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Abstract 

Knowledge management research focuses on concepts, methods, and tools supporting the management of 
human knowledge. The main objective of this paper is to survey basic concepts that have been used in 
Computer Science for the representation of knowledge and summarize some of their advantages and draw-
backs. A secondary objective is to relate these techniques to Information Science theory and practice.  

The survey classifies the concepts used for knowledge representation into four broad ontological catego-
ries. Static ontologies describe static aspects of the world, i.e., what things exist, their attributes and rela-
tionships. A dynamic ontology, on the other hand, describes the changing aspects of the world in terms of 
states, state transitions and processes. Intentional ontologies encompass the world of things agents be-
lieve in, want, prove or disprove, and argue about. Finally, social ontologies cover social settings – agents, 
positions, roles, authority, permanent organizational structures or shifting networks of alliances and inter-
dependencies. 

 

1. INTRODUCTION 
Knowledge management is concerned with the representation, organization, acquisition, creation, use, and 
evolution of knowledge in its many forms. To build effective technologies for knowledge management, we 
need to further our understanding of how individuals, groups and organizations use knowledge. Given that 
more and more knowledge is represented in computer-readable forms, we also need to build tools that can 
effectively search databases, files, web sites and the like, to extract information, capture its meaning, organ-
ize and analyze it, and make it useful. This paper focuses on the concepts used in computer-based informa-
tion systems to capture and exploit the meaning of information. 

Information Science, as it exists today, already provides many of the foundations for knowledge manage-
ment. After all, the documentation tradition has a long history of developing methods and practices for or-
ganizing the vast expanses of human knowledge so that it is accessible by diverse users. The computational 
side of Information Science has developed powerful techniques for retrieving documents through different 
forms of computer-based processing and search (Buckland, 1999). Information Science has also been build-
ing on the technologies of information systems to manage the vast amounts of information – initially for 
catalogues and bibliographic information, then for full-text documents, and most recently for distributed, 
heterogeneous information sources. Nevertheless, many significant challenges remain.  

Historically, Information Science has focused on the “document” as the primary unit of information. Docu-
ments have traditionally been paper-based, consisting primarily of published books and articles. The con-
tents of such documents have been individually meaningful, at least at a literal, surface level. Deeper mean-
ings however do require interpretation in relation to inter-connected documents as well as social and cul-
tural contexts. These connections are usually relatively sparse (e.g., a few dozen references in an academic 
article) and have little built-in semantics. For instance, a reference simply leads to another document, much 
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like untyped hypertext links that dominate today’s World Wide Web (WWW). Moreover, documents have 
traditionally been fairly stable, and new ones took considerable time and effort to create. Finally, documents 
were primarily used by humans, who read, interpreted and acted on them. 

The digital media have changed all that. “Documents” can now be arbitrarily large, as they can be compos-
ites of volumes or even libraries of material. More importantly, they can be arbitrarily small – paragraphs, text 
fragments, pieces of data, video or audio clips, etc. They are documents not so much in the common sense 
usage of the term, but rather logically identifiable and locatable packages of information. This change in the 
granularity of information units has increased the number of units that need to be managed by many orders 
of magnitude. In addition, today's documents tend to be much more densely connected, referring or relating 
to each other in multiple ways. Moreover, documents are continuously created and revised, post-it notes are 
attached, detached, re-attached in a different context, or discarded. Documents can even be active, with em-
bedded software code (e.g., applets and software agents) that exhibit dynamic or even self-activating behav-
ior. Today’s knowledge work relies heavily on digital media. This means that research on knowledge man-
agement must deal with this new, much more demanding notion of a “document”. 

In contrast, the field of Information Systems has historically started off from the other end of the information 
unit spectrum. Information in information systems comes in small chunks – e.g., bank account balances, 
ticket reservations, etc. Such information can change quickly and frequently, so the management of dynamic 
information has always been fundamental to information systems. Information items usually need to be in-
terpreted in relation to other items, e.g., “London” by itself on a ticket is quite meaningless unless you know 
that it is a departure or destination city, on what date, what airline, for which passenger, etc. These relation-
ships need to be formally defined so that the network of connected information can be navigated and oper-
ated on by automated procedures, in order to produce a ticket within seconds. Now that fast and reliable 
information processing has become commonplace, people have come to expect equally powerful technolo-
gies for managing much more complex knowledge structures. As in the case of Information Science, some 
foundations have been laid in Information Systems for managing knowledge, but there are considerable 
challenges too. Perhaps the most important among these is the development of techniques for exploiting 
meaning to produce computationally useful results. 

