

USING M ETA -M ODEL -DRI VEN V IEWS TO ADDRESS SCAL ABIL ITY IN

I * M ODEL S

by

Zheng You

A thesis submi tted in conformi ty wi th the requi rements
for the degree of Master of Science

Graduate Department of Computer Science
Universi ty of Toronto

Copyright © 2004 by Zheng Y ou

 ii

Revision Date By Remark

4.4 9/1/2004 Jane You Final revision from Eric.

All queries tested again in ConceptBase.

4.3 8/19/2004 Jane You 1. Abstract (first draft)

2. Appendix (first draft)

3. Bibliography (not sure about how to

reference some technical reports)

4. Inconsistency of notations in diagrams of

chapter 8 is fixed.

5. File formatted according to the SGS request

4.2 8/14/2004 Jane You All chapters proofread and revised (first round)

Parts to add:

1. Abstract

2. Appendix

3. Bibliography

4. Bugs in diagrams to fix

4.01 8/7/2004 Jane You Chapter 1~4, 9: proofread and revised

(suggestions from Eric also implemented)

Chapter 5~7: waiting for proofread

Chapter 8: proofread yet NOT revised

 iii

Abstract

Using Meta-Model-Dr iven V iews to Address Scalabi l i t y in i * Models

Zheng You

Master of Science

Graduate Department of Computer Science

Uni versi t y of Toronto

2004

This thesis proposes an extension to the i* framework to address scalabi l ity

issues. The notion of “ view” is exploited to selectively present portions of an i*

“ basel ine model” , which contains al l modeled objects for a given appl ication

using i* notations. We f irst reformulate the i* framework and def ine four types

of views—Actor Class, Strategic Dependency, Strategic Rationale, and

Evaluation Results. Next, we define sub view types based on the four types of

views and supply a view management framework. The views and sub-views are

defined using meta-models, and formal ized using the Telos conceptual model ing

language. Each view type is associated with a formal ly defined “ selection rule”

so that the projection of a speci f ic view from a basel ine model can be automated.

Relationships among views are depicted in V iew Maps. I l lustrative examples are

taken from the London Ambulance Service and the Trusted Computing Group

case studies.

 iv

Acknowledgements

John for reviewing the thesis

L inda Liu in contributing ideas in the representational constructs

Concept Base team in providing the tool support

Jennifer in contributing the original TCG case study and offering comments

on the result

Eric Yu for revising the thesis and comments

 v

�������������
	

�
 ��������
���
�� �

1.1 Motivation...1

1.2 The London Ambulance Service Computer-Aided Despatch System2

1.3 Research Objectives and Approach..7

1.4 Related Work...9

1.4.1 Scalability handling in KAOS and EKD...9

1.4.2 Scalability handling in Object-Oriented and SADT modeling techniques11

1.5 Thesis Organization...14
�

 �! �"�#$����%����&�'���(*)��+&�,-"/.0����12��� ��3

2.1 Modeling Features...15

2.1.1 The Strategic Dependency Model...15

2.1.2 The Strategic Rationale Model ...17

2.2 Representational Constructs...19

2.2.1 The Strategic Dependency Model...21

2.2.2 The Strategic Rationale Model ...23

2.3 Summary ...26
4

 52"/67����,��
'�&������%-��
"���(*)��+&�,-"/.0���81�9;:
���%-�� �"�<!�����"�=��>�?6A@B��"/. �
C

3.1 Introduction...28

3.2 Realigned Graphical Notations ..31

3.2.1 The Actor Class view...32

3.2.2 The Strategic Dependency view ...35

3.2.3 The Strategic Rationale view..37

3.2.4 The Evaluation Results view ..41

3.3 Representational Constructs...44

3.3.1 The Actor Class view...44

3.3.2 The Strategic Dependency view ...47

3.3.3 The Strategic Rationale view..49

3.3.4 The Evaluation Results view ..53

 vi

3.4 Discussion ...54
�

 �*&��&�%����%���(��*�
�
"�' :�9;:
���%0@ ��"/. :
��� 4

4.1 View Extension Features ...63

4.2 View Map..64

4.3 Representational Constructs...65

4.4 Meta-concepts Essential to Selection Rules..70

4.4.1 Plain and specified actor ..70

4.4.2 Actor association..71

4.4.3 Parent versus children ..71

4.4.4 Incoming versus outgoing dependency...73

4.4.5 External links...76

4.4.6 Ancestor versus descendent..77

4.5 Summary ...79
3

 � ���8���;<;'�&�:�:��?��"/. :$���
	

5.1 Overview...80

5.2 Details of the AC Views..82

5.2.1 Basic Actor Class View..82

5.2.2 Single-Network view ...85

5.2.3 Single-Plain-Actor view...88

5.2.4 Abstract-Actors-Only view ..91

5.2.5 Plain-Actors-Only view..92

5.2.6 Agents-Only View ...94

5.2.7 Direct-Replaceable view ..96

5.3 Summary ...99

� � ���+&��8"�%�����2"�=�" ��
" ���� @B��"/. :�� � 	
	

6.1 Overview... 101

6.2 Details of the SD Views... 102

6.2.1 Plain- versus Specified-Actor-Based SD View 102

6.2.2 Single-Actor-Focus view.. 108

6.2.3 Pair-wise-Actors View ... 113

 vii

6.3 Summary ... 114
C

 � ���+&��8"�%���� 52&��������&�'�"0@B��"/. :$��� �
��3

7.1 Overview... 116

7.2 Details of SR Views... 118

7.2.1 Single-Actor-Focus SR View ... 119

7.2.2 Single-Actor-Internal or External View.. 123

7.2.3 Internal-Non-functional and Functional View 126

7.2.4 Single-Softgoal View... 130

7.2.5 Single-Affected-Dependum or Actor View .. 132

7.3 Summary ... 136

� �B=
=
'����
&����������� 52"�=
��"�:�"���;�� �"-�!�8��:��8"
��<;��, =
������
% � �+���
= <!&�:�"
� ������� ��� ��4
C

8.1 Overview... 139

8.2 Actor Class Views... 141

8.2.1 The Basic AC view .. 142

8.2.2 Single-Network views.. 143

8.2.3 Plain-Actors-Only, Abstract-Actors-Only and Agents-Only views....... 145

8.2.4 Single-Plain-Actor views... 147

8.2.5 Direct-Replaceable views... 150

8.2.6 Discussion.. 153

8.3 Strategic Dependency Views ... 160

8.3.1 The Basic SD view... 162

8.3.2 Single-Actor-Focus SD views.. 163

8.3.3 Pair-wise-Actors SD views... 168

8.3.4 Discussion.. 170

8.4 Strategic Rationale Views.. 172

8.4.1 The Single-Actor-Focus SR View for agent TCG................................. 174

8.4.2 Single-Actor-Internal and External views... 175

8.4.3 Internal-Functional and Non-functional views...................................... 176

8.4.4 Single-Softgoal views.. 178

 viii

8.4.5 Single-Affected-Dependum or Actor views.. 181

8.4.6 Discussion.. 184

8.5 Contributions and Results.. 185
�

 <!�����'���:
�����: ��� � � �

9.1 Summary of Results... 189

9.2 Contributions... 191

9.3 Future Directions... 192

9.3.1 Meta-model related future work ... 193

9.3.2 Use generic knowledge-base driven techniques.................................... 193

9.3.3 Guidelines for the modeling process... 194

9.3.4 Broader applications .. 195

�B=
=�"�
��� ��� ���
3

 A Transformation of FOL formula………………………………………… 195

 A.1 Transform definition of meta-classes ………………………………..…195

 A.2 Transform queries ……………………………………..……………… 197

 A.3 Transform expressions ………………………………………………… 199

 B Queries in O-Telos format …..…...………………………………………..… 200

 C The London Ambulance Service Computer Aided Despatch System ……..…212
� �	�
'����
%��+&�=
 �
��� ��� � ���

 (??Do I provide Table of Figures or not?? The file is a bit too long)

 1

1 Introduction

1.1 Motivation

The i * framework is a conceptual model ing technique that supports goal- and

agent-based reasoning. I t was first proposed in Yu’ s 1994 PhD thesis—Model ing

Strategic Relationship for Process Reengineering (Yu 1994). The i* framework was

aimed at helping in process model ing, process design, and process analysis from a

social and intentional perspective: A Strategic Dependency (SD) model is used to

express “ the intentional relationships among agents” ; whereas a Strategic Rationale

(SR) model is used to show “ how processes are comprised of intentional elements

[of the agents] .” Appl ications of the framework were demonstrated in four areas:

requirement engineering, business process reengineering, organizational impact

analysis, and software process modeling. In addition to enhancing the argument by

working examples, formal constructs of the framework were also presented in (Yu

1994).

A common chal lenge encountered by users of the i* framework is that the

approach is dif f icult to scale up. Multiple factors may be contributing to the

scalabi l ity chal lenge. The i* framework adopts a partial, semi-formal, and

qualitative model ing approach that accommodates uncertainty and incompleteness in

the real world. Whi le tool support is possible to a certain degree, intensive human

interaction is nevertheless required during modeling and analysis. As the size of an

application increases, the complexity of model ing and analysis also increases.

The original purpose of the i* framework was to perform process analysis and

process redesign (Yu 1994). These two activit ies require traversing of the modeled

structure by i* users; therefore, human decision is required at each step. Moreover,

the model evaluation process adopted from the NFR framework (Chung et al. 2000),

CHAPTER 1. INTRODUCTION 2

used to evaluate the effects of process elements on organizational goals, also

requires intensive human interaction. For ease of human interaction, i* models must

be visual ized. However, any visual ization is subject to the constraints of media

abi l ity and human comprehension. For example, when visual ized, a diagram may be

entit led to a l imited space, a l ist may be conf ined to a f inite length, and only two

dimensions might be displayed for a matrix in a tabular format. Whi le conceptually

an i* model could grow inf initely, it can become intel lectually unmanageable

beyond a certain size.

We il lustrate the scalabil ity chal lenge in the next section using the London

Ambulance Service (LAS) case study.

1.2 The London Ambulance Service Computer-Aided

Despatch System

The London Ambulance Service Computer Aided Despatch (LAS-CAD) system is

a well known software fai lure and has been used by the research community as a

standard exemplar. It was introduced to the software engineering community at the

8th International Workshop on Software Specif ication and Design (IWSSD), using

the Report of the Inquiry into the London Ambulance Service (LAS-Report 1993) as

the primary source of information. Kramer and Wolf (Kramer and Wolf 1996)

summarized the results of how several workshop participants handled the exemplar.

Others, l ike Breitman et al. (Breitman et al. 1999) and Letier (Letier 2001) also used

the LAS. Breitman et al. (Breitman et al. 1999) surveyed the possibi l ity of the uses

of newly—as of 1999—emerged requirements engineering (RE) techniques to

identify LAS problems early on; and Letier (Letier 2001) used LAS as a case study

for the KAOS goal-oriented requirements approach.

A case study using the i* model ing and evaluation techniques was also performed

using a project-specif ic approach to resolve scalabi l ity issues (You 2003). Four i*

CHAPTER 1. INTRODUCTION 3

models1 representing different aspects of the LAS case study, encompassing a total

of 79 diagrams, were produced, including the evaluation (analysis) diagrams.

Approximately 40 di fferent forms of actors were presented in the four models. The

study focused on the analysis of user-oriented questions, such as “ Why is the manual

system not able to meet the performance requirements?” and “How would an

automated system help achieve the performance goals?”

The following sample indicates how large and complex an i* model can become.

Figure 1.2-1 is a graphical representation of a partial i* model from the LAS case

study, which involves only four actors (Ambulance Crew, Resource Al locator,

Incident Reviewer, and LAS Management) and part of their inter-relationships.

Figure 1.2-2 shows the corresponding formal representation in Telos. Telos is a

conceptual model ing language adopted by Yu (Yu 1994) to embed i* concepts.

Telos also serves as the internal representation language in the Organization

Modell ing Environment (OME) tool (OME 2003) supporting i* model ing. Modelers

of i* work with the graphical models and do not need to see the Telos code.

1 In this thesis, we reserve the term “model” for an entire representation (using i* meta-concepts) of a certain
organization configuration, and therefore SD and SR, although called “models” in Yu’s original thesis, are
called “views” . The definition of SD, SR, “model” and “view” will be presented in later chapters.

CHAPTER 1. INTRODUCTION 4

Figur e 1.2-1 A par t ial model fr om the L AS-CAD case study

% plain actor Ambulance Crew %
TELL SimpleClass AmbulanceCrew_PlainActor IN ActorElementClass WITH
 name
 displayName : “Ambulance Crew”
 specifiedByLink
 : AmbulanceCrew_Agent
END

% agent Ambulance Crew %
TELL SimpleClass AmbulanceCrew_Agent IN AgentElementClass WITH
 name
 displayName : “Ambulance Crew”
 specifiesLink
 : AmbulanceCrew_PlainActor
 children
 : AC_QualityService
 : AC_TimelinessService
 : AC_TimelinessArrivalLocation
 : AC_AccuracyAmbInfo

CHAPTER 1. INTRODUCTION 5

 …
 [outDepLinks
 : AC_TALtoOptimalLink]
END

% softgoal Timeliness [Arrival Location] inside agent Ambulance Crew %
TELL SimpleClass AC_TimelinessArrivalLocation IN SoftGoalElementClass WITH

parent
 : AmbulanceCrew_Agent
 outDepLinks
 : AC_TALtoOptimalLink
 links
 : AC_TALtoTS_AndContributionLink
 …
 label
 : UndecidedElementLabel
END

% plain actor Resource Allocator %
TELL SimpleClass ResourceAllocator_PlainActor IN ActorElementClass WITH
 name
 displayName : “Resource Allocator”
 specifiedByLink
 : ResourceAllocator_Position
END

% position Resource Allocator %
TELL SimpleClass ResourceAllocator_Position IN PositionElementClass WITH
 name
 displayName : “Resource Allocator”
 specifiesLink
 : ResourceAllocator_PlainActor
 occupiedByLinks
 : RAMOccupiesRA
 : HRAOccupiesRA
 children

 : RA_OptimalMobInst
: RA_TimelinessArrivalLocation

 : RA_AccuracyAmbInfo
 : RA_BeGeneratedMobInst

[inDepLinks
: OptimaltoOptimalLink_RA]

 …
END

% occupies link from agent Resource Allocation Module to position Resource Allocator %
TELL SimpleClass RAMOccupiesRA IN OccupiesLinkClass WITH
 from
 : ResourceAllocationModule_Agent
 to
 : ResourceAllocator_Position
END

% agent Resource Allocation Module %

CHAPTER 1. INTRODUCTION 6

TELL SimpleClass ResourceAllocationModule_Agent IN AgentElementClass WITH
 occupiesLinks
 : RAMOccupiesRA
 children
 : RA_BeGeneratedMobInst_ByAlgorithm
END

% agent Human Resource Allocator %
TELL SimpleClass HuamnResourceAllocator_Agent IN AgentElementClass WITH
 occupiesLinks
 : HRAOccupiesRA
 children
 : RA_BeGeneratedMobInst_ByHumanDecision
END

% dependency link from softgoal Timeliness [Arrival Location] inside agent Ambulance Crew to softgoal
dependum Optimal [MobInst] %
TELL SimpleClass AC_TALtoOptimalLink IN DependencyLinkClass WITH

from
: AC_TimelinessArrivalLocaltion
[: AmbulanceCrew_Agent]

to
: AC_OptimalMobInst_RA

END

% dependency link from softgoal dependum Optimal [MobInst] to softgoal Optimal [MobInst] inside position
Resource Allocator %
TELL SimpleClass OptimaltoOptimalLink_RA IN DependencyLinkClass WITH
 from
: AC_OptimalMobInst_RA

 to
: RA_OptimalMobInst
[: ResourceAllocator_Position]

END

% softgoal dependum Optimal [MobInst] %
TELL SimpleClass AC_OptimalMobInst_RA IN DependumElementClass, SoftGoalElementClass WITH
 inDeplinks
 : AC_TALtoOptimalLink
 outDepLinks
 : OptimaltoOptimalLink_RA
 label
 : UndecidedElementLabel
END

% softgoal Optimal [MobInst] inside position Resource Allocator %
TELL SimpleClass RA_OptimalMobInst IN SoftgoalElementClass WITH

parent
: ResourceAllocator_Position

inDepLinks
: OptimaltoOptimalLink_RA

 label
 : UndecidedElementLabel

…

CHAPTER 1. INTRODUCTION 7

END

Figur e 1.2-2 Par t ial r epr esentat ion of the model in TEL OS showing the size of the

under lying constr ucts

Our experience with the LAS case study indicates that it is dif f icult indeed to

accommodate all elements of a model in one representation that is sti l l intel lectual ly

comprehensible. Although Figure 1.2-1 contains only 82 elements out of some 400,

some i* users may already found this partial model di ff icult to read.

The LAS case study is considered to be only a medium-scale appl ication. In fact,

an i* model can increase in size and complexity to the extent that communications

via the models become impossible – let alone the resolving of practical questions. In

the literatures on i* , various ad-hoc practices have been used to reduce the large

model into segments. The research reported in this thesis aims to introduce

systematic methods to deal with scalabi l ity issues of i* models.

1.3 Research Objectives and Approach

Objectives

The objective of this research is to seek a systematic method to break down a

large and complex i* model into segments that are self-contained, and

comprehensible to humans. Thus, when using these segments in combination, users

of i* are able to achieve the same as they could with the entire model. Meanwhi le,

we also intend to offer a systematic approach to maintain the connections among

these segments.

Approach

We found that we need to reformulate the i* framework before new guidel ines to

deal with scalabi l ity can be introduced. Thus, the approach taken is, f irst, to provide

a generic and formal ized representation of the i* framework. The missing

CHAPTER 1. INTRODUCTION 8

representational constructs for some of the graphical notations – such as role2 – are

clarif ied, and the inconsistency in the formal constructs between Yu’ s original thesis

and the Organization Model ling Environment (OME) tool are aligned. During this

process, we did not introduce major new concepts to i* since our objective is not to

redesign the i* framework but, rather, to resolve the scalabi l ity issues that arise

whi le using i* in practice.

After the existing i* concepts had been clearly presented, a framework extension

that contains dif ferent types of views (a projection over a model according to some

criteria) and that supports view management was proposed. The views and sub-

views are def ined using meta-models, and formal ized using the Telos conceptual

model ing language. Each view type is associated with a formal ly def ined “ selection

rule” so that the projection of a speci f ic view from a basel ine model can be

automated. This formal ization makes the view extension extensible, and makes it

economic to maintain: New view types can be added by speci fying a new class in

Telos, and a view can be updated by changing its associated selection rule.

Relationships among views are depicted in V iew Maps.

Then we studied the details of each type of view in the extension. Every view

type is presented based on the fol lowing four aspects: an informal description of

what type of elements from an i* model is to include; a sample view based on the

LAS case study showing the elements actually qual i f ied; brief justif ications for the

strengths and constraints of the view; and the formal ized selection rule used to

derive this type of view from an i* model.

The view extension and the selection rules were further val idated in the research.

The extension was val idated against a larger and more complex case study—Trusted

Computing Group, a previous study which had to cope with complexity in the

absence of a systematic method. The rules were translated into ConceptBase, a

2 We use italics to highlight the first mention of a concept in a section. In most cases, we do not highlight the

same element again in the same chapter.

CHAPTER 1. INTRODUCTION 9

deductive object base supporting Telos data models, query classes and tested for

val idity.

1.4 Related Work

When real-world appl ications increase in size and complexity, the various models

that try to abstract the applications grow accordingly. Diagrams serve as the vehicle

of communication and comprehension of these models, and “ the usefulness of any

diagram is inversely proportional to the size and model depicted” (Feldman and

Mil ler 1986). Not surprisingly, al l model ing techniques—whether intended to model

concepts, processes, states, or intentions—experienced scalabi l ity problems.

Solutions to these problems had been developed by various research and industry

groups to enhance communication among analysts, designers, and domain experts; to

coordinate efforts contributed by distributed teams; and to manage large and

complex projects using qual itative guidel ines.

 In this section, we first summarize the approaches taken in techniques closely

related to i* —KAOS and EKD. KAOS is a goal-oriented requirements acquisit ion

process (Lamsweerde 2003), and EKD is an enterprise knowledge modeling process

that embraces goal- and agent-oriented elements (Bubenko et al. 2001). We also

survey some wel l-establ ished model ing techniques in their approaches to dealing

with large-scale appl ications. These wel l-establ ished techniques include Conceptual

Models (Feldman and Mi l ler 1986; Garlson et al. 1990; Harel 1988), State-Chart

diagrams (Harel 1988), and the SADT approach. Some of these techniques have

been adapted to modeling frameworks such as IDEF—the NASA standard, and

UML—the de-facto industrial standard for object modeling.

1.4.1 Scalability handling in KAOS and EKD

Neither KAOS (Lamsweerde 2003) nor EKD (Bubenko et al. 2001) have claimed

to have any problem with scalabi l ity, including their bui lt-in diagrammatic

representation of the models. One reason for the smooth process is that KAOS and

CHAPTER 1. INTRODUCTION 10

EKD have simpler semantics than i* , since both allow only “ AND” and “OR”

decomposition of a goal. Thus, the corresponding goal model fol lows a strict tree

structure, which can be easi ly expanded or contracted at each node. Partial details of

a model can always be obtained by selecting a sub-tree, and the connections to the

rest of the model are maintained by the edges between parent node and its off-

springs. The i* framework (Yu 1994), on the other hand, encompasses richer

semantics at the meta-level by al lowing cross-relationships among elements and,

therefore, its diagrammatic form exhibits a network graph structure. Typical ly, it is

more compl icated in separating elements in a network graph than in a tree structure.

Despite the major differences in meta-level concepts, KAOS, EKD and the

proposed view extension share some common strategies in terms of project

management. These strategies include organizing a project into sub-models (term

used in KAOS and EKD) or views (term used in this thesis), introducing hierarchies

to modeled contents, and applying queries to faci l itate information access.

Both KAOS (Lamsweerde 2003) and EKD (Bubenko et al. 2001) have multiple

sub-models, each focusing on a speci f ic perspective, and each grouping a set of

closely related meta-concepts. For example, there are goal centered models to

address stakeholder intentions, process models to address dynamic issues, and agent

models to address agent responsibi l it ies. In the first part of our view extension, we

fol lowed a simi lar approach and categorized the meta-level concepts in the i*

framework into four groups, which we cal l views. V iews di ffer from sub-models in

that our view extension enforces strict consistency among dif ferent types of views

that are derived from the same underlying i* model. Changes in the underlying

model shal l be reflected in al l related views. Sub-models in KAOS or EKD are

typical ly constructed separately and, thus, are loosely coupled.

KAOS uses supports from its GRAIL tool (Lamsweerde 2003) to preserve model

consistency and maintain one hierarchy for each type of modeled elements including

concept, diagram, and model. Each entry in any of these hierarchies is uniquely

identif ied by a combination of their type and name. EKD achieves a simi lar

CHAPTER 1. INTRODUCTION 11

functional ity in its KETH tool (Bubenko et al. 2001) by introducing hierarchies to

the repository of knowledge. Since these hierarchies might be bui lt by dif ferent

human users, Janie et al. suggest that synonyms be replaced by a common (unique)

term throughout the entire organization (Bubenko et al. 2001). In the second part of

the view extension, hierarchies of views are introduced. These hierarchies are

visual ized in a built-in type of diagram, which we cal l view map, offered by the

extension. We suggest each view be identif ied with a unique ID. We provide basic

guidel ines for bui lding the hierarchy according to view types and the view

decomposition procedure. But hierarchies in KAOS and EKD depend completely

upon human decision and vary from project to project, so there lack reusable

guidel ines.

Both GRAIL and KETH (tools for KAOS and EKD) provide text search engines.

The search engine is to help users locate specif ic information without having to

browse the whole hierarchy. In our view extension, selection rules are formulated in

First Order Logic for each view, and they are Telos-compatible. These rules select

modeled elements from an i* model based on their types, which correspond to i*

meta-level concepts. Thus, our solution can be ful ly automated.

In brief, even though KAOS and EKD are considered more as requirements

engineering (RE) processes, and i* is considered as RE notations, when comes to

scalabi l ity issues, they do share common approaches as far as managing a real-world

project is concerned.

1.4.2 Scalability handling in Object-Oriented and SADT modeling

techniques

Over the years, research on scalabi l ity-related problems has been conducted on

functional model ing (IDEF0 1993), conceptual schema model ing (Feldman and

Mil ler 1986; Harel 1988; Garlson et al. 1990; Gandhi et al. 1992; Campbel l et al.

1996), and dynamic feature model ing techniques (Harel 1988; Damm and Harel

2001; Douglass 2003). Each technique has built-in meta-level concepts on which a

CHAPTER 1. INTRODUCTION 12

set of wel l-def ined rules rel ies to abstract important information from detai ls.

Applying these rules enhances the capabi l ity of deal ing with large complex models

by a specif ic approach.

Our view extension is inspired by these early researches mentioned in the

previous paragraph. The inf luences appear in three major directions. First, views of

i* are represented (graphical ly) and decomposed in a simi lar manner as of IDEF0.

Next, the two-level abstraction offered in the original i* framework conforms to

what was proposed in the higraph-based visual formal ization. Final ly, focusing on

representation is the approach embraced by both this thesis and other conceptual

model ing researches (Feldman and Mil ler 1986; Garlson et al. 1990; Campbel l et al.

1996; Castano 1998).

IDEF0, derived from Structured Analysis and Design Technique (SADT), is a

well-formed graphical language that focuses on functional model ing of a system

(IDEF0 1993). Each IDEF0 model is generated by decomposing a single system

function step-by-step, and scalabil ity issues are addressed by a set of rigorous and

precise rules along this decomposition process. Auxi l iary techniques—such as a

consistent naming convention and a reference structure—are appl ied. The former

mitigates reader confusion among various elements in the model, whi le the latter

provides an overview of a project and allows quick access to a reader-interested part.

This research follows the same approach by introducing a view extension to i* ,

which provides bui lt-in support for a reference structure over the views. The

reference structure follows a tree-like topology, and each node in the reference

structure corresponds to a view (in i* view extension) or a diagram (in IDEF0).

Every node should be uniquely referenced across the entire appl ication, and each

may have parent or child nodes according to the reference structure.

Even though the fact is not explicit ly stated, inf luences from the higraph-based

visual formal ism presented in (Harel 1988) can be found in most conceptual schema

(Garlson et al. 1990; Gandhi et al. 1992; Campbel l et al. 1996) and dynamic feature

model ing techniques (Damm and Harel 2001; Douglass 2003). This visual formal ism

CHAPTER 1. INTRODUCTION 13

introduces hierarchies into flat models. In a higraph-based model, blobs denoting

elements at a certain level of abstraction are connected by hyperedges – implying

connecting multiple basic model ing elements. In the application provided in (Harel

1988), blobs are mapped to states, and hyperedges are mapped to events. A state, or

parent blob, can contain sub-states, or sub-blobs; this semantic makes it possible to

introduce hierarchy into state-charts. Later, Harel extended this approach to Live

Sequence Charts (LSC) (Damm and Harel 2001). Both approaches were adopted by

UML in resolving scalabi l ity issues (Douglass 2003). Simi larly, in (Garlson et al.

1990), the concepts of complex entity, complex attribute, and complex relationship

were defined to introduce hierarchy into a f lat E-R model. A suitable analogy would

be the complex entit ies and attributes to parent blobs, and complex relationships to

hyperedges. The original i* framework (Yu 1994) applied a 2-level abstraction

hierarchy over i* models. Actors in the Strategic Dependency (SD) view can be

treated as a parent blob which contains internal elements that are shown only in the

Strategic Rationale (SR) view. Contribution-links appearing in the SD view are

hyperedges in that they may combine multiple l inks from di f ferent internal elements

towards some same external elements.

Conceptual schema, such as class diagrams and ER charts, are extensively used

for model ing data. Algorithms (Feldman and Mil ler 1986; Campbel l et al. 1996;

Castano 1998) and proofs (Garlson et al. 1990) were employed to explore possible

means in abstracting the f lat-structured conceptual models into a nested style.

Authors of the methods claim that they took a “ reverse-engineering” approach by

focusing on reformulating an existing model rather than constructing a new one. Our

view extension follows a simi lar phi losophy. We reduce models in a “ f lat” manner

and do not introduce abstract elements in views, yet other approaches try to define

abstract elements (at a higher abstraction level) that correspond to some basic

elements (at the flat structure level). Moreover, our selection rules are based purely

on the types of i* meta-concepts and can be ful ly automated, whi le the other

approaches require intensive human interaction (Feldman and Mi l ler 1986).

CHAPTER 1. INTRODUCTION 14

In brief, our view extension presented in this thesis is inf luenced by the

scalabi l ity-handl ing techniques applied and proposed in a number of existing

model ing methods. Yet we have encountered dif ferent chal lenges and thus led to

adaptations. One reason is that i* embraces a richer set of meta-concepts so that

meta-model driven rules can be defined to partit ion elements according to their

types. Another is i* introduces intentional and social aspects to a model, which are

not accommodated in other formal it ies.

1.5 Thesis Organization

This thesis is organized as fol lows: Chapter 2 reviews the original i* framework

presented in Yu’ s 1994 thesis, and the formal constructs used in the Organization

Modell ing Environment (OME) tool (OME 2003). Chapter 3 presents the f irst part

of the proposed view extension, which is a reformulation of the i* framework based

on a consolidation of the changes made to i* over the past 10 years. Graphical

notations of new concepts are synthesized from previous l iterature of our research

group, and formal constructs of some newly introduced concepts are presented for

the first time. Chapter 4 presents the second part of the proposed view extension,

which is described from three aspects: its features and the view map; its formal

constructs; and crit ical concepts related to the selection rules. Chapters 5 to 7

describe in detai l selection rules associated with each view. Examples from the LAS

case study are presented to i l lustrate the use of each type of view. Chapter 5 focuses

on Actor Class views; Chapter 6, on Strategic Dependency views; and Chapter 7, on

Strategic Rationale views. Chapter 8 val idates the proposed extension over the

existing Trusted Computing Group (TCG) case study, and Chapter 9 draws

conclusions and proposes relevant future work.

master-thesis-v4.4.doc

2 The Original i* Framework

In this chapter, we summarize the model ing features of the i* framework and

review its formal constructs from Yu (Yu 1994). Examples from the London

Ambulance Service (LAS) case study are ci ted to i l lustrate various meta-level

concepts.

2.1 Modeling Features

2.1.1 The Strategic Dependency Model

Actors are strategic in i* : they have “ motivations, intents, and rationales

behind [their] actions” (Yu 1994). An actor can be further differentiated into

roles, agents, and positions. A role is “ an abstract actor embodying expectations

and responsibi l it ies.” An agent represents a physical actor – human or machine –

who can play di f ferent roles. A posit ion represents a group of responsibi l it ies

that can be occupied by one agent; as well, a posit ion can cover more than one

role. There is also a def ined aggregation (PART) relationship among the same

type of actors, and an instantiation (INSTANCE) relationship between two

agents. The graphical notations of the two relationships were brief ly introduced

in one example (Yu 1994). Figure 2.1-1 shows graphical notations of various

forms of actors. A plain circle (e.g., Ambulance Crew3) denotes a (plain) actor;

a circle with a curved line across the bottom denotes a role (e.g., Remover

[Duplicated I ncI nfo]); a f lower shape denotes a posit ion (e.g., Resource

Al locator); and a circle with a bar across the top denotes an agent (e.g., I ncident

Reviewing M odule).

3 We use bold to highlight the first mention of an element in the models. In most cases, we do not highlight

the same element again.

master-thesis-v4.4.doc

The Strategic Dependency (SD) model is used to express the “ intentional

description of a process in terms of a network of dependency relationships

among actors.” Dependency relationships are represented by dependable

elements, and actors depend on one another for goals to be achieved, tasks to be

performed, softgoals to be satisf iced, and resources to be furnished. The symbol

“ ” in the dependency l ink indicates the direction of dependency. Yu also “cal l[s]

the depending actor the depender , the actor who is depended dependee[, and] the

object around which the dependency relationship centers dependum (Yu 1994).

Figure 2.1-1 shows the graphical notation of the di fferent dependency types.

Figur e 2.1-1 Dependency types

Figure 2.1-2 shows a partial SD model from the LAS case study. This model

shows the dependency relationship among actors Resource Al locator ,

Ambulance Cr ew, I ncident Reviewer , and L AS M anagement . Relationships

among these actors are also presented. For example, either a Resource Al location

master-thesis-v4.4.doc

Module or a Human Resource Al locator occupies the posit ion of Resource

Al locator. The latter depends on the Ambulance Crew to ensure the Accuracy of

Ambulance Information (AmbInfo), and, in turn, the Ambulance Crew depends

on the Resource Al locator to provide Optimal Mobi l ization Instruction

(M obI nst).

Figur e 2.1-2 A par t ial SD model fr om the L AS case study

2.1.2 The Strategic Rationale Model

The St rategic Rat ionale (SR) model is aimed to “provide the intentional

description of processes in terms of process elements and the rationales behind

them.” This impl ies that the layout of the reasoning structure internal to an actor,

based on inter-actor relationships presented in the SD model, is represented in

the SR model. In this internal structure, intentional elements – goals, tasks,

resources, and softgoals – are connected by intentional l inks (Yu 1994).

Two classes of intentional l inks are def ined in (Yu 1994). Task decomposition

l ink, denoted by , expresses “a task in terms of its decomposition into sub-

components.” (Yu 1994) distinguished (semantical ly but not graphical ly) among

four types of task decomposition l inks according to the type of sub-components.

master-thesis-v4.4.doc

A task can be decomposed to a sub-goal via a subgoal decomposition l ink, to a

sub-task via a subtask decomposition l ink, to a sub-resource via a resourceFor

decomposition l ink, and to a softgoal via a softgoalFor decomposition link. For

example, in Figure 2.1-3, task Provide [Opt imal M obI nst] is decomposed to

softgoals Accuracy [AmbI nfo] and Accur acy [I ncI nfo] via two softgoalFor

l inks, respectively.

Several types of means-ends l inks, denoted by , were also defined and the

“ arrowhead points from the means to the end.” A goal speci f ied as the end can be

achieved by means speci f ied as tasks through goal-task means-ends links

(GTLink). For example, goal BeCol lected [I ncI nfo] can be achieved by

information passed either task By database or networ k or task By paper -based

for ms (Figure 2.1-3). Simi larly, a resource specif ied as the end can be furnished

by means specif ied as tasks through resource-task l inks (RTLink). A softgoal can

be satisficed by means specif ied as tasks or softgoals through softgoal-task

(STLink) and softgoal-softgoal (SSLink) l inks, respectively. A softgoal-l ink can

contribute posit ively (denoted by �) or negatively (�) to the softgoal speci f ied as

the end, and they are shown graphical ly as curved arrows. For example, task

Provide [Opt imal M obI nst] contributes posit ively to softgoal Optimal

[M obI nst] through the softgoal-task (means-ends) l ink, and softgoal Timeliness

[Ar r ival L ocat ion] contributes posit ively to softgoal Timeliness [Service]

through a softgoal-softgoal (means-ends) l ink (Figure 2.1-3). The framework

also allows task-task links that specif ied tasks as both the end and the means.

(Yu 1994)

Figure 2.1-3 shows the process elements (activit ies, plans) and init iatives

behind the intentions of posit ion Resource Al locator . This internal structure can

help us select among alternative activit ies or plans. For example, achieving the

top-level goal BeCol lected [I ncI nfo] requires only one of the two alternatives—

collect incident information By paper -based for ms versus By database or

networ k—being performed. Selecting the former wil l result in the top-level

softgoal Timeliness [M obi li zat ion] being harmed – via the negative contribution

master-thesis-v4.4.doc

l ink from the former, whi le selecting the latter wil l not. I f timel iness is a major

concern of Resource Al locator, the latter alternative (collect incident information

by database or network) thus needs to be chosen. We see from the example that

by using the SR model, users may obtain a better understanding of how the top-

level goals can be achieved, and how these goals relate to each other.

Figur e 2.1-3 A par t ial SR model fr om the L AS case study

2.2 Representational Constructs

Meta-level concepts of the i* framework, and their relationships, are

embedded into the conceptual model ing language Telos (Koubarakis et al. 1989),

which results in “ an object-oriented representational framework with

classif ication, general ization, aggregation, attribution, and time” (Yu 1994). Two

levels of classes are involved in this formal ization: Concepts from the i*

framework are defined at the meta-class level in Telos, and domain class are

defined as instances of some meta-class and at the simple-class level (Yu 1994).

Figure 2.2-1 shows the definit ion of the meta-class AgentElementClass and one

of its instances at the domain level, speci f ied as a simple class. Text quoted by

master-thesis-v4.4.doc

%% are comments. In order to distinguish the objects internal to an actor, we

prefix such objects with the acronyms of actors. For example, we prefix softgoal

Quali ty [Service] inside agent Ambulance Crew as AC_Quali tySer vice, where

AC is the acronym for Ambulance Crew. We apply this naming convention

throughout this thesis.

% Tel os r epr esent at i on of concept agent %

TELL Met aCl ass Agent El ement Cl ass … WI TH

 at t r i but es

 name : St r i ng;

 chi l dr en: I nt ent i onal El ement Cl ass

END

% Tel os r epr esent at i on of domai n cl ass Ambul anceCr ew %

TELL Si mpl eCl ass Ambul anceCr ew_Agent I N Agent El ement Cl ass I SA

Ambul anceCr ew_Act or WI TH

 name

 di spl ayName : “ Ambul ance Cr ew”

 chi l dr en

 : AC_Qual i t ySer vi ce

 : AC_Ti mel i nessSer v i ce

 : AC_Ti mel i nessAr r i val Locat i on

 : AC_Accur acyAmbI nf o

 …

END

Figur e 2.2-1 Defini t ion of meta-level class AgentElementClass and a domain class

that instant iates i t denot ing the class of agent Ambulance Cr ew fr om the L AS case

study

However, the formal constructs shown in Yu’ s original thesis and the

Organization Model l ing Environment (OME) tool dif fer in class and attribute

design. For example, Yu formulated a goal dependency using an instance of

GoalDependsClass, whi le OME using one instance of GoalElementClass and two

instances of DependencyL inkClass. The OME tool style conforms to Yu’ s

original proposal since the two are equivalent in semantics: al l i* semantics are

naturally implemented in the OME tool. We favor the OME tool style in that it is

master-thesis-v4.4.doc

widely used and provides a measure to verify the val idity of the models so that

human interference can be minimized.

2.2.1 The Strategic Dependency Model

Figur e 2.2-2 A par t ial meta-model of the SD model in Yu’ s thesis

Figure 2.2-2 shows a partial meta-model of the SD model adapted from Yu’ s

original thesis. There are two categories of objects in the SD meta-model: the

Element (meta)Class and the L ink(meta)Class. An instance of L inkClass (e.g.,

AC_TALt oOpt i mal Li nk i n Figure 2.2-3) shal l have some instances of

ElementClass as its two crit ical attributes from and to. The instance of

ElementClass that is speci f ied as from (e.g., Ambul anceCr ew_Agent) denoting the

source element from where the l ink starts, and simi larly to where the l ink ends

(e.g., AC_Opt i mal MobI ns t _RA). An instance of ElementClass (e.g.,

Ambul anceCr ew_Agent) may have some instances of L inkClass (e.g.,

AC_TALt oOpt i mal Li nk) as its attribute l inks.

