, D. Riecken. Services Science.

Communications of the ACM, SPECIAL ISSUE: Services

science, Vol. 49 , no. 7 (July 2006), 30 – 32.

[20] Cohen, P. R., & Levesque, It. J. Speech Acts and the

Recognition of Shared Plans. Proc. of the Third Biennial

Conference, Canadian Society for Computational Studies of

Intelligence, Victoria, B.C., May, 1980, 263-271.

[21] E. Yu。Strategic Modelling for Enterprise Integration。

Proceedings of the 14th World Congress of International

Federation of Automatic Control (IFAC’99), July 5-9, 1999,

Beijing, China. pp. 127-132. Permagon, Elsevier Science.