Section 2 of the paper discusses basic approaches to capture the meaning of information, while section 3 
introduces ontologies and discusses four categories of ontological elements. In section 4 we discuss 
applications of ontologies in medicine. Section 5 includes discussion and summarization of the main points 
of the paper. 

 

2. EXPLOITING MEANING IN INFORMATION SYSTEMS 

Interestingly, within the field of Computer Science there has been a gradual movement towards what one 
might call “knowledge orientation” or "semantic processing". This has been taking place over the past 20 to 
30 years, long before the term or concept of “knowledge management” became fashionable. Although there 
is no consensus on a notion of knowledge or knowledge-based processing in Computer Science, the terms 
are used usually in contradistinction with data or data processing to highlight the need to clarify the rela-
tionship between symbols stored in computers and what they represent in the world outside. The terms also 
imply technologies that deal explicitly and formally with the semantics of such representations and their 
manipulations. 

An assortment of techniques for representing and managing codified knowledge has emerged from several 
areas in Computer Science, notably Artificial Intelligence, Databases, Software Engineering, and Information 
Systems. This movement towards knowledge orientation has not been organized into a coherent research 
methodology, as it has come about for a variety of reasons. From a practical standpoint, the growing com-
plexity of application domains and the increasing intertwining of machine and human processes have all 
contributed to the recognition of knowledge orientation as a promising research direction that can address 
open knowledge management problems. However, the movement has also been motivated by the search for 
solid foundations in various computing disciplines (Bubenko, 1980; Newell, 1982; Ullman, 1988). 



Artificial Intelligence has developed techniques for representing knowledge in forms that can be exploited 
by computational procedures and heuristics. Research on databases has produced techniques that support 
the representation and management of large amounts of relatively simple information. Supporting mecha-
nisms include relational databases and associated technologies. Software Engineering has developed elabo-
rate techniques for capturing knowledge that relates to the requirements, design decisions and rationale for 
a software system. The area of Information Systems has benefited directly or indirectly from these develop-
ments.  
In computer-based information systems, the meaning of information is usually captured in terms of concep-
tual information models that offer semantic terms for modeling applications and structuring information (My-
lopoulos, 1998). These models build on primitive concepts such as entity, activity, agent and goal. In addi-
tion, the models support mechanisms for organizing information along generic abstraction dimensions, such 
as generalization, aggregation and classification (Mylopoulos, Jurisica & Yu, 1998). Defining terms and 
mechanisms for information modeling and organization in conceptual models requires assumptions about 
the applications to be modeled. For example, if we assume that our applications will consist of interrelated 
entities, it makes sense to build terms such as entity and relationship into our conceptual model, and to 
allow computation based on the semantics of those terms, i.e., to support navigation, search, retrieval, up-
date, and inference which are consistent with the meaning of those terms. The identification of the right con-
cepts for modeling a world for which one would like to do computations (or knowledge management opera-
tions) has come to be known as an ontology within Computer Science. 

 

3. ONTOLOGIES  
Ontology is a branch of Philosophy concerned with the study of what exists. Formal ontologies have been 
proposed since the 18th century, including recent ones such as those by Carnap (1967) and Bunge (1977). In 
Computer Science, ontologies have come in a variety of forms, ranging from lexicons, to dictionaries and 
thesauri, or even first order logical theories. Lexicons provide a standardized dictionary of terms for use dur-
ing, for example, indexing or retrieval. Dictionaries can be organized according to specific relations to form 
hierarchies (taxonomies, meronomies, etc.). Thesauri add related terms to any given term. In any of these 
forms, ontologies are useful because they encourage standardization of the terms used to represent knowl-
edge about a domain. When ontologies are formalized in first order logic or a subset thereof, they can also 
support inference mechanisms. For a given collection of facts, these mechanisms can be used to derive new 
facts or check for consistency. Such computational aids are clearly useful for knowledge management, espe-
cially when one is dealing with large amounts of knowledge. 