Figure 2.2-3 shows the formal representation of some of the elements that

appear in Figure 2.1-2. Text quoted by %% on top of each simple class denotes

the name of the corresponding element shown in the graphical representation.

master-thesis-v4.4.doc

%t he act or Ambul ance Cr ew%

TELL Si mpl eCl ass Ambul anceCr ew_Act or I N Agent El ement Cl ass WI TH

 name

 di spl ayName : “ Ambul ance Cr ew”

 l i nks

 : AC_TALt oOpt i mal Li nk

END

%t he posi t i on Resour ce Al l ocat or %

TELL Si mpl eCl ass Resour ceAl l ocat or _Posi t i on I N Posi t i onEl ement Cl ass WI TH

 l i nks

 : Opt i mal t oOpt i mal Li nk_RA

 …

END

%The dependency l i nk f r om Ambul ance Cr ew t o t he sof t goal dependum Opt i mal

[MobI nst] %

TELL Si mpl eCl ass AC_TALt oOpt i mal Li nk I N DependencyLi nkCl ass WI TH

f r om

: Ambul anceCr ew_Agent

t o

: AC_Opt i mal MobI nst _RA

END

%The dependency l i nk f r om t he sof t goal dependum Opt i mal [MobI nst] t o Resour ce

Al l ocat or %

TELL Si mpl eCl ass Opt i mal t oOpt i mal Li nk_RA I N Out goi ngDependencyLi nkCl ass WI TH

 f r om

: AC_Opt i mal MobI nst _RA

t o

: Resour ceAl l ocat or _Posi t i on

END

%The sof t goal dependum Opt i mal [MobI nst] %

TELL Si mpl eCl ass AC_Opt i mal MobI nst _RA I N DependumEl ement Cl ass,

Sof t Goal El ement Cl ass WI TH

 l i nks

 : AC_TALt oOpt i mal Li nk

 : Opt i mal t oOpt i mal Li nk_RA

END

Figur e 2.2-3 Repr esentat ion of a par t ial SD model fr om the L AS case study

master-thesis-v4.4.doc

2.2.2 The Strategic Rationale Model

In Yu’ s thesis, the meta-model of SR includes every segment shown in the SD

model plus those shown in Figure 2.2-4. This meta-model conforms to the

intuit ive description of the SR model in Section 2.1.2.

Figur e 2.2-4 Par t ial meta-model for the SR model

Figure 2.2-5 shows the formal representation of some of the elements that

appear in Figure 2.1-3. The text quoted by %% on top of each simple class

denotes the name of the corresponding element shown in the graphical

representation.

In SR models, both the from and to attributes for an instance of

DependencyLinkClass (e.g., AC_TALt oOpt i mal Li nk) can represent some instances

of IntentionalElementClass (e.g., f r om AC_Ti mel i nes s Ar r i val Local t i on t o

AC_Opt i mal MobI ns t _RA), while in the SD model, one of them must be an instance

of ActorElementClass (e.g., the same link from Ambul anceCr ew_Agent t o

AC_Opt i mal MobI ns t _RA).

%act or Ambul ance Cr ew%

TELL Si mpl eCl ass Ambul anceCr ew_Agent I N Agent El ement Cl ass WI TH

 name

master-thesis-v4.4.doc

 di spl ayName : “ Ambul ance Cr ew”

 chi l dr en

 : AC_Qual i t ySer vi ce

 : AC_Ti mel i nessSer v i ce

 : AC_Ti mel i nessAr r i val Locat i on

 : AC_Accur acyAmbI nf o

 …

END

%sof t goal Ti mel i ness [Ar r i val Locat i on] i ns i de boundar y of act or Ambul ance Cr ew%

TELL Si mpl eCl ass AC_Ti mel i nessAr r i val Locat i on I N Sof t Goal El ement Cl ass WI TH

 par ent

 : Ambul anceCr ew_Agent

 l i nks

 : AC_TALt oOpt i mal Li nk

 : AC_TALt oTS_AndCont r i but i onLi nk

 …

END

%posi t i on Resour ce Al l ocat or %

TELL Si mpl eCl ass Resour ceAl l ocat or _Posi t i on I N Posi t i onEl ement Cl ass WI TH

 chi l dr en

 : RA_Opt i mal MobI nst

 : RA_Ti mel i nessAr r i val Locat i on

 : RA_Accur acyAmbI nf o

 : RA_BeGener at edMobI nst

 …

END

%agent Resour ce Al l ocat i on Modul e%

TELL Si mpl eCl ass Resour ceAl l ocat i onModul e_Agent I N Agent El ement Cl ass WI TH

 chi l dr en

 : RA_BeGener at edMobI nst _ByAl gor i t hm

END

%agent Human Resour ce Al l ocat or %

TELL Si mpl eCl ass HuamnResour ceAl l ocat or _Agent I N Agent El ement Cl ass WI TH

 chi l dr en

 : RA_BeGener at edMobI nst _ByHumanDeci si on

END

master-thesis-v4.4.doc

%The dependency l i nk f r om sof t goal Ti mel i ness [Ar r i val Locat i on] i n t he boundar y

of act or Ambul ance Cr ew t o t he sof t goal dependum Opt i mal [MobI nst] %

TELL Si mpl eCl ass AC_TALt oOpt i mal Li nk I N DependencyLi nkCl ass WI TH

f r om

 : AC_Ti mel i nessAr r i val Local t i on

t o

 : AC_Opt i mal MobI nst _RA

END

%t he dependency l i nk f r om sof t goal dependum Opt i mal [MobI nst] t o sof t goal

Opt i mal [MobI nst] i ns i de boundar y of posi t i on Resour ce Al l ocat or %

TELL Si mpl eCl ass Opt i mal t oOpt i mal Li nk_RA I N DependencyLi nkCl ass WI TH

f r om

 : AC_Opt i mal MobI nst _RA

t o

 : RA_Opt i mal MobI nst

END

%sof t goal dependum Opt i mal [MobI nst] %

TELL Si mpl eCl ass AC_Opt i mal MobI nst _RA I N DependumEl ement Cl ass,

Sof t Goal El ement Cl ass WI TH

 i nDepl i nks

 : AC_TALt oOpt i mal Li nk

 out DepLi nks

 : Opt i mal t oOpt i mal Li nk_RA

END

%sof t goal Opt i mal [MobI nst] i ns i de t he boundar y of posi t i on Resour ce Al l ocat or %

TELL Si mpl eCl ass RA_Opt i mal MobI nst I N Sof t goal El ement Cl ass WI TH

par ent

 : Resour ceAl l ocat or _Posi t i on

l i nks

 : Opt i mal t oOpt i mal Li nk_RA

…

END

Figur e 2.2-5 SR pr esentat ion in Telos

master-thesis-v4.4.doc

2.3 Summary

This chapter outlines in brief features of the original i* framework described

by Yu (Yu 1994). These features are graphical ly presented using two models: the

Strategic Dependency (SD) model and the Strategic Rationale (SR) model.

Meta-level concepts such as “ actors” and “dependencies” are introduced in the

SD model, whi le intentional l inks such as “ means-ends” and “decomposition” are

explained in the SR model. Graphical notations of these concepts are il lustrated

using samples from the LAS case study.

We omit the concept of dependency strength original ly presented by Yu,

because this concept does not play a role in our view extension, nor was it

widely referenced in previous l iteratures. Nevertheless, dependency strength

could be used in the future as a criterion in simpl i fying complex i* models.

Formal constructs of the meta-level concepts were adapted into Telos using

the OME tool style, which di f fers from what was presented by Yu (Yu 1994).

Sample domain classes from the LAS case study were cited in demonstrating

these formal constructs.

master-thesis-v4.4.doc

3 Reformulating the i* Framework Using the

Concept of View

Over the past 10 years, new concepts were introduced to the i* framework and

existing concepts were refined. The definit ion of the Goal-oriented Requirements

Language (GRL) framework elaborates on the incorporation of concepts from the

NFR framework into the i* framework, anticipated by Yu (Yu 1994). The latest

GRL version was presented in 2003 (GRL 2003).

Besides the def init ion of GRL, one major mi lestone was the separation of the

actor diagram from the SD diagram, another was the release of the Organization

Modell ing Environment (OME) tool which implemented the meta-model of i* .

Yu (Yu 1994) formal ly proposed three specif ied types of actors – roles, agents,

and posit ions—and three intentional l inks—plays, covers, occupies. Two other

types of l inks—Instances and PART—were well establ ished in OO model ing, so

Yu just gave their graphical notation yet not emphasized. It was not until 1997

that the concept of agents (one type of speci f ied actors) was expl icit ly depicted

(Yu 1997; Chung et al. 1997). L iu and Yu f i rst emphasized graphical notations

for role, agent, posit ion, and the links among them (Dubois et al. 1998). They

refined this l ine of concepts and their graphical notations, bui lt the specif ied

actors hierarchy, and formal ized graphical ly three types of l inks (is-A, INS, and

is-Part-of) among these specif ied actors (Yu and Liu 2000). However, in their

2000 publ ication, various types of actors and the three types of l inks were shown

in the SD model. In 2002, specif ied actors and the l inks among them were first

shown separately in a so-called Actor Diagram (Liu et al. 2002).

The OME tool (version 2) was released in 1998; OME version 3 (the current

version is 3.13) supports GRL, i* , NFR, and other kinds of frameworks. Some

new graphical notations that had not appeared in publ ications were added

master-thesis-v4.4.doc

recently. These new notations smooth the merging of NFR approach into GRL.

The GRL framework implemented in the current OME tool supports specif ied

actors and their corresponding l inks, which are init ial ly specif ied in i* but

omitted in the standard submission of GRL. These effects result in the

dif ferences in model ing features between the OME tool and Yu’ s original thesis.

Changes made to i* , as discussed in previous paragraphs, appeared in various

l iterature produced by the i* research group. Lacking adequate explanations,

these changes confused readers unfamil iar wi th the concepts. For example, such

terms as diagram and model were often interchanged (meaning some partial i*

model) in di fferent publ ications, and diagrams (models) were normal ly presented

in an ad-hoc sequence convenient to the speci f ic publ ication.

In this chapter, we attempt to consolidate what has happened over the past 10

years. The main objective is to collect, synthesize and organize concepts

scattered throughout existing l iteratures. Minor adjustments are made to existing

concepts to improve accuracy (of each of them) and consistency (among al l of

them). As a first step, model ing constructs are organized in four types of views,

in correspondence to the two types of models (SD and SR) by Yu (Yu 1994).

This paves the way for scalabi l ity issues to be addressed in subsequent chapters.

Section 3.1 summarizes the reformulated framework and brief ly justif ies our

view extension; Section 3.2 discusses the reformulated i* framework in detail;

Section 3.3 presents the formal constructs of the reformulated i* framework; and

Section 3.4 discusses the relationships among the four types of views.

3.1 Introduction

We reformulate the i* framework by ref ining the concept of model and by

introducing the new concept of view. Init ial ly, SD and SR are called “ models” by

Yu (Yu 1994), but in this thesis we reserve the term model for the collection of

i* objects structured according to i* syntax and semantics. A model contains

information in both SD and SR, and we cal l a domain i* model the basel ine

model . In most cases, an i* model describes a particular conf iguration (e.g., from

master-thesis-v4.4.doc

one type of viewpoint, at a certain period of t ime, and for a specif ic project)

among organizational actors.

A view is a partial presentation of that type of configuration. In this sense, SD

and SR are called “ views” in our extension. In fact, the extension distinguishes

among four types of views: an Actor Class (AC) view for focusing on various

forms of actors and the associations among the di f ferent forms of each actor, a

Strategic Dependency (SD) view focusing on inter-actor dependency

relationships, a Strategic Rat ionale (SR) view focusing on “ the rationales that

actors have about adopting one configuration or another” (Yu 1994), and an

Evaluat ion Results (EVL R) view helping in the decision-making process over

alternative system conf igurations.

We reformulate the baseline model in this way for the following reasons.

First, the SD view is an abstract form of the SR view. Inter-actor

dependencies and external l inks and elements in the SD view can be obtained

from its corresponding SR view. From the formal construction of i* models, we

can aff irm that the SD and SR views share a majority of concepts in their meta-

models, with SR having some extra concepts representing internal rationale.

Thus, any SD view can be obtained by collapsing actors’ internal structures in

the corresponding SR view, and each collapsed actor in the SD view inherits al l

the external dependencies that are original ly connected to its internal elements.

In this sense, we consider it more appropriate to treat them as views that project

over the same model instead of sub-models.

Second, a distinguished AC view makes actor analysis easier. In most of the

early l iterature, the SD view was used to identify stakeholders and perform basic

actor analyses within an organization. Questions such as “How does a plain actor

map to a speci f ied one?” and “ What are the relationships among the specif ied

ones (actor associations)?” were not emphasized. I t appeared straightforward

with the examples shown in early l iterature, when there was no need to

distinguish among dif ferent forms of actors. Yet social conf iguration for a

master-thesis-v4.4.doc

medium-sized organization (e.g., 500 employees) can increase in complexity and,

thus, accommodation of actor associations (e.g., 300 “plays” , “ covers” , or

“occupies” l inks) in the init ial SD models becomes dif f icult. Showing

dependency relationships for multiple speci f ied forms of the same actor (e.g.,

posit ion Resource Al locator and agent Resource Al locator Module) at the same

time also appears dif f icult. Thus, we decide to abstract these sets of information

into a new type of view—Actor Class. Separation of the actor associations from

dependencies does not affect our analysis. The former focuses on understanding

which set of actors have something in common; the latter, on reflecting how an

organization functions among the inter-actions of actors who basical ly do not

share internal rationales.

Final ly, the Evaluation Results (EVLR) view accommodates concepts

imported from the NFR framework. After the collaboration of i* and NFR, a

model evaluation process employing a qual i tative label propagation algorithm

was impl icit ly adopted by i* . In accordance with this action, we distinguished

the EVLR view to present the results of the evaluation process. The evaluation

process uses the SR view to run the algorithm, so each EVLR view is bui lt on top

of its corresponding SR view. However, users may use the same SR view to

perform different evaluations that differ in various assumptions, so one SR view

normal ly corresponds to a set of EVLR views.

master-thesis-v4.4.doc

3.2 Realigned Graphical Notations

Figur e 3.2-1 A par t ial basel ine model showing some str uctur es r elated to plain

actor Ambulance Cr ew, L AS M anagement, Resour ce Al locator , and I ncident

Reviewer fr om the L AS case study

The basel ine model, which consists of i* domain classes, serves a centralized

repository for information el icited for a speci f ic conf iguration of an organization.

Because multiple evaluation results can be obtained from the same basel ine

model structure, each basel ine model contains one basic model structure and

several sets of evaluation results that are distinguished by init ial values or human

decisions for label assignments. For simpl icity, we refer to the basic model

structure as the basel ine model as long as no confusion wi l l incur. Figure 3.2-1

shows a sample of the basel ine model structure from the LAS case study. We use

this sample as the basel ine model of the sample views shown in Section

3.2.1~3.2.4.

master-thesis-v4.4.doc

3.2.1 The Actor Class view

As defined by Yu (Yu 1994), the i* framework supports the concept of

strategic actors. Actors can be plain or speci fied. A role, a posit ion, an agent, or

an agent instance4 (the term “agent instance” wil l be discussed later in this

section) is called a specif ied actor. A plain actor is an actor of unspeci f ied type,

i.e., the modeler does not say whether it is a role, a posit ion, an agent, or an

agent instance. Since such an unspecif ied actor can appear as an element in a

model, we give it the special term “plain actor” , to distinguish it from the general

notion of actor (see Section 4.4.1 for more details). Besides, we def ine six

relationships—plays, occupies, covers, is-A, INS, and is-Part-of—among actors

as actor associations (Koubarakis et al. 1989; Yu and Liu 2000). This type of

overall information forms the Actor Class (AC) view.

In addition to clari fying existing actor types and actor associations, we

introduce new concepts into i* framework, and they are: two new association

types—speci fies and complete composition, one speci f ied actor type agent

instance, and the external relationship inheri tance rule along actor associations.

The “speci f ies” relationship originates from a specif ied actor to point to its

corresponding plain actor. Graphical ly, it is denoted by a dashed arrow line

labeled “ speci f ies” , with the arrow pointing to the plain actor (Figure 3.2-2(a)).

We cal l the former the direct speci fied actor of the latter. This l ink ref lects a

form of general ization simi lar to “ is-A” between a plain actor and its specif ied

form. The “ is-A” relationship, however, can only apply between actors of the

same speci f ied type. For example, the role “ Government as PC User” can only

special izes (via an “ is-A” l ink) the role “PC User” . The “speci f ies” relationship

is needed in enforcing the external relationship inheritance rule between a plain

and its speci f ied forms.

4 Instances of other forms of actor types such as role instance are also possible. We leave this part of

semantic for future research.

master-thesis-v4.4.doc

The “complete composition” relationship is added as a special ized form of the

“ is-Part-of” relationship, which impl ies that the union of the parts is exactly the

same as the whole. As with “ is-Part-of” , this new relationship can only apply

among actors of the same speci f ied type. Graphical ly, it is denoted by a solid

arrow line labeled “ And” with the arrow pointing to the “whole” and the “whole”

is highl ighted using a dash-fi l led rectangle with dashed-border (Figure 3.2-2(b)).

This graphical notation is not to be confused with the “ And” contribution

(Section 3.2.3), which can only apply between two intentional elements. The

“ complete composition” relationship appl ies a rigorous scope of the

responsibi l it ies and opportunit ies of the “whole” , basing on those of its “parts” .

In other words, any property of the “whole” must be found in one of its “parts” .

Therefore, a more accurate consistency can be enforced along this type of

aggregation relationship.

We distinguish agent instances from agents in that they have dif ferent

semantic impl ications. An agent instance ref lects a domain-object level actor

such as a human individual (e.g., John Steven), a physical organization (e.g.,

USA Government), a specif ic machine, and the like. An agent reflects the

classif ication (at the domain-class level) of the domain-object level instances.

For example, agent Human Resource Al locator denotes the group of individuals

who are thus classif ied. Moreover, this change affects the syntax of the INS link.

In this reformulation, only an agent instance may instantiate (via an INS l ink) an

agent. Graphical ly, we distinguish an agent instance from an agent by

highl ighting the former using a fi l led rectangle with dashed border (Figure

3.2-2(c)).

master-thesis-v4.4.doc

(a) Speci f ies (b) Complete composit i on (c) Agent instances

Figur e 3.2-2 newly intr oduced gr aphical notat ions

An external relationship inheri tance rule is defined over the reformulated

actor associations discussed previously in this section. The “ speci f ies” l ink imply

that the source (a specif ied actor) and the target (the corresponding plain actor)

share the exact same set of external relationships. The “ is-A” , “plays” ,

“occupies” , “ covers” , and “ INS” l inks al l imply that the actor serving as the

source of such a link inherits al l external relationships from its corresponding

target, but not vice versa. For example, in Figure 3.2-3, posit ion I ncident

Reviewer “ covers” both role Remover [Duplicated I ncI nfo] and role Assigner

[Reviewed I ncI nfo] . Suppose role Remover [Duplicated IncInfo] has an external

dependency G1 and role Assigner [Reviewed IncInfo] has G2, and G1 dif fers

from G2. According to the external relationship inheritance rule, posit ion

Incident Reviewer has both G1 and G2 as external dependencies. The “complete

composition” and “ is-Part-of” l inks imply that the actor serving as the target of

such a l ink inherits external relationships from its corresponding sets of source

actors. For example, the roles PC User and Content User (source actors) are

each a part of the combined role PC User and Content User (the target).

By applying the external relationship inheritance rules, we can speci fy

external relationships at a single actor, and these relationships can be referenced

by associated actors through an inheritance network along actor associations. By

this means, redundant external relationships can be avoided in an i* basel ine

master-thesis-v4.4.doc

model, which leads to SD views showing no redundant dependencies from one

actor to some di f ferent specif ied forms of another actor.

Figure 3.2-3 shows the AC view projected from the basel ine model shown in

Figure 3.2-1. By omitt ing dependency l inks and internal elements, the diagram

appears clearer and more readable. Actor associations stand out: Posit ion

Resour ce A l locator can be occupied by either a Resour ce Al locat ion M odule or

a Human Resour ce Al locator ; and posit ion Incident Reviewer covers role

Remover [Duplicated I ncI nfo] and role Assigner [Reviewed I ncI nfo] .

Figur e 3.2-3 Sample Actor Class view fr om the L AS case study

3.2.2 The Strategic Dependency view

The Strategic Dependency (SD) view corresponds to the SD model described

in (Yu 1994). Some minor changes originating from (Yu and Liu 2000; L iu et al.

2003) are appl ied, including the removal of the actor associations and the

addition of contribution links that target some external elements – dependum or

l ink. The purpose of the SD view is thus to express the “ intentional description

master-thesis-v4.4.doc

of a process in terms of [not only] a network of dependency relationships among

actors” (Yu 1994), but also to express the intertwined negative or positive effects

towards those dependency relationships among actors. The details of the

representation of those negative or posit ive effects wil l be discussed in the next

section.

Our reformulation also introduces intentional l inks that end at an external

element (a dependum or a l ink), which we call external l inks (see Section 4.4.5

for more details). In addition, since the annotations (crit ical, open) of

dependencies are not widely emphasized in various i* model ing practices, we

omit that aspect in this thesis.

Figure 3.2-4 shows the SD view extracted from the basel ine model of the LAS

case study (Figure 3.2-1). Posit ion Resource Allocator (depender) depends on

agent Ambulance Crew (dependee) to ensure the Accuracy of Ambulance

Information (AmbI nfo) (dependum); in turn, agent Ambulance Crew depends on

the Resource Al locator to provide Optimal Mobi l ization Instruction (M obI nst).

The Resource Al locator depends on either a CA Agent or the I ncident

Reviewing M odule to supply Reviewed I ncident I nfor mat ion. I f the I ncident

Reviewing M odule plays an Abuser role, it wil l hurt (an external correlation

l ink) the incoming dependency from the Resource Al locator.

master-thesis-v4.4.doc

Figur e 3.2-4 Sample SD view fr om the L AS case study

3.2.3 The Strategic Rationale view

The Strategic Rationale (SR) view experienced major changes in the graphical

notations when i* evolved into GRL in 2001. Our view extension follows what

was defined in (GRL 2003). GRL refined the notion of bel ief and decision point.

I t also distinguished correlation l inks from contribution links and defined labels

for contribution and correlation links.

Although logical ly defined by Yu (Yu 1994), the graphical notation of bel ief

was not presented until the introduction of GRL (GRL 2003). As stated in GRL,

“ [b]el iefs make it possible for domain characteristics to be considered and

properly reflected into the decision making process, and hence faci l itating later

review, justif ication and change of the system, as wel l as enhancing

traceabi l ity.” Since bel iefs are held by some stakeholders, it shall not appear as a

dependum and, hence, shal l never appear in the SD view. Bel ief and the other

four that appear in the SD view—goal, task, softgoal, resource—are called

intentional element in total. The graphical notation of a bel ief is shown in Figure

3.2-5.

Figur e 3.2-5 Gr aphical notat ion of bel ief

GRL (GRL 2003) distinguishes among four classes of intentional l inks. A goal

(ends) can be achieved by dif ferent tasks (means), and this relationship is

expressed by the means-ends l ink (the original GTLink). A task (or goal) can be

decomposed into sub-components—sub-goals, sub-tasks, sub-softgoals, and sub-

resources. This relationship is expressed by the decomposition l inks. This l ink

type remains the same as what was init ial ly def ined by Yu (Yu 1994).

Contribution (combination of the original STLink and SSLink) and correlation

(newly added type) l inks are used to express a direct or indirect effect from a

master-thesis-v4.4.doc

descendent to an ancestor softgoal. Graphical notations of the four classes are

shown in Figure 3.2-6.

(a) M eans-ends (b) Decomposi t i on (c) Cont r i but ion (d) Cor r el at ion

Figur e 3.2-6 I ntent ional l ink types

Moreover, an effect could be posit ive (make, help, or some+), equal, unknown,

or negative (break, hurt, or some-). In GRL (GRL 2003), make impl ies a

suff iciently posit ive effect; help, a partial ly posit ive ef fect; and some+ , a

posit ive ef fect with unknown extent. Simi larly, break impl ies a suf f iciently

negative effect; hurt, a partial ly negative effect; and some-, a negative effect

with unknown extent. Equal impl ies an identical effect, while unknown impl ies a

possible posit ive or negative ef fect. In addition, direct effects to a softgoal could

be AND or OR, meaning al l the off-springs must be met or only one of the off-

springs need to be met for the corresponding softgoal to be satisficed. Graphical

notations of these ef fect labels are presented in Figure 3.2-7 for contribution

l inks and in Figure 3.2-8 for correlation links. Alternatively, words (e.g.,

BREAK) can be used to label the l inks instead of the symbols (e.g.,).

master-thesis-v4.4.doc

Figur e 3.2-7 Effects of cont r ibut ion l inks

Figur e 3.2-8 Effects of cor r elat ion l inks

Liu and Yu defines the notation of decision point in the i* framework (Liu et

al. 2003). A decision point is a goal that requires more than one task.

Graphical ly, it is denoted by a goal highl ighted using a solid-f i l led solid-border

rectangle. Figure 3.2-9 shows goal BeCol lected [I ncI nfo] as a decision point

since it can be achieved by using either paper -based for ms or machine-based

mechanisms. Since this notation does not affect our view extension, we only

denote it graphical ly.

master-thesis-v4.4.doc

Figur e 3.2-9 gr aphical notat ion of decision point

Figure 3.2-10 shows the SR view corresponding to our basel ine model from

the LAS case study (Figure 3.2-1). The view shows the intentional elements that

are required to achieve top-level goals of the posit ion Resour ce Al locator . We

cal l intentional elements that reside internal to an actor as internal elements. For

example, softgoal Optimal [M obI nst] and Timeliness [M obi li zat ion] are

internal elements to posit ion Resource Al locator.

Figur e 3.2-10 Example of the SR view fr om the L AS case study

master-thesis-v4.4.doc

3.2.4 The Evaluation Results view

The Evaluation Results (EVLR) view presents graphical ly the results of the

evaluation process over an i* model. A qualitative evaluation process of i*

models was adapted from the NFR framework (Chung et al. 2000) in GRL (GRL

2003), its purpose is to assess the feasibi l ity of certain alternatives in achieving

organizational level goals.

The evaluation process labels each process element according to some init ial

assumptions of leaf nodes in the SR view. A leaf node is an intentional element

that normal ly has no incoming intentional l inks; a top level node is one that

normal ly has no outgoing intentional l inks. The evaluation process propagates

labels from leaf nodes step-by-step to top-level nodes, from internal elements to

their incoming dependums, and from that dependum to the internal elements that

reside inside the corresponding depender.

The original label propagation algorithm is defined for the NFR framework

(Chung et al. 2000), and has been adapted to the richer i* notations throughout

the literature (e.g., L iu et al. 2003) and in case studies (e.g., Horkoff 2004). In

this thesis, we do not define the propagation rules, because the topic itsel f

deserves further research and a uni formed label propagation algorithm in i* is

yet to be defined. Consequently, scalabi l ity issues speci f ic to this type of view is

not studied in detai l. However, we summarize some basic notations that are

generical ly accepted in the EVLR view.

GRL distinguishes among six types of intentional element labels, each

denoting a qual itative level of the satisf iceabi l ity of the node; they are Satisficed,

Weakly Satisficed, Confl ict/i rresolvable, Undecided, Weakly Denied, and Denied.

Figure 3.2-11 shows their graphical notation.

(a) Sat i sf i ced (b) W eak l y Sat i sf i ced (c) Undeci ded

master-thesis-v4.4.doc

(d) W eak ly Deni ed (e) Deni ed (f) Conf l i ct

Figur e 3.2-11 L abel types

The current OME tool distinguishes the labels from the way they are assigned.

A starting label is a label assigned to a node (normal ly leaf node) by the modeler,

and we highl ight the corresponding node with a dashed-border solid-f i l led

rectangle (Figure 3.2-12(a)). An automated label is a label that propagates

automatical ly from a node’ s descendents to it, and, hence, there is no graphic

change to the corresponding node (Figure 3.2-12(b)). A human-decision-involved

label is a label that is assigned by the modeler according to what is contributed

by its descendents, and it is denoted by highl ighting the corresponding node with

a solid-border solid-f i l led rectangle (Figure 3.2-12(c)). This notation appears

graphical ly the same as the decision point, so we recommend that this not be

used to highl ight decision point in the EVLR view. An imported label is a label

that is propagated from previous evaluation steps that are not shown in the

current diagram, and is denoted by highl ighting the corresponding node with a

dashed-border dashed-fi l led rectangle (Figure 3.2-12(d)). As mentioned in the

previous paragraph, these graphical notations do not play a crit ical role in our

view extension, so we define them only graphically.

Figur e 3.2-12 methods of label assignment

Figure 3.2-13 shows the EVLR view obtained by performing the evaluation

process using the sample SR view from the LAS case study (Figure 3.2-10).

During the evaluation, four process elements were selected to assign the starting

master-thesis-v4.4.doc

labels: softgoal Accuracy [AmbI nfo] was considered weakly satisf iced, task

generate mobi l ization information By M achine-based Algor i thm and Pass

paper -based for m, and softgoal Buggy [Software] were considered satisf iced

init ial ly. No human decision is involved in the label propagation process nor any

imported labels from other segments of the basel ine model that are not visual ized

in this view. According to the label propagation algorithm adapted in (L iu et al.

2003), the weakly satisf iced label of softgoal Accuracy [AmbInfo] contributes a

weakly denied label to both the top-level softgoal Quali ty [Service] through an

AND l ink and the incoming dependum Accuracy [AmbI nfo] from the Resource

Al locator. The former label, together with the undecided label propagated from

softgoal Timel iness [Service] via another AND link, makes the label of Qual ity

[Service] undecided. Following a simi lar procedure, the labels are propagated

step-by-step until al l top-level nodes are labeled.

Figur e 3.2-13 Sample Evaluat ion Resul ts view based on an SR view fr om the L AS

case study

master-thesis-v4.4.doc

3.3 Representational Constructs

We use here the approach discussed in the original framework (Section 2.2) to

embed the reformulated i* framework into Telos. The OME style is again

selected in presenting the formal constructs.

3.3.1 The Actor Class view

Figur e 3.3-1 A par t ial meta-model of the Actor Class view

Figure 3.3-1 shows a partial meta-model of the AC view. The relationship

between ISALinkClass and RoleElementClass applies to all other element classes

shown in the meta-model, but we omitted them for the sake of simpl icity. So

does the relationship between the following pairs: PartsLinkClass and

Posit ionElementClass, and CompleteCompositionLinkClass and

RoleElementClass. The formal def init ion of the “ speci f ies” l ink wi l l be given in

Section 4.4.1 since we consider it more appropriate to put that l ink in our view

extension.

master-thesis-v4.4.doc

Note that an instance of the INSLinkClass always has an instance of

AgentInstanceElementClass (e.g., John Steven) as its attribute from and an

instance of AgentElementClass (e.g., Human Resource Al locator) as attribute

to. In this thesis, we distinguish the two concepts expl icit ly in i* semantics for

the first time.

Figure 3.3-2 shows the formal representation of some of the elements that

appear in the AC view shown in Figure 3.2-3. The text quoted by %% on top of

each simple class denotes the name of the corresponding element shown in the

graphical representation. Note that the link names do not show in the graphical

presentation of the view.

% pl ai n act or Ambul ance Cr ew %
TELL Si mpl eCl ass Ambul anceCr ew_Pl ai nAct or I N Act or El ement Cl ass WI TH
 name
 di spl ayName : “ Ambul ance Cr ew”
 speci f i edByLi nk
 : ACASpeci f i esACPA
END

% agent Ambul ance Cr ew %
TELL Si mpl eCl ass Ambul anceCr ew_Agent I N Agent El ement Cl ass WI TH
 speci f i esLi nk
 : ACASpeci f i esACPA
END

% Speci f i es l i nk f r om posi t i on Resour ce Al l ocat or t o pl ai n act or
Resour ce Al l ocat or %
TELL Si mpl eCl ass ACASpeci f i esACPA I N Speci f i esLi nkCl ass WI TH
 f r om
 : Ambunal ceCr ew_Agent
 t o
 : Ambul anceCr ew_Pl ai nAct or
END

% pl ai n act or Resour ce Al l ocat or %
TELL Si mpl eCl ass Resour ceAl l ocat or _Pl ai nAct or I N Act or El ement Cl ass WI TH
 name
 di spl ayName : “ Resour ce Al l ocat or ”
 speci f i edByLi nk
 : RAPSpeci f i esRAPA
END

% posi t i on Resour ce Al l ocat or %
TELL Si mpl eCl ass Resour ceAl l ocat or _Posi t i on I N Posi t i onEl ement Cl ass WI TH
 speci f i esLi nk
 : RAPSpeci f i esRAPA
 occupi edByLi nks
 : RAMOccupi esRA

master-thesis-v4.4.doc

 : HRAOccupi esRA
END

% Speci f i es l i nk f r om posi t i on Resour ce Al l ocat or t o pl ai n act or
Resour ce Al l ocat or %
TELL Si mpl eCl ass RAPSpeci f i esRAPA I N Speci f i esLi nkCl ass WI TH
 f r om
 : Resour ceAl l ocat or _Posi t i on
 t o
 : Resour ceAl l ocat or _Pl ai nAct or
END

% occupi es l i nk f r om agent Resour ce Al l ocat i on Modul e t o posi t i on
Resour ce Al l ocat or %
TELL Si mpl eCl ass RAMOccupi esRA I N Occupi esLi nkCl ass WI TH
 f r om
 : Resour ceAl l ocat i onModul e_Agent
 t o
 : Resour ceAl l ocat or _Posi t i on
END

% agent Resour ce Al l ocat i on Modul e %
TELL Si mpl eCl ass Resour ceAl l ocat i onModul e_Agent I N Agent El ement Cl ass
WI TH
 occupi esLi nks
 : RAMOccupi esRA
END

% agent Human Resour ce Al l ocat or %
TELL Si mpl eCl ass HuamnResour ceAl l ocat or _Agent I N Agent El ement Cl ass WI TH
 occupi esLi nks
 : HRAOccupi esRA
END

Figur e 3.3-2 Actor Class view r epr esentat ion in Telos

master-thesis-v4.4.doc

3.3.2 The Strategic Dependency view

Figur e 3.3-3 A par t ial meta-model of the SD view

Figure 3.3-3 shows a partial meta-model of the SD view. In the OME style we

fol lowed, a more rigid hierarchy was introduced into the meta-model to enforce

the application of i* semantics. For example, OME introduced the concept of

DependableElementClass, whose instance can have an instance of

DependencyLinkClass as its attribute l inks. An instance of

ContributionLinkClass that ends (to) at an instance of DependencyL inkClass is

considered as a construct in the SD view. This type of l ink was included only in

the SR view by Yu (Yu 1994). In addition, our view extension distinguishes

between incoming dependencies (instances of IncomingDependencyL inkClass)

and outgoing dependencies (instances of OutgoingDependencyL inkClass).

Details regarding these dependency l inks are discussed later in Section 4.3.4.

Figure 3.3-4 formally represents some of the elements that appear in the SD

view shown in Figure 3.2-4. The text quoted by %% on top of each simple class

denotes the name of the corresponding element shown in the graphical

representation. The attributes quoted using [square bracket] are calculated

attributes. They are calculated based on the information obtained from the

master-thesis-v4.4.doc

basel ine model and are not original ly specif ied in the given element. For

example, the outgoing dependency l ink AC_TALtoOptimalL ink was init ial l y

speci f ied as a l ink of an internal softgoal AC_Timel inessArrivalLocation of

agent Ambulance Crew. However, in SD view, it is abstracted as a l ink of its

parent—agent Ambulance Crew.

% pl ai n act or Ambul ance Cr ew %
TELL Si mpl eCl ass Ambul anceCr ew_Pl ai nAct or I N Act or El ement Cl ass WI TH
 name
 di spl ayName : “ Ambul ance Cr ew”
END

% agent Ambul ance Cr ew %
TELL Si mpl eCl ass Ambul anceCr ew_Agent I N Agent El ement Cl ass WI TH
 name
 di spl ayName : “ Ambul ance Cr ew”
 [out DepLi nks
 : AC_TALt oOpt i mal Li nk]
END

% pl ai n act or Resour ce Al l ocat or %
TELL Si mpl eCl ass Resour ceAl l ocat or _Pl ai nAct or I N Act or El ement Cl ass WI TH
 name
 di spl ayName : “ Resour ce Al l ocat or ”
END

% posi t i on Resour ce Al l ocat or %
TELL Si mpl eCl ass Resour ceAl l ocat or _Posi t i on I N Posi t i onEl ement Cl ass WI TH
 name
 di spl ayName : “ Resour ce Al l ocat or ”
[i nDepLi nks
: Opt i mal t oOpt i mal Li nk_RA]
 …
END

% agent Resour ce Al l ocat i on Modul e %
TELL Si mpl eCl ass Resour ceAl l ocat i onModul e_Agent I N Agent El ement Cl ass
WI TH
END

% agent Human Resour ce Al l ocat or %
TELL Si mpl eCl ass HuamnResour ceAl l ocat or _Agent I N Agent El ement Cl ass WI TH
END

% dependency l i nk f r om sof t goal Ti mel i ness [Ar r i val Locat i on] i nsi de
agent Ambul ance Cr ew t o sof t goal dependum Opt i mal [MobI nst] %
TELL Si mpl eCl ass AC_TALt oOpt i mal Li nk I N DependencyLi nkCl ass WI TH
f r om
[: Ambul anceCr ew_Agent]
t o
: AC_Opt i mal MobI nst _RA
END

master-thesis-v4.4.doc

% dependency l i nk f r om sof t goal dependum Opt i mal [MobI nst] t o sof t goal
Opt i mal [MobI nst] i nsi de posi t i on Resour ce Al l ocat or %
TELL Si mpl eCl ass Opt i mal t oOpt i mal Li nk_RA I N DependencyLi nkCl ass WI TH
 f r om
: AC_Opt i mal MobI nst _RA
 t o
[: Resour ceAl l ocat or _Posi t i on]
END

% sof t goal dependum Opt i mal [MobI nst] %
TELL Si mpl eCl ass AC_Opt i mal MobI nst _RA I N DependumEl ement Cl ass,
Sof t Goal El ement Cl ass WI TH
 i nDepl i nks
 : AC_TALt oOpt i mal Li nk
 out DepLi nks
 : Opt i mal t oOpt i mal Li nk_RA
END

Figur e 3.3-4 SD view r epr esentat ion in Telos

3.3.3 The Strategic Rationale view

We argued previously (Section 3.1) that SR view is the detailed form of a SD

view, so modeling constructs for the SR view is a superset of those for the SD

view. The same analogy appl ies to the formal constructs between SR and SD.

Thus, it appears suff icient for us to just show the representational constructs in

the SR view that are not covered in the SD meta-model.

We use two diagrams to exhibit the meta-model for the SR view. Figure 3.3-5

focuses on presenting the hierarchy of element classes in the SR view whi le

Figure 3.3-6 focuses on showing various l ink classes that are supported in the SR

view. Besides,

Figure 3.3-5 shows the hierarchy of element classes. There are f ive meta-level

classes that have corresponding graphical notations: GoalElementClass,

TaskElementClass, ResourceElementClass, SoftgoalElementClass, and

Bel iefElementClass. Others are intermediate classes that only help

implementation of i* semantics. For example, the inheritance relationship from

GoalElementClass and TaskElementClass to DecomposableElementClass

enforces a rule in i* that only a goal (instance of GoalElementClass) or a task

(instance of TaskElementClass) can be decomposed. Another example is the use

master-thesis-v4.4.doc

of SubElementClass and IntentionalElementClass. From the partial meta-model

of the SD view (Figure 3.3-3), we know that a sub-element (instance of

SubElementClass) is dependable whi le an intentional element (instance of

IntentionalElementClass) is not. BeliefElementClass does not subclass

SubElementClass, so a bel ief (instance of Bel iefElementClass) is not dependable.

This semantic impl ies that a belief shal l never be a dependum.

Figure 3.3-6 focuses on showing various l ink classes and their semantics that

are supported in the SR view. For example, a means-ends link (instance of

MeansEndsLinkClass) can only starts from a task (instance of TaskElementClass)

and ends at either a goal, a task, or a resource (specif ied instance of

EndsElementClass). Besides, to distinguish dependency from other non-actor-

association links, we group the four types of l inks—means-ends, decomposition,

contribution, and correlation—into intentional l inks (instances of

IntentionalL inkClass).

Figur e 3.3-5 A par t ial schema showing Element hier ar chy in the SR view

master-thesis-v4.4.doc

Figur e 3.3-6 A par t ial meta-model showing the l inks suppor ted by SR view

Figure 3.3-7 shows the formal representation of some of the elements that

appear in the SR view shown in Figure 3.2-10. The text quoted by %% on top of

each simple class denotes the name of the corresponding element shown in the

graphical representation.

% pl ai n act or Ambul ance Cr ew %
TELL Si mpl eCl ass Ambul anceCr ew_Pl ai nAct or I N Act or El ement Cl ass WI TH
 name
 di spl ayName : “ Ambul ance Cr ew”
END

% agent Ambul ance Cr ew %
TELL Si mpl eCl ass Ambul anceCr ew_Agent I N Agent El ement Cl ass WI TH
 name
 di spl ayName : “ Ambul ance Cr ew”
 chi l dr en
 : AC_Qual i t ySer vi ce
 : AC_Ti mel i nessSer vi ce
 : AC_Ti mel i nessAr r i val Locat i on
 : AC_Accur acyAmbI nf o
 …
END

% sof t goal Ti mel i ness [Ar r i val Locat i on] i nsi de agent Ambul ance Cr ew %
TELL Si mpl eCl ass AC_Ti mel i nessAr r i val Locat i on I N Sof t Goal El ement Cl ass
WI TH
par ent
 : Ambul anceCr ew_Agent

master-thesis-v4.4.doc

 out DepLi nks
 : AC_TALt oOpt i mal Li nk
 l i nks
 : AC_TALt oTS_AndCont r i but i onLi nk
 …
END

% pl ai n act or Resour ce Al l ocat or %
TELL Si mpl eCl ass Resour ceAl l ocat or _Pl ai nAct or I N Act or El ement Cl ass WI TH
 name
 di spl ayName : “ Resour ce Al l ocat or ”
END

% posi t i on Resour ce Al l ocat or %
TELL Si mpl eCl ass Resour ceAl l ocat or _Posi t i on I N Posi t i onEl ement Cl ass WI TH
 name
 di spl ayName : “ Resour ce Al l ocat or ”
 chi l dr en
 : RA_Opt i mal MobI nst
: RA_Ti mel i nessAr r i val Locat i on
 : RA_Accur acyAmbI nf o
 : RA_BeGener at edMobI nst
 …
END

% agent Resour ce Al l ocat i on Modul e %
TELL Si mpl eCl ass Resour ceAl l ocat i onModul e_Agent I N Agent El ement Cl ass
WI TH
 chi l dr en
 : RA_BeGener at edMobI nst _ByAl gor i t hm
END

% agent Human Resour ce Al l ocat or %
TELL Si mpl eCl ass HuamnResour ceAl l ocat or _Agent I N Agent El ement Cl ass WI TH
 chi l dr en
 : RA_BeGener at edMobI nst _ByHumanDeci si on
END

% dependency l i nk f r om sof t goal Ti mel i ness [Ar r i val Locat i on] i nsi de
agent Ambul ance Cr ew t o sof t goal dependum Opt i mal [MobI nst] %
TELL Si mpl eCl ass AC_TALt oOpt i mal Li nk I N DependencyLi nkCl ass WI TH
f r om
: AC_Ti mel i nessAr r i val Local t i on
t o
: AC_Opt i mal MobI nst _RA
END

% dependency l i nk f r om sof t goal dependum Opt i mal [MobI nst] t o sof t goal
Opt i mal [MobI nst] i nsi de posi t i on Resour ce Al l ocat or %
TELL Si mpl eCl ass Opt i mal t oOpt i mal Li nk_RA I N DependencyLi nkCl ass WI TH
 f r om
: AC_Opt i mal MobI nst _RA
 t o
: RA_Opt i mal MobI nst
END

master-thesis-v4.4.doc

% sof t goal dependum Opt i mal [MobI nst] %
TELL Si mpl eCl ass AC_Opt i mal MobI nst _RA I N DependumEl ement Cl ass,
Sof t Goal El ement Cl ass WI TH
 i nDepl i nks
 : AC_TALt oOpt i mal Li nk
 out DepLi nks
 : Opt i mal t oOpt i mal Li nk_RA
END

% sof t goal Opt i mal [MobI nst] i nsi de posi t i on Resour ce Al l ocat or %
TELL Si mpl eCl ass RA_Opt i mal MobI nst I N Sof t goal El ement Cl ass WI TH
par ent
: Resour ceAl l ocat or _Posi t i on
i nDepLi nks
: Opt i mal t oOpt i mal Li nk_RA
…
END

Figur e 3.3-7 SR view r epr esentat ion in Telos

3.3.4 The Evaluation Results view

The i* framework supports a set of qual itative labels. We formal ize them

using a set of simple classes, each of which corresponds to an instance of the

meta-class IntentionalElementLabelClass. For example, the weakly denied label

() is represented by simple class WeaklyDeniedElementLabel. The formal

representation of these model ing constructs is shown in Figure 3.3-8.

Figur e 3.3-8 For mal r epr esentat ion of labels in Telos

master-thesis-v4.4.doc

Figure 3.3-9 shows the formal representation of two elements that appear in

the EVLR view shown in Figure 3.2-13. Each of the two elements has “ label” as

its attribute, and each is assigned an UndecidedElementL abel. The text quoted

by %% on top of each simple class denotes the name of the corresponding

element shown in the graphical representation.

% sof t goal Ti mel i nes [Ar r i val Locat i on] i nsi de agent Ambul ance Cr ew%
TELL Si mpl eCl ass AC_Ti mel i nessAr r i val Locat i on I N Sof t Goal El ement Cl ass
WI TH

par ent
 : Ambul anceCr ew_Agent
 out DepLi nks
 : AC_TALt oOpt i mal Li nk
 l i nks
 : AC_TALt oTS_AndCont r i but i onLi nk
 …
 l abel
%an Undeci ded l abel i s assi gned t o t hi s el ement %
 : Undeci dedEl ement Label
END

TELL Si mpl eCl ass AC_Opt i mal MobI nst _RA I N DependumEl ement Cl ass,
Sof t Goal El ement Cl ass WI TH
 i nDepl i nks
 : AC_TALt oOpt i mal Li nk
 out DepLi nks
 : Opt i mal t oOpt i mal Li nk_RA
 l abel
 %an Undeci ded l abel i s assi gned t o t hi s el ement %
 : Undeci dedEl ement Label
END

Figur e 3.3-9 Evaluation r esul ts in TEL OS r epr esentat ion

3.4 Discussion

The four views derived from the same basel ine model share some common

elements and these elements serve as connectors among the views. Given a

basel ine model, the information contained in i t can be partit ioned into three basic

views: Basic AC view, Basic SR view, and basic EVLR view. Actors (plain or

speci f ied) show in both the AC and SR view, yet the former contains actor

associations whi le the latter focuses on dependencies. Any SD view can be

viewed as an abstraction of its corresponding SR view. Any EVLR view contains

master-thesis-v4.4.doc

all elements in its corresponding SR view along with label assigned to the

elements as attributes during an evaluation process.

The inter-view relationship can be seen more clearly in the underlying Telos

representation. We use Figure 3.4-1 to show the formal constructs of a partial

basel ine model, denoting parts belonging to dif ferent views using dif ferent

special effect. Then we show separately the corresponding formal representations

in dif ferent views.

In Figure 3.4-1, we i tal icize the attributes that belong only (meaning do not

belong to the SR view) to the AC view; we bold the attributes that belong to both

SD and SR views; and the attributes without special effects belong to only the SR

view. For the calculated attributes in the SD view, we put them in [square

bracket] . Intentional elements are assigned labels in the EVLR view, so we

underline those attributes shown only in the EVLR.

% pl ai n act or Ambul ance Cr ew %
TELL Si mpl eCl ass Ambul anceCr ew_Pl ai nAct or I N Act or El ement Cl ass WI TH
 name
 di spl ayName : “ Ambul ance Cr ew”
 speci f i edByLi nk
 : ACASpeci f i esACPA
END

% agent Ambul ance Cr ew %
TELL Si mpl eCl ass Ambul anceCr ew_Agent I N Agent El ement Cl ass WI TH
 name
 di spl ayName : “ Ambul ance Cr ew”
 speci f i esLi nk
 : ACASpeci f i esACPA
 chi l dr en
 : AC_Qual i t ySer vi ce
 : AC_Ti mel i nessSer vi ce
 : AC_Ti mel i nessAr r i val Locat i on
 : AC_Accur acyAmbI nf o
 …
 [out DepLi nks
 : AC_TALt oOpt i mal Li nk]
END

% Speci f i es l i nk f r om posi t i on Resour ce Al l ocat or t o pl ai n act or
Resour ce Al l ocat or %
TELL Si mpl eCl ass ACASpeci f i esACPA I N Speci f i esLi nkCl ass WI TH
 f r om
 : Ambunal ceCr ew_Agent
 t o
 : Ambul anceCr ew_Pl ai nAct or

master-thesis-v4.4.doc

END

% sof t goal Ti mel i ness [Ar r i val Locat i on] i nsi de agent Ambul ance Cr ew %
TELL Si mpl eCl ass AC_Ti mel i nessAr r i val Locat i on I N Sof t Goal El ement Cl ass
WI TH
par ent
 : Ambul anceCr ew_Agent
 out DepLi nks
 : AC_TALt oOpt i mal Li nk
 l i nks
 : AC_TALt oTS_AndCont r i but i onLi nk
 …
 l abel
 : Undeci dedEl ement Label
END

% pl ai n act or Resour ce Al l ocat or %
TELL Si mpl eCl ass Resour ceAl l ocat or _Pl ai nAct or I N Act or El ement Cl ass WI TH
 name
 di spl ayName : “ Resour ce Al l ocat or ”
 speci f i edByLi nk
 : RAPSpeci f i esRAPA
END

% posi t i on Resour ce Al l ocat or %
TELL Si mpl eCl ass Resour ceAl l ocat or _Posi t i on I N Posi t i onEl ement Cl ass WI TH
 name
 di spl ayName : “ Resour ce Al l ocat or ”
 speci f i esLi nk
 : RAPSpeci f i esRAPA
 occupi edByLi nks
 : RAMOccupi esRA
 : HRAOccupi esRA
 chi l dr en
 : RA_Opt i mal MobI nst
: RA_Ti mel i nessAr r i val Locat i on
 : RA_Accur acyAmbI nf o
 : RA_BeGener at edMobI nst
[i nDepLi nks
: Opt i mal t oOpt i mal Li nk_RA]
 …
END

% Speci f i es l i nk f r om posi t i on Resour ce Al l ocat or t o pl ai n act or
Resour ce Al l ocat or %
TELL Si mpl eCl ass RAPSpeci f i esRAPA I N Speci f i esLi nkCl ass WI TH
 f r om
 : Resour ceAl l ocat or _Posi t i on
 t o
 : Resour ceAl l ocat or _Pl ai nAct or
END

% occupi es l i nk f r om agent Resour ce Al l ocat i on Modul e t o posi t i on
Resour ce Al l ocat or %
TELL Si mpl eCl ass RAMOccupi esRA I N Occupi esLi nkCl ass WI TH
 f r om

master-thesis-v4.4.doc

 : Resour ceAl l ocat i onModul e_Agent
 t o
 : Resour ceAl l ocat or _Posi t i on
END

% agent Resour ce Al l ocat i on Modul e %
TELL Si mpl eCl ass Resour ceAl l ocat i onModul e_Agent I N Agent El ement Cl ass
WI TH
 occupi esLi nks
 : RAMOccupi esRA
 chi l dr en
 : RA_BeGener at edMobI nst _ByAl gor i t hm
END

% agent Human Resour ce Al l ocat or %
TELL Si mpl eCl ass HuamnResour ceAl l ocat or _Agent I N Agent El ement Cl ass WI TH
 occupi esLi nks
 : HRAOccupi esRA
 chi l dr en
 : RA_BeGener at edMobI nst _ByHumanDeci si on
END

% dependency l i nk f r om sof t goal Ti mel i ness [Ar r i val Locat i on] i nsi de
agent Ambul ance Cr ew t o sof t goal dependum Opt i mal [MobI nst] %
TELL Si mpl eCl ass AC_TALt oOpt i mal Li nk I N DependencyLi nkCl ass WI TH
f r om
: AC_Ti mel i nessAr r i val Local t i on
[: Ambul anceCr ew_Agent]
t o
: AC_Opt i mal MobI nst _RA
END

% dependency l i nk f r om sof t goal dependum Opt i mal [MobI nst] t o sof t goal
Opt i mal [MobI nst] i nsi de posi t i on Resour ce Al l ocat or %
TELL Si mpl eCl ass Opt i mal t oOpt i mal Li nk_RA I N DependencyLi nkCl ass WI TH
 f r om
: AC_Opt i mal MobI nst _RA
 t o
: RA_Opt i mal MobI nst
[: Resour ceAl l ocat or _Posi t i on]
END

% sof t goal dependum Opt i mal [MobI nst] %
TELL Si mpl eCl ass AC_Opt i mal MobI nst _RA I N DependumEl ement Cl ass,
Sof t Goal El ement Cl ass WI TH
 i nDepl i nks
 : AC_TALt oOpt i mal Li nk
 out DepLi nks
 : Opt i mal t oOpt i mal Li nk_RA
 l abel
 : Undeci dedEl ement Label
END

% sof t goal Opt i mal [MobI nst] i nsi de posi t i on Resour ce Al l ocat or %
TELL Si mpl eCl ass RA_Opt i mal MobI nst I N Sof t goal El ement Cl ass WI TH
par ent

master-thesis-v4.4.doc

: Resour ceAl l ocat or _Posi t i on
i nDepLi nks
: Opt i mal t oOpt i mal Li nk_RA
 l abel
 : Undeci dedEl ement Label
…
END

Figur e 3.4-1 The Telos r epr esentat ion of a segment fr om the L AS basel ine model

The following diagram shows the corresponding SD view of Figure 3.4-1.

Only actors and their dependency l inks are included, and the non-bolded

attributes are calculated ones.

% agent Ambul ance Cr ew %
TELL Si mpl eCl ass Ambul anceCr ew_Agent I N Agent El ement Cl ass I SA
Ambul anceCr ew_Act or WI TH
 name
 di spl ayName : “ Ambul ance Cr ew”
 out DepLi nks
 : AC_TALt oOpt i mal Li nk
END

% posi t i on Resour ce Al l ocat or %
TELL Si mpl eCl ass Resour ceAl l ocat or _Posi t i on I N Posi t i onEl ement Cl ass I SA
Resour ceAl l ocat or _Act or WI TH
 name
 di spl ayName : “ Resour ce Al l ocat or ”
i nDepLi nks
: Opt i mal t oOpt i mal Li nk_RA
 …
END

% agent Resour ce Al l ocat i on Modul e %
TELL Si mpl eCl ass Resour ceAl l ocat i onModul e_Agent I N Agent El ement Cl ass I SA
Resour ceAl l ocat or _Act or WI TH
END

% agent Human Resour ce Al l ocat or %
TELL Si mpl eCl ass HuamnResour ceAl l ocat or _Agent I N Agent El ement Cl ass I SA
Resour ceAl l ocat or _Act or WI TH
END

% dependency l i nk f r om sof t goal Ti mel i ness [Ar r i val Locat i on] i nsi de
agent Ambul ance Cr ew t o sof t goal dependum Opt i mal [MobI nst] %
TELL Si mpl eCl ass AC_TALt oOpt i mal Li nk I N DependencyLi nkCl ass WI TH
f r om
: Ambul anceCr ew_Agent
t o
: AC_Opt i mal MobI nst _RA
END

% dependency l i nk f r om sof t goal dependum Opt i mal [MobI nst] t o sof t goal
Opt i mal [MobI nst] i nsi de posi t i on Resour ce Al l ocat or %

master-thesis-v4.4.doc

TELL Si mpl eCl ass Opt i mal t oOpt i mal Li nk_RA I N DependencyLi nkCl ass WI TH
 f r om
: AC_Opt i mal MobI nst _RA
 t o
: Resour ceAl l ocat or _Posi t i on
END

% sof t goal dependum Opt i mal [MobI nst] %
TELL Si mpl eCl ass AC_Opt i mal MobI nst _RA I N DependumEl ement Cl ass,
Sof t Goal El ement Cl ass WI TH
 i nDepl i nks
 : AC_TALt oOpt i mal Li nk
 out DepLi nks
 : Opt i mal t oOpt i mal Li nk_RA
END

The corresponding AC view of Figure 3.4-1 show below keeps only actors and

their associations.

% pl ai n act or Ambul ance Cr ew %
TELL Si mpl eCl ass Ambul anceCr ew_Pl ai nAct or I N Act or El ement Cl ass WI TH
 name
 di spl ayName : “ Ambul ance Cr ew”
 speci f i edByLi nk
 : ACASpeci f i esACPA
END

% agent Ambul ance Cr ew %
TELL Si mpl eCl ass Ambul anceCr ew_Agent I N Agent El ement Cl ass WI TH
 name
 di spl ayName : “ Ambul ance Cr ew”
 speci f i esLi nk
 : ACASpeci f i esACPA
END

% Speci f i es l i nk f r om posi t i on Resour ce Al l ocat or t o pl ai n act or
Resour ce Al l ocat or %
TELL Si mpl eCl ass ACASpeci f i esACPA I N Speci f i esLi nkCl ass WI TH
 f r om
 : Ambunal ceCr ew_Agent
 t o
 : Ambul anceCr ew_Pl ai nAct or
END

% pl ai n act or Resour ce Al l ocat or %
TELL Si mpl eCl ass Resour ceAl l ocat or _Pl ai nAct or I N Act or El ement Cl ass WI TH
 name
 di spl ayName : “ Resour ce Al l ocat or ”
 speci f i edByLi nk
 : RAPSpeci f i esRAPA
END

% posi t i on Resour ce Al l ocat or %
TELL Si mpl eCl ass Resour ceAl l ocat or _Posi t i on I N Posi t i onEl ement Cl ass WI TH
 name
 di spl ayName : “ Resour ce Al l ocat or ”

master-thesis-v4.4.doc

 speci f i esLi nk
 : RAPSpeci f i esRAPA
 occupi edByLi nks
 : RAMOccupi esRA
 : HRAOccupi esRA
END

% Speci f i es l i nk f r om posi t i on Resour ce Al l ocat or t o pl ai n act or
Resour ce Al l ocat or %
TELL Si mpl eCl ass RAPSpeci f i esRAPA I N Speci f i esLi nkCl ass WI TH
 f r om
 : Resour ceAl l ocat or _Posi t i on
 t o
 : Resour ceAl l ocat or _Pl ai nAct or
END

% occupi es l i nk f r om agent Resour ce Al l ocat i on Modul e t o posi t i on
Resour ce Al l ocat or %
TELL Si mpl eCl ass RAMOccupi esRA I N Occupi esLi nkCl ass WI TH
 f r om
 : Resour ceAl l ocat i onModul e_Agent
 t o
 : Resour ceAl l ocat or _Posi t i on
END

% agent Resour ce Al l ocat i on Modul e %
TELL Si mpl eCl ass Resour ceAl l ocat i onModul e_Agent I N Agent El ement Cl ass
WI TH
 occupi esLi nks
 : RAMOccupi esRA
END

% agent Human Resour ce Al l ocat or %
TELL Si mpl eCl ass HuamnResour ceAl l ocat or _Agent I N Agent El ement Cl ass WI TH
 occupi esLi nks
 : HRAOccupi esRA
END

The corresponding SR view of Figure 3.4-1 shown below keeps actors, their

external dependencies, and their internal structures.

% agent Ambul ance Cr ew %
TELL Si mpl eCl ass Ambul anceCr ew_Agent I N Agent El ement Cl ass I SA
Ambul anceCr ew_Act or WI TH
 name
 di spl ayName : “ Ambul ance Cr ew”
 chi l dr en
 : AC_Qual i t ySer vi ce
 : AC_Ti mel i nessSer vi ce
 : AC_Ti mel i nessAr r i val Locat i on
 : AC_Accur acyAmbI nf o
 …
END

% sof t goal Ti mel i ness [Ar r i val Locat i on] i nsi de agent Ambul ance Cr ew %

master-thesis-v4.4.doc

TELL Si mpl eCl ass AC_Ti mel i nessAr r i val Locat i on I N Sof t Goal El ement Cl ass
WI TH
par ent
 : Ambul anceCr ew_Agent
 out DepLi nks
 : AC_TALt oOpt i mal Li nk
 l i nks
 : AC_TALt oTS_AndCont r i but i onLi nk
 …
 l abel
 : Undeci dedEl ement Label
END

% posi t i on Resour ce Al l ocat or %
TELL Si mpl eCl ass Resour ceAl l ocat or _Posi t i on I N Posi t i onEl ement Cl ass I SA
Resour ceAl l ocat or _Act or WI TH
 name
 di spl ayName : “ Resour ce Al l ocat or ”
 chi l dr en
 : RA_Opt i mal MobI nst
: RA_Ti mel i nessAr r i val Locat i on
 : RA_Accur acyAmbI nf o
 : RA_BeGener at edMobI nst
 …
END

% agent Resour ce Al l ocat i on Modul e %
TELL Si mpl eCl ass Resour ceAl l ocat i onModul e_Agent I N Agent El ement Cl ass I SA
Resour ceAl l ocat or _Act or WI TH
 chi l dr en
 : RA_BeGener at edMobI nst _ByAl gor i t hm
END

% agent Human Resour ce Al l ocat or %
TELL Si mpl eCl ass HuamnResour ceAl l ocat or _Agent I N Agent El ement Cl ass I SA
Resour ceAl l ocat or _Act or WI TH
 chi l dr en
 : RA_BeGener at edMobI nst _ByHumanDeci si on
END

% dependency l i nk f r om sof t goal Ti mel i ness [Ar r i val Locat i on] i nsi de
agent Ambul ance Cr ew t o sof t goal dependum Opt i mal [MobI nst] %
TELL Si mpl eCl ass AC_TALt oOpt i mal Li nk I N DependencyLi nkCl ass WI TH
f r om
: AC_Ti mel i nessAr r i val Local t i on
t o
: AC_Opt i mal MobI nst _RA
END

% dependency l i nk f r om sof t goal dependum Opt i mal [MobI nst] t o sof t goal
Opt i mal [MobI nst] i nsi de posi t i on Resour ce Al l ocat or %
TELL Si mpl eCl ass Opt i mal t oOpt i mal Li nk_RA I N DependencyLi nkCl ass WI TH
 f r om
: AC_Opt i mal MobI nst _RA
 t o
: RA_Opt i mal MobI nst

master-thesis-v4.4.doc

END

% sof t goal dependum Opt i mal [MobI nst] %
TELL Si mpl eCl ass AC_Opt i mal MobI nst _RA I N DependumEl ement Cl ass,
Sof t Goal El ement Cl ass WI TH
 i nDepl i nks
 : AC_TALt oOpt i mal Li nk
 out DepLi nks
 : Opt i mal t oOpt i mal Li nk_RA
 l abel
 : Undeci dedEl ement Label
END

% sof t goal Opt i mal [MobI nst] i nsi de posi t i on Resour ce Al l ocat or %
TELL Si mpl eCl ass RA_Opt i mal MobI nst I N Sof t goal El ement Cl ass WI TH
par ent
: Resour ceAl l ocat or _Posi t i on
i nDepLi nks
: Opt i mal t oOpt i mal Li nk_RA
 l abel
 : Undeci dedEl ement Label
…
END
I n t he EVLR, a l abel at t r i but e i s associ at ed wi t h cor r espondi ng
i nt ent i onal el ement t okens.
TELL Si mpl eCl ass RA_Opt i mal MobI nst I N Sof t goal El ement Cl ass WI TH
par ent
: Resour ceAl l ocat or _Posi t i on
i nDepLi nks
: Opt i mal t oOpt i mal Li nk_RA
 l abel
 : Undeci dedEl ement Label
…
END

Besides what was formal ly proposed in this thesis, we uniquely named each

simple class in our sample. Naming convention is beyond the scope of this

research so we wil l not enforce the use of any speci f ic style. The style chosen

proved to be suff icient in identifying elements from the LAS case study, but we

do not guarantee it wil l general ize to other applications.

master-thesis-v4.4.doc

 63/231 9/1/2004

4 Managing i* Models Using Views

As a sub-step in our view extension to effectively represent large-scale and

complex i* models, we separate meta-concepts in the Actor Class (AC) view

from the Strategic Dependency (SD) view. However, for a suff iciently large-

scale appl ication, a basic (AC, SD, or SR) view itsel f can become complex, and

dif f icult to comprehend. So we need to break down each basic view until the

information contained in a view is readi ly comprehensible.

Whi le scal ing down a complex basel ine model into multiple views, the number

of views can grow. The approach itself introduces a new line of complexity into

representing and traversing the model. As a result, we introduce a view

extension as a separate project management framework alongside the core i*

framework. The purpose of this view extension is to offer a reference structure

so that users can maintain a relationship among various views and locate

information effectively from other views.

Section 4.1 explains the features of the view extension; Section 4.2 presents

the representational constructs of the view extension; Section 4.3 def ines related

meta-concepts that are used in the selection rules; and Section 4.4 briefly

summarizes contributions of our view extension.

4.1 View Extension Features

We use a View M ap (VM) to visual ize relationships among various views in

the reference structure. Unique names are given to models, views, l inks and

elements to provide a referencing structure. This strategy is important to support

cross diagram references and, thus, minimize manual efforts (given the fact that

these references have to be maintained manual ly at present).

In the reformulated i* framework (Section 3), four types of views—AC, SD,

SR and EVLR—are defined. To address scalabi l ity, our extension further

master-thesis-v4.4.doc

 64/231 9/1/2004

distinguishes among various sub view types. The views are defined using Telos:

Use meta-classes to encode view types (e.g., BasicViewClass), and use simple

(domain) classes to encode an actual view (e.g., theBasicACView) obtained from

an existing basel ine model. In this regard, adding or deleting or updating a view

type can follow a systematic and formal approach. Thus, it is easier for users to

maintain and evolve over t ime this view extension and to make use of tool

support.

Elements in a view are not selected arbitrarily; rather, a selection rule is

bound to each specif ied view type. Applying a selection rule to the basel ine

model or some intermediate view, we find that the result ing elements constitute a

corresponding sub-view of the input element. Selection rules are def ined in

Telos-compatible First Order Logic (FOL) and can be implemented using Telos

queries (instances of QueryClass). See Appendix for more details regarding the

translation from FOL formula to O-Telos classes.

The reformulated i* framework discussed in chapter 3 distinguishes the

basel ine model from views. Our extension distinguishes between basic and

partial views. For any real-world appl ication, one or more i* models can be

constructed according to different social settings, dif ferent view-points, or

dif ferent time periods. We define each of these models as the basel ine model for

the speci f ic settings and viewpoints. Corresponding to the four view types, four

basic views are derived from each basel ine model, one for each view type. Basic

views are derived according to the type of meta-level concepts each speci f ic

view type support (see Section 3.3 for more details). Partial views,

corresponding to one or more sub- view type, are derived from a basic view or

another partial view according to the selection rules associated with the sub-

view type.

4.2 View Map

In a view map, we use a heavy-border box to denote a basic or an ini tial view

(the view all other views are based on in a view map), and we use a regular-

master-thesis-v4.4.doc

 65/231 9/1/2004

border box to denote a derived view (views other than the init ial one in a view

map). The decomposition from one view into multiple chi ld views is denoted by

branches; this type of reduction is total. In other words, the union of modeled

elements in chi ld views is equivalent to the set of modeled elements in the parent

view. The projection over one view to a sub-view is denoted by dashed arrow-

l ines. The view decomposition and projection l inks connect sub-views of type

AC, SD, and SR. In the EVLR view, we use a solid arrow-line to denote the

direction of label propagation. Figure 4.2-1 shows the graphical notations of the

concepts.

Figur e 4.2-1 Gr aphical notat ions in V iew M ap

Figure 4.2-2 il lustrates the generic view map that f its for al l i* models. For

any i* model constructed for a given organizational conf igurations, The Baseline

M odel can be decomposed into four basic views: The Basic AC View, The

Basic SD view, The Basic SR view, and The Basic EVL R view.

Figur e 4.2-2 Gener ic V iew M ap showing r elat ionship of the basel ine model and the

basic views

4.3 Representational Constructs

Each type of view is defined by a meta-level view class, and concrete views in

an appl ication are instances of the meta-level view classes. Selection rules are

master-thesis-v4.4.doc

 66/231 9/1/2004

encoded in query classes and are attached as the selectionRule attribute to each

speci f ic type of view class.

Figur e 4.3-1 A par t ial meta-model of the view extension showing meta-level

r elat ionship among the basel ine model class and other view classes

Figure 4.3-1 shows the part of the meta-model that defines the relationship

among a basel ine model and its chi ld views. Formal ly, we consider a basel ine

model as a specif ic view (the whole); an instance of Basel ineModelClass takes

an instance of a BasicViewClass as attribute basicViews, whi le the latter takes

the former as its attribute theBasel ineModel . Besides, the above figure also

shows two lines of special izing view classes: One of them is in accordance with

the four view types, and the other is in accordance with the distinction between

basic and partial. After combination, we obtained eight sub- view classes,

including BasicACViewClass, BasicSDViewClass, BasicSRViewClass,

BasicEVLRViewClass, PartialACViewClass, PartialSDViewClass,

PartialSRViewClass, and PartialEVLRViewClass. We use short-hand style

master-thesis-v4.4.doc

 67/231 9/1/2004

Basic[AC|SD|SR|EVLR]ViewClass in Figure 4.3-1 to reference the four basic

view classes.

Figur e 4.3-2 A par t ial meta-model of the view extension showing the hier ar chy of

inher itance

Figure 4.3-2 shows the relationships among the meta-level classes and

concrete views residing in an i* model. Each i* model corresponds to a singleton

instance of Basel ineModelClass—theBaselineM odel. Instances of any

BasicXXViewClass are also singletons, and here “ XX” stands for one of

AC|SD|SR|EVLR. For example, theBasicACView is the singleton instance of

meta-class BasicACViewClass. Each view is constituted by a sub-set of domain

classes existed in the basel ine model. For example, aSingleNetwor kView

(indirect instance of PartialACViewClass) contains Goal_7 (instance of

master-thesis-v4.4.doc

 68/231 9/1/2004

GoalElementClass) and Link_8 (instance of L inkClass) as contents of its

attribute grlObjects.

Figur e 4.3-3 A par t ial meta-model of the view extension showing meta-level

r elat ionships among di f fer ent types of AC view classes

Figure 4.3-3 shows a partial meta-model of the view extension concerning AC

sub- view types. Query classes assigned to dif ferent types of AC views are

manifested. For example, plainActorsOnlyRule (instance of QueryClass) is

assigned to the PlainActorsOnlyViewClass as its attribute selectionRule. Each

partial view (e.g., aPlainActorsView) of a given type (e.g., Plain-Actors-Only

view type) corresponds to the result ing set of elements following the execution

of the query (e.g., plainActorsOnlyRule) attached to the view type.

Figure 4.3-4 and Figure 4.3-5 shows the simi lar meta-model of the view

extension concerning SD and SR views, respectively.

master-thesis-v4.4.doc

 69/231 9/1/2004

Figur e 4.3-4 A par t ial meta-model of the view extension showing meta-level

r elat ionships among di f fer ent types of SD view classes

Figur e 4.3-5 A par t ial meta-model of the view extension showing meta-level

r elat ionships among di f fer ent types of SR and EVL R view classes

master-thesis-v4.4.doc

 70/231 9/1/2004

4.4 Meta-concepts Essential to Selection Rules

In previous sections, we introduced the view types and their corresponding

representational constructs in Telos. In this section, we def ine some crit ical

concepts that are extensively referenced in the selection rules. Most of the

concepts come in pairs, as follows: plain vs. speci fied actor (Section 4.3.1),

parent vs. chi ldren (Section 4.3.3), incoming vs. outgoing dependency (Section

4.3.4), and ancestor vs. descendent (Section 4.3.6); the exceptions are actor

association (4.3.2) and external l ink (Section 4.3.5).

Concepts discussed in this section are derived from existing meta-concepts in

our reformulated i* framework, and some of them have been defined informal ly

in Section 3.2, along with the description of the graphical notations. We

emphasize in this section the formal constructs related to these concepts: without

exception, they are described in a Telos compatible First Order Logic (FOL)

form.

4.4.1 Plain and specified actor

Our extension implements the concept plain actor expl icit ly using meta-class

PlainActorElementClass, and the concept speci fied actor using meta-class

Specif iedActorElementClass. PlainActorElementClass is equivalent to only

ActorElementClass, whi le Specif iedActorElementClass is equivalent to the

generation of RoleElementClass, Posit ionElementClass, AgentElementClass, and

AgentInstanceElementClass. Among speci f ied actors, we distinguish between

abstract actors (instances of AbstractActorElementClass) and physical actors

(instances of PhysicalActorElementClass) for the former represents the

classif ication of simi lar instances whi le the latter represents a single instance.

AbstractActorElementClass is equivalent to RoleElementClass and

Posit ionElementClass, and AgentElementClass, whi le

PhysicalActorElementClass to AgentInstanceElementClass. Figure 4.4-1 shows

the partial meta-model that relates to our extended actor types.

master-thesis-v4.4.doc

 71/231 9/1/2004

Figur e 4.4-1 A par t ial meta-model showing r elat ionships among extended actor

types in our extension

4.4.2 Actor association

We define actor associations informal ly as the general form of eight

relationships among actors, as follows: “plays” , “occupies” , “ covers” , “ is-A” ,

“ INS” , “ is-Part-of” , “ specif ies” , and “ complete composites” . Now we formal ly

present these concepts as subclasses of ActorAssociationLinkClass. Figure 4.4-2

shows the part of meta-model related with association links.

Figur e 4.4-2 Par t ial meta-model showing associat ion l ink classes

4.4.3 Parent versus children

The i* semantic has natural support for one level of abstraction between a

strategic actor and its internal rationales. These internal rationales are modeled

using intentional elements (goals, tasks, softgoals, resources, and bel iefs) that

are connected by intentional l inks (means-ends, decomposition, contribution, and

master-thesis-v4.4.doc

 72/231 9/1/2004

correlation). Our extension def ines the relationship discussed above as parent-

chi ldren5. In other words, a strategic actor can have intentional elements as its

chi ldren, whi le, in turn, these intentional elements have that actor as their parent.

The partial meta-model related to these concepts is demonstrated in Figure 4.4-3.

Figur e 4.4-3 Par t ial meta-model showing the par ten-chi ldr en r elat ionship

For example, in the underlying representation of a partial model shown in

Figure 4.4-4, we see that simple class AmbulanceCrew_Agent (denoting agent

Ambulance Crew) has simple class AC_TimelinessAr r ivalL ocat ion (denoting

softgoal Timel iness [Arrival Location]) assigned to its attribute chi ldren. The

latter, in turn, has the former assigned to its attribute parent.

% agent Ambul ance Cr ew %
TELL Si mpl eCl ass Ambul anceCr ew_Agent I N Agent El ement Cl ass WI TH
 chi l dr en
 : AC_Qual i t ySer vi ce
 : AC_Ti mel i nessSer vi ce
 : AC_Ti mel i nessAr r i val Locat i on
 : AC_Accur acyAmbI nf o
 …
END

% sof t goal Ti mel i ness [Ar r i val Locat i on] i nsi de agent Ambul ance Cr ew %
TELL Si mpl eCl ass AC_Ti mel i nessAr r i val Locat i on I N Sof t Goal El ement Cl ass
WI TH

par ent
 : Ambul anceCr ew_Agent
 …
END

Figur e 4.4-4 Par t ial Telos r epr esentat ion showing the par ent -chi ld r elat ionship

5 This choice of terms follows from OME version 3 tool and does not imply there will be multiple layers of

parent-children relationship in the present reformulated i* framework.

master-thesis-v4.4.doc

 73/231 9/1/2004

Formal ly, we identify the parent and chi ldren of a given element using Telos

queries. The parent of a given intentional element can be obtained by executing

the find_parent query. Chi ldren of a given actor element are also called the

internal elements. We use query find_internal_elements to retrieve the set of

internal elements. The symbol “§” denotes for al l those in the FOL formula

speci f ied in this thesis (see the appendix for more detai ls regarding the rules in

translating queries expressed in our FOL format into O-Telos query classes).

Query1

find_parent(e:IntentionalElementClass)::=

§a:ActorElementClass⋅e.parent=a

Query2

find_internal_elements(a:ActorElementClass)::=

 §e:IntentionalElementClass⋅(e ∈ a.children)

4.4.4 Incoming versus outgoing dependency

For a specif ic actor, or an intentional element internal to the actor, or a

dependum (external to all actors), we can distinguish the incoming and outgoing

dependencies according to the direction of the dependency l inks. An incoming

dependency comes from a depender to a dependum or from a dependum to a

dependee. An outgoing dependency goes from a depender toward a dependum or

from a dependum to a dependee. We formal ize the distinctions expl icit ly using

IncomingDependencyL inkClass and OutgoingDependencyLinkClass. Instances

of these two meta-classes are referenced by intentional elements (instances of

IntentionalElementClass) as attributes inDepLinks and outDepLinks, respectively.

Figure 4.4-5 shows the part of the meta-model that deals with these relationships.

master-thesis-v4.4.doc

 74/231 9/1/2004

Figur e 4.4-5 Par t ial meta-model showing incoming and outgoing dependency l inks

Examining Figure 4.4-5, we observe that the virtual from/to attribute (the one

to ActorElementClass) of the dependency l inks appl ies only to SD views whi le

their origin (the one to InternalElementClass) applies only to SR views. So do

the inDepLinks and outDepLinks attribute of ActorElementClass and

IntentionalElementClass.

Formal ly, we identify the incoming and outgoing dependencies of a given

actor element using Telos queries. The incoming dependencies can be obtained

by executing the find_incoming_dependencies_to_actor query. The outgoing

dependencies are obtained by executing the

find_outgoing_dependencies_from_actor query.

Query3

find_incoming_dependencies_to_actor(a:ActorElementClass)::=

§l:DependencyLinkClass·

l.to=a ∨ (∃e:InternalElementClass· e.parent=a ∧ l.to=e)

Query4

find_outgoing_dependencies_from_actor(a:ActorElementClass)::=

§l:DependencyLinkClass·

l.from=a ∨ (∃e:InternalElementClass· e.parent=a ∧ l.from=e)

As a by-product of the above definit ion, we can formally def ine dependum

element and internal element by attaching deductive rule to SubElementClass. In

master-thesis-v4.4.doc

 75/231 9/1/2004

the formula below, name of meta classes (e.g., DependumElementClass) are

shown as the left-hand operand of “ ::=” (equivalent to), and its definit ion (e.g.,

“ e:SubElementClass with ‘ dependum_rule’ ”) as the right-hand operand. The

previously def ined meta-class on which this new one wi l l be based (e.g.,

SubElementClass) appears after the semicolon and before the word “with” in the

definit ion. The corresponding deductive rule (e.g., “dependum_rule”) follows the

word “with” and is placed in “quotation marks” . This pattern applies to all the

definit ion of meta-classes using a deduction rule.

Def1

DependumElementClass::= e: SubElementClass with “dependum_rule”

dependum_rule::=

¬(∃a: ActorElementClass ⋅ e.parent = a)

Def2

InternalElementClass::= e: IntentionalElementClass with “ internal_rule”

internal_rule::=

∃a: ActorElementClass⋅e.parent = a

 We also def ine queries to locate the dependers and dependees for a given

dependum (instance of DependumElementClass). There are two levels of

dependers: the actor level (shown in SD view) and the element level (shown in

SR view). We construct different queries for them in our extension. In FOL, they

are as follows:

Query5

find_depender_actor(de:DependumElementClass)::=

§a:ActorElementClass· ∃l:DependencyLinkClass·

(l.from=a ∨ (∃e:InternalElementClass· e.parent=a ∧ l.from=e)) ∧ l.to=de

Query6

find_depender_element(de:DependumElementClass)::=

§e:InternalElementClass· ∃l:DependencyLinkClass· l.from=e ∧ l.to=de

master-thesis-v4.4.doc

 76/231 9/1/2004

Query7

find_dependee_actor(de:DependumElementClass)::=

§a:ActorElementClass· ∃l:DependencyLinkClass·

(l.to=a ∨ (∃e:InternalElementClass· e.parent=a ∧ l.to=e)) ∧ l.from=de

Query8

find_dependee_element(de:DependumElementClass)::=

§e:InternalElementClass· ∃l:DependencyLinkClass· l.from=de ∧ l.to=e

4.4.5 External links

To distinguish dependency from other non-actor-association l inks, we group

the four types of l inks—means-ends, decomposition, contribution, and

correlation—into intentional l inks (see Section 3.3.3 for detail). Intentional l inks

normal ly connect elements inside an actor boundary; however, they sometimes

extend their target outside the actor boundary, and we cal l these intentional l inks

external l inks.