For example, if one is interested in health care-related knowledge, then patient, disease, symptom, diagnosis, 
and treatment might be among the primitive concepts upon which one might want to describe the applica-
tion domain. These concepts and their meanings together define an ontology for health care. Such an ontol-
ogy can be used as common knowledge that facilitates communication among health workers. It can also be 
used during development of hospital information systems or decision-support systems. Similarly, an ontol-
ogy for manufacturing may include the concepts of (industrial) process, resource, schedule, product and the 
like (Vernadat, 1996). Brazma et al. (2001) proposes a flexible and open specification language called MIAME 
(Minimum Information About Microarray Experiments) to represent microarray experiment. Although details 
for particular experiments may be different, MIAME aims to define the core that is common to most experi-
ments. MIAME is not a formal specification language, but a set of guidelines, which encourages users to 
provide their own qualifiers and values identifying the source of their terminology. It promotes the use of 
controlled vocabularies and external ontologies. 

Early work in computational ontologies includes the Cyc project (Lenat & Guha, 1990) and the ARPA 
Knowledge Sharing effort (Neches et al., 1991). The Knowledge Interchange Format effort provides a de-
clarative language for describing knowledge (Genesereth, 1991). Research within Artificial Intelligence has 
formalized interesting specialized ontologies and has developed techniques for using them to represent and 
analyze knowledge. Well-designed ontologies need to be address properly deep and long-standing prob-
lems in philosophy, such as the problems of identity and unity. The designer of ontologies needs to provide 
answers to questions such as:  



• Do entities have any essential properties?  
• Does a change of parts affect identity? 
• When does an entity count as one?  

Guarino and Welty (2001) offer an elegant account of how such issues can be taken into consideration in 
the design of taxonomies of concepts. Along a very different path, Wand (1989; 1990) studied the adequacy 
of conceptual models to describe applications based on a general ontology, such as that proposed by 
Bunge (1977).  

To characterize and classify current work on ontologies we propose four broad ontological categories, 
which respectively deal with static, dynamic, intentional and social aspects of the world. Our claim is that 
for a large class of applications, the representation of relevant knowledge can be based on primitive con-
cepts derived from these four ontological categories. For example, if we want to model a university environ-
ment, we may choose entities and relations to model static aspects of the domain and processes to model 
dynamic aspects. For a multi-agent system, on the other hand, we may want to use concepts such as agent, 
team, goal and social dependency to model social and intentional aspects of the application. Of course, 
agents and goals could be represented simply as entities. Such representations, however, miss important 
properties of agency (e.g., an agent’s intentionality and autonomy) and lead to incomplete forms of infer-
ence. For example, representations that use elements of dynamic ontologies are amenable to simulation, a 
special form of inference not supported by static ontologies. Likewise, formal goal models support their own 
special forms of reasoning – e.g., (Giorgini, Mylopoulos, Nicchiarelli, Sebastiani, 2002) – that go beyond 
inference mechanisms for entities and relationships. Our classification of ontological concepts into four 
categories has been derived from a broad survey of modeling techniques in Computer Science (Mylopoulos, 
1998). 

The rest of the section briefly reviews the four categories. A static ontology describes things that exist, 
their attributes and relationships. A dynamic ontology describes the world in terms of states, state transi-
tions and processes. An intentional ontology encompasses the world of agents, things agents believe in, 
want, prove or disprove, and argue about. Finally, a social ontology covers social settings, permanent or-
ganizational structures or shifting networks of alliances and interdependencies. 

3.1 Static Ontologies  

A static ontology describes static aspects of the world, i.e., what things exist, their attributes and relation-
ships. Most knowledge representation frameworks assume that the world is populated by entities that are 
endowed with a unique and immutable identity, a lifetime, a set of attributes, and relationships to other enti-
ties. Basic as this ontology may seem, it is by no means universal. For instance, Hayes (1985) offers an on-
tology for different classes of applications modeling of material substances where entities (say, a liter of 
water and a pound of sugar) can be merged resulting in a different entity. Also note that some successful 
models, such as Statecharts (Harel, 1987), do not support elements from a static ontology, because they are 
intended for real-time systems. Static ontologies are not trivial. For certain applications it is useful to distin-
guish between different modes of existence for entities, including physical existence, such as that of the 
authors of this paper, abstract existence, such as that of the number 7, nonexistence, characteristic of Santa 
Claus or John’s canceled trip to Japan, and impossible existence, such as that of the square root of -1 or the 
proverbial square circle (Hirst, 1989). 

As an example, a partial static ontology for a hospital expressed in the KAOS modeling language (Dardenne, 
van Lamsweerde & Fickas, 1993) is presented in Figure 1. According to the example, an entity Hospital is 
defined with associated attributes admitted, released, registered, available and specialty. The first three 
attributes take as values sets of instances of Patient, available takes as values sets of instances of Doctor, 
and specialty takes as values sets of instances of Subject. The definition includes one set-theoretic invari-
ant constraint, which states that admitted is a subset of registered for every instance hosp  of Hospital. In 
addition, admitted and released are mutually exclusive sets at one instance of time. Next we define the rela-
tionship class Treating, which relates a patient to a hospital entity, has associated cardinality constraints 
and an invariant. The invariant states that if a patient is treated in the hospital and the patient is in the hos-
pital, then the patient is eventually released. 



Many domains require support for description and analysis of image data. For example, an ontology for an 
in vitro fertilization (IVF) clinic needs concepts for patient, diagnosis, treatment, and morphological charac-
teristics of sperms, oocytes and embryos (Jurisica et al., 1998). 

Spatial information is also important for applications that involve physical world, such as geographic infor-
mation systems, e.g., (Croner, Sperling & Broome, 1996). Spatial information has been modeled in terms of 
2D and 3D points or larger units, such as spheres, cubes, or pyramids. Formal spatial ontologies enable com-
putational and reasoning operations such as rotation and occlusion to be provided. One such class of 
applications deals with representing 2D and 3D formations of proteins. Proteins are large, complex molecules 

composed of long chains of molecules, called amino acids. They provide the structural components of cells 
and enzymes for essential biochemical reactions. The subcellular localization of proteins specifies where 
they are and determines their ability to interact with other proteins and small metabolites in their local envi-
ronment. One can then define an ontology for biological function using molecular interactions (Karp, 2000), 
which then enables computation with biological function. Subcellular localization of proteins is another key 
functional characteristic. Gene Ontology addresses this issue at the cellular level by providing a hierarchy of 
cellular component concepts such as organelles, membranes and protein complexes (Ashburner et al., 
2000).  These concepts are used to annotate the location of gene products (Xie et al., 2002).  
 

 
3.2 Dynamic Ontologies 

Dynamic ontologies describe changing aspects of the world.  Typical primitive concepts include state, state 
transition and process. Various flavors of finite state machines and Petri nets have been offered since the 
1960’s as appropriate modeling tools for dynamic discrete processes. Such models are well understood and 
have been used extensively to describe real-time applications in telecommunications and other fields. State-
charts constitute a more recent proposal for specifying large finite state machines (Harel, 1987). A statechart 
is also defined in terms of states and transitions, but more than one state may be “on” at any one time, and 
states can be defined as AND or OR compositions of other statecharts. As a result, statecharts have been 
proven much more effective in defining and simulating large finite state machines compared to conventional 
modeling methods. The statecharts model is supported by a popular CASE tool called Statemate. 

To take another example from the reproductive medicine domain, an IVF procedure consists of patient selec-
tion by diagnosis of infertility, controlled ovarian stimulation for multiple oocyte recruitment and maturation, 
close monitoring of follicular development by ultrasound and hormonal assessment, oocyte retrieval, in-
semination of oocytes in vitro , determination of fertilization, assessment of embryo development and qual-
ity, assessment of endometrial quality, and intrauterine transfer of one or more cleaved embryos (Jurisica et 

Entity Hospital 
Has admitted, registered, released: setOf[Patient] 
      specialty: setOf[Subject], available: setOf[Doctor] 
Invariant (∀ hosp:Hospital) 
(hosp.admitted ⊆ hosp.registered ∧  hosp.admitted ∩  hosp.released =  ∅) 
... 
end Hospital 
 
Relationship Treating 
Links Patient [Role isTreated, Card 0::1] 
         Hospital [Role treats, Card 0::N] 
Invariant (∀ hosp: Hospital, patient: Patient) 
(Treating (hosp, patient) ∧  patient ∈ hosp.admitted ⇒ ◊(patient ∈ hosp.released) 
... 
end Treating 
 

Figure 1. An example of a partial static ontology for a hospital in KAOS modeling 
language (Dardenne, van Lamsweerde & Fickas, 1993). 



al., 1998). During the treatment, decisions at a particular state depend on results of previous states. To de-
scribe such a process, we could use the ConGolog language (Levesque et al., 1997). ConGolog is a high-
level specification language for defining concurrent processes. Primitive actions can be defined in terms of 
pre- and post-conditions. Primitive actions can be composed into procedures using modeling constructs 
such as sequencing (‘;’), conditional (if-then), iteration (while <condition> do), concurrent activity (‘||’), non-
deterministic choice (choose), etc. Although ConGolog offers programming language-like structures for de-
scribing processes, its distinctive feature is that the underlying logic is designed to support reasoning with 
respect to process specifications and simulations, even when the initial state for the process is only partially 
specified. 