We define external l inks using a query find_al l_external_l inks.

Def3

ExternalLinkClass::=l:IntentionalLinkClass with “external_rule”

external_rule::= (l in find_all_external_links())

The query is def ined recursively. We first define a sub-query

find_direct_external_l inks. Informal ly, a direct external l ink is one that

originates from an element within an actor’ s boundary and ends at a dependency

l ink outside the actor’ s boundary. Formal ly, the query is def ined as follows:

Query9

find_direct_external_links()::=

§l:IntentionalLinkClass·

∃a:ActorElementClass, dl:DependencyLinkClass, e:IntentionalElementClass·

l.from=e ∧ e.parent=a ∧ l.to=dl

Then we def ine an external l ink recursively—informal ly, it is:

master-thesis-v4.4.doc

 77/231 9/1/2004

1. A direct external link; or

2. Any link that ends at an external link

Formally, query find_all_external_links is expressed as:

Query10

find_all_external_links()::=

 §l:IntentionalLinkClass· l∈find_direct_external_links() ∨

(∃l2:IntentionalLinkClass· l.to=l2∧(l2 ∈ find_all_external_links()))

4.4.6 Ancestor versus descendent

Figur e 4.4-6 Par t ial meta- and domain-model showing the ancestor -descendent

r elat ionship

As explained in the previous sections, an actor’ s internal rationales that are

modeled using intentional elements are connected by intentional l inks. We derive

the ancestor-descendent relationship using i* meta-concepts shown in Figure

4.4-6. L inks in i* are all directed, and its source and destination are denoted by

two attributes, from and to, respectively. As a result, we define the element at the

source end as a direct descendent of the one at the destination end, and, in turn,

the latter is a direct ancestor of the former.

% sof t goal Ti mel i ness [Ar r i val Locat i on] i nsi de agent Ambul ance Cr ew %
TELL Si mpl eCl ass AC_Ti mel i nessAr r i val Locat i on I N Sof t Goal El ement Cl ass
WI TH

master-thesis-v4.4.doc

 78/231 9/1/2004

 par ent
 : Ambul anceCr ew_Agent
 l i nks
 : AC_TALt oTS_AndCont r i but i onLi nk
 …
END

% sof t goal Ti mel i ness [Ser vi ce] i nsi de agent Ambul ance Cr ew %
TELL Si mpl eCl ass AC_Ti mel i nessSer vi ce I N Sof t Goal El ement Cl ass WI TH

par ent
 : Ambul anceCr ew_Agent
 l i nks
 : AC_TALt oTS_AndCont r i but i onLi nk
 …
END

% and_cont r i but i on l i nk f r om sof t goal Ti mel i ness [Ar r i val Locat i on] t o
Ti mel i ness [Ser vi ce] i nsi de agent Ambul ance Cr ew %
TELL Si mpl eCl ass AC_TALt oTS_AndCont r i but i onLi nk I N
AndCont r i but i onLi nkCl ass WI TH
 f r om
 : AC_Ti mel i nessAr r i val Locat i on
 t o
 : AC_Ti mel i nessSer vi ce
END

Figur e 4.4-7 Telos r epr esentat ion of par t ial model showing the descendent-ancestor

r elat ionship

Figure 4.4-7 shows how a direct descendent-ancestor relationship is identif ied

from the underlying Telos representation of an i* model. In this case, softgoal

Timeliness [Ar r ival L ocat ion] is a direct descendent of softgoal Timeliness

[Service] . For a more general ized def init ion, we say an intentional element e is a

descendent (or ancestor) of ie i f and only i f the former fulf i l ls the fol lowing

conditions:

1. ie and e share the same parent;

2.

a. e is a direct descendent (or ancestor) of ie; or

b. there exists an intentional element e1 such that e1 is a descendent (or

ancestor) of e and ie is a direct descendent (or ancestor) of e1.

Formal ly, we define those using Telos queries as follows:

Query11

master-thesis-v4.4.doc

 79/231 9/1/2004

find_direct_descendants(ie: IntentionalElementClass) ::=

§ e: IntentionalElementClass⋅ ∃l:DependencyLinkClass⋅ l.to=ie ∧ l.from=e

Query12

find_all_descendants(ie: IntentionalElementClass) ::=

§ e: IntentionalElementClass⋅ e∈find_direct_descedent(ie) ∨

(∃d:IntentionalElementClass⋅ e.parent=d.parent ∧ d∈find_all_descendants(ie)

 ∧ e∈find_all_descendants(d))

Query13

find_direct_ancestors(ie: IntentionalElementClass) ::=

§ e: IntentionalElementClass⋅ ∃l:DependencyLinkClass⋅ l.from=ie ∧ l.to=e

Query14

find_all_ancestors(ie: IntentionalElementClass) ::=

§ e: IntentionalElementClass⋅ e∈find_direct_ ancestors(ie) ∨

(∃d:IntentionalElementClass⋅ e.parent=d.parent ∧ d∈find_all_ ancestors(ie)

∧ e∈find_all_ancestors(d))

4.5 Summary

In this chapter, we presented an extension for tackling the scalability issues in

representing an i* model. Scalability issues are resolved through the use of views and

their attached selection rules. A type of built-in diagram—View Map—is offered in the

extension to visualize a reference structure of multiple views derived from the same i*

model. The selection rules are built upon a set of meta-concepts that originated from the

reformulated i* framework and that was formalized in the view extension.

The extension was embedded in Telos, and the extension was specified independently

from the Telos constructs of the core i* framework. Partial meta-models were used to

illustrate view classes in our extension, as well as some meta-concepts. We present the

formal definitions in a Telos compatible First Order Logic (FOL) form so that these rules

can also be implemented using other conceptual modeling languages.

master-thesis-v4.4.doc

 80/231 9/1/2004

5 Actor Class views

The Actor Class (AC) view allows use of the i* model focusing on actor associations

and actor analysis—studying the social and intentional structure among various actors

and their specified forms within an organization. However, a Basic AC view (the one

derived from a baseline model) can still appear complex. Therefore, it should be scaled

down to make each partial view, when visualized, more comprehensible.

We define six partial AC view classes in our view extension; their meta-level

constructs have been discussed in Chapter 4. In this chapter we present domain examples

(as instances) of each partial view class and define the selection rule attached to it.

Each view type is presented from these four perspectives, and each perspective forms

a subsection: Informal Description, Example, Justifications, and Selection Rule. An

informal description consists of giving the reader a brief idea of what kinds of elements

are qualified for a specific partial view. A domain example from the LAS case study is

used to further clarify the idea. We then provide explanation of why that view type is

desirable and outline some context of use for it. Last, we provide formal definition of the

selection rule attached to each partial view class, which is embedded in Telos and

presented using Telos compatible First Order Logic (FOL). The transformation from this

FOL form to O-Telos, a Telos compatible conceptual modeling language, is provided in

the Appendix.

Section 5.1 gives an overview of the relationship between different types of AC views

using a generalized View Map; Section 5.2 presents the Basic AC view and six partial

AC views from the 4 aspects discussed in the previous paragraph; Section 5.3

summarizes the results of this chapter.

5.1 Overview

In addition to the Basic AC view, we define six types of partial AC views:

Single-Network view, Single-Plain-Actor view, Abstract-Actors-Only view,

Plain-Actors-Only view, Agents-Only view, and Direct-Replaceable view. Figure

master-thesis-v4.4.doc

 81/231 9/1/2004

5.1-1 shows the relationships between di fferent types of views. Each view has a

selection rule attached to it, and some of them require input arguments (e.g.,

Actor <n>). The appl ication of a rule (e.g., singlePlainActorRule) over Any AC

view (the original view) wil l result in the corresponding partial AC view (e.g.,

Single-Plain-Actor <n> View).

Figur e 5.1-1 A gener ic view map showing a par ent AC view and i ts possible

chi ldr en

Looking at the above diagram, for any AC view, we see that it can be decomposed in

three ways: by plain actors, by connected networks, or by meta-concept types. A view-

decomposition implies the parent view (e.g., Any AC View) is equivalent to the union of

the child views (e.g., Single-Network <1> View) resulting from the decomposition. For

example, suppose there are n (where n is a positive integer) plain actors in an AC view,

then elements in it are partitioned into n Single-Plain-Actor views, each containing

exactly one plain actor. Moreover, every element contained in the parent view is

contained by at least one of the child views. A parent view can also be projected, and so

result in a child view (e.g., Direct Relationship View of Actor <i>) that reflects only

partial information from it.

master-thesis-v4.4.doc

 82/231 9/1/2004

5.2 Details of the AC Views

5.2.1 Basic Actor Class View

Informal Description

The Basic Actor Class V iew enumerates al l actors (plain and speci f ied) and

their association l inks. The association l inks include the “plays,” “ isA,” “ is-Part-

of,” “ covers,” “occupies,” and “ INS.” We also need to include the “speci f ies”

and “ And” (complete composition) l inks from our view extension.

The parent view of the Basic Actor Class V iew is the Basel ine Model, so we

normal ly use the latter as the original view over which the selection rule is to be

applied.

Example

Since our purpose in this section is to demonstrate the use of various AC view types,

we choose four plain actors out of ten from basic AC view of the London Ambulance

Service (LAS) case study (You 2003). This partial basic AC view includes just enough

elements to show our approach. Figure 5.2-1 visualizes the part of interest. Plain actors

that are selected are as follows: Ambulance Crew, LAS Management, Resource Allocator,

and Incident Reviewer. This AC view will be used as the original view that the sub-views

are derived from throughout this chapter.

master-thesis-v4.4.doc

 83/231 9/1/2004

Figur e 5.2-1 A par t ial Basic Actor Class View fr om the L AS-CAD case study (our

or iginal view)

Justifications

As argued previously, a distinguished Actor Class (AC) view makes actor

identif ication and actor analysis easier. Yu (Yu 1994) and most of the early

l iterature on the subject did not emphasize on questions such as “ how does a

plain actor map to a specif ied one?” and “what are the relationships between the

speci f ied ones (which we cal l actor associations)?” The issue appeared adequate

with the examples shown in early l iterature—when there was no such need to

distinguish among dif ferent forms of actors. Yet social conf iguration for a

medium-size organization (e.g., 500 employees) can become too complex to be

expressed in the original SD models. Thus, for ease of communication, it is

desirable to have an AC view separate from a SD view.

Separation of the actor associations from dependencies appears natural since

these entit ies focus on dif ferent type of analysis: the former on a vertical

master-thesis-v4.4.doc

 84/231 9/1/2004

hierarchy among a plain actor and its speci f ied forms; the latter on a horizontal

dependency network among (normal ly) actors originated from dif ferent plain

actors. The associations help perform actor analysis, whi le the dependencies help

perform process analysis. The purpose of actor analysis is to identify actors from

the appl ication domain; the purpose of process analysis is to identify process

elements (such as goal or task).

Therefore, separation of the AC view is recommended for all appl ication

domains that have more than 20 actors (based on our previous experience), or

any appl ication domain that has complex social associations among stakeholders.

Selection Rule

Formal ly, we obtained the corresponding Basic AC View out of a Basel ine

Model by applying the following query theBasicActor ClassView over the latter:

Query15

theBasicActorClassView(m:BaselineModelClass)::=

§o:ObjectClass· o∈m ∧

o∈{ a | a in ActorElementClass} ∪ { l | l in AssociationLinkClass}

In the formulae above, operator “ in” denotes “ instantiation” . For example,

expression “a in ActorElementClass” means “object a is an instance of class

ActorElementClass.”

In the def init ion of selection rules for partial views, we def ine for simpl icity

only the element objects—instances of meta-classes suff ixed by “ -

ElementClass” —in the queries. Whenever l ink objects—instances of meta-

classes suf f ixed by “ -L inkClass” —are not defined expl icit ly, it impl ies that a

l ink object, say l , should be selected if and only i f it satisf ies the following

conditions:

1. l exists in the parent view (e.g., the baseline model m); and

master-thesis-v4.4.doc

 85/231 9/1/2004

2. Elements assigned as both the “ from” and “to” attributes of l are selected into

the child view (e.g., the basic AC view class derived from m).

 Formally, we define a generic query as one to find all link objects for a given set of

element objects as follows:

Query16

%pv: parent view; cv: child view

find_all_links(pv:ViewClass, cv: ViewClass)::=

§ l: LinkClass· (l∈pv) ∧(∃e1, e2:ElementClass· e1,e2∈cv ∧ l.from=e1 ∧ l.to=e2)

This rule appl ies to all def init ions of selection rules throughout this thesis, so

we wil l not repeat it later. But in this section, since link type “ l in

AssociationLinkClass” has been speci f ied in the rule, this rule does not apply.

5.2.2 Single-Network view

Informal Description

A Single-Network view presents a group of specif ied actors that are connected

with association l inks. Since plain actors are not included in this view, the

“ speci f ies” association which ends at a plain actor shall not appear, either.

Given a parent AC view and a speci f ied actor within that view, objects that

satisfy one of the following conditions should be selected into this view:

1. The specified actor, say a;

2. A specified actor that is connected by an association link with a;

3. A specified actor that connects to any previously selected actors in the view.

Example

Figure 5.2-2shows three Single-Network views that are derived from the

original AC view. With the plain actors removed, elements in the original view

formed 3 networks. Networks 1 and 2 have only one agent each: Ambulance

master-thesis-v4.4.doc

 86/231 9/1/2004

Cr ew (Figure 5.2-2 (a)) and L AS M anagement (Figure 5.2-2 (b)), respectively.

Network 3 combined the speci f ied actor associated with plain actors Resource

Al locator and I ncident Reviewer . In most cases, each network corresponds to

the set of speci f ied actors for a single plain actor. In Figure 5.2-2 (c), which

appears a special case, the two sets of specif ied actors are joined by agent CAD

Software System, which appears as the aggregation of the agent Resource

Al locat ion M odule (speci f ied Resource Al locator) and the agent I ncident

Reviewing M odule (speci f ied Incident Reviewer).

Figur e 5.2-2 Single-Networ k views der ived fr om the or iginal view

Justifications

In most organizations, human resource staff want to identify the

responsibi l it ies related with a given posit ion (job profi le), and when somebody is

hired to take the posit ion, they then keep track of this relationship. This

information can be modeled in i* as follows: the responsibi l it ies as roles, the

posit ion as a posit ion, and employees as agent instances. When we try to use an

i* model in analyzing the situation, the question to answer becomes “ What actors

share simi lar responsibi l it ies?” The next possible set of questions might be “ How

master-thesis-v4.4.doc

 87/231 9/1/2004

much commonal ity do they share?” and “How can they work with each other in

an organization?” To answer these questions efficiently, we need to single out

only the speci f ied actors that have association links among them.

Grouping specif ied actors in connected networks appears natural when

considering questions listed in the foregoing. The purpose of an AC view is to

present actors and their associations; in an organization, this kind of work is

normal ly done in a plain-actor-by-actor manner. Users of the i* model may

explore all possible variations of one plain actor, study the possible roles it may

cover, the posit ions that are designed to ful f i l l it, and the actual class of

individual who are considered as this plain actor. One may even assign

employees in an organization to the plain actors. Thus, it makes sense to group

speci f ied forms of a plain actor in one view.

The Single-Network view can be used to scale down the complexity of the

original view, yet not lose information in addressing questions related to a single

plain actor.

Selection Rule

Formal ly, we obtain the corresponding Single-Network view out of any given

AC view by applying the following query singleNetwor kRule.

singleNetworkRule (v:ACViewClass, a:ActorElementClass)::=

§o:ObjectClass· o∈ v ∧o∈{ a, find_all_associated_actors(a) }

Query17

find_direct_associated_actors(a:SpecifiedActorElementClass)::=

 §a1:SpecifiedActorElementClass⋅ ∃l:AssociationLinkClass·

l.from=a∧l.to=a1 ∨ l.from=a1∧l.to=a

Query18

find_all_associated_actors(a:SpecifiedActorElementClass)::=

 §a1:SpecifiedActorElementClass⋅ a1∈find_direct_associated_actors(a) ∨

master-thesis-v4.4.doc

 88/231 9/1/2004

(∃a2:SpecifiedActorElementClass⋅ a1∈find_direct_associated_actors(a2) ∧

a2∈find_all_associated_actors(a))

5.2.3 Single-Plain-Actor view

Informal description

A Single-Plain-Actor view presents the family of speci f ied actors who can

inherit al l external relationships from a given plain actor.

Given a parent AC view and a plain actor within that view, objects satisfying

one of the following conditions should be selected into this view:

1. The given plain actor, say a;

2. The specified actor that connected with a via a Specifies link, which we call

the direct specified actor, say dsa, of a;

3. Any specified actors that have a non-is-Part-of link to dsa; or any specified

actor that has an is-Part-of link from dsa;

4. Any specified actors that have a direct non-is-Part-of link to or an is-Part-of

link from any previously selected actors in this view.

Example

(a)AmbulanceCrew& LAS (b) Resource Allocator (c) Incident Reviewer

master-thesis-v4.4.doc

 89/231 9/1/2004

Figur e 5.2-3 Single-Plain-Actor views der ived fr om the or iginal view

Figure 5.2-3 shows all Single-Plain-Actor views that can be derived from the

original AC view. There are four plain actors in the original view, and thus we

have four Single-Plain-Actor views. The views for plain actor Ambulance Crew

and LAS Management appear extremely simple, so we show them in one diagram

(which contains two views). Note that agent CAD Softwar e System appears in

both the partial view for plain actor Resource Allocator and I ncident Reviewer ,

and this impl ies that it can inherit external relationships from both of the plain

actors.

Justifications

The model ing process of i* is iterative. Typical ly, modelers identify plain

actors (AC view); next, their dependencies (SD view); and sometimes, internal

rationales (SR view) of the plain actors. When more information and a deeper

understanding of the appl ication are obtained, modelers dif ferentiate plain actors

into their speci f ied forms and sometimes bui ld a network of the specif ied forms

surrounding the plain actor. Subsequently, plain actors in the SD views shal l be

substituted with one of its specif ied forms. Thus, showing al l candidates for that

transit ion becomes a request from the modeler. The Single-Plain-Actor view is

thus designed in response to this modeler’ s request, i.e., this type of view helps

obtain various SD views based on dif ferent forms of the actor.

Presenting al l the speci f ied forms that can inherit external relationships from a

plain actor in one view appears natural in partit ioning. The substitute of plain

actors in the SD view is done in a plain-actor-by-plain-actor manner. Users of

the i* model may explore al l possible variations of one plain actor, and choose

one from the candidates before moving on to work on another plain actor.

Switching views are not necessary for f inding the right substitute for a single

plain actor.

Even though we do not claim that our view extension supports the i* model ing

process. According to earlier discussion in this section, the Single-Plain-Actor

master-thesis-v4.4.doc

 90/231 9/1/2004

view may help maintain connection between the abstract information (e.g., a SD

view showing relationships among plain actors) and the particulars (e.g., the

corresponding SD view substituting each plain actor with its specif ied form).

Abstract information is typical ly collected at an earl ier model ing stage. At a later

stage, when a better understanding of the application domain is developed

through the model refining process, generic information are then refined to

particulars. Displaying connections between an actor’ s generic form and various

speci f ied ones helps maintain the consistency when selecting a specif ied actor to

stand in for the corresponding plain one in a SD view. Therefore, this view offers

one systematic approach for modelers to follow in refining i* models.

Selection Rule

Formal ly, we obtain the corresponding Single-Plain-Actor view out of a given

AC view by applying the following query singlePlainActorRule; we pass the

selected plain actor (a) as an input argument to the query.

singlePlainActorRule (v:ACViewClass, a:PlainActorElementClass)::=

§o:ObjectClass⋅ o∈v ∧ o∈{ a, a1=find_direct_specified_actors(a),

find_all_replacing_actors(a1) }

Query19

find_direct_specified_actors(a:PlainActorElementClass)::=

 §ta:SpecifiedActorElementClass⋅ ∃l:SpecifiesLinkClass⋅l.from=ta∧l.to=a

Query20

find_direct_replacing_actors(a:SpecifiedActorElementClass)::=

 §a1:SpecifiedActorElementClass⋅ ∃l:AssociationLinkClass⋅

((l in PartsLinkClass) ∨ (l in CompleteCompositionLinkClass)) ∧

 l.from=a ∧ l.to=a1) ∨

((l in ISALinkClass) ∨ (l in INSLinkClass) ∨ (l in PlaysLinkClass) ∨

 (l in CoversLinkClass) ∨ (l in OccupiesLinkClass)) ∧

 l.from=a1 ∧ l.to=a)

master-thesis-v4.4.doc

 91/231 9/1/2004

Query21

find_all_replacing_actors(a:SpecifiedActorElementClass)::=

 §a1:SpecifiedActorElementClass⋅ a1∈find_direct_replacing_actors(a) ∨

(∃a2:SpecifiedActorElementClass⋅ a1∈find_direct_replacing_actors(a2) ∧

a2∈find_all_replacing_actors(a))

5.2.4 Abstract-Actors-Only view

Informal description

An Abstract-Actors-Only view presents only abstract actors including roles,

posit ions, agents, and any association l inks among them.

Example

Figure 5.2-4 shows the corresponding Abstract-Actors-Only view of the

original AC view. We see that all plain actors and agent instances have

disappeared in this view.

Figur e 5.2-4 Abst r act -Actor s-Only view der ived fr om the or iginal view

master-thesis-v4.4.doc

 92/231 9/1/2004

Justifications

The Abstract-Actors-Only view focuses on the relationship between the

abstract actors, ignoring the abstraction of plain actors and the instantiation of

agents. This view may help when an organization has hundreds or thousands of

employees, devices, and machines—especial ly when the individual agent

instances in an organization are easily classi f ied to a relatively smal l number of

agents. Under this circumstance, we strongly recommend this view be used to let

the user focus on understanding relationships between di fferent forms of actors.

Another advantage of this view is its reusabi l ity. Since some organizations

from the same industry f ield may share certain organizational restructures, this

kind of view may be reused in a second or third application. For example, every

hospital should have the role of doctor, posit ion Principle, agent Emergency, and

so forth. Reusable model ing patterns can save time and resource.

Selection Rule

Formal ly, we obtain the corresponding Abstract-Actors-Only view out of a

given AC view by applying the following query abst ractActor sOnlyRule:

abstractActorsOnlyRule(v:ACViewClass) ::=

 §o:ObjectClass· o∈v ∧o∈find_all_abstract_actors ()

Query22

find_all_abstract_actors()::=

 §a:SpecifiedActorElementClass· (a in AbstractActorElementClass)

5.2.5 Plain-Actors-Only view

Informal description

A Plain-Actors-Only view presents plain actors, their direct speci f ied actors,

and the “ speci f ies” l inks that connect them.

master-thesis-v4.4.doc

 93/231 9/1/2004

Example

Figure 5.2-5 shows the corresponding Plain-Actors-Only view of the original

AC view. We can see that all specif ied actors have disappeared—except the one

that init iates the “ speci f ies” l ink. Given our external relationship inheritance rule,

we need to specify just one direct speci f ied actor for each plain actor. Therefore,

this view normal ly contains only (2* number of plain actors) actor elements.

Figur e 5.2-5 Plain-Actor s-Only view der ived fr om the or iginal AC view

Justifications

Normal ly, at the beginning of a model ing process or when deal ing with higher

management personnel, details of an appl ication are not a great concern. Thus,

overview questions such as “How many stakeholders are there in an

organization?” and “ Who are the stakeholders?” may be asked. The Plain-Actors-

Only view suppl ies just enough information for dealing with such questions.

This grouping appears natural in that it may work only on certain phases of

the model ing process or in addressing only certain levels of management

requirements. Modeling is done in a phase-by-phase manner, so plain actor

information required in the beginning phase is not required in a later one.

Dif ferent management group requires dif ferent levels of abstract information, so

master-thesis-v4.4.doc

 94/231 9/1/2004

detailed (or maybe complex) specif ied actor information is not required at the

CEO level. Therefore, showing only plain actors in a view does not incur much

overhead in performing higher abstraction level actor analysis.

Selection Rule

Formal ly, we obtain the corresponding Plain-Actors-Only view out of a given

AC view by applying the following query plainActor sOnlyRule:

plainActorsOnlyRule (v:ACViewClass)::=

§o:ObjectClass· o∈v ∧o∈{ find_all_plain_actors() ,

{ find_direct_specified_actors(a) %Query19% | a ∈ find_all_plain_actors()} }

Query23

find_all_plain_actors()::=

§a:ActorElementClass· (a in PlainActorElementClass)

5.2.6 Agents-Only View

Informal description

An Agents-Only view presents agents, agent instances, and the association

l inks that connect them.

Example

Figure 5.2-6 shows the corresponding Agents-Only view of the original AC

view. We can see that this view contains only agents (e.g., L AS M anagement),

agent instances (e.g., John Steven), and instantiation links (e.g., the I NS l inks

between agent and agent instances) among them.

master-thesis-v4.4.doc

 95/231 9/1/2004

Figur e 5.2-6 View showing only the agents for the L AS case study

Justifications

When tackling social issues (organization modeling), sometimes we need only

analyze the relationships between physical participant classes. The Agents-Only

view can help study the static hierarchy among employees, and may help model

organization layout; therefore, this view may help process staff layout in an

organization.

However, this view is not necessary when an organization’ s process can be

clearly addressed using the Abstract-Actors-Only view.

Selection Rule

Formal ly, we obtain the corresponding Agents-Only view out of a given AC

view by applying the fol lowing query agentsOnlyRule:

agentsOnlyRule(v:ACViewClass)::=

§o:ObjectClass· o∈v ∧o∈find_all_agents()

Query24

find_all_agents()::=

 §a: SpecifiedActorElementClass⋅

(a in AgentElementClass) ∨ (a in AgentInstanceElementClass)

master-thesis-v4.4.doc

 96/231 9/1/2004

5.2.7 Direct-Replaceable view

Informal description

A Direct-Replaceable view presents the family of speci f ied actors whose

external relationships can be inherited by a given speci f ied actor, and we cal l the

former a direct replaceable to the latter. This direct substitution impl ies that in

any SD view, the given speci f ied actor can stand in for any of the replaceables.

There may be external relationships that belong to the given actor directly but

not to its replaceables in the SD view.

Given a parent AC view and a speci f ied actor within that view, objects

satisfying one of the following conditions should be selected into this view:

1. The given specified actor, say a;

2. Any specified actor that has any link other than “ is-Part-of” from a to it; or any

specified actor that has an “ is-Part-of” link to a;

3. Any specified actor that has a direct link other than “ is-Part-of” to or an “ is-

Part-of” link from any of the previously selected actors in this view.

Example

Figure 5.2-7 shows Direct-Replaceable views projected over the original AC

view. In (a), direct replaceables of agent CAD Software System are presented.

In (b) and (c), the direct replaceables of posit ion I ncident Reviewer and agent

instance South RA , respectively, are shown. The given speci f ied actor is

highl ighted using a solid rectangle.

master-thesis-v4.4.doc

 97/231 9/1/2004

 (a) CAD Sof twar e System (b) I nci dent Reviewer (c) Sout h RA

Figur e 5.2-7 Dir ect-Replaceable Views pr oj ected over the or iginal AC view

Justifications

The Direct-Replaceable view provides an overview of the family of actors that

has a subset of external responsibi l it ies and vulnerabi l it ies to a given actor. This

fami ly draws a scope which the given actor can cover. For example, when

introducing a new automated system to some organization, we want to know

“what responsibi l it ies of which posit ions occupied by which type of agents are to

be implemented in the system.” To answer such a question, we need to f ind out

the corresponding actors whose external responsibi l it ies can be covered by the

system-to-be; we can use the Direct-Replaceable view of the system-to-be to

answer it6.

Furthermore, this type of view simpl i f ies the SD view by al lowing external

dependencies to be speci f ied in one place (as some attribute of a single actor).

For example, the two agents Human Resource Al locator and Resource Al locating

Module share most of the external dependencies (Figure 1.2.1). Under this

circumstance, we specify these dependencies to their general form—plain actor

Resource Al locator.

6 Here we assume that an i* model exists for the given organization

master-thesis-v4.4.doc

 98/231 9/1/2004

Studying the scope of a single specif ied actor may appear inef f icient, yet, in

reality, model users study responsibi l it ies in an actor-by-actor manner. Thus, we

assume l itt le overhead incurred in using this view. In addition, omitt ing the

plain actor from this view shal l not harm its comprehensibi l ity, since this kind of

responsibi l ity scope analysis is normal ly performed at a more detailed level.

Abstract level plain actor information appears not relevant.

Selection Rule

Formal ly, we obtain the corresponding Direct-Replaceable view out of a given

AC view by applying the following query di r ectReplaceableRule. We pass the

selected speci f ied actor (a) as an input argument to the query.

directReplaceableRule(v:ACViewClass, a:SpecifiedActorElementClass)::=

§o:ObjectClass· o∈ v ∧ o∈{ { a} , find_all_replaceable_actors(a) }

Query25

find_direct_replaceable_actors(a:SpecifiedActorElementClass) ::=

 §a1:SpecifiedActorElementClass⋅ ∃l:AssociationLinkClass⋅

((l in PartsLinkClass) ∨ (l in CompleteCompositionLinkClass)) ∧

 l.from=a1 ∧ l.to=a)

∨

((l in ISALinkClass) ∨ (l in INSLinkClass) ∨ (l in PlaysLinkClass) ∨

 (l in CoversLinkClass) ∨ (l in OccupiesLinkClass)) ∧

 l.from=a ∧ l.to=a1)

Query26

find_all_replaceable_actors(a:SpecifiedActorElementClass) ::=

 §a1:SpecifiedActorElementClass⋅ a1∈ find_direct_replaceable_actors(a) ∨

(∃a2:SpecifiedActorElementClass⋅ a1∈ find_direct_replaceable_actors(a2) ∧

a2 ∈ find_all_replaceable_actors (a))

master-thesis-v4.4.doc

 99/231 9/1/2004

5.3 Summary

In this chapter, we presented relationships between the Basic AC view and six types of

partial AC views. Each of the views was also explored in detail. The AC views studied in

this section are: the Basic AC view, the Single-Network view, the Single-Plain-Actor

view, the Abstract-Actors-Only view, the Plain-Actors-Only view, the Agents-Only view,

and the Direct-Replaceable view.

View relationships were illustrated using a generic View Map that fits for all

applications. View decomposition and projection directions were also shown.

The AC views were presented formally and informally. An informal description gives

the reader a basic idea of what kinds of elements are qualified for a specific partial view.

The formal definition of the selection rule, which is attached to each view class, makes it

possible to automate these views in an i* modeling tool. Some discussion about the

benefits and limitations of the each view type are also included. An original AC view

obtained from the LAS case study was used as the running example to demonstrate the

results of decomposition and projection over it.

master-thesis-v4.4.doc

 100/231 9/1/2004

6 Strategic Dependency Views

The purpose of the Strategic Dependency (SD) view is to express the

“ intentional description of a process in terms of a network of dependency

relationships between actors” (Yu 1994), and to express the intertwined negative

or posit ive contributions towards those dependency relationships, among actors.

The Basic SD view should, by definit ion, include al l types of actors and al l

dependency l inks or external intentional l inks among them. However, when a

view is visual ized, it is normal ly redundant to show dif ferent forms of actors that

are basically related to the same plain actor in one diagram, since these actors

share most of the external relationships. For example, agent Resource Al locator

M odule and posit ion Resour ce Al locator from the LAS case study both depend

on an Ambulance Cr ew to supply accurate ambulance information (AmbInfo).

Therefore, we normal ly present an SD view by selecting one actor (or more non-

overlapping ones) representing each plain actor. In addition, each type of Basic

SD view can sti l l appear complex. Therefore, we need to scale down the view to

make each partial view, when visual ized, more comprehensible.

We define two basic and two partial SD view classes in our view extension, and we

discussed their meta-level constructs in Chapter 4; in this chapter we present domain

examples (as instances) of each view class and define the selection rule attached to it. We

adopt the same pattern as used in the AC views, and explore each partial view from these

four perspectives: Informal Description, Example, Justifications, and Selection Rule.

Section 6.1 uses generalized View Maps to give an overview of the relationship

between different types of SD views; Section 6.2 presents two Basic SD views and two

partial SD views from the four aspects mentioned in the previous paragraph; Section 6.3

summarizes the results of this chapter.

master-thesis-v4.4.doc

 101/231 9/1/2004

6.1 Overview

Figur e 6.1-1 Gener alized view map showing r elat ionships between di f fer ent for ms

of Basic SD views

Figure 6.1-1 presents the relationship between di f ferent forms of Basic SD

views. Each Basic SD view corresponds to one Plain Actor SD view. Several

Specif ied Actor SD views can be derived from the Basel ine Model, and the

derivation process requires actor association information so that external

relationships for a selected actor can be calculated following the external

relationship inheritance rule. For example, if agent Resource Al locator M odule

is showing in some SD view standing in for plain actor Resour ce Al locator , then

it wi l l inherit al l the external relationships from posit ion Resource Al locator

(following the “plays” l ink), and recursively from plain actor Resource Allocator

(following the “speci f ies” l ink). Since al l these forms of Basic SD views share

the same external relationships pattern, we do not distinguish them again when

they are scaled down further into partial views.

Any basic or partial SD view, regardless of the form of actors shown, can be

further decomposed into views smal ler in size and simpler in inter-actor

relationships than the original. We il lustrate this point using Figure 6.1-2. Our

f irst approach is to decompose an SD view (e.g., Any SD View) into Single-

Actor-Focus views (e.g., Single Actor <1> View). An SD view can also be

master-thesis-v4.4.doc

 102/231 9/1/2004

decomposed into Pair-wise-Actors views (e.g., Pair -wise Actor <1>, Actor<n>

View) for the selected other actor pairs (e.g., {Actor <1>, Actor <n>}).

Figur e 6.1-2 Gener alized view map showing possible decomposit ion of “ Any SD

View”

6.2 Details of the SD Views

6.2.1 Plain- versus Specified-Actor-Based SD View

Informal Description

Both the Plain-Actor-Based and the Speci f ied-Actor-Based SD view are

designed to present inter-actor external relationships.

A Plain-Actor-Based SD view includes all plain actors as well as the external

dependency and contribution links among these plain actors.

A Speci f ied-Actor-Based SD view includes selected specif ied actors that

cover the responsibi l it ies of al l plain actors in the Plain-Actor-Based form.

External dependency and contribution l inks among the selected speci f ied actors

are also included in this view.

master-thesis-v4.4.doc

 103/231 9/1/2004

Example

Figur e 6.2-1 Par t ial Plain-Actor -Based SD view fr om the L AS case study

Figure 6.2-1 shows the external relationships between four plain actors

(Ambulance Cr ew, L AS M anagement , Resour ce Al locator and I ncident

Reviewer) from the LAS case study, corresponding to the Plain-Actor-Based

form of an SD view. Given the external relationship inheritance rule along actor

associations, we can use the information from the corresponding actor

associations shown in Figure 6.2-2 to substitute the plain actors with one of its

speci f ied forms.

Figure 6.2-3 presents the same part of the underlying model, yet in the

Specif ied-Actor-Based form. From Figure 6.2-2, we know that posit ion I ncident

Reviewer specif ies plain actor I ncident Reviewer , and from the inheritance rule

discussed in our reformulated i* framework we know that the former inherits al l

external relationships from the latter. Thus, the posit ion Incident Reviewer also

has the external dependency Timel iness [Incident Reviewing] . Al l other

substitutes of actors shown in Figure 6.2-3 adopted a simi lar one-to-one

manner—as described previously. Except for plain actor Incident Reviewer who

was replaced by 3 specif ied forms (posit ion I ncident Reviewer , agent I ncident

Reviewing M odule, and agent CA Agent).

master-thesis-v4.4.doc

 104/231 9/1/2004

Figur e 6.2-2 Par t ial Basic AC view fr om the L AS case study showing the

associat ions of the four plain actor s

Abstract external relationships must be instantiated as wel l. In Figure 6.2-3,

the abstract external resource dependency Reviewed I ncident I nfor mat ion is

replaced by two resource dependencies: Reviewed I ncident I nfor mat ion

(paper -based) and Reviewed I ncident I nfor mat ion (machine-based), each

directing to one of the two agents. The softgoal dependency Timeliness

[I ncident Reviewing] was redirected to posit ion Incident Reviewer. The external

correlation l ink, starting from role I ncident Reviewing M odule as Abuser , was

also refined to affect only the machine-based resource dependency towards agent

I ncident Reviewing M odule; its label changes from Unknown to Hurt. The label

of the abstract correlation link is set to Unknown because posit ion Incident

Reviewer is an abstract form of the two agents (CA Agent and I ncident

Reviewing M odule), yet the correlation l ink affects only one of them and, thus,

the combined effect is unknown.

master-thesis-v4.4.doc

 105/231 9/1/2004

Figur e 6.2-3 The Speci f ied-Actor -Based SD view cor r esponding to the Plain-Actor -

Based SD view

Justifications

Both the Plain-Actor-Based view and the Specif ied-Actor-Based SD view are

designed to present inter-actor external relationships. The Plain-Actor-Based

view assumes the highest level of abstraction: showing stakeholders in a plain

actor form and external relationships in a generic form. The Speci f ied-Actor-

Based view assumes more detail: replacing plain actors with their speci f ied

forms and ref ining the generic external relationships according to the set of

speci f ied actors selected.

The separation of these two views appears natural since they serve dif ferent

purposes, and different levels of detail are required at dif ferent times. For

example, in an organization, the CEO may need very brief information, so the

very abstract form of information would be required; but an on-site manager may

need to know the exact and specif ied employee assignments, so a speci f ied form

would be a must.

The two views shown in this section could be more useful during the model ing

process; however, we do not study this issue in this thesis. The model ing process

master-thesis-v4.4.doc

 106/231 9/1/2004

is an ongoing one, and sometimes dif ferent levels of information are required for

storage in the same model. Using our approach, a more abstract SD view can be

systematical ly detailed into a concrete one with the help of actor associations

from the AC view, without duplication of any external dependencies. The Single-

Plain-Actor views (Section 5.2.3) and Direct-Replaceable views (Section 5.2.7)

are designed to serve this systematic ref inement of SD views (see the

corresponding sections for more detail).

Nevertheless, external relationships should be consistently mapped between

the Plain-Actor-Based form and various Speci f ied-Actor-Based forms.

Precautions are required when performing this conversion (mapping). There are

three general cases for this mapping:

1. The relationship is mapped as is. (e.g., Optimal [MobInst], Accuracy

[AmbInfo]).

2. An abstract relationship is decomposed or analyzed. (e.g., Reviewed Incident

Information mapped to two resource-dependums; the Unknown correlation

link is analyzed to just affect the machine-based Incident Information and is

refined to Hurt).

3. When two plain actors are replaced by a specified one that covers both of them,

the external relationships between them become internal and will not be

included in the Specified-Actor-Based view.

Selection Rule

We need to identify clearly what type of i* objects are quali f ied for the SD

view in general, so we first give the defini tion of a generic Basic SD view.