Figure 2 shows how one could use ConGolog to define a process for determining IVF action after successful 
oocyte fertilization. During the process, the physician has to consider the patient’s characteristics (her re-
sponse to hormonal therapy, treatment history, age, etc.) and morphological properties of embryos.  These 
two actions are to be carried out in parallel. Since the quality of individual embryos varies, one has to con-
sider them iteratively to decide on the action.  

Temporal information is often needed when describing dynamic worlds. A temporal ontology can be based 
on time points and associated relations. An event can be represented as a single time point or multiple time 
points. Relations such as before or after can be used to relate individual points. Allen (1984) proposes a 

different ontology for time based on intervals, with thirteen associated relations such as overlap, meet, be-
fore, and after.  

Causality is a concept that is closely related to time. Causality imposes existence constraints on events: if 
event A causes event B and A has been observed, B can be expected as well, possibly with some time de-
lay. For example, if a patient has an oocyte of lower quality, it is expected that it will develop into an embryo 
of a lower quality. In this context, one may need to explore properties such as probability and transitivity. 

3.3 Intentional Ontologies 

Intentional ontologies encompass the world of motivations, intents, goals, beliefs, alternatives, choices, etc. 
Typical primitive concepts include issue, goal, supports, denies, subgoalOf, agent, etc. An intentional on-
tology enables alternate realities to be expressed and reasoned about. The subject of agents having beliefs 
and goals and being capable of carrying out actions has been studied extensively. For example, Maida 

procedure determineIVFAction (patient) 
   consultPatientFile (patient); 
      % concurrently obtain patient cahracteristics and embryo morphology 
      [request (IVF_patient_DB, doPatientAssessment (patient))] 
      || 
      if PatientHasSuccessfulFertilization (patient) then 
          [request (IVF_image_DB, doEmbryoMorphologyAnalysis (patient))]; 
      consultPatientAssessmentReport (patient); 
      consultMorhologyAnalysisReport (patient);  
      while (embryosAvailable) do 
           [if highQuality (embryo) then freezeEmrbyo (patient); 
           if lowerQuality (embryo) then transferEmbryo (patient); 
           if lowQuality (embryo) then donateEmbryoToResearch (patient)];  
      recordFinalReport (patient); 
end procedure 

 
Figure 2.  ConGolog (Levesque et al., 1997) specification of the process of IVF action 
after successful oocyte fertilization. The physician has to in parallel consider patient’s 
characteristics and morphological properties of embryos. 



(1982) addresses the problem of representing propositional attitudes, such as beliefs, desires and intentions 
for agents. 

Modeling the issues that arise during complex decision-making is discussed in Conklin and Begeman (1988). 
The application of such a framework to software design, intended to capture the arguments pro and con, 
and the decisions they result in, has been a fruitful research direction since it was first proposed in Potts 
and Bruns (1988), with notable refinements described in MacLean et al. (1991), Lee and Lai (1991). For exa m-
ple, MacLean et al. (1991) models design rationale in terms of questions (Q), options (O) and criteria (C). 
Figure 3 shows the structure of a decision space concerning the design of an Automated Teller Machine 
(ATM). The four questions raised, have associated options. Choice among them will be done by using an 
associated list of criteria. For example, for the question of what range of services will be offered (by the 
ATM under design), there are two options, full range and cash only, and two criteria for choosing among 
them. The cash-only option raises an auxiliary question, whether services can be restricted by having 
switchable machines, where services can be “masked out”, or by having machines which are inherently lim-
ited in the services they offer. On a complementary front, Gotel and Finkelstein (1995) study the types of 
contributions a stakeholder can make to an argumentation structure such as the one shown in Figure 3. 

Q: What range of
services to offer?