Formal ly, we can obtain the corresponding Basic SD view from a Basel ine

Model by applying the following query theBasicSt rategicDependencyView:

theBasicStrategicDependecyView(m:BaselineModelClass)::=

§o:ObjectClass· o∈m ∧o∈{ { a | a in ActorElementClass} ,

{ e | e in DependumElementClass} , { l | l in DependencyLinkClass} ,

master-thesis-v4.4.doc

 107/231 9/1/2004

{ l | l ∈ find_all_external_links()} }

For any given SD view, we can obtain its corresponding Plain-Actor-Based

view by applying the query plainActor sSDRule:

plainActorsSDRule (v:SDViewClass)::=

§o:ObjectClass· o∈v ∧ o∈ { A=find_all_plain_actors(), find_inter_dependums(A) ,

find_inter_dependencies(A), find_all_inter_external_links(A)}

For any given SD view and a set of selected speci f ied actors, we obtain its

corresponding Speci f ied-Actor-Based view by applying the query

speci f iedActor sSDRule:

specifiedActorsSDRule(v:SDViewClass, A={ a1,…,an} :ActorElementClass) ::=

§o:ObjectClass· o∈v ∧ o∈ { A, find_inter_dependums (A),

find_inter_dependencies(A), find_all_inter_external_links(A) }

Query27

find_inter_dependums(A={ a1,…,an} :ActorElementClass) ::=

 §e:DependumElementClass·

∃l1,l2:DependencyLinkClass;a1,a2:ActorElementClass· (a1, a2 ∈A) ∧

(l1.from=e=l2.to) ∧ (l1.to=a1 ∨ l1.to.parent=a1) ∧

(l2.from=a2 ∨ l2.from.parent=a1)

Query28

find_inter_dependencies(A={ a1,…,an} :ActorElementClass) ::=

§l:DependencyLinkClass· ∃a:ActorElementClass,b:DependumElementClass·

(a∈A) ∧ (b∈find_inter_dependums(A)) ∧

(l.from.parent=a ∧l.to=b ∨ l.to.parent=a ∧l.from=b)

Query29

find_direct_inter_external_links(A={ a1,…,an} :ActorElementClass) ::=

§l:IntentionalLinkClass· ∃dl:DependencyLinkClass·

dl∈find_inter_dependencies(A) ∧

master-thesis-v4.4.doc

 108/231 9/1/2004

(∃e:IntentionalElementClass·e.parent∈A ∧ l.from=e ∧ l.to=dl)

Query30

find_all_inter_external_links(A={ a1,…,an} :ActorElementClass)::=

§l:IntentionalLinkClass· l.from.parent ∈ A ∧

(l ∈ find_direct_inter_external_links(A) ∨

(∃l2:IntentionalLinkClass· l2∈find_all_inter_external_links(A) ∧ l.to=l2))

6.2.2 Single-Actor-Focus view

Informal Description

A Single-Actor-Focus view centers on a single actor and can apply to both SD

and SR views. In case of an SD view, the view presents the selected actor, the

dependums to which it connects, the external l inks that affect those dependums,

the depender/dependee actors of the dependums, and the originator of the

external l inks. External l inks that are originated from the selected actor and the

l inks to which these external l inks end at are also included in this view.

For clarity, we restate here the informal def init ion of an external l ink. An

intentional l ink that ends at a dependency l ink is an external l ink, and a link that

starts from an actor and ends at an external l ink is an external l ink, also. The

formal definit ion of external l ink can be found in Section 4.4.5.

Example

Figure 6.2-4 shows the Single-Actor-Focus view of posit ion Resource

Al locator (the given actor) from the LAS case study. This view includes softgoal

dependum Optimal [M obI nst] (a dependum) and agent Ambulance Crew (a

depender to the dependum). This view also includes the Hurt correlation link (an

external l ink) and role I ncident Reviewing M odule as Abuser who exerts a

partial ly negative (Hurt) effect on Resource Al locator’ s outgoing resource

dependency Reviewed I ncident I nfor mat ion (machine-based).

master-thesis-v4.4.doc

 109/231 9/1/2004

Figur e 6.2-4 Single-Actor -Focus view for posit ion Resour ce A l locator fr om the L AS

case study

Justifications

In (Yu 1994), one use of the SD view is to perform node analyses, studying

the “conf luence of various incoming and outgoing [external relationships]… at

an actor…” From the outgoing dependencies, we can determine what

opportunit ies are avai lable for an actor to achieve certain goals, and what

vulnerabi l it ies could make the achievement of those goals fai l. From the

incoming dependencies, we learn the responsibi l it ies that other actors require of

this actor. External l inks to the dependency links (or dependums) indicate the

extra dif f iculty or help this actor receives f rom the init iator of the l ink. The

formation of this view corresponds to the activit ies performed by i* model users.

Presenting SD views in a single actor form does not introduce a large

overhead to the analysis. Al l external relationships surrounding the given actor

are included in this view, so questions related to the given actor can be answered

without consulting information not presented in it. Therefore, we suggest that

when inter-actor relationships in an SD view grow complex (lots of cross-over of

l inks), i* users apply this approach.

master-thesis-v4.4.doc

 110/231 9/1/2004

Selection Rule

Formal ly, we obtain the corresponding Single-Actor-Focus view from a given

SD view by applying the fol lowing query singleActorFocusSDRule. We pass the

selected actor as an input argument (a) to the query.

singleActorFocusSDRule(v:SDViewClass, a:ActorElementClass) ::=

§o:ObjectClass· o∈v ∧o∈{ a,

find_incoming_dependencies_to_actor(a), %Query 3

find_incoming_dependeums_to_actor(a),

find_indirect_incoming_dependencies_to_actor(a),

find_dependers_to_actor(a),

find_outgoing_dependencies_from_actor(a), %Query 4

find_outgoing_dependums_from_actor(a),

find_indirect_outgoing_dependencies_from_actor(a),

find_dependees_from_actor(a),

find_externallinks_to_incoming_dependency(a),

find_externallinks_originator_to_incoming_dependency(a),

find_externallinks_to_indirect_outgoing_dependency(a),

find_externallinks_originator_to_indirect_outgoing_dependency(a),

find_externallinks_from_actor(a),

find_externallinks_to_externallinks_from_actor(a),

find_externallinks_target_from_actor(a) }

Query31

find_incoming_dependums_to_actor(a:ActorElementClass)::=

 §d:DependumElementClass· ∃l:DependencyLinkClass·

l.from=d ∧ l ∈ find_incoming_dependencies_to_actor(a)

Query32

find_indirect_incoming_dependencies_to_actor(a:ActorElementClass)::=

 §l:DependencyLinkClass· ∃de:DependumElementClass

l.to=de ∧ de ∈ find_incoming_dependums_to_actor(a)

master-thesis-v4.4.doc

 111/231 9/1/2004

Query33

find_dependers_to_actor(a:ActorElementClass)::=

 §a1:ActorElementClass·

∃d:DependumElementClass, l:DependencyLinkClass·

d ∈ find_incoming_dependums_to_actor(a) ∧

l.to=d ∧ l ∈ find_outgoing_dependencies_from_actor(a1)

Query34

find_outgoing_dependums_from_actor(a:ActorElementClass)::=

 §d:DependumElementClass· ∃l:DependencyLinkClass·

l.to=d ∧ l ∈ find_outgoing_dependencies_from_actor(a)

Query35

find_indirect_outgoing_dependencies_from_actor(a:ActorElementClass)::=

 §l:DependencyLinkClass· ∃de:DependumElementClass

l.from=de ∧ de ∈ find_outgoing_dependums_from_actor(a)

Query36

find_dependees_from_actor(a:ActorElementClass)::=

 §a1:ActorElementClass·

∃d:DependumElementClass, l:DependencyLinkClass·

d ∈ find_outgoing_dependums_from_actor(a) ∧

l.from=d ∧ l ∈ find_incoming_dependencies_to_actor(a1)

Query37

find_externallinks_to_incoming_dependency(a:ActorElementClass)::=

 §l:IntentionalLinkClass· ∃dl:DependencyLinkClass·

l.to=dl ∧ dl∈find_incoming_dependencies_to_actor(a)

Query38

find_externallinks_originator_to_incoming_dependency(a:ActorElementClass)::=

 §a:ActorElementClass· ∃l:IntentionalLinkClass·

master-thesis-v4.4.doc

 112/231 9/1/2004

l∈find_externallinks_to_incoming_dependency(a) ∧

 (∃e:IntentionalElementClass·l.from=e ∧ e.parent=a)

Query39

find_externallinks_to_indirect_outgoing_dependency(a:ActorElementClass)::=

 §l:IntentionalLinkClass· ∃dl:DependencyLinkClass·

l.to=dl ∧ dl∈find_indirect_outgoing_dependencies_from_actor(a)

Query40

find_externallinks_originator_to_indirect_outgoing_dependency(a:ActorElementClass)

::=

 §a:ActorElementClass· ∃l:IntentionalLinkClass·

l∈find_externallinks_to_indirect_outgoing_dependency(a) ∧

 (∃e:IntentionalElementClass·l.from=e ∧ e.parent=a)

Query41

find_externallinks_from_actor(a:ActorElementClass)::=

§l:IntentionalLinkClass·∃e:IntentionalElementClass·

l.from=e ∧ e.parent=a ∧ l∈find_all_external_links()

Query42

find_externallinks_target_from_actor(a:ActorElementClass)::=

§l0:LinkClass·∃l:IntentionalLinkClass·

l∈find_externallinks_from_actor (a) ∧ l.to=l0

Query43

find_externallinks_to_externallinks_from_actor(a:ActorElementClass)::=

§l0:LinkClass·∃l:IntentionalLinkClass·

l∈find_externallinks_from_actor (a) ∧ l0.to=l

master-thesis-v4.4.doc

 113/231 9/1/2004

6.2.3 Pair-wise-Actors View

Informal Description

A Pair-wise-Actors view presents two selected actors and the external

relationships between them. This view also applies to both the SD and the SR

view.

Example

Figure 6.2-5(a) shows the Pair-wise-Actors view between posit ion Resour ce

Al locator and agent Ambulance Crew, and Figure 6.2-5(b) shows the view

between posit ion Resource Al locator and role I ncident Reviewing M odule as

Abuser . Note that in (b), agent Incident Reviewing Module appears just for

added clarity and it can be ignored.

(a) Ambulance Cr ew vs. Resour ce Al locator (b) RA vs. I ncident Reviewing
 M odule as Abuser

Figur e 6.2-5 Pair -wise-Actor s SD views fr om the L AS case study

Justifications

Even though this view can sometimes dramatical ly simpl i fy representation, we

do not recommend excessive use of the view—because applying it can create a

combinatorial explosion problem (number of dif ferent pairs of actors). Thus, this

view should be used conservatively and selectively, so we give these guidel ines:

1. The number of total actors is manageable (say < 20).

2. There are significant requests that the relationships between some pair of actors

be addressed.

master-thesis-v4.4.doc

 114/231 9/1/2004

3. Choose only the pairs that require this level of analysis.

Selection Rule

Formal ly, we obtain the corresponding Pair-wise-Actors view from a given SD

view by applying the following query pai rwiseActorsRule. We pass the selected

actor pair { a0, a1} as the input arguments to the query.

pairwiseActorsRule(v:[SDViewClass | SRViewClass], { a0, a1} :ActorElementClass) ::=

§o:ObjectClass· o∈v ∧ o∈{ { a0, a1} ,

find_inter_dependums({ a0, a1}), %Query27

find_inter_dependencies({ a0, a1}), %Query28

find_all_inter_external_links({ a0, a1}) } %Query30

6.3 Summary

We presented in this chapter various views we can use to simplify the Basic SD views.

We defined the Plain-Actor-Based and Specified-Actor-Based views to represent the

inter-actor relationship network. These two types of basic views are at different levels of

abstraction and, thus, contain different levels of detail. We also defined two types of

partial Strategic Dependency (SD) views in our view extension.

The relationship between different view types was illustrated using generalized view

maps. Two View Maps are presented: one for explaining the relationship between

different forms of Basic SD views, and another for explaining the relationship between

the basic view and the partial views.

We presented the SD views from both informal and formal aspects. An informal

description gives the reader a basic idea of what kinds of elements are qualified for a

specific partial view. The formal definition of the selection rule attached to each view

class makes it possible to automate these views in an i* modeling tool. We included also

some justification for each view.

master-thesis-v4.4.doc

 115/231 9/1/2004

7 Strategic Rationale Views

The Strategic Rationale (SR) view aims to “provide the intentional description

of processes in terms of process elements and the rationales behind them.” In

other words, the layout of the reasoning structure internal to an actor, based on

its relationship with others presented in the SD model, is represented in the SR

model. (Yu 1994)

The Basic SR view should, by def init ion, include al l types of elements

involved in the SD view (actors, dependency l inks, and external l inks), and

intentional elements and intentional l inks inside the boundary of each actor.

However, when the view is visual ized, it is extremely hard to show al l

information contained in the Basic SR view just by using one diagram for most

real-world projects. The model ing tool could get out of memory when the

diagram reaches a certain size. Even though a huge diagram is produced, it

would be di ff icult for users to retrieve information. As a result, the Basic SR

view needs to be communicated using a set of inter-connected smal ler views.

We scale down the Basic SR view first by Single-Actor-Focus views. Since

any SR view shares information external to actors with its corresponding SD

view, we can focus on a single actor each time, and proceed to other actors

through the external connection. In some cases, even a Single-Actor-Focus view

could appear complex. Therefore, we need to further scale it down to make each

sub-view, when visual ized, more comprehensible.

We define in our view extension seven new partial SR view classes—besides the

Single-Actor-Focus and Pair-wise-Actors view defined in the previous chapter. The

meta-level constructs of these view classes were discussed in Chapter 4; in this chapter

we present domain examples (as instances) of the view classes and define the selection

rule attached to each of them. We adapt the same pattern as used in the AC views, and

master-thesis-v4.4.doc

 116/231 9/1/2004

explore each partial view from these four perspectives: Informal Description, Example,

Justifications, and Selection Rule.

Section 7.1 gives an overview of the relationship between different types of SR views

using a generalized View Map; Section 7.2 presents the basic Single-Actor-Focus SR

view and 7 newly defined partial SR views from the four aspects discussed in the

previous paragraph; Section 7.3 summarizes the results of this chapter.

7.1 Overview

The relationship between the Basic SR view and a Single-Actor-Focus SR

view appears the same as the one presented in the SD views. Since we discussed

that in the previous chapter we do not repeat it here; furthermore, we use a

Single-Actor-Focus SR view as our original view.

Figure 7.1-1 shows a general ized hierarchy of the decomposition of a Single-

Actor-Focus SR view. Any such view (e.g., Single Actor <i> SR View) can be

further decomposed into an Internal (e.g., Single Actor <i> I nternal View) and

an External view (e.g., Single Actor <i> External View). An Internal view can

be further decomposed into a Functional (e.g., I nternal-Funct ional Elements

View) and a Non-functional view (e.g., I nternal-Non-funct ional Elements

View), and the Non-functional view can again be decomposed into a set of

Single-Softgoal views (e.g., Single-Softgoal<j > View). An External view can be

decomposed into a set of Single-Affected-Dependum views (e.g., Single

Dependum<1> View) or Single-Affected-Actor views and (e.g., Effects to

Actor<m> View).

master-thesis-v4.4.doc

 117/231 9/1/2004

Figur e 7.1-1 Gener alized view map showing decomposit ion hier ar chy fr om a

Single-Actor -Focus SR view to its sub-views

The decomposed hierarchy of SR views can be used in a reverse direction to

perform the evaluation process across di fferent EVLR views in a systematic

manner. Figure 7.1-2 shows an example of how this idea can be appl ied. The

sample shows the label propagation direction from Single-Affected-Dependum

views and Single-Softgoal views to External and Internal views, respectively.

From the External and Internal views to the Single-Actor-Focus view for actor

“ Actor<i>” , and then propagate to the Single Actor View for another actor (e.g.,

Actor<x>). However, sometimes we cannot f inish label elements in one Single-

Actor-Focus view before we move to another one, and iteration among di f ferent

actors may become frequent. This issue itsel f deserves further research; yet it

does not affect our approach, so we disregard it in this thesis.

master-thesis-v4.4.doc

 118/231 9/1/2004

Figur e 7.1-2 Gener alized view map showing the label pr opagation dir ect ion for the

evaluat ion pr ocess using the hier ar chy of SR sub-views

7.2 Details of SR Views

Since any SR view shares information external to actors with its

corresponding SD view, we can focus on a single actor at each time and proceed

to other actors through the external information. Moreover, the purpose of an SR

view is to systematical ly study the internal rationales behind some external

relationships of an actor. We thus use the Single-Actor-Focus SR view as our

original view in this section.

master-thesis-v4.4.doc

 119/231 9/1/2004

7.2.1 Single-Actor-Focus SR View

Informal Description

A Single-Actor-Focus view centers on a single actor and can apply to both SD

and SR views. In the case of an SR view, the view presents these elements

included in the corresponding SD view: the selected actor, the dependums to

which it connects, external l inks that affect those dependums, the

depender/dependee actors of the dependums, and the originator of the external

l inks. In addition, the internal goal-oriented structure, including intentional

elements and l inks internal to the selected actor, are presented only in the SR

version.

Example

Figur e 7.2-1 Single-Actor -Focus SR view showing inter nal r at ionales of agent

Ambulance Cr ew fr om the L AS case study (the or iginal view)

Figure 7.2-1 shows an example of a Single-Actor-Focus SR view from the

LAS case study. From the f igure, we learnt that the agent Ambulance Crew has

three top-level intentional elements: softgoal Quali ty [Service] , task RespondTo

[M obI nfo] , and goal BeRepor ted [AmbI nfo] . The view also enumerates detailed

elements and routines in achieving the top-level intentions. For example, we

master-thesis-v4.4.doc

 120/231 9/1/2004

know from the means-ends links that AmbInfo can be reported (goal BeReported

[AmbInfo]) either manual ly (task M anual as the means to achieve goal

BeReported [AmbInfo]) or automatical ly (task Automat ic as the means to

achieve goal BeReported [AmbInfo]). To report manual ly, an Ambulance Crew

need to Connect to Radio Operator , Repor t L ocat ion, and Repor t Status.

Simi lar information can be obtained for the Automatic report process.

Since our purpose in this section is to demonstrate the use of various view types,

completeness of a model is not critical. Thus, we choose as our starting point this Single-

Actor-Focus view, which includes just enough elements to show our approach. This SR

view will be used as the original view from which the sub-views derive throughout this

chapter.

Justifications

The Single-Actor-Focus SR view does not introduce much overhead to the

analysis process. Normal ly, the analysis of actor’ s internal structure is taken in

an actor-by-actor manner—especial ly when the internal structure of an actor

appears complex (multiple top-level intentions, deep decomposition tree

structures). Node analysis questions and others regarding a given actor can be

answered by simply exploring the actor’ s internal structure. Moreover, all

external relationships from the selected actor towards other actors are kept in this

view, so whenever information from other actors is required, users can trace into

other Single-Actor-Focus views without confusion.

Another benef it is, given current tool support, each diagram has to be drawn

separately and there is no support for underlying structures. I f one extended actor

appears in di f ferent SR diagrams, with the model not yet stable, then signi f icant

overhead is incurred because multiple diagrams must be fixed for any tiny

change to that actor’ s internal rationale. By decomposing the Basic SR view into

a set of Single-Actor-Focus views, changes internal to an actor can be local ized

to a sub-view and with a single entry. Even any external dependency changes can

be l imited to n diagrams, where n is the number of actors involved in this change.

master-thesis-v4.4.doc

 121/231 9/1/2004

Admittedly, whi le each SR diagram is simpl i f ied – focusing on a single actor

and its dependencies, the number of SR diagrams increased from 1 to m, where m

is the number of actors in the system. For this reason, we suggest users maintain

a view reference structure (using view map) for various decomposed SR views.

Each evaluation results (EVLR) view corresponds to an SR view, so

decomposing the Basic SR view may also affect the presentation of the EVLR

views. Figure 7.2-2 and Figure 7.2-3 show two Single-Actor-Focus EVLR views

from the LAS case study. The weakly denied label of softgoal dependum

BeAr r ived [within 11 mins] is propagated from the Single-Actor-Focus view for

agent Ambulance Crew (Figure 7.2-2) to the view for agent L AS M anagement .

The imported label is highl ighted in Figure 7.2-3 using a dashed rectangle.

Since our focus of this thesis is to provide a means of representing an i*

model, we do not define here new label propagation algorithms. The EVLR

views vary according to different algorithms, so we demonstrate in this section

one way in which some decomposed EVLR views can be used. We do not discuss

in the thesis the generic scale-down rules for EVLR views.

Figur e 7.2-2 Sample Single-Actor -Focus EVL R view showing evaluation r esul ts for

agent Ambulance Cr ew fr om the L AS case study

master-thesis-v4.4.doc

 122/231 9/1/2004

Figur e 7.2-3 Sample Single-Actor -Focus EVL R view showing evaluation r esul ts for

agent L AS (M anagement) fr om the L AS case study

Selection Rule

Formal ly, we obtain a Single-Actor-Focus view for a given actor from any

multi-actor SR view by applying the query singleActorFocusSRRule. We pass

the selected actor (a) as an input argument to the query. This one is simi lar to the

singleActorFocusSDRule, except if includes one extra query—

find_internal_elements. We give here the def init ion of the rule and extra query,

yet we omit the def init ion for the sub queries already def ined in previously

(Section 6.2.2).

singleActorFocusSRRule(v:SRViewClass, a:ActorElementClass) ::=

§o:ObjectClass· o∈v ∧ o ∈{ singleActorFocusSDRule(v, a),

find_internal_elements(a) } %Query2

master-thesis-v4.4.doc

 123/231 9/1/2004

7.2.2 Single-Actor-Internal or External View

Informal Description

A Single-Actor-Internal view presents the specif ied single actor and its

internal goal structure, formed by internal elements and internal l inks.

A Single-Actor-External view presents the specif ied single actor, its external

relationships, actors served as depender or dependee to it, and actors whose

external relationships affect or are affected by the selected actor.

Example

Figure 7.2-4 shows the Single-Actor-Internal view of agent Ambulance Crew

derived from the original view, and Figure 7.2-5 shows the corresponding

External view. In the former, internal structures of agent Ambulance Crew

remain the same as its parent view (the original view); in the latter, only internal

elements that have an external relationship are kept. For example, goal

BeRepor ted [AmbI nfo] is shown in the external view, whi le the two means to

achieve it are omitted.

master-thesis-v4.4.doc

 124/231 9/1/2004

Figur e 7.2-4 Single-Actor -I nter nal view der ived fr om the or iginal view

Figur e 7.2-5 Single-Actor -Exter nal view der ived fr om the or iginal view

Justifications

In some cases, even a Single-Actor-Focus view could appear complex (e.g.,

our original view). Therefore, we need to scale it down further so as to make

master-thesis-v4.4.doc

 125/231 9/1/2004

each sub-view, when visual ized, more comprehensible. The first step we take is

to separate internal rationales from the external ones.

This separation appears natural for i* models.

Answering questions that relate to the internal process elements and routines

does not require external relationship information. From the internal view, we

can sti l l f ind out what top-level intentions the actor has, what the alternatives

that wil l achieve those intentions are, and what the routines of each alternative

are. For example, using elements shown in Figure 7.2-4, we can also find out the

two alternative routines avai lable to achieve goal BeRepor ted [AmbI nfo] . In

this l ight, external relationships of an actor are not relevant.

The elements included in the external view appear suff icient for l inking

internal elements from an actor to the ones that reside in another. When tracing

to other Single-Actor-Focus views, the user needs to know only which internal

element is connected with which dependum, and which dependum is connected to

which actors other than the selected one. For example, from Figure 7.2-5 we

know that role Collector [AmbI nfo] depends on goal BeRepor ted [AmbI nfo] to

furnish resource Ambulance I nfor mat ion. I f we want to identify which internal

element of role Collector [AmbInfo] requires that piece of information, we shi ft

to the Single-Actor-Focus view of the role, locate the same dependum, and

fol low the incoming dependency l ink “ to” the dependum to locate the internal

depender. For this purpose, the internal goal structure of an actor does not appear

crit ical.

Selection Rule

Formal ly, we obtain a Single-Actor-Internal view from a Single-Actor-Focus

view (for actor a) by applying the query singleActor I nternalRule, and a Single-

Actor-External view from a Single-Actor-Focus view by applying the query

singleActor ExternalRule.

singleActor InternalRule(v_a:SingleActorFocusSRViewClass)::=

master-thesis-v4.4.doc

 126/231 9/1/2004

§o:ObjectClass· o∈v_a ∧o∈{ a, find_internal_elements(a)}

singleActorExternalRule(v_a:SingleActorFocusSRViewClass)::=

§o:ObjectClass· o∈v ∧

o∈{ singleActorFocusSDRule(v, a), find_internal_connectors(a)}

Query44

find_internal_connectors(a:ActorElementClass)::=

§e:IntentionalElementClass· e.parent=a ∧

 (∃l1:DependencyLinkClass· l1.from=e ∨ l1.to=e) ∨

 (∃l2:IntentionalLinkClass· l2.from=e ∧ l2∈find_externallinks_from_actor(a))

7.2.3 Internal-Non-functional and Functional View

Informal Description

An Internal-Non-functional view presents the selected actor, its top-level

softgoals, and al l the descendents (reasoning structure) of these softgoals. An

Internal-Functional view presents the selected actor, its top-level non softgoals,

and al l the descendents towards these (reasoning structure) non softgoals.

For clarity, we restate here the informal def init ion of descendent: A

descendent of a given element is a sub-element either that has a direct intentional

l ink to the given element or whose direct ancestor is a descendent of the given

element. The formal definit ion of ancestor and descendent can be found in

Section 4.4.6.

Example

Figure 7.2-6 shows an example of the Internal-Non-functional view derived

from the Single-Actor-Internal view for agent Ambulance Crew (Figure 7.2-4),

and Figure 7.2-7 shows the corresponding Internal-Functional view. In Figure

7.2-6, top-level softgoal Quali ty [Service] and all its descendents are shown in a

master-thesis-v4.4.doc

 127/231 9/1/2004

separate view from the other two top-level intentions (task Response To

[M obI nst] and goal BeRepor ted [AmbI nfo]) that are shown in Figure 7.2-7.

Figur e 7.2-6 Single-Actor -I nter nal-Non-funct ional view der ived fr om the Single-

Actor -I nter nal view for agent Ambulance Cr ew

master-thesis-v4.4.doc

 128/231 9/1/2004

Figur e 7.2-7 Single-Actor -I nter nal-Funct ional view der ived fr om the Single-Actor -

I nter nal view for agent Ambulance Cr ew

Justifications

In some cases, a Single-Actor-Internal view sti l l appears complex (e.g., the

Single-Actor-Internal view derived from our original view). Therefore, we need

to scale it down further so as to make each sub-view, when visual ized, more

comprehensible; the approach we are taking now is to separate top-level non-

functional intentional elements from the functional ones.

This separation appears natural when the internal rationale of a modeled actor

gets extremely complex, featuring numerous internal elements and intertwined

internal intentional l inks. When internal rationale becomes diff icult, typical ly

functional and non-functional parts are considered separately, at different times.

master-thesis-v4.4.doc

 129/231 9/1/2004

Functions of a system are normal ly considered first in order to verify the

workabil ity of certain system conf igurations. During this process, softgoals that

do not serve as descendents of some given functional ity appear irrelevant.

After these functions become relatively stable, and especial ly when alternative

routines are avai lable, we record their side-effects using a contribution (and

correlation) network of softgoals. I f necessary, an evaluation process can be

employed to decide the level of satisficeabi l ity of the top-level softgoals when

assuming each alternative. Resulting labels from dif ferent alternatives of the top-

level softgoals can be compared. During this process, those functional elements

that not contribute to any softgoals appear irrelevant.

However, redundancies are expected in the non-functional and functional

views since most process elements cast certain ef fects to some softgoals, and

since these elements may also be decomposed into softgoals. Thus, given the

current level of tool support, we do not suggest excessive use of this

separation—since any change to those overlapping elements requires

synchronization to several other views.

Selection Rule

Formal ly, we obtain an Internal-Non-functional view from a Single-Actor-

Internal view (for actor a) by applying the query internalNonfunct ionalRule,

and an Internal-Functional view from a Single-Actor-Internal view by applying

the query internalFunct ionalRule.

internalNonfunctionalRule(v_a:InternalViewClass)::=

§o:ObjectClass· o∈v_a ∧o∈{ find_root_softgoals(a),

{ find_all_descendants(sg) | sg ∈ find_root_softgoals(a) } }

Query45

find_root_elements(a:ActorElementClass)::=

§e:IntentionalElementClass· e.parent=a ∧ ¬(∃l:IntentionalLinkClass·l.from=e)

master-thesis-v4.4.doc

 130/231 9/1/2004

Query46

find_root_softgoals(a:ActorElementClass)::=

§sg:SoftgoalElementClass· sg∈ find_root_elements(a)

internalFunctionalRule(v_a:InternalViewClass)::=

§o:ObjectClass· o∈v_a ∧o∈{ find_root_functionals(a),

{ find_all_descendants(g) | g ∈ find_root_functionals(a) } }

Query47

find_root_functionals(a:ActorElementClass)::=

§fe:IntentionalElementClass·

(fe∈ find_root_elements(a)) ∧ ¬(fe in SoftgoalElementClass)

7.2.4 Single-Softgoal View

Informal Description

The Single-Softgoal view presents a selected actor, one of its top-level

softgoal, and al l the descendents of the softgoal.

master-thesis-v4.4.doc

 131/231 9/1/2004

Example

Figur e 7.2-8 Single-Softgoal view der ived fr om the Single-Actor -I nter nal

Nonfunct ional view pr esented in the pr evious sect ion

The view in Figure 7.2-8 is actual ly the same as its parent Internal-Non-

functional view shown in Figure 7.2-6. This is because our sample contains only

one top-level softgoal Quali ty [Service] , and no further view decomposition is

necessary. This fact reminds us that rules can be selectively appl ied to a given

application, and that users should only apply those rules they consider necessary.

Justifications

In the non-functional view of a single actor, relationships towards dif ferent

top-level softgoals can be intertwined, a fact that makes it diff icult to study the

process elements and the rationales behind these elements for a given softgoal.

Using a Single-Softgoal view, leaf-process elements that wil l affect the

satisf iceabi l ity of the given softgoal are distinguished. The rationale for selecting

those leaf elements also becomes obvious. Thus, it appears natural to decompose

master-thesis-v4.4.doc

 132/231 9/1/2004

a Non-functional view into Single-Softgoal views when the former becomes

barely comprehensible.

However, for reasons simi lar to those stated in Section 7.2.3, we do not

suggest excessive use of this view.

Selection Rule

Formal ly, we obtain a Single-Softgoal view from an Internal-Non-functional

view (for actor a) by applying the query nonfunct ionalSingleSoftgoalRule. We

pass the selected softgoal (sg) as an input argument to the query.

nonfunctionalSingleSoftgoalRule(v_a:NonFuntionalViewClas,

sg:SoftGoalElementClass)::=

§o:ObjectClass· o∈v_a ∧o∈find_all_descendants(sg) %Query12

7.2.5 Single-Affected-Dependum or Actor View

Informal Description

A Single-Affected-Dependum view presents the selected actor and a selected

dependum that the former affects. In this context, by affect we mean that

elements from the actor exert contributions to the outgoing dependency l ink of

the dependum. In this l ight, this view also includes the internal elements that

exert the effects, the dependum, and the dependee of the dependum.

A Single-Affected-Actor view presents the selected actor and a selected other

actor that the former affects. In this context, by affect we mean that elements

from the actor exert contributions to the external l inks exerted from the other

actor. In this l ight, this view also includes the internal elements that exert the

effects, and the external l inks that these elements affect.

Example

Figure 7.2-9 shows a sample of a Single-Affected-Dependum view of role

Ambulance Crew as I mpactor from the LAS case study. Note that agent

master-thesis-v4.4.doc

 133/231 9/1/2004

Ambulance Crew connecting to the dependum should be omitted from the view.

Due to l imitations in tool support, we have to retain it to ensure the dependency

l ink (from BeArrived [within 11 mins to Ambulance Crew] does not disappear.

The two internal elements contribute negatively to the softgoal dependum

BeAr r ived [within 11 mins] from agent LAS Management to agent Ambulance

Crew.

Figur e 7.2-9 Sample Single-Affected-Dependum view showing one affected

dependum BeAr r ived [wi thin 11 mins] fr om the L AS case study

Figure 7.2-10 shows a sample of a Single-Affected-Actor view for agent TCG

to affect role Hacker /M alicious User . This sample is taken from the Trusted

Computing Group (TCG) case study (Horkoff 2004)—since we do not have such

patterns in the LAS case study. From the sample, we see that internal elements of

agent TCG (e.g., I solate Applicat ions) cast negative effects (e.g., a Hurt

contribution) to the two external l inks (e.g., the Break contribution to softgoal

dependum Protect [Stored Data]) exerted from role Hacker/Mal icious User.

master-thesis-v4.4.doc

 134/231 9/1/2004

Figur e 7.2-10 Sample Single-Affected-Actor view showing the effects to Hacker

fr om agent TCG fr om the TCG case study

Justifications

In a Single-Actor-External view, multiple internal elements may contribute

dif ferent effects to the same dependum (e.g., Protect [Stored Data]) or to the

external l inks exerted from the same actor (e.g., Hacker/Mal icious User).

Sometimes these effects get complex, and thus we further decompose the

External view to a set of Single-Affected-Dependum and Single-Affected-Actors

views.

Under certain circumstances, users may want to study the external effects of a

certain dependum on a certain actor individually. In this l ight, using a Single-

Affected-Dependum or a Single-Affected-Actor view provides just sufficient

information for users to understand which internal elements of an actor may

contribute what effects to a selected subject. These types of views are normal ly

quite simple, and users of them are not distracted by unnecessary information

towards other external elements.

However, there may exist too many external dependums or external l inks that

one actor can af fect. Applying this type of view excessively could result in a

master-thesis-v4.4.doc

 135/231 9/1/2004

huge amount of fragmented views. Thus, we suggest using this view only when it

is absolutely necessary –when the circumstances described in the above

paragraph become totally ful f i l led. Or a user may combine a few of these types

of views so long as the complexity of the result ing visual ization is acceptable.

Selection Rule

Formal ly, we obtain a Single-Affected-Dependum view from a Single-Actor-

External view (for actor a) by applying the query singleAffectedDependumRule.

We pass the selected dependum (dl) which gets affected as input arguments to

the query.

singleAffectedDependumRule(v_a:ExternalViewClass, dl:DependencyLinkClass) ::=

§o:ObjectClass· o∈v_a ∧o∈{ find_contribution_to_dependum(a, dl),

find_contributer_to_dependum(a, dl) }

Query48

find_contribution_to_dependum(a:ActorElementClass,dl:DependencyLinkClass)::=

§l:IntentionalLinkClass·(l.from.parent=a) ∧ (l.to=dl)

Query49

find_contributor_to_dependum(a:ActorElementClass,dl:DependencyLinkClass)::=

§e: ElementClass· ∃l:IntentionalLinkClass·

(l.from=e ∧ l∈find_contribution_to_dependum(a,dl))

Formal ly, we obtain a Single-Affected-Actor view from a Single-Actor-

External view (for actor a) by applying the query singleAffectedActor Rule. We

pass the selected actor (a1) who gets affected as input arguments to the query.

singleAffectedActorRule(v_a:ExternalViewClass, a1:ActorElementClass)::=

§o:ObjectClass· o∈v_a ∧o∈{ find_contribution_to_actor(a,a1),

find_contributor_to_actor(a,a1)}

Query50

master-thesis-v4.4.doc

 136/231 9/1/2004

find_contribution_to_actor (a,a1:ActorElementClass)::=

§l:IntentionalLinkClass· (l.from.parent=a) ∧

(∃l1:IntentionalLinkClass· (l1.from.parent=a1) ∧ (l.to =l1))

Query51

find_contributor_to_actor (a,a1:ActorElementClass)::=

§e:ElementClass· ∃l:ContributionLinkClass·

(l.from=e ∧ l∈find_contribution_to_actor(a,al))

7.3 Summary

In this chapter, we presented a hierarchy of partial SR views, and each of the views

was explored in detail. These eight SR views were studied in this section: the Single-

Actor-Focus SR view, the Single-Actor-Internal view, the Single-Actor-External view,

the Internal-Non-functional view, the Internal-Functional View, the Single-Softgoal view,

the Single-Affected-Dependum view, and the Single-Affected-Actor view.

The hierarchy of partial SR views was illustrated using a generalized view map. The

Single-Actor-Focus SR view is placed as the top-level node in this hierarchy. We also

presented a way of using the sub-SR views to work with the evaluation process and

showed how to organize the set of resulting EVLR views.

The SR views are presented from both informal and formal aspects. An informal

description gives the reader a basic idea of what kinds of elements are qualified for a

specific partial view. The formal definition of the selection rule attached to each view

class makes it possible to automate these views in an i* modeling tool. Some

justifications for the each view are included.

Examples from the LAS case study was used to illustrate the idea of an original

Single-Actor-Focus SR view and various types of sub-SR views it can derive, making it

possible for the reader to compare the differences between the view types. One special

example was cited from the TCG case study (Horkoff 2004) to demonstrate the Single-

Affected-Actor view, since we did not have this modeling pattern in the LAS study.

master-thesis-v4.4.doc

 137/231 9/1/2004

8 Application—Re-presenting the Trusted

Computing Group Case Study

The Trusted Computing Group (TCG) case study (Horkoff 2004) was first

generated in summer 2003. The case study explored opposing viewpoints from

two groups—proponents of TCG and opponents of TCG—and, accordingly,

constructed two sets of diagrams. Each diagram is labeled as a “ model” in the

TCG case study. There are approximately 120 such models in the document, and

more than hal f of them contain over 40 i* notations (elements and links) each.

One extreme case contains 44 elements and around 100 links. With the volume of

information trying to express in one diagram, text in each element turns out

hardly readable, and links are so intertwined that it is hard for a reader to

identify connections between the elements. The TCG case study documented in

(Horkoff 2004), which we cite as TCGCS throughout this chapter, raised

considerable scalabi l ity issues in the i* framework.

The complexity and size of TCGCS renders it a good example in val idating

our newly proposed view extension. Thus, we used the result ing diagrams from

TCGCS to demonstrate that our proposed approach can simpl i fy the

representation of the huge models, yet serve the same purpose as those diagrams

shown in the original document. In this chapter, we highl ight some interesting

parts from TCGCS that are considered suf f icient to i l lustrate the use of our view

extension. The rest of the original work can be organized following a simi lar

manner.

Our rework and TCGCS di ffer in the use of terminologies and the organization

of the diagrams.

Terminologies used in our proposed view extension dif fer from what was used

in TCGCS. The two sets of diagrams produced in TCGCS are considered as two

i* basel ine models, representing the situations of TCG from two contrasting

viewpoints. We name the one representing the viewpoint from TCG proponents

master-thesis-v4.4.doc

 138/231 9/1/2004

as “TCG.Pro,” and the one for the opponents as “TCG.Anti.” The term “ model”

(diagram) from TCGCS corresponds to the concept of view in our extension.

Each view is a projection over the basel ine model according to some predefined

selection rules in the view extension. In our rework, we name each derived view

fol lowing a consistent naming convention, prefixing it with the name of its

corresponding basel ine model.

The manner we followed in presenting the views also dif fers from TCGCS.

V iews (models) in TCGCS were created and documented as the need arose,

without a predefined systematic method. This practice appears natural during the

model acquisit ion process, yet model users may f ind it diff icult to locate specif ic

information from the 120 models. We partit ion the views obtained by using the

view extension into four basic types (AC, SD, SR, and EVLR), and show the

views in a sequence according to their types.

Our rework of TCGCS resulted in a total of 37 diagrams, showing the basel ine

model, 15 AC views, 8 SD views, and 13 SR views. Among these views, only 2

remain exactly the same as what was demonstrated in TCGCS, 17 of which are

newly added ones, the other 18 being modif ied. In addition, four view maps (VM)

for showing the relationship for basic views, AC views, SD views, and SR views,

respectively, were also supplied to make attainable the relationship among views

from the same group.