Q: How to select 
cash amount?

Q: Where to retrieve
cash and receipt from?

Q: How to initiate 
the transaction?

O: Full range

O: Cash only

O: Same slot

O: Identify customer

O: Select cash amount

O: Same slot as receipt

O: Different slots

O: Defaults

O: Typing & defaults

O: Type in amount

C: Speed

C: Variety of services

Q: How are 
services restricted?

O: Fixed machines

O: Switchable machines

C: Fast

C: Obvious

C: Variety of amount

C: Fast

C: Low cost

C: Obvious

C: Fast

C: Low error

 

Figure 3: Modeling design rationale in terms of questions (Q), options (O) and criteria (C). 

 
The importance of the notion of goals and agents, especially for situations involving concurrent actions, 
has a long tradition in requirements modeling, beginning with Feather (1987) and continuing with influential 
proposals, such as Dardenne (1993) and Chung (1993).  

Software non-functional requirements (NFRs), such as software usability, security, reliability, user-
friendliness, performance, etc., can be modeled using softgoals (Chung, 1993; Mylopoulos, Chung & Yu, 
1999). Softgoals are goals whose criteria for satisfaction are not crisply defined a priori. The softgoal con-
cept extends intentional ontologies for capturing design rationale (Potts & Bruns, 1988).  Making available 
intentional information such as pro and con arguments and resulting decisions can be very useful during 
design and maintenance of information systems. It has been shown that softgoals can play an important role 
in many design tasks, by guiding the designer through alternative design choices. Jurisica and Nixon (1998) 
show how one would use softgoals to build quality into complex medical decision-support systems.  

Consider an example of an information system for IVF clinic, with the aim to fulfill both clinical and research 
purposes. Suppose potential users rate performance as an important factor for the system. Further assume 
that good performance is characterized as fast response time when accessing patient records, for reasoning 
as well as patient record updates. This requirement is represented as a softgoal: Time[Patient Records and 
Reasoning], as shown at the top of Figure 4. Time is the type of the softgoal and [Patient Records and 



Reasoning] is the topic. This goal may be synergistic or competing with other goals, such as 
Time[Research Reasoning], which requires fast response time for inference operations done by researchers.  
Using methods and catalogues of knowledge (for performance, case-based reasoning, IVF, etc.), goals can 
be refined into more specialized goals. Here, the developer uses knowledge of the IVF domain to refine the 
time goal for patient information into two subgoals, one for good response time for updating patient records 
and the other for good response time for the retrieval and decision making process. These two subgoals are 
connected by an And relationship to the parent goal. This means that if both subgoals are satisficed, then 
the parent goal is satisficed as well. Since, by nature, softgoals are not formalizable, we say that they are 
satisficed rather than satisfied. Satisficing implies “good enough” rather than complete solutions to a given 
problem. 

The figure also shows an example of recording design rationale – the reasons behind design decisions – 
using NFR Framework claims (Chung et al., 2000). As part of the development graph, recorded claims are 
available when making further decisions and changes. It is important to note that the developers use their 
expertise to determine what to refine, how to refine it, to what extent to refine it, as well as when to refine it. 
The NFR Framework and its associated tool can help the developer do consistency checking and keep track 
of decisions, but it is the developer who controls development process (Chung et al., 2000).  

3.4 Social Ontologies  

A social ontology covers social settings, organizational structures, or shifting networks of alliances and 
interdependencies (Galbraith, 1973; Mintzberg, 1979; Scott, 1987). Traditionally, social ontologies have been 

Figure 4. Representing performance requirements for an IVF decision-support system using 
softgoals from the NFR Framework (Chung et al., 2000). Non-functional requirements (initially 
represented as NFR softgoals) are refined until implementable solutions are identified (repre-
sented as Operationalizing Softgoals). Subgoals may contribute positively or negatively, to dif-
ferent extents, towards higher goals – MAKE means sufficiently positive, BREA K means suffi-
ciently negative, HELP and HURT denote partial contributions. The contribution types are used 
to propagate the evaluation of solution alternatives towards the higher goals. 

 



characterized in terms of concepts such as actor, position, role, authority, commitment, etc. Speech acts 
theory offers an ontology for modeling communication among actors (Medina & Mora, 1992). Social ontolo-
gies are also of interest in Distributed Artificial Intelligence. Some of the concepts have been formalized us-
ing a specialized logic (Castelfranchi, 1993). 