EVLR views are not presented in this chapter since we found it impractical to

f it the evaluation diagrams from TCGCS into our EVLR views. A major reason

for the dif f iculty is that the label propagation algorithm employed in TCGCS

allows a label be propagated from a dependum to both its depender and dependee,

whi le we feel it only natural to propagate a label to a depender. Any dependee, in

i* semantic, should have the autonomy to decide its own label regardless of what

was assigned to its dependum. Since this issue deserves further research, and

since we cannot supply meaningful results unless this issue is properly resolved,

we have decided to omit the EVLR views of TCG in this thesis. Nevertheless, as

argued in Section 7.1, omitt ing the EVLR feature does not affect our view

master-thesis-v4.4.doc

 139/231 9/1/2004

extension, because the EVLR views are considered as SR views with only the

evaluation wi l l be dif ferent.

Section 8.1 presents an overview of the relationships between the basel ine

models and original views that wil l be used in the subsequent sections; Section

8.2 to 8.4 present the partial AC, SD, and SR views we obtained from the case

study, respectively; and Section 8.5 summarizes results and contributions

result ing from this reworking of TCGCS.

8.1 Overview

Figure 8.1-1 shows the VM of the basic views for our TCGCS rework. Each

view is represented using a rectangle; the view name and view type are separated

by a semi-colon; and the corresponding visualized diagram is included in the

bracket. The views shown in a dashed rectangle do not appear in this section for

we selectively apply our approach to interesting parts. Yet they do—or should—

exist in TCGCS in order to maintain the completeness of TCGCS. The view

shown in a dotted rectangle impl ies it does not necessari ly exist even in the

original TCGCS, and can be derived from other views. A detailed definit ion of

the graphical notations for a VM can be found in Section 4.2.

From Figure 8.1-1(a), we see that the proponents basel ine model TCG.Pro is

decomposed into four basic views. The Basic AC view (TCG.Pr o.AC) and the

Basic SD basic view (TCG.Pr o.SD) are visual ized in both this chapter and

TCGCS. We use these two basic views as our original view to derive a set of

partial AC and SD views in the subsequent sections, respectively.

Figure 8.1-1(b) shows that TCG.Ant i , the basel ine model from the TCG

opponents’ viewpoint, was not presented expl icit ly in TCGCS. This may because

TCG.Anti dif fers only in the rationales surrounding actor TCG from TCG.Pro.

The SR view for actor TCG from TCG.Anti (TCG.Ant i .SR.SA-TCG) is the

extreme case which containing 44 elements and over 100 links in one diagram,

so we choose it as our original view to derive a set of partial SR views.

master-thesis-v4.4.doc

 140/231 9/1/2004

Figur e 8.1-1 View map showing the r elat ionships among the basic views fr om

TCGCS

Figure 8.1-2 shows the revised Basel ine Model that we constructed according

to the diagrams presented for the TCG proponents’ viewpoint in TCGCS. This

model bears the name TCG.Pr o. The original views used in the AC and SD

sections are derived from this basel ine model. However, this basel ine model is a

partial one, not showing the internal structures within each actor.

master-thesis-v4.4.doc

 141/231 9/1/2004

Figur e 8.1-2 Revised Basel ine M odel r epr esent ing the viewpoints fr om the

pr oponents of TCG

8.2 Actor Class Views

In this section, the selected original view (TCG.Pro.AC) is scaled down into

a set of related partial AC views; their relationship is shown in Figure 8.2-1.

TCG.Pro.AC (or AC) is decomposed into two Single-Network views: one for

producer (AC.SN-Producer) and one for consumer (AC.SN-Consumer).

AC.SN-Consumer is further decomposed in two dimensions. One dimension is

decomposed according to element types, result ing in a Plain-Actors-Only view

(AC.SN-Consumer .PlainActors), an Abstract-Actors-Only view (AC.SN-

Consumer .Abst ractActors) and an Agents-Only view (AC.SN-

Consumer .Agents). The other dimension is decomposed according to plain

actors, result ing in four Single-Plain-Actor sub-views (e.g., AC.SN-

Consumer .SPA-PCUser). A set of Direct-Replaceable views (e.g., AC.SN-

Consumer .DR-I ndividualConsumer) are also derived from AC.SN-Consumer.

master-thesis-v4.4.doc

 142/231 9/1/2004

We have shown the decomposition of AC.SN-Consumer in Figure 8.2-1, and

there are others such as sub views of AC.SN-Producer which also belongs to this

category. Their relationship would follow the same pattern as shown for AC.SN-

Consumer in Figure 8.2-1, so we do not repeat them in this section.

Figur e 8.2-1 View map for some par t ial AC views

8.2.1 The Basic AC view

Figure 8.2-2 shows the Basic AC view from the TCG proponents’ viewpoint,

and we name it as TCG.Pr o.AC. This is an example that a basic view, direct

projection over a basel ine model, sti l l complex. In the diagram showing below,

approximately 47 actors and 50 links are presented, making it almost unreadable.

master-thesis-v4.4.doc

 143/231 9/1/2004

Figur e 8.2-2 Basic Actor Class View

8.2.2 Single-Network views

Applying the single network rule (singleNetworkRule) to TCG.Pro.AC, we

obtained two Single-Network views: TCG.Pro.AC.SN-Producer and

TCG.Pro.AC.SN-Consumer .

TCG.Pro.AC.SN-Producer (Figure 8.2-3) exhibits shows the associations

between three plain actors—Content Owner /Copyr ight Holder , PC Softwar e

M anufacturer /Service Pr ovider , and TCG—and their speci f ied forms. There is

a corresponding diagram (model 4.3) to this view in TCGCS.

Since the notion of “ speci f ies” , “ complete composition” , and “ agent instance”

are newly introduced in our extension, our AC views embraces extra information

(e.g., “agent TCG speci f ies plain actor TCG”) and distinguished agent instances

(e.g., IBM) than their corresponding original models in TCGCS. Al l AC views

presented in this section resemble these features, so we wil l not repeat this point

again.

master-thesis-v4.4.doc

 144/231 9/1/2004

Figur e 8.2-3 Single-Networ k view for pr oducer s fr om the TCG pr oponents’

viewpoint

TCG.Pro.AC.SN-Producer (Figure 8.2-4) is constructed based on information

collected from TCGCS (including model 4.6, model 2.6.3, model 2.6.4, and so

on). Plain actors (e.g., actor PC User), speci f ied actors (e.g., role PC User and

Content User), and agent instances (e.g., Helen Huff) were also added. These

new actor elements are added to f i l l the logic gaps between actors in TCGCS so

that users can apply the external relationship inheri tance rule to calculate

indirect external dependencies. In this l ight, actor associations expressed in AC

views can support automated substitution of actors in SD views (see Section

5.2.3 for detail).

However, with these enriched information to TCG.Pro.AC.SN-Producer, the

view appears more complex than the original one; thus, further decomposition is

required to improve its comprehensibi l ity.

master-thesis-v4.4.doc

 145/231 9/1/2004

Figur e 8.2-4 Single-Networ k view for consumer s fr om the TCG pr oponents’

viewpoint

8.2.3 Plain-Actors-Only, Abstract-Actors-Only and Agents-Only views

Figure 8.2-5 shows the Plain-Actors-Only view derived from

TCG.Pro.AC.SN-Consumer by applying the plain actors rule

(plainActorsOnlyRule). This view contains only plain actors and their direct

speci f ied forms, and it is named as TCG.Pro.AC.SN-Consumer .PlainActor s.

The view does not correspond to any diagram in TCGCS, nor does it appear

immediately useful in this case, yet it might be in other cases. We show the view

here to demonstrate a systematic approach in deriving various types of views.

Figur e 8.2-5 Plain-Actor s-Only view for consumer s gr oup

master-thesis-v4.4.doc

 146/231 9/1/2004

Figure 8.2-6 shows the Abstract-Actors-Only view derived from

TCG.Pro.AC.SN-Consumer by applying the abstract actors rule

(abstractActorsOnlyRule). This view contains only abstract actors and the

associations among them, and it is named as TCG.Pro.AC.SN-

Consumer .Abst ractActors. The view is a revised version of its correspondence

in TCGCS (model 4.5), based on the modif ication we made in TCG.Pro.AC.SN-

Consumer.

Figur e 8.2-6 Abst r act -Actor s-Only view for consumer gr oup

Figure 8.2-7 shows the Agents-Only view derived from TCG.Pro.AC.SN-

Consumer by applying the agents rule (agentsOnlyRule). This view contains only

agents and agent instances and the associations among them, and it is named as

TCG.Pro.AC.SN-Consumer .Agents. Same as TCG.Pro.AC.SN-

Consumer.PlainActors, we show this view here to demonstrate a systematic

approach in deriving various types of views.

master-thesis-v4.4.doc

 147/231 9/1/2004

Figur e 8.2-7 Agents-Only view for consumer s gr oup

8.2.4 Single-Plain-Actor views

Figur e 8.2-8 Single-Plain-Actor view for “ PC User ”

Figure 8.2-8 to Figure 8.2-11 show four Single-Plain-Actor views derived

from TCG.Pro.AC.SN-Consumer by applying the single plain actor rule

(singlePlainActorRule) for each of the four plain actors, one at a time. This type

of view contains the selected plain actor and the specif ied forms that can inherit

all of its external relationships. We name the four views TCG.Pro.AC.SN-

master-thesis-v4.4.doc

 148/231 9/1/2004

Consumer .SPA-PCUser , TCG.Pro.AC.SN-Consumer .SPA-ContentUser ,

TCG.Pro.AC.SN-Consumer .SPA-M aliciousUser , and TCG.Pro.AC.SN-

Consumer .SPA-DataPi rates. These views do not have a correspondence in

TCGCS, but we show them to il lustrate how a given AC view might be

decomposed according to domain knowledge plain actors.

Figur e 8.2-9 Single-Plain-Actor view of " Content User "

master-thesis-v4.4.doc

 149/231 9/1/2004

Figur e 8.2-10 Single-Plain-Actor view of “ M al icious User (s) and At tacker (s)”

master-thesis-v4.4.doc

 150/231 9/1/2004

Figur e 8.2-11 Single-Plain-Actor view of “ Data Pir ate”

8.2.5 Direct-Replaceable views

Figure 8.2-12 to Figure 8.2-15 show Direct-Replaceable views derived from

TCG.Pro.AC.SN-Consumer by applying the direct replaceable rule

(directReplaceableRule) for the selected actors, one at a time. We use these

views to deduce inter-actor dependencies. The given actor can stand in for other

actors shown in this view in any SD view containing the latter. We highl ight the

given actor using a solid rectangle. This type of substitution impl ies that the

given actor has either the exact same external relationship as, or a larger set of

external relationships than, the ones that are directly replaceable by it.

master-thesis-v4.4.doc

 151/231 9/1/2004

Figur e 8.2-12 Dir ect-Replaceable actor s view of agent I ndividual Consumer

For example, Figure 8.2-12 shows a given actor “agent I ndividual

Consumer ” and the Direct-Replaceable view of it. There are corresponding

diagrams (model 2.6.3 and model 2.6.4) for this view in TCGCS. We name this

view TCG.Pro.AC.SN-Consumer .DR-I ndividualConsumer . From this view we

learnt that the given actor inherits all external relationships from role PC User ,

role Content User , role PC User and Content User , or role I ndividual

Consumer as PC User and Content user , and that therefore agent Individual

Consumer can substitute any of these in an SD view.

Some other examples are the Direct-Replaceable views for agent Government

(Figure 8.2-13(a)) and role M alicious Group…User s (Figure 8.2-13(b)), and we

name them TCG.Pr o.AC.SN-Consumer .DR-Government and

TCG.Pro.AC.SN-Consumer .DR-M aliciousUser s, respectively. There are

corresponding diagrams (model 2.17.1 and model 2.19.2, respectively) for these

views in TCGCS,

master-thesis-v4.4.doc

 152/231 9/1/2004

(a) For agent Government (b) For role Malicious Group…User

Figur e 8.2-13 Dir ect-Replaceable views for speci f ied actor s

In addition, we show some views that do not exist in TCGCS but wil l be used

to derive SD views of agent instances such as Helen Duff and George Hudson.

Figure 8.2-14 and Figure 8.2-15 show the Direct-Replaceable views for Helen

Duff and George Hudson, and we name them TCG.Pr o.AC.SN-Consumer .DR-

HelenDuff and TCG.Pr o.AC.SN-Consumer .DR-GeorgeHudson, respectively.

Figur e 8.2-14 Dir ect-Replaceable view for agent instance Helen Duff

master-thesis-v4.4.doc

 153/231 9/1/2004

Figur e 8.2-15 Dir ect-Replaceable view of agent instance Geor ge Hudson

8.2.6 Discussion

In this section, we demonstrate the process and results of the decomposition of the

basic AC (TCG.Pro.AC) into various forms of partial views according to the selection

rules. Relationships among these views were presented in a View Map, where each view

(diagram) is modeled as a node in a tree-like structure. This view map helps increase the

efficiency in accessing the distributed views across a document.

(a) M odel 4.3 i n t he or igi nal wor k

master-thesis-v4.4.doc

 154/231 9/1/2004

(b) Si ngl e-Net wor k v iew for consumer s

Figur e 8.2-16 Compar ison of Actor Views (diagr am) showing r edundancy

ident i f ied

The original Basic Actor Class view from TCGCS was developed in an ad-hoc

manner, and thus contains inconsistencies. Without a systematic method, it was

dif f icult to identify these problem areas through its 120 diagrams. Our research

enforced for the first time a tighter relationship between the AC and the SD

views so that modeled elements are subject to a more rigorous consistency check

within one model. Using this technique, we identif ied redundancy, logic gaps,

and inconsistency from the original TCG case study.

First, we identif ied redundancy in the original model. In Figure 8.2-16(a),

there are two “plays” l inks to role PC Software manufacturer / Service

Provider that originated from agents I ntel and I BM , respectively. During our

revisit, we found that these links are redundant since each of them has been

impl ied by the “ INS” l inks from it (e.g., Intel) to agent PC M anufacturer /

Ser vice Provider TCG M ember , and then by the “ plays” l ink from the latter to

master-thesis-v4.4.doc

 155/231 9/1/2004

role PC Software manufacturer/ Service Provider. In fact, Intel and IBM appear

to be agent instances, and in our reformulated i* semantics, they should not

relate to “plays” l inks. Therefore, in our modif ied version (Figure 8.2-16(b)),

these redundancies are removed, and Intel and IBM are highl ighted as agent

instances to avoid confusion from the agent.

Next, we identif ied logical gaps in the way actors in the SD views are

replaced. For example, in TCGCS, role Content User in Figure 8.2-17(a) was

replaced by role I ndividual Consumer as PC User and Content User

(ICPCUCU) in Figure 8.2-17(b), and the latter seems to share the same set of

external relationships as the former. We inferred the human reasoning from this

transit ion: First, since agent Individual Consumer “plays” role Content User and

PC User, we introduce a new role ICPCUCU to cover all three actors; next, since

role ICPCUCU covers Content User, it should support all the external

dependencies of the latter. These rationales were not specif ied expl icit ly in the

original model and this fact may have led to user confusion, whi le the

replacement of actors cannot be automated.

(a) M odel 2.6.3 i n T CGCS

master-thesis-v4.4.doc

 156/231 9/1/2004

(b) M odel 2.6.4 i n T CGCS

Figur e 8.2-17 Example of logic gaps in actor r eplacement

To make the transit ion from the model 2.6.3 to model 2.6.4 automatical ly

obtainable from the Basel ine model, we modif ied these associations among agent

I ndividual Consumer , role Content User , role PC User , and role I ndividual

Consumer as PC User and Content User (ICPCUCU). Figure 8.2-18 shows the

result of our modification. We f irst separate this part of information from the SD

view and fit them into the AC view. Then we introduce a new role PC User and

Content User (PCUCU) as the whole for role PC User and role Content User.

From the impl ication of the “complete composition” l inks in the AC view, we

know that the new role (the whole) inherits all external relationships from its

parts. We let role I CPCUCU be a special ized form of role PCUCU through the

“ ISA” l ink, and we know that the former inherits al l external relationships from

the latter. Thus, I CPCUCU indirectly inherits all external relationships from role

Content User. The above analysis process reaches the same result as was

expected in the transit ion shown in Figure 8.2-17, yet this process demonstrates a

systematic approach and can be ful ly automated.

master-thesis-v4.4.doc

 157/231 9/1/2004

Figur e 8.2-18 M odi f ied r epr esentat ion to f i l l the logic gap

Similar adaptations have been made to the substitution of PC User (Figure

8.2-19) and Hacker /M alicious User (Figure 8.2-20). Our modified versions are

shown in Figure 8.2-21(a) and (b), respectively.

(a) Di agr am showi ng actor associ at ion

master-thesis-v4.4.doc

 158/231 9/1/2004

(b) Di agr am showi ng t he r esul t i ng subst i t ut ion

Figur e 8.2-19 Subst itut ion of r ole PC User in TCGCS

(a) Di agr am showi ng actor associ at ion

master-thesis-v4.4.doc

 159/231 9/1/2004

(b) Di agr am showi ng t he r esul t of subst i t ut ion

Figur e 8.2-20 Subst itut ion of Hacker /M alicious User in TCGCS

Figur e 8.2-21 Our modi f ied AC views in r emoving the logic gaps

Final ly, we identif ied one inconsistency (or duplicate) in the actor-type

assignment. From models 2.5.11 to model 2.5.13, agent PC

M anufacturer /Service Pr ovider TCG M ember as TCG (TCPA)

(PCMSPTCGMTCG) seems to have replaced role PC M anufacturer /Service

Provider (PCMSP) in the SD diagram. I f we follow the same tacit logic

explained in the previous comment, the former (agent PCMSPTCGMTCG) has to

“plays” the latter (role PCMSP) to make the replacement in the SD view

consistent. On the other hand, agent PCMSPTCGMTCG seems related with agent

TCG (TCPA) in some way. Since TCG is a group, most l ikely the former should

be “ is-Part-of” the latter. However, there already existed an agent PC

master-thesis-v4.4.doc

 160/231 9/1/2004

M anufacturer /Service Provider TCG M ember that has exactly the same actor

associations in the model. Thus, either agent PCMSPTCGMTCG is a duplicate or

it introduces some inconsistency; it does not seem like a dupl icate in that the

author used three models to emphasize it. Based on the above assumptions, we

modif ied PCMSPTCGMTCG into a role that is a special ized form of role

PCSMSP and is played by agent PCMSPTCGM. It sti l l can replace role PCSMSP

in any SD view. The modif ied version is shown in Figure 8.2-22.

(?? The corresponding models in TCGCS are very big, do I show them here??)

Figur e 8.2-22 M odi f ied ver sion showing PCM SPTCGM TCG as a r ole

The AC view appears to be the weakest part in TCGCS, but this is a result of

the lack of def init ions, rules and guidel ines in previous i* l iterature. With the

clarif ication in our reformulated i* framework—and especial ly with the

introduction of the external relationship inheri tance rule along association

l inks—redundancies, logical gaps and even inconsistencies that existed in the

original model were revealed. Thus, our approach not only scales down complex

AC views, but also helps veri fy the val idity of large scale i* models.

8.3 Strategic Dependency Views

Pair-wise-Actors and Single-Actor-Focus SD views were extensively used in

TCGCS. This intuit ive approach matches exactly what we have proposed in

master-thesis-v4.4.doc

 161/231 9/1/2004

Chapter 6. We can stay with the Speci f ied Actor Based SD view throughout our

rework because the two basel ine models documented in TCGCS only contain

speci f ied actors. Thus, the only problem is the lack of a reference structure for

the SD diagrams in the original document.

In this section we present related SD views in a centralized manner and

provide their relationships in a view map. Our purpose is to verify our proposed

view extensions, so we choose just enough diagrams from TCGCS to test each

type of view. There are other diagrams in TCGCS correspond to SD views, since

they would fol low the same pattern as the ones we discuss in this section, we do

not show them here.

We choose the Basic SD view (TCG.Pro.SD) from TCG proponents’ view

point as the original view. Figure 8.3-1 shows the relationships between

TCG.Pro.SD and the sub-views derived from it. TCG.Pro.SD (abbreviated as SD)

is f irst decomposed into a set of Single-Actor-Focus SD views, and we select

f ive of them in this section, as fol lows: role Government as PC User (SD.SA-

GovernmentPCU), role Individual Consumer as PC User and Content User

(SD.SA-I ndividualPCUCU), role Mal icious User, agent TCG (SD.SA-TCG),

and agent instance George Hudson (SD.SA-GeorgeHudson). SD.SA-

GovernmentPCU and SD.SA-TCG are further scaled down to Pair-wise-Actors

views SD.PW-Gover nmentPCU-PCSM SP and SD.PW-TCG-HackerM U,

respectively.

master-thesis-v4.4.doc

 162/231 9/1/2004

Figur e 8.3-1 View map for par t ial SD views fr om the Pr o TCG view point

8.3.1 The Basic SD view

Figure 8.3-2 shows the Basic SD view from the TCG proponents’ viewpoint;

we name it as TCG.Pro.SD. This view shows an extremely complex relationship

among actor PC User, TCG (TCPA), PC Software Manufacturer/Service Provider,

and Hacker/Mal icious User. I t appears quite di ff icult to read.

master-thesis-v4.4.doc

 163/231 9/1/2004

Figur e 8.3-2 Basic SD view fr om the TCG pr oponents’ viewpoint

8.3.2 Single-Actor-Focus SD views

We apply the single actor rule (singleActorFocusSDRule) to TCG.Pro.SD and

obtain a set of Single-Actor-Focus SD views. Those for the following five actors

are presented: role Government as PC User , role I ndividual Consumer as PC

User and Content User , role M alicious Group/I ndividual as Government

At tacker and Hacker /M alicious User , agent TCG, and agent instance George

Hudson.

Figure 8.3-3 shows the Single-Actor-Focus SD view of role Government as

PC User. We name it TCG.Pr o.SD.SA-GovernmentPCU. There are two

correspondence diagrams (models 2.20.1 and 2.18.1) to this view in TCGCS.

master-thesis-v4.4.doc

 164/231 9/1/2004

Figur e 8.3-3 Exter nal r elat ionships for r ole Gover nment as PC User

Figure 8.3-4 shows the Single-Actor-Focus SD view of role Individual

Consumer as PC User and Content User (ICPCUCU). We name it

TCG.Pro.SD.SA-I ndividualPCUCU. It summarizes the information contained

in TCGCS (model 2.3.1 for PC Manufacturer, model 2.4.1 for Hacker, model

2.5.1 for TCG, and model 2.6.1 for Content Owner). Using actor associations

(shown in Figure 8.2-12) and the external relationship inheritance rule, we know

that role I CPCUCU shal l inherit al l external relationships for role PC User and

role Content User . That is the method we used to calculate the external

relationships for ICPCUCU.

master-thesis-v4.4.doc

 165/231 9/1/2004

Figur e 8.3-4 Exter nal r elat ionships for r ole I ndividual Consumer as PC User and

Content User

Figure 8.3-5 shows the Single-Actor-Focus SD view for role Mal icious

Group/Individual as Government Attacker and Hacker/Mal icious User

(MGIGAHM). We name it TCG.Pr o.SD.SA-M aliciousUser . There is a

correspondence in TCGCS (model 2.4.1) to this view. We replaced role

Hacker /M alicious User (HMU) with role M GI GAHM in our version – because

the former is a specif ied form (ISA) of role Government At tacker and

Hacker /M alicious User (GAHMU), whi le GAHMU is the whole of HMU.

According to the external relationship inheri tance rule, MGIGAHM inherits al l

external relationships from HMU. Therefore, the replacement in this SD view is

legal.

master-thesis-v4.4.doc

 166/231 9/1/2004

Figur e 8.3-5 Exter nal r elat ionships for M al icious Gr oup/I ndividual as Gover nment

Attacker and Hacker /M al icious User

Figure 8.3-6 shows the external tasks and goals of agent TCG and il lustrates

how they af fect the effects exerted by role Hacker and role Data Pirate. We name

it TCG.Pro.SD.SA-TCG. Information shown in this view corresponds to three

diagrams (models 2.5.1, 2.10.1, and 2.14.1) in TCGCS. Note that in the diagram

shown below, we use the ful l name of each dependum to indicate its depender

and dependee in the form “ (depender, dependee)” . For example, Reduce [spam]

(PCUser , PCM SPTCG) denotes that PC User depends on PC Softwar e

M anufacturer / Service Pr ovider as TCG M ember (PCM SPTCG) to reduce

spam.

master-thesis-v4.4.doc

 167/231 9/1/2004

Figur e 8.3-6 Exter nal r elat ionships for agent TCG (TCPA)

Figure 8.3-7 was derived from the Single-Actor-Focus SD view for role Data

Pi rate and the Direct-Replaceable view of agent instance Geor ge Hudson

(Figure 8.2-15). Since the agent instance “plays” role Data Pirate, it inherits al l

external relationships of that role. In addition, we know from TCG.Pro.SD

(Figure 8.3-2) that this agent instance has extra dependencies to another agent

instance Helen Duff. Therefore, we combined the above information and

produced the Single-Actor-Focus SD view for George Hudson below. Part of our

information is obtained two diagrams (models 2.6.8 and 2.6.6) in TCGCS. We

name this view TCG.Pr o.SD.SA-GeorgeHudson.

master-thesis-v4.4.doc

 168/231 9/1/2004

Figur e 8.3-7 Exter nal r elat ionships for agent instance Geor ge Hudson

8.3.3 Pair-wise-Actors SD views

Figure 8.3-8 shows the Pair-wise-Actors view for PC Software Manufacturer/

Service Provider and Government as PC User. We obtained it by applying the

pair-wise rule (pairwiseActorsRule) over TCG.Pro.SD or TCG.Pro.SD.SA-

GovernmentPCU. We name this view TCG.Pro.SD.PW-GovernmentPCU-

PCSM SP. This view appears exactly the same a diagram (model 2.18.1) in

TCGCS—except for the omission of the dangl ing dependum Access [Threatening

Technology] .

master-thesis-v4.4.doc

 169/231 9/1/2004

Figur e 8.3-8 Pair -wise view for PC Softwar e M anufactur er /Ser vice Pr ovider and

Gover nment as PC User

Figure 8.3-9 shows the Pair-wise-Actors view for TCG and Hacker/Mal icious

User. We obtained it by applying the pair-wise rule (pairwiseActorsRule) over

TCG.Pro.SD or TCG.Pro.SD.SA-TCG. We name this view TCG.Pro.SD.PW-

TCG-HACK ERM U. This view conveys the same information as does its

correspondence diagram (model 2.5.1) in TCGCS. Yet it appears much simpler

and more comprehensible, with the omission of the depender (PC User) and

dependee (PCMSPTCG) of the six dependums (e.g., Reduce [Spam]) and the 12

corresponding dependency l inks.

master-thesis-v4.4.doc

 170/231 9/1/2004

Figur e 8.3-9 pair -wise view for TCG (TCPA) against Hacker /M al icious User

8.3.4 Discussion

In this section, we val idate our approach in reducing a Basic SD (TCG.Pro.SD)

into various forms of partial SD views so as to increase its comprehensibi l ity.

The reduction was performed manual ly according to the selection rules defined

for each SD sub-view. Resulting partial views were presented in a top-down

f lavor—that is, from the complex and complete basic view to the simpl i f ied

partial views. Relationships among these views are presented in a V iew Map.

In TCGCS, intuit ive pair-wise views are used extensively. Consequently, the

presentation makes it di f f icult to perform node analysis centering on a given

actor. To study the vulnerabil ity and opportunity of a given actor, model users

need to study several diagrams, usual ly shown in separate chapters. During our

rework of TCGCS, Single-Actor-Focus views were summarized according to al l

pair-wise SD views related across the original document to the following

selected actors: role Government as PC User , role I ndividual Consumer as PC

User and Content User , role M alicious Group/I ndividual as Government

master-thesis-v4.4.doc

 171/231 9/1/2004

Attacker and Hacker /M alicious User , agent TCG, and agent instance George

Hudson.

 A dif ference also exists in the way we should express external contribution

from an actor to a dependum. For example, the external break contribution from

role Hacker /M alicious User ends at softgoal dependum Reduce [spam] (Figure

8.3-10(a))in TCGCS, but according to our reformulated i* semantics it should

end at the corresponding outgoing dependency l ink of the dependum (Figure

8.3-10(b)).

(a) Style used in this chapter (b) Style proposed in Chapter 6

Figur e 8.3-10 Di ffer ences in expr essing exter nal contr ibut ions to dependums

In fact, the style appl ied in TCGCS appeared more concise in the graphical

representation (no extra actor PCM SP, highl ighted with dashed rectangle, shown

in the left-side diagram), and easier for def ining selection rules (since fewer

elements need to be selected). We removed the TCGCS style from our proposal

because this dif ference could have dif ferent impl ications in terms of i* semantics;

we show our concern by way of the example shown in Figure 8.3-10. Breaking a

dependum (e.g., Reduce [Spam]) directly suggests that this dependum wi l l not

stand, so the corresponding dependee’ s (e.g., PCM SP) internal rationale might

be affected. This conforms to the label propagation algorithm employed by

TCGCS, which propagates labels from a dependum along both directions of the

dependency l inks, towards internal elements, to both its depender (e.g., PCU)

and dependee (e.g., PCM SP). By breaking a dependum’ s outgoing dependency

l ink, we restricted the break effect to only the depender (e.g., PCU). This style

master-thesis-v4.4.doc

 172/231 9/1/2004

of label propagation algorithm is employed in the LAS case study and other

previous l iteratures (Yu and Liu 2000; L iu et al. 2003). However, this issue lays

in the i* semantic itself, and its description is not an intent of this thesis.

Furthermore, once a consistent semantic and graphical representation is selected,

we can adjust the definit ion of the single actor focus selection rule

(singleActorFocus[SD|SA]Rule) to make our view extension compatible.

We could have converted the style to our proposed one; however, we did not

modify it, for the dif ference does not affect our reduction of views. For

simpl icity, we assume the dif ferent graphical notions are semantical ly equivalent.

The dif ference between TCGCS and the reformulated i* framework in

presenting the external break contribution shown in Figure 8.3-10 incurs other

dif ferences in graphical representation. One is the extra actor PC Softwar e

M anufacturer / Service Provider (PCM SP) shown in part (b) of the above

diagram. For emphasis, we highl ighted with a dashed rectangle, but there is no

semantic meaning behind this graphical notation. Another is the naming of the

dependums. Since we do not show the dependees the dependums depend on in

part (a) of the above diagram, we use the ful l name of each dependum to indicate

its depender and dependee in the form “ (depender, dependee)” . For example,

Reduce [spam] (PCUser , PCM SP) denotes that PC User depends on PC

Software M anufacturer / Ser vice Pr ovider (PCM SP) to reduce spam.

Despite the differences existing in the SD diagrams, we consider that our

approach can present what was modeled in the SD diagrams from TCGCS. The

major contribution is that we offered overview information, rules to reduce

complex SD views, and guidel ines to present related SD views in a systematic

manner.

8.4 Strategic Rationale Views

Given the complexity of the Basic SR view from TCG, we cannot

conveniently show it in one diagram. The Basic SR view can be reduced to a set

of Single-Actor-Focus views, one for each actor, following a simi lar single actor

master-thesis-v4.4.doc

 173/231 9/1/2004

focus rule as described in the SD view. These sets of views can be further

reduced in a simi lar manner following the set of partial SR view selection rules.

Therefore, we can use the Single-Actor-Focus view of one actor to validate the

effectiveness of the SR part of our view extension.

Figur e 8.4-1 View map for par t ial SR views fr om the Ant i-TCG viewpoint

In this section, we choose the Single-Actor-Focus view for agent TCG (the

extreme complex case) from the opponents’ viewpoint (TCG.Ant i.SR.SA-TCG)

as our original view. This original view was scaled down into a set of related

partial SR views; their relationships are shown in Figure 8.4-1.

TCG.Anti.SR.SA-TCG (abbreviated as SR.SA-TCG) is f irst decomposed into a

Single-Actor-Internal view (SR.SA-TCG.I nternal) and a Single-Actor-External

view (SR.SA-TCG.External). The Internal view is further decomposed into an

Internal-Functional view (SR.SA-TCG.I nternal.Funct ional) and an Internal-

Non-functional view (SR.SA-TCG.I nternal.NonFunc). The Non-functional

view is further decomposed into four Single-Softgoal views (e.g., SR.SA-

TCG.I nternal.NonFunc.SS-L ockinPC). The External view can be further

decomposed into four Single-Affected-Dependum views (e.g., SR.SA-

TCG.External.SAD-Cont rolPC) and one Single-Affected-Actor view (SR.SA-

master-thesis-v4.4.doc

 174/231 9/1/2004

TCG.External.SAA-toHacker). Two Single-Affected-Dependum views, SR.SA-

TCG.External.SAD-Compat ible and SR.SA-TCG.External.SAD-I nnovat ion,

are shown in one diagram, and we name the combined one TCG.External.SAD-

Compat ible+SAD-I nnovat ion.

8.4.1 The Single-Actor-Focus SR View for agent TCG

Figure 8.4-2 shows the Single-Actor-Focus SR view for agent TCG, derived

by applying the single actor focus rule (singleActorFocusSRRule) over

TCG.Anti.SR. I t corresponds to the SR model for agent TCG (model 3.2.5) in

TCGCS, and we name it TCG.Ant i .SR.SA-TCG. This view is used as our

original view from which other partial views presented throughout this section

wil l be derived.

Figur e 8.4-2 Single-Actor -Focus SR view fr om the Ant i-TCG viewpoint of TCGCS

master-thesis-v4.4.doc

 175/231 9/1/2004

8.4.2 Single-Actor-Internal and External views

Figure 8.4-3 shows the Single-Actor-Internal view for agent TCG, derived by

applying the internal rule (singleActorInternalRule) over TCG.Anti.SR.SA-TCG.

I t corresponds to the same diagram (model 3.2.5) in TCGCS, and we name it

TCG.Ant i .SR.SA-TCG.I nternal.

Figur e 8.4-3 Single-Actor -I nter nal view for agent TCG

Figure 8.4-4 shows the Single-Actor-External SR view for agent TCG for

agent TCG, derived by applying the external rule (singleActorExternalRule)

over TCG.Anti.SR.SA-TCG. This view does not appear in TCGCS. We

introduced it as an intermediate model summarizing al l external relationships of

TCG. We name this view TCG.Ant i .SR.SA-TCG.External.

master-thesis-v4.4.doc

 176/231 9/1/2004

Figur e 8.4-4 Single-Actor -Exter nal view for agent TCG

8.4.3 Internal-Functional and Non-functional views

Figure 8.4-5 shows the Internal-Functional view for agent TCG, derived by

applying the functional rule (internalFunctionalRule) over TCG.Anti.SR.SA-

TCG.Internal. There is a correspondence to this view in TCGCS (model 3.1.1),

and we name it TCG.Ant i .SR.SA-TCG.I nter nal.Funct ional.

master-thesis-v4.4.doc

 177/231 9/1/2004

Figur e 8.4-5 Single-Actor -I nter nal-Funct ional view for agent TCG

Figure 8.4-6 shows the Single-Actor-Internal Non-Functional view for agent

TCG, derived by applying the non-functional rule (internalNonfunctionalRule)

over TCG.Anti.SR.SA-TCG.Internal. There is a correspondence to this view in

TCGCS (model 3.1.6), and we name it TCG.Ant i .SR.SA-

TCG.I nternal.NonFunc.

master-thesis-v4.4.doc

 178/231 9/1/2004

Figur e 8.4-6 Single-Actor -I nter nal Non-funct ional view for agent TCG

8.4.4 Single-Softgoal views

Figure 8.4-7 shows the Single-Actor-Internal Single-Softgoal view of softgoal

L ock-in PC User s internal to agent TCG, derived by applying the single

softgoal rule (nonfunctionalSingleSoftgoalRule) over TCG.Anti.SR.SA-

TCG.Internal.NonFunc. There is a correspondence to this view in TCGCS (model

3.1.2), and we name it TCG.Ant i .SR.SA-TCG.I nternal.SS-L ockinPCU.

master-thesis-v4.4.doc

 179/231 9/1/2004

Figur e 8.4-7 I nter nal Single-Softgoal view for softgoal L ock-in PC User s

Similarly, Figure 8.4-8 to Figure 8.4-10 show the Single-Actor-Internal

Single-Softgoal view of softgoal Suppor t [DRM] , Fight Piracy [Softwar e] , and

Trusted [PC User] , and there correspondences to these views in TCGCS

(models 3.1.5, 3.1.4, and 3.1.3, respectively). We name them as

TCG.Ant i .SR.SA-TCG.I nternal.SS-Suppor tDRM , TCG.Ant i .SR.SA-

TCG.I nternal.SS-FightPi racy, and TCG.Ant i .SR.SA-TCG.I nternal.SS-

TrustedPCU, respectively.

master-thesis-v4.4.doc

 180/231 9/1/2004

Figur e 8.4-8 I nter nal Single-Softgoal view for softgoal Suppor t [DRM]

Figur e 8.4-9 I nter nal Single-Softgoal view for softgoal Fight Pir acy [Softwar e]

master-thesis-v4.4.doc

 181/231 9/1/2004

Figur e 8.4-10 I nter nal Single-Softgoal view for softgoal Tr usted [PC User]

8.4.5 Single-Affected-Dependum or Actor views

Single-Affected-Dependum views presented in this section are all derived by

applying the single affected dependum rule (singleAffectedDependumRule) over

TCG.Anti.SR.SA-TCG.External.

Figure 8.4-11 shows the Single-Affected-Dependum views for softgoal

dependum Compat ibi l i ty [wi th exist ing Technology] and I nnovat ion [PC

Technology] . There is a correspondence to this view in TCGCS (model 3.2.2).

We name it TCG.Ant i .SR.SA-TCG.External.SAD-Compat ible+SAD-

I nnovat ion. TCGCS shows these two external dependums in one diagram since

their relationship to each other is simple and it would be a waste of space to use

two diagrams. However, this is human decision; the step we recommend in

applying our view extension is for users to obtain single dependum views first

and then combine into a multiple-dependum view the ones they consider related.

master-thesis-v4.4.doc

 182/231 9/1/2004

Figur e 8.4-11 Exter nal Affected M ul t iple-Dependums view for dependums

Compat ibil i ty and I nnovat ion

 We omitted the internal rationale for TCG in Figure 8.4-11—because we are

concerned only with the external ef fects of TCG. We consider it suff icient to

show only the elements that contribute to external objects in answering questions

such as “How would the appl ication of the Trusted Computing Group affect the

control of PC to each PC user?” (See Section 7.2.2 for detailed justif ications).

Figure 8.4-12 and Figure 8.4-13 show the Single-Affected-Dependum views

for softgoal dependums Cont rol [PC] (model 3.2.3) and Protect [Stored Data]

(model 3.2.4), respectively. We name the former TCG.Ant i .SR.SA-

TCG.External.SAD-Cont rolPC and the latter TCG.Ant i.SR.SA-

TCG.External.SAD-ProtectSD.

master-thesis-v4.4.doc

 183/231 9/1/2004

Figur e 8.4-12 Exter nal Single-Affected-Dependum view for Contr ol [PC]

Figur e 8.4-13 Exter nal Single-Affected-Dependum view for Pr otect [Stor ed Data]

Figure 8.4-14 shows the Single-Affected-Actor view to role

Hacker /M alicious User , derived by applying the single af fected actor rule

(singleAffectedActorRule) over TCG.Anti.SR.SA-TCG. There is a

correspondence to this view in TCGCS (model 3.2.1), and we name it

TCG.Ant i .SR.SA-TCG.External.SAA-toHackerM U.

master-thesis-v4.4.doc

 184/231 9/1/2004

Figur e 8.4-14 Exter nal Single-Affected-Actor view to Hacker /M al icious User

8.4.6 Discussion

In this section, we demonstrate the process and results of dividing the Single-

Actor-Focus SR view for TCG (TCG.Anti.SR.SA-TCG). A hierarchy of sub-

views of TCG.Anti.SR.SA-TCG was derived following the guidel ines in our

view extension, and their relationships were presented in a V iew Map.

The intuit ive approach taken in TCGCS to break down the complex SR views

conforms to what we propose in this thesis. Therefore, there exists a one-to-one

mapping between the set of partial views and the original “ models” in TCGCS.

Our work has enhanced the current state of the art by, f irst, producing a view

map showing the layout and connection among the views. Another improvement

is the reduced complexity in each view, a reduction attributed to the formal ly

defined selection rules associated with each type of view. Unnecessary elements

are removed in the views—especial ly the external ones. Compared with their

corresponding original models shown in TCGCS, the new views appear concise

and more comprehensible.

master-thesis-v4.4.doc

 185/231 9/1/2004

However, during real appl ications, some of the views could appear over-

simpl if ied, and displaying them separately would be a waste of space. In this

sense, views can be combined as long as they remain comprehensible. For

example, the two Single-Affected-Dependum views SR.SA-TCG.External.SAD-

Compat ible and SR.SA-TCG.External.SAD-I nnovat ion are shown in one

diagram (Figure 8.2-12). This action is subject to human decision. We

recommend users apply our view extension to obtain single dependum views first,

and then combine in a single diagram the ones they consider closely related.

The perfect matching between the SR views presented in this section and the

original ones from TCGCS demonstrate the abi l ity of our approach in conveying

the same amount of information to i* model users. Our major contribution is that

we offer overview information and clear-cut rules.

8.5 Contributions and Results

We tested the val idity of our proposed view extension against TCGCS, and we

outline our result in this chapter. This process resulted in a total of 37 diagrams,

showing the basel ine model, 15 AC views, 8 SD views, and 13 SR views. Among

these views, only 2 remain exactly the same as what was demonstrated in

TCGCS, 17 of which are newly added ones, the other 18 being modif ied. In

addition, 4 View Maps for showing the relationship for basic views, AC views,

SD views, and SR views were also suppl ied to make attainable the relationship

among views from the same group.

Our approach is NOT to redo the case study. Therefore, the name or type of

any modeled elements remains intact from their original forms. Even the greatly

enhanced AC views only experienced changes in some association l inks and the

addition of some extra (or intermediate) actor elements. No actor that existed in

the original models was removed from our views.

However, our approach is to reorganize the diagrams designed for

representing the same model in a systematic manner. Consequently, the sequence

in which we present the views in this chapter dif fers from that in TCGCS; this is

master-thesis-v4.4.doc

 186/231 9/1/2004

because the two approaches emphasize on di fferent processes: TCGCS focuses

on the model generation, but our approach targets on model representation.

Accordingly, the organization of views also di ffers between the two approaches:

We organize views according to their types (meta-concept driven approach),

whi le TCGCS organizes according to the actor pairs each view presented

(application-domain knowledge driven approach).

Our approach offers a method to enhance the consistency, clarity, and

accessibi l ity of the two models in TCGCS. These benef its are achieved by

applying the concepts streamlined in the reformulated i* framework, by the

reference structure offered by the view extension, and by the formal def init ion of

selection rules associated with each type of view.

The reformulated i* framework enforces the bonds among the basic views.

From the discussion of applying the AC views (Section 8.2.6), we learnt that the

enforced bond between the AC and SD views helped identify inconsistencies and

correct logical gaps out of the original model. Therefore, the reformulated i*

framework helps increase the consistency of i* models.

The reformulated i* framework also formulates an external relationship

inheri tance rule over actor associations. This rule can help remove dupl icated

dependency links in the SD view. For example, Figure 8.5-1 shows the original

SD level basel ine model summarized from diagrams in TCGCS. In our revised

version (Figure 8.1-2), the redundant external relationships surrounding role PC

Software M anufacturer /Ser vice Pr ovider TCG M ember as TCG

(PCSM SPTCGM TCG) is removed. Since fol lowing the “ ISA” l ink to role PC

Software M anufacturer /Service Pr ovider , we know that PCSM SPTCGM TCG

can inherit al l external relationship from PCSM SP. Thus, we can safely remove

all 12 incoming dependency l inks towards the former actor without losing any

modeled information. With less intertwined links in our revised presentation,

clarity of relationships among modeled elements increases.

master-thesis-v4.4.doc

 187/231 9/1/2004

Figur e 8.5-1 The or iginal model fr om the Pr o TCG viewpoint

The introduction of the reference structure helps organize views (or diagrams)

derived from the same basel ine model in a systematic manner. The reference

structure is realized by 4 view maps during our revision of TCGCS. For each

view presented in a view map, users can identify its type, parent view(s), and

chi ld view(s) (if appl icable). Its corresponding caption (e.g., Figure 8.1-2) in

this documentation is also displayed. I t is convenient to locate any view and

switch to any of its relatives—even inside a huge document. This action

appeared time-consuming if one had browsed through the 200-page TCGCS.

Apparently, applying the reference structure improves accessibi l ity of views

designed to represent the same model, and we presume the eff iciency of this

structure increases proportional to the size of the model.

The formal ly def ined selection rules associated with each type of view help

remove irrelevant elements from a view. By removing unrelated information

from some complex views (or diagrams), we make them more concise and

comprehensible. A lack of tool support for automated view synchronization

master-thesis-v4.4.doc

 188/231 9/1/2004

would also increases the maintainabi l ity of an i* model. We have demonstrated

that views derived following the proposed selection rules can serve the same

objectives as those in TCGCS. With reduced complexity in each view,

information that is to communicate with model users becomes obvious. I f every

view from a model appears concise, then the clarity of the entire model certainly

increases.

Applying the view extension to revise TCGCS made the presentation of

models in TCG case study clear, consistent, and accessible.

master-thesis-v4.4.doc

 189/231 9/1/2004

9 Conclusions

9.1 Summary of Results

The main result of this research is a view extension compatible with the

original i* framework presented by Yu (Yu 1994). The extension offers a set of

guidel ines and rules on decomposing or segmenting a large-scale i* model to

multiple views. Each view has a type, and the view type decides the type of i*

elements that view should al low. Information contained in each view, when

visual ized, should be readi ly comprehensible to humans using the model. The

extension also provides a reference structure so that the views are organized in a

systematic manner and are easy to access. The reference structure is visual ized

using V iew Map, a bui lt-in type of diagram supported by the view extension.

Notations used in the V iew Map are also formal ized—graphical ly—in the view

extension.

A secondary result of this research is the reformulating of the i* framework.

The reformulated framework distinguishes and formal izes a notion of view,

categorizes meta-level i* concepts into four basic views, and enforces the

impl icit bonds among the meta-concepts in the basic views. The four types of

basic views are the Actor Class (AC) view, the Strategic Dependency (SD) view,

the Strategic Rationale (SR) view, and the Evaluation Results (EVLR) view.

Representation constructs of meta-level concepts from the original and the

reformulated i* framework are embedded in Telos (Koubarakis et al. 1989).

Telos is the conceptual model ing language chosen by Yu to embed the original i*

framework (Yu 1994). However, the formal constructs shown in Yu’ s original

thesis and the Organization Model l ing Environment (OME) tool dif fer in style,

and we base our formal constructs on those that are used in the OME tool.

Concepts introduced in the view extension such as model, view (basic and

master-thesis-v4.4.doc

 190/231 9/1/2004

partial), and selection rule are also embedded in Telos. These concepts are

embedded in Telos following the same style as concepts in i* . For example, the

concept model is represented by a meta-level model class, and each type of view

is represented by a meta-level view class. An i* model or a physical view is

represented as an instance of the corresponding model class or view class,

respectively.

Whi le basic view types are def ined in the reformulated i* framework, partial

view types are defined in the view extension. Partial view types further

dif ferentiate each basic view type, result ing in four groups of Telos view classes.

In this thesis we discuss three of them in detail—AC, SD and SR, each in a

separate chapter. In these detailed discussions, each type of view is i l lustrated in

terms of

• An informal description of what type of meta-level object should be included in

the specific view type.

• A simplified example of the use of the type of view in the London Ambulance

Service (LAS) case study.

• Justifications of the applicability of the partial view type and the consequences of

using it.

• A formal definition of the selection rule that is attached to the corresponding Telos

view class of the given view type. The selection rule is presented in the form of

First Order Logic (FOL) using meta-level classes embedded in Telos.

The val idity of the view extension was examined against the Trusted

Computing Group case study which was original ly documented by Horkof f

(Horkoff 2004). Comparisons with the diagrams (called models by Horkoff)

presented in (Horkoff 2004) were made for each of the three types (AC, SD, SR)

of views. The view extension demonstrated a more organized approach in

presenting the set of diagrams designed for the same i* model. A diagram is the

visual ized form of a view. Three View Maps for AC, SD and SR views,

master-thesis-v4.4.doc

 191/231 9/1/2004

respectively were also supplied to make attainable the relationship among views

from the same group.

9.2 Contributions

This work offers a systematic approach to presenting large scale i* models.

The foundation of this approach l ies in the notion of view and the meta-level

concepts of the i* framework. By defining views, this approach spl its a basel ine

i* model into a set of sel f-containing views that can address some speci f ic

application domain-related questions.

This work advances i* into a more practical and ready-to-use stage:

• It streamlines into a unified style graphical i* notations scattered through previous

literature and appearing sometimes in different forms.

• It enforces the bonds among the basic views. Each SD view is considered an

abstraction of its corresponding SR view. Each EVLR view has an SR view on

which it is based. Actor associations expressed in the AC view can be used to

facilitate the replacement of actors in SD views.

• It enhances communication by breaking down the complexity and size of the

baseline model and converting it into readable-size views.

• It embeds both meta-concepts of i* and meta-concepts in the view extension into

Telos, the selected conceptual modeling language in (Yu 1994). This formalization

makes it possible to automate the selection rules defined for each view in any

commercial tool. Moreover, the formalization ensures consistency in applying our

proposed approach across different applications.

• It reformulates the formal representation of meta-concepts of the i* framework

into the Organization Modeling Tool (OME) style, resulting in filling the gap

between the theoretical i* model and its actual implementation.

• It transfers ideas from database systems to the knowledge-base-oriented i*

framework—treating the modeling concepts as meta-model (schema), a set of

master-thesis-v4.4.doc

 192/231 9/1/2004

modeled application-domain knowledge as the baseline model (data table), and the

projection of the modeled knowledge as a view (data view).

• It borrows from IDEF0 (IDEF 1993) the technique of presenting a reference

structure of diagrams (views) designed for one model. Each diagram is treated as a

node in a node tree (a visualization of the reference structure) in IDEF0. Similarly,

we denote each view as a node in a connected graph which we call View Map.

Furthermore, this work provides an alternative way to communicate the

information from the original TCG case study (Horkoff 2004). For the AC views,

missing bonds among actors were added following the impl ications of actor

associations reinforced in the reformulated i* framework. For the SD views,

Single-Actor-Focus views were emphasized so as to allow an overview of the

situation of an actor within TCG. For the SR views, most of the diagrams were

simpl if ied by el iminating hal f of the elements, yet they retain the abi l ity to

address the same issue as its corresponding diagram shown in the original TCG

case study (Horkoff 2004).

Overal l, this work offers a better means to represent an existing i* model.

With a formal ly reformulated i* framework and the view extension, large-scale

i* models can be displayed in an organized manner. Relationships among

dif ferent parts of a large model can be rendered easy to observe, helping i* users

to perform model checking. The handful of guidel ines and l ive examples offered

in this work, along with the def init ion of the view types, make the i* framework

ready to put in practice. Therefore, even though the work does not address all

scalabi l ity issues, we consider it has prepared and readied i* for quite a broad

range of appl ications.

9.3 Future Directions

This work represents an important f irst step forward in addressing the

scalabi l ity issues in the i* framework. Further research at the forefront of

knowledge in this area is required to provide i* users a complete package of

master-thesis-v4.4.doc

 193/231 9/1/2004

rules and guidel ines to handle large-scale applications. Other meta-concepts or

domain-based patterns are avai lable to help design new types of views. The

guidel ines for constructing an i* model—not just representing it—in a systematic

manner are yet to be synthesized. This work is subject to val idation in broader

applications.

9.3.1 Meta-model related future work

Other meta-concepts from the i* framework can be employed in designing

new selection rules. Associating these rules with view class can define new view

types, and thus extend the view extension as follows:.

• The concept of routine “ is a sub-graph in the visualized SR view with a single link

to a ‘means’ node from each ‘end’ node” (Yu 1994). In other words, a routine

refers to a particular alternative to achieve some goal that is considered a decision

point. A decision point is a goal that has multiple means-ends linked to it,

originating from different tasks (see Section 3.2.3 for more details). A new view

type that presents a single routine can be designed.

• Yu (Yu 1994) provides for “three degrees of dependency strength: open

(uncommitted), committed, and critical.” New view types could be designed so

that only dependencies at a certain degree are to be presented.

• The direction of a dependency link can also be exploited to derived views

including only incoming or outgoing dependencies.

Moreover, in this document we have not discussed in detai l the Evaluation

Results (EVLR) view and naming conventions; these issues require follow-up

investigation to complete this work.

9.3.2 Use generic knowledge-base driven techniques

Given the rich set of meta-concepts defined in i* , meta-concept-based

scalabi l ity controls already result in considerable scale-downs. In other words,

master-thesis-v4.4.doc

 194/231 9/1/2004

by partit ioning elements in the model according to their types alone, we can

reduce the size of the basic views proportional ly.

However, domain knowledge may contribute to generic guidel ines from

another dimension.

Appl ications from simi lar appl ication domains may possess simi lar

characteristics that can be general ized and reused. For example, security-related

applications tend to categorize actors by normal actors, attackers, and defenders

(Yu and Liu 2000; L iu et al. 2003) TCGCS. In reliabi l ity-crit ical appl ications,

actors can be categorized into normal actors, abusers, and mitigators (Alexander

2003; You 2003). These patterns might be used to design new types of views

(e.g., a view presents only normal actors).

Organizations may demonstrate simi lar organization structures, which follow

a “ headquarter—division—sub-division—sub-sub-division…” hierarchy. Actors

can be partit ioned according to their division or sub-division (e.g., a view

presents only actors from the same division). An intermediate abstraction level

actor, such as “ a division,” may also be introduced to the extension to allow a

view to show relationships among divisions.

This l ine of future direction is considered important in that the distributed

nature of the i* framework is quite appropriate for modeling open-ended

applications which are richer in domain knowledge. Actors may be categorized

into several groups. However, criteria in organizing an object in an i* model

according to this l ine of reasoning require further investigation.

9.3.3 Guidelines for the modeling process

Guidel ines in addressing scalabi l ity issues during the model ing process are

most crit ical. When an appl ication reaches a certain size, the result ing work

should be distributed among di f ferent modelers; the model should be constructed

over a period, and be refined continual ly as domain knowledge is accumulated

during the model ing process. Without general guidel ines in breaking down the

master-thesis-v4.4.doc

 195/231 9/1/2004

workload and the methods for maintaining model-wise consistency, either the

modelers must spend extra time def ining application-speci f ic rules, or the

integrity and correctness of the targeted model wi l l be jeopardized.

However, the forward engineering (modeling) process of i* requires intensive

human interaction and decision; this is because the model ing process embeds

deeply into each speci f ic appl ication domain, and signi f icant features vary

drastical ly from one appl ication to another. For example, the LAS project, as a

close-end appl ication, is required to analyze what mistakes each participant

makes during a normal operation; on the other hand, TCGCS, as an open-ended

environment, is required to analyze what impacts TCG should be dealt with from

a third-party stakeholder. It is thus more diff icult to general ize the rule in the

model ing process.

As a result of the foregoing, even though this work has demonstrated the

strength of the view extension in presenting large-scale i* models, to what extent

it can help the modeling process remains unclear. Nonetheless, we bel ieve that

the manner in which we present the view can help modelers plan their procedures

in constructing and analyzing the models. Further in-depth study is required to

provide direct and useful guidel ines on this issue.

9.3.4 Broader applications

Over the past 10 years, the application area of i* has changed continual ly.

From 1996 to 1997, the i* research group explored intensively Business Process

Reengineering, and conducted organization impacts analyses—mostly by

studying the graphical models (which we cal l views) along various l inks. From

1997 to 1999, the strength of i* in Requirements Engineering (RE) and System

Architecture were presented from various perspectives. From 2000 until now,

focus has shi fted onto internet-related non-functional requirements, including

trust (Yu and Liu 2000), privacy (Yu and Cysneiros 2002; L iu et al. 2003),

security (L iu et al. 2002; L iu et al. 2003), and protection of Intellectual Property

master-thesis-v4.4.doc

 196/231 9/1/2004

(Yu et al. 2001). The util ity of i* shi fted from a more internal process

reengineering to an open-ended distributed agent-oriented approach.

The view extension is val idated against one medium-size application, but

more appl ications may be used to further val idate the concept. Due to the

richness of the i* concepts and the uncertainty in open-ended agent-oriented

application areas, we anticipate variations in i* uti l ity. As a result, we believe

that the current defined views are l ikely insuf f icient to present an i* model from

other discipl ine.

To explore and implement the ful l potential of this research, a broader scope

of appl ications than now avai lable is recommended to validate this work. A

clear advantage is that the design of the view extension is extensible, and new

types of views can be added to the current one fol lowing the Telos syntax as long

as a selection rule is provided.

master-thesis-v4.4.doc

 197/231 9/1/2004

Appendix

A. Transformation of FOL Formula

To verify the correctness of the formula encoded in the First Order Logic

(FOL) form across this thesis, we prototyped them using ConceptBase.

ConceptBase is a “prototype deductive object base [manager] supporting the

Telos data model” (Jarke et al. 1995). O-Telos is a variant of Telos that is

implemented in ConceptBase (Jarke et al. 1995). In this section, we i l lustrate the

method to transform a FOL formula to an O-Telos class.

This thesis presents two means in def ining concepts introduced in the view

extension. The first one is to define new meta-classes by restraining an existing

one with a deduction rule. The other method is to define queries that include

instances of only a certain type. The two methods can both def ining concepts and

can appear equivalent, when instantiated, in constructing an i* basel ine model.

Both means use some FOL expression as the criterion for selecting qual i f ied

elements.

Section A.1 discusses the transformation of the definit ion of meta-classes;

Section A.2 presents the transformation of the definit ion of queries. Section A.3

presents the transformation of the expressions.

A.1 Tr ansfor m defini t ion of meta-classes

The FOL format for defining a meta-level class takes the following pattern.

The class name is bolded. Texts in brackets <> denote variables appeared in the

formulae.

<class_name>::=<var>:<base_class_name> with “<rule_name>_rule”
<rule_name>_rule::= <expression (FOL style)>

The corresponding O-Telos format is as fol lows:

I ndi v i dual <c l ass_name>
i n Cl ass, Met aCl ass

master-thesis-v4.4.doc

 198/231 9/1/2004

i sA <base_cl ass_name>
wi t h
 r ul e
 <r ul e_name>r ul e:

$ f or al l <var >/ <base_cl ass_nam>
<expr essi on (O- Tel os st yl e) > =>
(<var > i n <cl ass_name>) $

end

For example, the def init ion of external l ink takes the fol lowing format, where

the assignment of the variables in the formulae is shown in Table 9-1.

Table 9-1 Var iable assignment for def ining meta-class “ exter nal l ink”

Variable Value

<class_name> ExternalLinkClass

<var> l

<base_class_name> IntentionalLinkClass

<rule_name> external

<expression (FOL style)> (l in find_all_external_links())

The result ing def init ion of class ExternalL inkClass is represented as follows:

ExternalL inkClass::=l:IntentionalL inkClass with “external_rule”
external_rule::= (l ∈ f ind_all_external_links())

The corresponding O-Telos form is as follows:

I ndi v i dual Ext er nal Li nkCl ass
i n Cl ass, Met aCl ass
i sA I nt ent i onal Li nkCl ass
wi t h
 r ul e
 ext er nal r ul e: $ f or al l l / I nt ent i onal Li nkCl ass
 (l i n f i nd_al l _ext er nal _l i nks())
 ==> (l i n Ext er nal Li nkCl ass)
 $
end

master-thesis-v4.4.doc

 199/231 9/1/2004

A.2 Tr ansfor m quer ies

To make the view extension mountable to the i* framework, most of the new

concepts are def ined using query classes. The symbol “§” denotes for al l those in

the FOL pattern. The definit ion of a query in FOL takes the following format:

<query_name>([<arglist>])::=
§<return_var>:<return_var_type > · <expression (FOL style)>

Where <arglist> is defined as follows:

<arglist>::=<arg>[,<arglist>]
<arg>::=<input_var>:<input_var_type>

Queries without any input variable are mapped to QueryClass, whi le those with

input variables are transformed to GenericQueryClass.

I ndi v i dual <quer y_name> i n Quer yCl ass i sA <r et ur n_var _t ype>
wi t h
 at t r i but e, r et r i eved_at t r i but e
 <at t r i but el i s t >
 at t r i but e, const r ai nt
 c: $ <expr essi on>$
end

I ndi v i dual <quer y_name> i n Quer yCl ass i sA <r et ur n_var _t ype>
wi t h
 at t r i but e, r et r i eved_at t r i but e
 <at t r i but el i s t >
 at t r i but e, par amet er
 <ar gl i s t _o>
 at t r i but e, const r ai nt
 c: $ <expr essi on (i n O- Tel os st yl e) >$
end

We use <attributelist> to denote the set of attributes that are defined in the

<return_var_type>, and <argl ist_o> to denote the set of input variables in O-

Telos format. Where <arglist_o> and <attributelist> are formal ly def ined as

fol lows:

<attributelist>::= <attribute>[;<CR><LF> <attributelist>]
<attribute>::=<attr_var>:<attr_var_type>

<arglist_o>::=<arg>[;<CR><LF> <arglist_o>]

master-thesis-v4.4.doc

 200/231 9/1/2004

For example, the definit ion of query f ind_internal_connectors takes the

fol lowing format, where the assignment of the variables in the formulae is shown

in Table 9-2.

Table 9-2 Var iable assignment for def ining quer y “ f ind_inter nal_connector s”

Variable Value

<query_name> find_internal_connectors

<arg> a:ActorElementClass

<return_var> “e”

<return_var_type> IntentionalElementClass

<expression> ∃ l: LinkClass…∨ (l in ExternalLinkClass)

The result ing def init ion of query “ f ind_internal_connectors” is represented in

FOL as follows:

f ind_internal_connectors(a:ActorElementClass)::=
§e:IntentionalElementClass·
∃ l: LinkClass· e.parent=a ∧ (l.from=e ∨ l.to=e)
∧ (l in DependencyLinkClass) ∨ (l in ExternalLinkClass)

The corresponding O-Telos GenericQueryClass is as follows:

I ndi v i dual f i nd_i nt er nal _connect or s
i n Gener i cQuer yCl ass
i sA I nt ent i onal El ement Cl ass
wi t h
 at t r i but e, r et r i eved_at t r i but e
 name : St r i ng
 at t r i but e, par amet er
 a : Act or El ement Cl ass
 at t r i but e, const r ai nt
 c : $
 (exi st s l / Li nkCl ass
 (t hi s par ent ~a) and ((l f r om t hi s) or (l t o t hi s))
 and (l i n DependencyLi nkCl ass) or

(l i n Ext er nal Li nkCl ass))
 $
end

master-thesis-v4.4.doc

 201/231 9/1/2004

A.3 Tr ansfor m expr essions

Each expression serves as either the deductive rule (for a meta-class) or the

integrity constraint (for a query class) is translated from the FOL style to O-

Telos. Table 9-3 shows the mapping of operators between FOL and O-Telos. See

(Jarke et al. 2003; ConceptBase Team 2003) for detail def init ions of the O-Telos

language.

Table 9-3 M apping of expr essions and logical oper ator s fr om FOL to O-Telos

FOL ConceptBase Remar k

<input_var> ~<input_var>

<return_var> this

<var>.<label> =<target> (<var> <label> <target>)

∃ exists

∀ foral l

¬ not

∧ and

∨ or

∈ in Instance of

In query f ind_internal_connectors, the FOL style expression is as follows,

where a is the <input_var> and e is the <return_var>.

∃ l: LinkClass· e.parent=a
∧ (l.from=e ∨ l.to=e)
∧ (l in DependencyLinkClass) ∨ (l in ExternalLinkClass)

The corresponding O-Telos translation is:

 ex i s t s l / Li nkCl ass (t hi s par ent ~a)
and ((l f r om t hi s) or (l t o t hi s))
and (l i n DependencyLi nkCl ass) or (l i n Ext er nal Li nkCl ass)

master-thesis-v4.4.doc

 202/231 9/1/2004

B. Queries in O-Telos Style

Each of the queries defined in First Order Logic (FOL) in this thesis is

translated in its corresponding O-Telos style, and tested using ConceptBase. To

perform this test, we first constructed O-Telos representation of the reformulated

i* framework and loaded it into ConceptBase. Then we designed sample domain-

level i* models and loaded them into ConceptBase. Last, we ran each query,

supplying the required input arguments, and checked the correctness of the

results (the set of returning objects).

Hereafter are list of all the queries def ined in this thesis. Queries and

definit ions are numbered according to their sequence of appearance in this thesis.

We organize them into four .sml f i les. “Def init ionQueries.sml” contains

definit ions and queries def ined in Section 4.3; “ ACViews_Queries.sml” contains

queries def ined in Section 5.2; “SDViews_Queries.sml” contains queries def ined

in Section 6.2; and “SRViews_Queries.sml” contains queries def ined in Section

7.2.

{
* Fi l e : Def i ni t i onQuer i es. sml
* Pur pose : Def i ni t i ons of concept s and r el at ed quer y cl asses
* cr eat ed : 09/ 01/ 04 Jane You
* l ast change:
* Cont ent : Def 1~3, Quer y1~14
}

{ # Def i ni t i on of ext r a model r el at ed t ypes #}

{ # Def 1: DependumEl ement Cl ass #}
I ndi vi dual DependumEl ement Cl ass i n Cl ass, Met aCl ass i sA SubEl ement Cl ass
wi t h
 r ul e
 dependum_r ul e: $ f or al l e/ SubEl ement Cl ass
 not (exi st s a/ Act or El ement Cl ass (e par ent a)) ==> (e i n
DependumEl ement Cl ass)
 $
end

{ # Def 2: I nt er nal El ement Cl ass #}
I ndi vi dual I nt er nal El ement Cl ass i n Cl ass, Met aCl ass i sA
I nt ent i onal El ement Cl ass wi t h
 r ul e
 i nt er nal _r ul e: $ f or al l e/ I nt ent i onal El ement Cl ass

master-thesis-v4.4.doc

 203/231 9/1/2004

 (exi st s a/ Act or El ement Cl ass (e par ent a)) ==> (e i n
I nt er nal El ement Cl ass)
 $
end

{ t hi s def i ni t i on i s not f or mal i zed i n t he t hesi s }
I ndi vi dual Deci si onPoi nt El ement Cl ass i n Cl ass, Met aCl ass i sA
Goal El ement Cl ass wi t h
 r ul e
 dpoi nt r ul e : $ f or al l e/ Goal El ement Cl ass
 (exi st s l 1, l 2/ I nt ent i onal Li nkCl ass (l 1<>l 2) and (l 1 t o e) and (l 2
t o e))
 ==>(e i n Deci si onPoi nt El ement Cl ass) $
end

{ # Quer y1: f i nd_par ent (e: I nt ent i onal El ement Cl ass) #}
I ndi vi dual f i nd_par ent i n Gener i cQuer yCl ass i sA Act or El ement Cl ass wi t h
 at t r i but e, r et r i eved_at t r i but e
 name : St r i ng
 at t r i but e, par amet er
 e : I nt ent i onal El ement Cl ass
 at t r i but e, const r ai nt
 c : $ (~e par ent t hi s) $
end

{ # Quer y2: f i nd_i nt er nal _el ement s(a: Act or El ement Cl ass) #}
I ndi vi dual f i nd_i nt er nal _el ement s i n Gener i cQuer yCl ass i sA
I nt ent i onal El ement Cl ass wi t h
 at t r i but e, r et r i eved_at t r i but e
 name : St r i ng
 at t r i but e, par amet er
 a : Act or El ement Cl ass
 at t r i but e, const r ai nt
 c : $ (~a chi l dr en t hi s) $
end

{ # Quer y3: f i nd_i ncomi ng_dependenci es_t o_act or (a: Act or El ement Cl ass) #}
{ # Comment s: f i nd dependency l i nks t hat t ar get s at " a" #}
I ndi vi dual f i nd_i ncomi ng_dependenci es_t o_act or i n Gener i cQuer yCl ass i sA
DependencyLi nkCl ass wi t h
 at t r i but e, par amet er
 a : Act or El ement Cl ass
 at t r i but e, r et r i eved_at t r i but e
 name : St r i ng
 at t r i but e, const r ai nt
 c : $ (t hi s t o ~a) or (exi st s e/ I nt ent i onal El ement Cl ass (e par ent
~a) and (t hi s t o e)) $
end

{ # Quer y4: f i nd_out goi ng_dependenci es_f r om_act or (a: Act or El ement Cl ass) #}
{ # Comment s: f i nd dependency l i nks t hat st ar t s f r om " a" #}
I ndi vi dual f i nd_out goi ng_dependenci es_f r om_act or i n Gener i cQuer yCl ass
i sA DependencyLi nkCl ass wi t h
 at t r i but e, par amet er
 a : Act or El ement Cl ass
 at t r i but e, r et r i eved_at t r i but e
 name : St r i ng

master-thesis-v4.4.doc

 204/231 9/1/2004

 at t r i but e, const r ai nt
 c : $ (t hi s f r om ~a) or (exi st s e/ I nt ent i onal El ement Cl ass (e par ent
~a) and (t hi s f r om e)) $
end

{ # Quer y5: f i nd_depender _act or (de: DependumEl ement Cl ass) #}
I ndi vi dual f i nd_depender _act or i n Gener i cQuer yCl ass i sA
Act or El ement Cl ass wi t h
 at t r i but e, par amet er
 de : DependumEl ement Cl ass
 at t r i but e, const r ai nt
 c : $ exi st s l / DependencyLi nkCl ass
 ((exi st s e/ I nt ent i onal El ement Cl ass (e par ent t hi s) and (l
f r om e)) or (l f r om t hi s)) and (l t o ~de) $
end

{ # Quer y6: f i nd_depender _el ement (de: DependumEl ement Cl ass) #}
I ndi vi dual f i nd_depender _el ement i n Gener i cQuer yCl ass i sA
I nt ent i onal El ement Cl ass wi t h
 at t r i but e, par amet er
 de : DependumEl ement Cl ass
 at t r i but e, const r ai nt
 c : $ exi st s l / DependencyLi nkCl ass (l f r om t hi s) and (l t o ~de) $
end

{ # Quer y7: f i nd_dependee_act or (de: DependumEl ement Cl ass) #}
I ndi vi dual f i nd_dependee_act or i n Gener i cQuer yCl ass i sA
Act or El ement Cl ass wi t h
 at t r i but e, par amet er
 de : DependumEl ement Cl ass
 at t r i but e, const r ai nt
 c : $ exi st s l / DependencyLi nkCl ass
 ((exi st s e/ I nt ent i onal El ement Cl ass (e par ent t hi s) and (l t o
e)) or (l t o t hi s)) and (l f r om ~de) $
end

{ # Quer y8: f i nd_dependee_el ement (de: DependumEl ement Cl ass) #}
I ndi vi dual f i nd_dependee_el ement i n Gener i cQuer yCl ass i sA
I nt ent i onal El ement Cl ass wi t h
 at t r i but e, par amet er
 de : DependumEl ement Cl ass
 at t r i but e, const r ai nt
 c : $ exi st s l / DependencyLi nkCl ass (l t o t hi s) and (l f r om ~de) $
end

{ # Quer y9: f i nd_di r ect _ext er nal _l i nk #}
{ # Comment : t hi s def i ni t i on i s a wal k ar ound due t o pr obl ems i n
i mpl ement i ng r ecur si on #}
{ # we have t wo auxi l ar y quer i es suf f i xed by - 1 t o hel p def i ne
t hi s quer y #}
I ndi vi dual f i nd_di r ect _ext er nal _l i nks i n Gener i cQuer yCl ass i sA
I nt ent i onal Li nkCl ass wi t h
 at t r i but e, r et r i eved_at t r i but e
 name : St r i ng
 at t r i but e, const r ai nt
 c : $ exi st s a/ Act or El ement Cl ass dl / DependencyLi nkCl ass
e/ I nt ent i onal El ement Cl ass

master-thesis-v4.4.doc

 205/231 9/1/2004

 (t hi s f r om e) and (e par ent a) and (t hi s t o dl) $
end

{ # Quer y10: f i nd_al l _ext er nal _l i nks(l : Li nkCl ass) #}
{ # Comment : t hi s def i ni t i on i s a wal k ar ound due t o pr obl ems i n
i mpl ement i ng r ecur si on #}
{ # we have t wo auxi l ar y quer i es suf f i xed by - 1 t o hel p def i ne
t hi s quer y #}
I ndi vi dual f i nd_di r ect _ext er nal _l i nks1 i n Gener i cQuer yCl ass i sA
I nt ent i onal Li nkCl ass wi t h
 at t r i but e, par amet er
 l : Li nkCl ass
 at t r i but e, r et r i eved_at t r i but e
 name : St r i ng
 at t r i but e, const r ai nt
 c : $ (t hi s t o ~l) $
end

I ndi vi dual f i nd_al l _ext er nal _l i nks1 i n Gener i cQuer yCl ass i sA
I nt ent i onal Li nkCl ass wi t h
 at t r i but e, par amet er
 l : Li nkCl ass
 at t r i but e, r et r i eved_at t r i but e
 name : St r i ng
 at t r i but e, const r ai nt
 c : $ (t hi s i n f i nd_di r ect _ext er nal _l i nks1[~l / l]) or
 (exi st s l 2/ I nt ent i onal Li nkCl ass (t hi s i n
f i nd_di r ect _ext er nal _l i nks1[l 2/ l])
 and (l 2 i n f i nd_al l _ext er nal _l i nks1[~l / l])) $
end

I ndi vi dual f i nd_al l _ext er nal _l i nks i n Gener i cQuer yCl ass i sA
I nt ent i onal Li nkCl ass wi t h
 at t r i but e, r et r i eved_at t r i but e
 name : St r i ng
 at t r i but e, const r ai nt
 c : $ (exi st s dl / DependencyLi nkCl ass (t hi s i n
f i nd_al l _ext er nal _l i nks1[dl / l])) $
end

{ # Quer y11: f i nd_di r ect _descendant s(i e: I nt ent i onal El ement Cl ass) #}
I ndi vi dual f i nd_di r ect _descendant s i n Gener i cQuer yCl ass i sA
I nt ent i onal El ement Cl ass wi t h
 at t r i but e, par amet er
 i e : I nt ent i onal El ement Cl ass
 at t r i but e, const r ai nt
 c : $ exi st s l / I nt ent i onal Li nkCl ass a/ Act or El ement Cl ass
 (l t o ~i e) and (l f r om t hi s) and (~i e par ent a) and (t hi s
par ent a) $
end

{ # Quer y12: f i nd_al l _descendant s(i e: I nt ent i onal El ement Cl ass) #}
I ndi vi dual f i nd_al l _descendant s i n Gener i cQuer yCl ass i sA
I nt ent i onal El ement Cl ass wi t h
 at t r i but e, par amet er
 i e : I nt ent i onal El ement Cl ass
 at t r i but e, const r ai nt

master-thesis-v4.4.doc

 206/231 9/1/2004

 c : $ (t hi s i n f i nd_di r ect _descendant s[~i e/ i e]) or
 (exi st s d/ I nt ent i onal El ement Cl ass a/ Act or El ement Cl ass
 (d par ent a) and (t hi s par ent a) and
 (d i n f i nd_al l _descendant s[~i e/ i e]) and
 (t hi s i n f i nd_di r ect _descendant s[d/ i e])) $
end

{ # Quer y13: f i nd_di r ect _ancest or s(i e: I nt ent i onal El ement Cl ass) #}
I ndi vi dual f i nd_di r ect _ancest or s i n Gener i cQuer yCl ass i sA
I nt ent i onal El ement Cl ass wi t h
 at t r i but e, par amet er
 i e : I nt ent i onal El ement Cl ass
 at t r i but e, const r ai nt
 c : $ exi st s l / I nt ent i onal Li nkCl ass a/ Act or El ement Cl ass
 (l f r om ~i e) and (l t o t hi s) and (~i e par ent a) and (t hi s
par ent a) $
end

{ # Quer y14: f i nd_al l _ancest or s(i e: I nt ent i onal El ement Cl ass) #}
I ndi vi dual f i nd_al l _ancest or s i n Gener i cQuer yCl ass i sA
I nt ent i onal El ement Cl ass wi t h
 at t r i but e, par amet er
 i e : I nt ent i onal El ement Cl ass
 at t r i but e, const r ai nt
 c : $ (t hi s i n f i nd_di r ect _ancest or s[~i e/ i e]) or
 (exi st s d/ I nt ent i onal El ement Cl ass a/ Act or El ement Cl ass
 (d par ent a) and (t hi s par ent a) and
 (d i n f i nd_al l _ancest or s[~i e/ i e]) and
 (t hi s i n f i nd_di r ect _ancest or s[d/ i e])) $
end

{ # Def 3: Ext er nal Li nkCl ass #}
I ndi vi dual Ext er nal Li nkCl ass i n Cl ass, Met aCl ass i sA
I nt ent i onal Li nkCl ass wi t h
 r ul e
 ext er nal _r ul e: $ f or al l l / I nt ent i onal Li nkCl ass
 (l i n f i nd_al l _ext er nal _l i nks) ==> (l i n Ext er nal Li nkCl ass)
 $
end

{
* Fi l e : ACVi ews_Quer i es. sml
* Pur pose : Def i ne t he quer y cl asses f or t he AC vi ews
* cr eat ed : 08/ 04/ 04 Jane You
* l ast change : 09/ 01/ 04 Jane You
* Cont ent s: Quer y15~26
}

{ # Quer y15: t heBasi cAct or Cl assVi ew(m: Basel i neModel Cl ass) #}
{ # Comment s: l oad m i nt o a Concept Base ser ver bef or e r unni ng t hi s quer y,
m becomes t he def aul t v i ew #}
{ # f ol l owi ng quer i es f ol l ow t he same convent i on, r unni ng over a
def aul t v i ew #}
I ndi vi dual t he_basi c_AC_vi ew i n Quer yCl ass i sA Obj ect Cl ass wi t h
 at t r i but e, r et r i eved_at t r i but e
 name : St r i ng
 at t r i but e, const r ai nt

master-thesis-v4.4.doc

 207/231 9/1/2004

 c : $ (t hi s i n Act or El ement Cl ass) or (t hi s i n Associ at i onLi nkCl ass)
$
end

{ # Quer y16: f i nd_al l _l i nks(pv: Vi ewCl ass, cv: Vi ewCl ass) #}
{ # Def aul t v i ew: pv #}
{ # I nput par amet er s: cv #}
I ndi vi dual f i nd_al l _l i nks i n Gener i cQuer yCl ass i sA Li nkCl ass wi t h
 at t r i but e, par amet er
 cv : Quer yCl ass
 at t r i but e, const r ai nt
 c : $ exi st s e1/ El ement Cl ass e2/ El ement Cl ass
 (e1 i n ~cv) and (e2 i n ~cv)
 and (t hi s f r om e1) and (t hi s t o e2) $
end

{ # Quer y17: f i nd_di r ect _associ at ed_act or s(a: Speci f i edAct or El ement Cl ass)
#}
{ # Def aul t v i ew: v f r om t he si ngl eNet wor kRul e #}
{ # I nput par amet er s: a #}
I ndi vi dual f i nd_di r ect _associ at ed_act or s i n Gener i cQuer yCl ass i sA
Speci f i edAct or El ement Cl ass wi t h
 at t r i but e, r et r i eved_at t r i but e
 name : St r i ng
 at t r i but e, par amet er
 a : Speci f i edAct or El ement Cl ass
 at t r i but e, const r ai nt
 c : $ exi st s l / Associ at i onLi nkCl ass
 (l f r om t hi s) and (l t o ~a) or (l f r om ~a) and (l t o t hi s) $
end

{ # Quer y18: f i nd_al l _associ at ed_act or s(a: Speci f i edAct or El ement Cl ass) #}
{ # Def aul t v i ew: v f r om t he si ngl eNet wor kRul e #}
{ # I nput par amet er s: a #}
I ndi vi dual f i nd_al l _associ at ed_act or s i n Gener i cQuer yCl ass i sA
Speci f i edAct or El ement Cl ass wi t h
 at t r i but e, r et r i eved_at t r i but e
 name : St r i ng
 at t r i but e, par amet er
 a : Speci f i edAct or El ement Cl ass
 at t r i but e, const r ai nt
 c : $ (t hi s i n f i nd_di r ect _associ at ed_act or s[~a/ a]) or
 (exi st s a2/ Speci f i edAct or El ement Cl ass
 (a2 i n f i nd_al l _associ at ed_act or s[~a/ a]) and
 (t hi s i n f i nd_di r ect _associ at ed_act or s[a2/ a])) $
end

{ # Quer y19: f i nd_di r ect _speci f i ed_act or s(a: Pl ai nAct or El ement Cl ass) #}
{ # Def aul t v i ew: v f r om t he si ngl ePl ai nAct or Rul e #}
{ # I nput par amet er s: a #}
I ndi vi dual f i nd_di r ect _speci f i ed_act or s i n Gener i cQuer yCl ass i sA
Speci f i edAct or El ement Cl ass wi t h
 at t r i but e, r et r i eved_at t r i but e
 name : St r i ng
 at t r i but e, par amet er
 a : Pl ai nAct or El ement Cl ass
 at t r i but e, const r ai nt

master-thesis-v4.4.doc

 208/231 9/1/2004

 c : $ exi st s l / Speci f i esLi nkCl ass
 (l f r om t hi s) and (l t o ~a) $
end

{ # Quer y20: f i nd_di r ect _r epl aci ng_act or s(a: Speci f i edAct or El ement Cl ass) #}
{ # Def aul t v i ew: v f r om t he si ngl ePl ai nAct or Rul e #}
{ # I nput par amet er s: a #}
I ndi vi dual f i nd_di r ect _r epl aci ng_act or s i n Gener i cQuer yCl ass i sA
Speci f i edAct or El ement Cl ass wi t h
 at t r i but e, r et r i eved_at t r i but e
 name : St r i ng
 at t r i but e, par amet er
 a : Speci f i edAct or El ement Cl ass
 at t r i but e, const r ai nt
 c : $ exi st s l / Associ at i onLi nkCl ass
 ((l i n Par t sLi nkCl ass) or (l i n
Compl et eComposi t i onLi nkCl ass)) and (l f r om ~a) and (l t o t hi s) or
 ((l i n I SALi nkCl ass) or (l i n I NSLi nkCl ass) or (l i n
Cover sLi nkCl ass) or (l i n Pl aysLi nkCl ass) or
 (l i n Occupi esLi nkCl ass)) and (l f r om t hi s) and (l t o ~a)
 $
end

{ # Quer y21: f i nd_al l _r epl aci ng_act or s(a: Speci f i edAct or El ement Cl ass) #}
{ # Def aul t v i ew: v f r om t he si ngl ePl ai nAct or Rul e #}
{ # I nput par amet er s: a #}
I ndi vi dual f i nd_al l _r epl aci ng_act or s i n Gener i cQuer yCl ass i sA
Speci f i edAct or El ement Cl ass wi t h
 at t r i but e, r et r i eved_at t r i but e
 name : St r i ng
 at t r i but e, par amet er
 a : Speci f i edAct or El ement Cl ass
 at t r i but e, const r ai nt
 c : $ (t hi s i n f i nd_di r ect _r epl aci ng_act or s[~a/ a]) or
 (exi st s a2/ Speci f i edAct or El ement Cl ass
 (a2 i n f i nd_al l _r epl aci ng_act or s[~a/ a]) and
 (t hi s i n f i nd_di r ect _r epl aci ng_act or s[a2/ a])) $
end

{ # Quer y22: f i nd_al l _abst r act _act or s() #}
I ndi vi dual f i nd_al l _abst r act _act or s i n Quer yCl ass i sA
Abst r act Act or El ement Cl ass wi t h
 at t r i but e, r et r i eved_at t r i but e
 name : St r i ng
 at t r i but e, const r ai nt
 c : $ t hi s i n Abst r act Act or El ement Cl ass $
end

{ # Quer y23: f i nd_al l _pl ai n_act or s() #}
I ndi vi dual f i nd_al l _pl ai n_act or s i n Quer yCl ass i sA
Pl ai nAct or El ement Cl ass wi t h
 at t r i but e, r et r i eved_at t r i but e
 name : St r i ng
 at t r i but e, const r ai nt
 c : $ t hi s i n Pl ai nAct or El ement Cl ass $
end

master-thesis-v4.4.doc

 209/231 9/1/2004

{ # Quer y24: f i nd_al l _agent s() #}
I ndi vi dual f i nd_al l _agent s i n Quer yCl ass i sA Speci f i edAct or El ement Cl ass
wi t h
 at t r i but e, r et r i eved_at t r i but e
 name : St r i ng
 at t r i but e, const r ai nt
 c : $ (t hi s i n Agent El ement Cl ass) or (t hi s i n
Agent I nst anceEl ement Cl ass) $
end

{ # Quer y25: f i nd_di r ect _r epl aceabl e_act or s(a: Speci f i edAct or El ement Cl ass)
#}
{ # Def aul t v i ew: v f r om t he di r ect Repl aceabl eRul e #}
{ # I nput par amet er s: a #}
I ndi vi dual f i nd_di r ect _r epl aceabl e_act or s i n Gener i cQuer yCl ass i sA
Speci f i edAct or El ement Cl ass wi t h
 at t r i but e, r et r i eved_at t r i but e
 name : St r i ng
 at t r i but e, par amet er
 a : Speci f i edAct or El ement Cl ass
 at t r i but e, const r ai nt
 c : $ exi st s l / Associ at i onLi nkCl ass
 ((l i n Par t sLi nkCl ass) or (l i n
Compl et eComposi t i onLi nkCl ass)) and (l f r om t hi s) and (l t o ~a) or
 ((l i n I SALi nkCl ass) or (l i n I NSLi nkCl ass) or (l i n
Cover sLi nkCl ass) or (l i n Pl aysLi nkCl ass) or
 (l i n Occupi esLi nkCl ass)) and (l f r om ~a) and (l t o t hi s)
 $
end

{ # Quer y26: f i nd_al l _r epl aceabl e_act or s(a: Speci f i edAct or El ement Cl ass) #}
{ # Def aul t v i ew: v f r om t he di r ect Repl aceabl eRul e #}
{ # I nput par amet er s: a #}
I ndi vi dual f i nd_al l _r epl aceabl e_act or s i n Gener i cQuer yCl ass i sA
Speci f i edAct or El ement Cl ass wi t h
 at t r i but e, r et r i eved_at t r i but e
 name : St r i ng
 at t r i but e, par amet er
 a : Speci f i edAct or El ement Cl ass
 at t r i but e, const r ai nt
 c : $ (t hi s i n f i nd_di r ect _r epl aceabl e_act or s[~a/ a]) or
 (exi st s a2/ Speci f i edAct or El ement Cl ass
 (a2 i n f i nd_al l _r epl aceabl e_act or s[~a/ a]) and
 (t hi s i n f i nd_di r ect _r epl aceabl e_act or s[a2/ a]))
 $
end

{
* Fi l e : SDVi ews_Quer i es. sml
* Pur pose : Def i ne t he quer y cl asses f or t he SD vi ews
* cr eat ed : 08/ 04/ 04 Jane You
* l ast change : 09/ 01/ 04 Jane You
* Cont ent s: Quer y27~43
}

{ # Quer y27: f i nd_i nt er _dependums(A=(a1, . . . , am) : Act or El ement Cl ass) #}

master-thesis-v4.4.doc

 210/231 9/1/2004

{ # Comment s: t hi s quer y f i nd t he dependums among t he sel ect ed set of
act or s #}
I ndi vi dual f i nd_i nt er _dependums i n Gener i cQuer yCl ass i sA
DependumEl ement Cl ass wi t h
 at t r i but e, par amet er
 A : Quer yCl ass
 at t r i but e, r et r i eved_at t r i but e
 name : St r i ng;
 l i nks : Li nkCl ass
 at t r i but e, const r ai nt
 c : $ exi st s l 1, l 2/ DependencyLi nkCl ass a1, a2/ Act or El ement Cl ass
 (a1 i n ~A) and (l 1 f r om t hi s) and (a2 i n ~A) and (l 2 t o t hi s)
and
 ((l 1 t o a1) or (exi st s e1/ a1. chi l dr en (l 1 t o e1))) and
 ((l 2 f r om a2) or (exi st s e2/ a2. chi l dr en (l 2 f r om e2)))
 $
end

{ # Quer y28: f i nd_i nt er _dependenci es(A=(a1, . . . , am) : Act or El ement Cl ass) #}
{ # Comment s: t hi s quer y does not al l ow pendi ng dependenci es #}
I ndi vi dual f i nd_i nt er _dependenci es i n Gener i cQuer yCl ass i sA
DependencyLi nkCl ass wi t h
 at t r i but e, par amet er
 A : Quer yCl ass
 at t r i but e, r et r i eved_at t r i but e
 name : St r i ng
 at t r i but e, const r ai nt
 c : $ exi st s a/ Act or El ement Cl ass b/ DependumEl ement Cl ass
 (a i n ~A) and (b i n f i nd_i nt er _dependums[~A/ A]) and
 ((t hi s i n f i nd_out goi ng_dependenci es_f r om_act or [a/ a]) and
(t hi s t o b) or
 (t hi s f r om b) and (t hi s i n
f i nd_i ncomi ng_dependenci es_t o_act or [a/ a]))
 $
end

{ # Quer y29:
f i nd_di r ect _i nt er _ext er nal _l i nks(A=(a1, . . . , am) : Act or El ement Cl ass) #}
I ndi vi dual f i nd_di r ect _i nt er _ext er nal _l i nks i n Gener i cQuer yCl ass i sA
I nt ent i onal Li nkCl ass wi t h
 at t r i but e, par amet er
 A : Quer yCl ass
 at t r i but e, r et r i eved_at t r i but e
 name : St r i ng
 at t r i but e, const r ai nt
 c : $ exi st s dl / DependencyLi nkCl ass (dl i n
f i nd_i nt er _dependenci es[~A/ A]) and
 (exi st s a/ Act or El ement Cl ass e/ a. chi l dr en (a i n ~A) and (t hi s
f r om e) and (t hi s t o dl))
 $
end

{ # Quer y30:
f i nd_al l _i nt er _ext er nal _l i nks(A=(a1, . . . , am) : Act or El ement Cl ass) #}
{ # Comment s: t hi s quer y gener at es par ser er r or wi t h t he l i ne
 }

master-thesis-v4.4.doc

 211/231 9/1/2004

{ (exi st s a/ Act or El ement Cl ass e/ a. chi l dr en (a i n ~A) and (t hi s f r om
e)) #}
I ndi vi dual f i nd_al l _i nt er _ext er nal _l i nks i n Gener i cQuer yCl ass i sA
I nt ent i onal Li nkCl ass wi t h
 at t r i but e, par amet er
 A : Quer yCl ass
 at t r i but e, r et r i eved_at t r i but e
 name : St r i ng
 at t r i but e, const r ai nt
 c : $ (exi st s a/ Act or El ement Cl ass e/ a. chi l dr en (a i n ~A) and (t hi s
f r om e)) and
 ((t hi s i n f i nd_di r ect _i nt er _ext er nal _l i nks[~A/ A]) or
 (exi st s l 2/ I nt ent i onal Li nkCl ass (l 2 i n
f i nd_al l _i nt er _ext er nal _l i nks[~A/ A]) and (t hi s t o l 2))) $
end

{ # Quer y31: f i nd_i ncomi ng_dependums_t o_act or (a: Act or El ement Cl ass) #}
{ # Comment s: f i nd dependum el ement t hat depends on " a" #}
I ndi vi dual f i nd_i ncomi ng_dependums_t o_act or i n Gener i cQuer yCl ass i sA
DependumEl ement Cl ass wi t h
 at t r i but e, par amet er
 a : Act or El ement Cl ass
 at t r i but e, r et r i eved_at t r i but e
 name : St r i ng
 at t r i but e, const r ai nt
 c : $ exi st s l / DependencyLi nkCl ass (l f r om t hi s) and (l i n
f i nd_i ncomi ng_dependenci es_t o_act or [~a/ a]) $
end

{ # Quer y32:
f i nd_i ndi r ect _i ncomi ng_dependenci es_t o_act or (a: Act or El ement Cl ass) #}
{ # Comment s: f i nd dependency l i nks t hat ends at t he i ncomi ng dependums
of act or " a" #}
I ndi vi dual f i nd_i ndi r ect _i ncomi ng_dependenci es_t o_act or i n
Gener i cQuer yCl ass i sA DependencyLi nkCl ass wi t h
 at t r i but e, par amet er
 a : Act or El ement Cl ass
 at t r i but e, r et r i eved_at t r i but e
 name : St r i ng
 at t r i but e, const r ai nt
 c : $ exi st s de/ DependumEl ement Cl ass (t hi s t o de) and (de i n
f i nd_i ncomi ng_dependums_t o_act or [~a/ a]) $
end

{ # Quer y33: f i nd_depender s_t o_act or (a1: Act or El ement Cl ass) #}
{ # Comment s: f i nd act or s depends on " a" vi a a dependum #}
I ndi vi dual f i nd_depender s_t o_act or i n Gener i cQuer yCl ass i sA
Act or El ement Cl ass wi t h
 at t r i but e, par amet er
 a : Act or El ement Cl ass
 at t r i but e, r et r i eved_at t r i but e
 name : St r i ng
 at t r i but e, const r ai nt
 c : $ exi st s d/ DependumEl ement Cl ass l / DependencyLi nkCl ass
 (d i n f i nd_i ncomi ng_dependums_t o_act or [~a/ a]) and
 (l i n f i nd_out goi ng_dependenci es_f r om_act or [t hi s/ a]) and
 (l t o d)

master-thesis-v4.4.doc

 212/231 9/1/2004

 $
end

{ # Quer y34: f i nd_out goi ng_dependums_t o_act or (a: Act or El ement Cl ass) #}
{ # Comment s: f i nd dependum el ement s t hat " a" depends on #}
I ndi vi dual f i nd_out goi ng_dependums_f r om_act or i n Gener i cQuer yCl ass i sA
DependumEl ement Cl ass wi t h
 at t r i but e, par amet er
 a : Act or El ement Cl ass
 at t r i but e, r et r i eved_at t r i but e
 name : St r i ng
 at t r i but e, const r ai nt
 c : $ exi st s l / DependencyLi nkCl ass (l t o t hi s) and (l i n
f i nd_out goi ng_dependenci es_f r om_act or [~a/ a]) $
end

{ # Quer y35:
f i nd_i ndi r ect _out goi ng_dependenci es_f r om_act or (a: Act or El ement Cl ass) #}
{ # Comment s: f i nd dependency l i nks t hat ends at t he out goi ng dependums
of act or " a" #}
I ndi vi dual f i nd_i ndi r ect _out goi ng_dependenci es_f r om_act or i n
Gener i cQuer yCl ass i sA DependencyLi nkCl ass wi t h
 at t r i but e, par amet er
 a : Act or El ement Cl ass
 at t r i but e, r et r i eved_at t r i but e
 name : St r i ng
 at t r i but e, const r ai nt
 c : $ exi st s de/ DependumEl ement Cl ass (t hi s f r om de) and (de i n
f i nd_out goi ng_dependums_f r om_act or [~a/ a]) $
end

{ # Quer y36: f i nd_dependees_f r om_act or (a: Act or El ement Cl ass) #}
{ # Comment s: f i nd act or s who " a" depends on vi a a dependum #}
I ndi vi dual f i nd_dependees_f r om_act or i n Gener i cQuer yCl ass i sA
Act or El ement Cl ass wi t h
 at t r i but e, par amet er
 a : Act or El ement Cl ass
 at t r i but e, r et r i eved_at t r i but e
 name : St r i ng
 at t r i but e, const r ai nt
 c : $ exi st s d/ DependumEl ement Cl ass l / DependencyLi nkCl ass
 (d i n f i nd_out goi ng_dependums_f r om_act or [~a/ a]) and
 (l i n f i nd_i ncomi ng_dependenci es_t o_act or [t hi s/ a]) and
 (l f r om d)
 $
end

{ # Quer y37:
f i nd_ext er nal l i nks_t o_i ncomi ng_dependency(a: Act or El ement Cl ass) #}
{ # I nput par amet er s: a #}
I ndi vi dual f i nd_ext er nal l i nks_t o_i ncomi ng_dependency i n
Gener i cQuer yCl ass i sA I nt ent i onal Li nkCl ass wi t h
 at t r i but e, par amet er
 a : Act or El ement Cl ass
 at t r i but e, r et r i eved_at t r i but e
 name : St r i ng
 at t r i but e, const r ai nt

master-thesis-v4.4.doc

 213/231 9/1/2004

 c : $ exi st s dl / DependencyLi nkCl ass
 (dl i n f i nd_i ncomi ng_dependenci es_t o_act or [~a/ a]) and (t hi s
t o dl) $
end

{ # Quer y38:
f i nd_ext er nal l i nks_or i gi nat or _t o_i ncomi ng_dependency(a: Act or El ement Cl ass)
#}
{ # Comment s: f i nd t he act or t hat has an ext er nal l i nk ends at " a" ' s
i ncomi ng dependency l i nk #}
I ndi vi dual f i nd_ext er nal l i nks_or i gi nat or _t o_i ncomi ng_dependency i n
Gener i cQuer yCl ass i sA Act or El ement Cl ass wi t h
 at t r i but e, par amet er
 a : Act or El ement Cl ass
 at t r i but e, r et r i eved_at t r i but e
 name : St r i ng
 at t r i but e, const r ai nt
 c : $ exi st s l / I nt ent i onal Li nkCl ass
 (l i n f i nd_ext er nal l i nks_t o_i ncomi ng_dependency[~a/ a]) and
 (exi st s e/ t hi s. chi l dr en (l f r om e)) $
end

{ # Quer y39:
f i nd_ext er nal l i nks_t o_i ndi r ect _out goi ng_dependency(a: Act or El ement Cl ass)
#}
I ndi vi dual f i nd_ext er nal l i nks_t o_i ndi r ect _out goi ng_dependency i n
Gener i cQuer yCl ass i sA I nt ent i onal Li nkCl ass wi t h
 at t r i but e, par amet er
 a : Act or El ement Cl ass
 at t r i but e, r et r i eved_at t r i but e
 name : St r i ng
 at t r i but e, const r ai nt
 c : $ exi st s de/ DependumEl ement Cl ass dl / de. l i nks
 (dl i n f i nd_i ndi r ect _out goi ng_dependenci es_f r om_act or [~a/ a])
and (t hi s t o dl) $
end

{ # Quer y40:
f i nd_ext er nal l i nks_or i gi nat or _t o_i ndi r ect _out goi ng_dependency(a: Act or El e
ment Cl ass) #}
I ndi vi dual f i nd_ext er nal l i nks_or i gi nat or _t o_i ndi r ect _out goi ng_dependency
i n Gener i cQuer yCl ass i sA Act or El ement Cl ass wi t h
 at t r i but e, par amet er
 a : Act or El ement Cl ass
 at t r i but e, r et r i eved_at t r i but e
 name : St r i ng
 at t r i but e, const r ai nt
 c : $ exi st s l / I nt ent i onal Li nkCl ass
 (l i n
f i nd_ext er nal l i nks_t o_i ndi r ect _out goi ng_dependency[~a/ a]) and
 (exi st s e/ t hi s. chi l dr en (l f r om e)) $
end

{ # Quer y41: f i nd_ext er nal l i nks_f r om_act or (a: Act or El ement Cl ass) #}
{ # Comment s: f i nd t he ext er nal l i nks t hat or i gi nat ed f r om act or " a" #}
I ndi vi dual f i nd_ext er nal l i nks_f r om_act or i n Gener i cQuer yCl ass i sA
I nt ent i onal Li nkCl ass wi t h

master-thesis-v4.4.doc

 214/231 9/1/2004

 at t r i but e, par amet er
 a : Act or El ement Cl ass
 at t r i but e, r et r i eved_at t r i but e
 name : St r i ng;
 f r om : El ement Cl ass;
 t o : Obj ect Cl ass
 at t r i but e, const r ai nt
 c : $ (exi st s e/ I nt ent i onal El ement Cl ass (t hi s f r om e) and (e par ent
~a)) and
 (t hi s i n f i nd_al l _ext er nal _l i nks)
 $
end

{ # Quer y42:
f i nd_ext er nal l i nks_t o_ext er nal l i nks_f r om_act or (a: Act or El ement Cl ass) #}
{ # Comment s: f i nd t he ext er nal l i nks t hat af f ect t he ext er nal l i nks
or i gi nat ed f r om act or " a" #}
I ndi vi dual f i nd_ext er nal l i nks_t o_ext er nal l i nks_f r om_act or i n
Gener i cQuer yCl ass i sA I nt ent i onal Li nkCl ass wi t h
 at t r i but e, par amet er
 a : Act or El ement Cl ass
 at t r i but e, r et r i eved_at t r i but e
 name : St r i ng;
 f r om : El ement Cl ass;
 t o : Obj ect Cl ass
 at t r i but e, const r ai nt
 c : $ exi st s l / I nt ent i onal Li nkCl ass (l i n
f i nd_ext er nal l i nks_f r om_act or [~a/ a])
 and (t hi s t o l) $
end

{ # Quer y43: f i nd_ext er nal l i nks_t ar get _f r om_act or (a: Act or El ement Cl ass) #}
{ # Comment s: f i nd t he l i nks t hat t he ext er nal l i nks or i gi nat ed f r om
act or " a" ends at #}
I ndi vi dual f i nd_ext er nal l i nks_t ar get _f r om_act or i n Gener i cQuer yCl ass i sA
Li nkCl ass wi t h
 at t r i but e, par amet er
 a : Act or El ement Cl ass
 at t r i but e, r et r i eved_at t r i but e
 name : St r i ng;
 f r om : El ement Cl ass;
 t o : Obj ect Cl ass
 at t r i but e, const r ai nt
 c : $ exi st s l / I nt ent i onal Li nkCl ass (l i n
f i nd_ext er nal l i nks_f r om_act or [~a/ a])
 and (l t o t hi s) $
end

{
* Fi l e : SRVi ews_Quer i es. sml
* Pur pose : Def i ne t he quer y cl asses f or t he SR vi ews
* cr eat ed : 08/ 05/ 04 Jane You
* l ast change : 09/ 01/ 04 Jane You
* Cont ent s: Quer y44~51
}

{ # Quer y44: f i nd_i nt er nal _connect or s(a: Act or El ement Cl ass) #}

master-thesis-v4.4.doc

 215/231 9/1/2004

{ # Comment s: f i nd t he i nt er nal el ement s t hat has an ext er nal l i nk
connect ed #}
I ndi vi dual f i nd_i nt er nal _connect or s i n Gener i cQuer yCl ass i sA
I nt ent i onal El ement Cl ass wi t h
 at t r i but e, r et r i eved_at t r i but e
 name : St r i ng
 at t r i but e, par amet er
 a : Act or El ement Cl ass
 at t r i but e, const r ai nt
 c : $ (t hi s par ent ~a) and
 (exi st s l 1/ DependencyLi nkCl ass (l 1 f r om t hi s) or (l 1 t o
t hi s)) or
 (exi st s l 2/ I nt ent i onal Li nkCl ass (l 2 i n
f i nd_ext er nal l i nks_f r om_act or [~a/ a]) and (l 2 f r om t hi s))
 $
end

{ # Quer y45: f i nd_r oot _el ement s(a: Act or El ement Cl ass) #}
I ndi vi dual f i nd_r oot _el ement s i n Gener i cQuer yCl ass i sA
I nt ent i onal El ement Cl ass wi t h
 at t r i but e, r et r i eved_at t r i but e
 name : St r i ng
 at t r i but e, par amet er
 a : Act or El ement Cl ass
 at t r i but e, const r ai nt
 c : $ (t hi s par ent ~a) and
 (not (exi st s l / I nt ent i onal Li nkCl ass (l f r om t hi s))) $
end

{ # Quer y46: f i nd_r oot _sof t goal s(a: Act or El ement Cl ass) #}
I ndi vi dual f i nd_r oot _sof t goal s i n Gener i cQuer yCl ass i sA
Sof t goal El ement Cl ass wi t h
 at t r i but e, r et r i eved_at t r i but e
 name : St r i ng
 at t r i but e, par amet er
 a : Act or El ement Cl ass
 at t r i but e, const r ai nt
 c : $ (t hi s i n f i nd_r oot _el ement s[~a/ a]) $
end

{ # Quer y47: f i nd_r oot _f unct i onal s(a: Act or El ement Cl ass) #}
I ndi vi dual f i nd_r oot _f unct i onal s i n Gener i cQuer yCl ass i sA
I nt ent i onal El ement Cl ass wi t h
 at t r i but e, r et r i eved_at t r i but e
 name : St r i ng
 at t r i but e, par amet er
 a : Act or El ement Cl ass
 at t r i but e, const r ai nt
 c : $ (t hi s i n f i nd_r oot _el ement s[~a/ a]) and not (t hi s i n
Sof t goal El ement Cl ass) $
end

{ # Quer y48: f i nd_cont r i but i on_t o_dependum(a: Act or El ement Cl ass,
dl : DependencyLi nkCl ass) #}
I ndi vi dual f i nd_cont r i but i on_t o_dependum i n Gener i cQuer yCl ass i sA
I nt ent i onal Li nkCl ass wi t h
 at t r i but e, r et r i eved_at t r i but e

master-thesis-v4.4.doc

 216/231 9/1/2004

 name : St r i ng
 at t r i but e, par amet er
 a : Act or El ement Cl ass;
 dl : DependencyLi nkCl ass
 at t r i but e, const r ai nt
 c : $ (t hi s t o ~dl) and
 (exi st s e/ I nt ent i onal El ement Cl ass (e par ent ~a) and (t hi s
f r om e)) $
end

{ # Quer y49: f i nd_cont r i but or _t o_dependum(a: Act or El ement Cl ass,
dl : DependencyLi nkCl ass) #}
I ndi vi dual f i nd_cont r i but or _t o_dependum i n Gener i cQuer yCl ass i sA
I nt ent i onal El ement Cl ass wi t h
 at t r i but e, r et r i eved_at t r i but e
 name : St r i ng
 at t r i but e, par amet er
 a : Act or El ement Cl ass;
 dl : DependencyLi nkCl ass
 at t r i but e, const r ai nt
 c : $ exi st s l / I nt ent i onal Li nkCl ass
 (l i n f i nd_cont r i but i on_t o_dependum[~a/ a, ~dl / dl]) and (l
f r om t hi s) $
end

{ # Quer y50: f i nd_cont r i but i on_t o_act or (a, a1: Act or El ement Cl ass) #}
{ # I nput ar gument : " a1" i s t he af f ect ed act or #}
I ndi vi dual f i nd_cont r i but i on_t o_act or i n Gener i cQuer yCl ass i sA
I nt ent i onal Li nkCl ass wi t h
 at t r i but e, r et r i eved_at t r i but e
 name : St r i ng
 at t r i but e, par amet er
 a0: Act or El ement Cl ass;
 a1: Act or El ement Cl ass
 at t r i but e, const r ai nt
 c : $ (exi st s e0/ I nt ent i onal El ement Cl ass (e0 par ent ~a0) and (t hi s
f r om e0)) and
 (exi st s l 1/ I nt ent i onal Li nkCl ass e1/ I nt ent i onal El ement Cl ass
 (l 1 f r om e1) and (e1 par ent ~a1) and (t hi s t o l 1)) $
end

{ # Quer y51: f i nd_cont r i but or _t o_act or (a, a1: Act or El ement Cl ass) #}
{ # I nput ar gument : " a1" i s t he af f ect ed act or #}
I ndi vi dual f i nd_cont r i but or _t o_act or i n Gener i cQuer yCl ass i sA
I nt ent i onal El ement Cl ass wi t h
 at t r i but e, r et r i eved_at t r i but e
 name : St r i ng
 at t r i but e, par amet er
 a0: Act or El ement Cl ass;
 a1: Act or El ement Cl ass
 at t r i but e, const r ai nt
 c : $ exi st s l / I nt ent i onal Li nkCl ass
 (l i n f i nd_cont r i but i on_t o_act or [~a0/ a0, ~a1/ a1]) and (l f r om
t hi s) $
end

master-thesis-v4.4.doc

 217/231 9/1/2004

C. Facts about the London Ambulance Service Computer

Aided Despatch System

We cite in this section the source of information on which we based for our

London Ambulance Service (LAS) case study. Al l paragraphs appear in this

section are items stated in the “ Report of the Inquiry into the London Ambulance

Service” (LAS-Report 1993). We select the part the describes the manual process,

the constructs of the Computer Aided Despatch (CAD) system, and the system

requirements for performance.

The manual system operates as follows:

Call Taking

3002 When a 999 or urgent call is received in Central Ambulance Control the

Control Assistant (CA) writes down the call details on a pre0printed form (AS1

or AS2). The incident location is identif ied f rom a map book, together with the

map reference co0ordinates. On completion of the cal l the incident form is

placed into a conveyor belt system with other forms from fel low CA’s. The

conveyor belt then transports the forms to a central collection point within CAC.

Resource Identi fication

3003 Another CAC staff member collects the forms from the central collection

point and, through reviewing the details on the form, decides which resource

allocator should deal with it (based on the three London Divisions—North East,

North West, and South). At this point potential dupl icated calls are also

identif ied. The resource al locator then examines the forms for his/her sector and,

using status and location information provided through the radio operator and

noted on forms maintained in the “ activation box” for each vehicle, decides

which resource should be mobi l ized. This resource is then also recorded on the

form which is passed to a despatcher.

Resource Mobi l isation

master-thesis-v4.4.doc

 218/231 9/1/2004

3004 The despatcher wi l l telephone the relevant ambulance station (if that is

where the resource is) or wil l pass mobi l isation instructions to the radio operator

i f the ambulance is already

3005 According to the ORCON standards this whole process should take no more

than 3 minutes.

The System Structure:

3119 The complete CAD system had a number of dif ferent elements including:

a) CAD software;

b) CAD hardware;

c) RIFS Communication Interface;

d) radio system;

e) Datarak Sub System;

f) Gazekeer and Mapping Software;

g) Mobile Data Terminals.

System Performance Requirements:

6082 We recommend that LAS makes available to interested parties such as

Community Health Counci ls, purchasers of the service and London MPs its

performance levels in respect of:

a) 999 telephone answering times;

b) activation percentage within three minutes;

c) response percentage within 8 minutes;

d) response percentage within 14 minutes.

master-thesis-v4.4.doc

 219/231 9/1/2004

Bib l iography

Alexander I . 2003. “Misuse Cases: User Cases with Hostile Intent,” IEEE

Software, 20(1), Jan.-Feb. 2003: 58-66.

Breitman KK, Leite JC, and Finkelstein A. 1999. “The World’ s a Stage: a Survey

on Requirements Engineering Using a Real-l i fe Case Study” , Journal of the

Brazi l ian Computer Society, 6.1, Campinas, July 1999.

Bubenko JJ, Persson A, Stirna J. 2001 Oct. User Guide of the Knowledge

management Approach Using Enterprise Knowledge Patterns. Stockholm

(Sweden): Department of Computer and Systems Science, Royal Institute of

Technology. 52 p.

Carlson CR, Ji W, Arora AK. 1990. Elsevier Science Publ ishers B.V. In F.H.

Lochovsky, editor. “The Nested Entity-Relationship Model,” Entity-Relationship

Approach to Database Design and Querying, North-Holland, 1990: 221-236.

Campbel l LJ, Halpin TA, Proper HA. 1996. “ Conceptual Schemas with

Abstractions—Making Flat Conceptual Schemas More Comprehensible,” Data &

Knowledge Engineering, 20.1 (1996): 39-85.

Chung L, Nixon B, Yu E. 1997. “Deal ing with Change: An Approach Using Non-

Functional Requirements,” Requirement Engineering, Springer-Verlag, 1.4

(1997): 238-260.

Chung L, Gross D, Yu E. 1999. Kluwer Academic Publ ishers. In: Patrick

Donohue, editor. “ Architectural Design to Meet Stakeholder Requirements,”

Software Architecture, 1999: 545-564.

Chung L, Nixon BA, Yu E, Mylopoulos J. 2000. Kluwer Academic Publ ishers.

Non-Functional Requirements in Software Engineering. 472 p. ISBN 0-7923-

8666-3.

master-thesis-v4.4.doc

 220/231 9/1/2004

ConceptBase Team. 2003. ConceptBase Tutorial. Aachen(Germany): Informatik

V., RWTH Aachen. 10 p.

Castano S, DE ANTONELLIS V, FUGINI MG, PERNICI B. 1998. “Conceptual

Schema Analysis: Techniques and Appl ications,” ACM Transactions on Database

Systems, 23.3 (Sep 1998): 286-333.

Damm W, Harel D. 2001. Klumer Academic Publ ishers. “LSCs: Breathing Li fe

into Message Sequence Charts,” Formal Methods in System Design, 19 (2001):

45-80.

Douglass BP. 2003. “UML 2.0 Incrementally Improves Scalabi l ity and

Architecture.” Avai lable:

http://www.elecdesign.com/articles/print.cfm?articleID=5881 (Oct. 2003).

Dubois E, Yu E, Petit M. 1998. IEEE Computer Society. “From Early to Late

Formal Requirements: a Process Control Case Study,” Proceedings of the 9th

International Workshop on Software Specif ication and Design, Ise-Shima, Japan,

Apr. 1998: 34-42.

Feldman P, Mi l ler D. 1986. “Entity Model Clustering: Structuring a Data Model

by Abstraction,” Computer Journal, 29.4 (Aug. 1986): 348-360.

Ghandi M, Robertson EL, Gucht DV. 1992. Springer-Verlag. In P. Loucopoulos,

editor. “Leveled Entity Relationship Model,” Proceedings of the Fourth

International Conference CAiSE’92 on Advanced Information Systems Engineers,

volume 593 of Lecture Notes in Computer Science, May1992; Manchester,

United Kingdom. p 456-473.

Gross D, Yu E. 2001. “Evolving System Architecture to Meet Changing Business

Goals: an Agent and Goal-Oriented Approach,” ICSE-2001 Workshop: From

Software Requirements to Architectures (STRAW 2001), Toronto, Canada, May

2001: 13-21.

master-thesis-v4.4.doc

 221/231 9/1/2004

GRL. 2003. “URN — Goal-oriented Requirement Language (GRL),” Recommendation

Z.150: User Requirements Notation (URN) – Language requirements and framework,

Sep. 2003.Avai lable: http://www.usecasemaps.org/urn/z_151-ver3_0.zip . Last

view Aug. 2004.

Harel D. 1988. “On Visual Formalisms,” Communications of the ACM, 31.5

(May 1988): 514-530.

Horkoff J. 2004. “ A Study of Trusted Computing Using the i* Framework.”

Working Paper, Knowledge Management Lab, Bell University Labs, University

of Toronto. 135 p. Avai lable: Last view Aug. 2004.

IDEF0. 1993. IDEF Family of Methods, Knowledge Based Systems, Inc. (KBSI).

Available: http://www.idef.com/idef0.html. Last view Aug. 2004.

Jarke M, Jeusfeld MA, Quix C. 2003. ConceptBase V6.1 User Manual.

Aachen(Germany): Informatik V., RWTH Aachen. 98 p.

Jarke M, Gal lersdörfer R, Jeusfeld MA, Staudt M, Eherer S. 1995. “ConceptBase

- A Deductive Object Base for Meta Data,” Journal on Intell igent Information

Systems, 2.4 (Mar 1995): 167-192.

Koubarakis M, Mylopoulos J, Stanley M, Borgida A. Feb. 1989. Telos: Features

and Formal ization. Toronto (ON): Department of Computer science, University

of Toronto. Report nr KRR-TR-89-4. 84 p.

Kramer J, Wolf A. 1996. ACM SIGSOFT. “Succeedings of the 8th International

Workshop on Software Specif ication and Design,” Software Engineering Notes,

21.5, Sep. 1996: 21-35.

Lamsweerde AV. 2003. “Goal-Oriented Requirements Engineering: from System

Objectives to UML Models to Precise Software Specif ications,” ICSE’03

Tutorial, Portland, May 2003. 159 p.

master-thesis-v4.4.doc

 222/231 9/1/2004

LAS-Report. 1993. Report of the Inquiry into the London Ambulance Service,

electronic version prepared by prof. A. Finkelstein, avai lable at

http://www.cs.ucl.ac.uk/staff/A.Finkelstein/las.html with permission from the

communications directorate, South West Thames Regional Health Authority,

original ISBN: 0 905133 70 6, 1993

Letier E. 2001. Reasoning about Agents in Goal-oriented Requirements

Engineering [dissertation] . Belgium: Department of Computing Science and

Engineering, Université catholique de Louvain. 283 p.

L iu L, Yu E. 2001. “From Requirements to Architectural Design - Using Goals

and Scenarios,” ICSE-2001 Workshop: From Software Requirements to

Architectures (STRAW 2001), Toronto, Canada, May 2001: 22-30.

L iu L, Yu E, Mylopoulos J. 2002. “ Analyzing Security Requirements as

Relationships Among Strategic Actors,” 2nd Symposium on Requirements

Engineering for Information Security (SREIS’ 02), Raleigh, North Carolina, Oct.

2002.

L iu L, Yu E, Mylopoulos J. 2003. “Security and Privacy Requirements Analysis

within a Social Setting,” 11th IEEE International Conference on Requirements

Engineering (RE’03), Monterey, Cal i fornia, Sep. 2003: 151-161.

OME. 2003. Organization Modell ing Environment (OME) [Tool] . Knowledge

Management Lab, Bel l University Labs, University of Toronto. Avai lable:

http://www.cs.toronto.edu/km/ome/. Last view Aug. 2004.

You Z. 2003. “ Applying the GRL Framework to the LAS-CAD Case Study.”

Working Paper, Knowledge Management Lab, Bell University Labs, University

of Toronto. 65 p. Avai lable:

http://www.cs.toronto.edu/~janeyou/avs/csc2150Project.doc (Aug. 2003). Last

view Aug. 2004.

master-thesis-v4.4.doc

 223/231 9/1/2004

Yu E. 1994. Modell ing Strategic Relationships for Processing Reengineering

[dissertation] . Toronto (ON): Department of Computer science, University of

Toronto. 124 p.

Yu E. 1997 Jan. “Towards Modeling ad Reasoning Support for Early-Phase

Requirements Engineering,” Proceedings of the 3rd IEEE International

Symposium on Requirements Engineering, Washington D.C., USA, Jan. 1997:

226-235.

Yu E. 1997 Jun. Presses Universitaires de Namur. In: E. Dubois, A.L. Opdahl, K.

Pohl, editors. “ Why Agent-Oriented Requirements Engineering,” Proceedings of

3rd International Workshop on Requirements Engineering: Foundations for

Software Quality, Barcelona, Catalonia, June 1997.

Yu E, Liu L. 2000. “Modell ing Trust in the i * Strategic Actors Framework,”

Proceedings of the 3rd Workshop on Deception, Fraud and Trust in Agent

Societies, Barcelona, Catalonia, Spain, June 2000.

Yu E, Liu L, L i Y. 2001. Spring Verlag. “ Modell ing Strategic Actor

Relationships to Support Intellectual Property Management,” 20th International

Conference on Conceptual Model ing (ER-2001), Yokohama, Japan, Nov. 2001:

164-178. LNCS 2224

Yu E, Cysneiros LM. 2002. “Designing for Privacy and Other Competing

Requirements,” 2nd Symposium on Requirements Engineering for Information

Security (SREIS’02), Raleigh, North Carolina, Oct. 2002.