A set of concepts that focus on strategic dependencies between actors is proposed by Yu in the i* frame-
work for organization modeling (Yu, 1993; 1995). Such a dependency exists when an actor is committed to 
satisfying a goal or softgoal, carry out a task, or deliver a resource. Using these concepts, one can create 
organizational models that provide answers to questions such as “why does a fertility specialist work within 
a clinic rather than as an independent operator?”. Creating these models enables the analysis of an organiza-
tional setting, which is an important step in the re-design of business processes and the subsequent 
development of information systems (Yu, Mylopoulos & Lesperance, 1996). Reasoning about the inter-
dependency relationships among strategic actors is also important for enterprise mo deling and analysis (Yu, 
1999). 

Health care involves some of the most complex social and organizational structures and processes in our 
society. In developing systems to support health care, it is important to understand the social context in 
order to identify and select appropriate technical solutions. Although the social issues can be very complex, 
adopting a suitable social ontology can provide assistance in organizing and discerning the many issues, 
and to support analysis and argumentation. 

Figure 5 shows a simple example of a strategic dependency graph involving three actors: an IVF Patient, a 
Clinic, and a Fertility Specialist. The patient depends on the specialist to achieve the goal of pregnancy.  
The clinic depends on the specialist to perform procedures and also to uphold and enhance its good reputa-
tion.  The specialist depends on the clinic for facilities and remuneration, while the latter depends on the 
patient for the payment of fees.   

One can use this kind of social ontology to model and explore alternative approaches to health care delivery. 
Figure 6 shows alternative arrangements by which health care costs may be covered. The patient’s goal 
Health Costs Be Covered may be met by paying the clinic directly, by buying private insurance, or by hav-
ing the government pay for it via public health insurance.  The patient ultimately pays for health costs since 
every patient is also a taxpayer.  The three methods of payment are modeled as tasks in the i* framework.  
While each task can meet the functional goal that Health Costs Be Covered, they contribute differently to 
the patient’s non-functional goals. A prominent goal in this context is that the clinic’s services be affordable 
at the time the need arises.  Both insurance approaches provide timely affordability, whereas this is a main 
drawback of the Pay Direct approach.  The public insurance approach contributes negatively to the tax bur-
den, while the other alternatives are positive.  This type of modeling can help generate the space of alterna-
tives to be considered.  Goals can be refined into subgoals by elaborating on the network of means-ends 

Figure 5.  Strategic dependencies between actors. 



relationships, as illustrated in Figure 4. The patient may look for other ways to achieve timely affordability 
(e.g., by maintaining personal savings), and to reduce tax burden (e.g., take advantage of tax incentive 
schemes). In elaborating on the reasoning structure of intentional relationships, the nature of the contribu-
tion may not be known initially.  In the example of Figure 6, the contributions of the three payment methods 
towards reducing overall health costs for the patient are initially unknown.  This is because the model has 
not been sufficiently refined.  In this case, the refinement can also be done by considering specialization on 
the classes of social actors – e.g., patients as belonging to high or low healthcare usage groups, and tax-
payers according to tax brackets.  The model needs to be elaborated sufficiently to differentiate among al-
ternatives, thus guiding what areas to further explore, until satisfactory solutions are found.  In a social con-
text, the exploration and consideration of alternatives need to be done from the viewpoint of each of the 
stakeholders.  Their choices and reasoning may influence each other.  For example, the government may 
have to balance many competing goals such as assuring a healthy citizenry, equitable access, and cost con-
tainment. Again, classification and specialization may be used to differentiate how different governments 
and societies may different tradeoffs among goals, and thus focus on different branches when exploring 
alternatives.  More detailed evaluation (e.g., quantitative metrics) may be introduced once the range of alter-
natives has been narrowed down to a manageable number.  The use of a social ontology aids in identifying 
the right set of issues to address.  The social ontology from i* modeling concepts has been applied to re-
quirements engineering (Yu, 1997), business process analysis (Yu, Mylopoulos & Lesperance, 1996), manu-
facturing (Petit, 1999), software processes (Briand et al., 1998), data warehouse management processes (Va s-
siliadis et al., 2001), analyzing trust (Yu & Liu, 2001, Gans et al., 2002), and intellectual property management 
(Yu, Lin & Li, 2001).  

Figure 6.  Strategic rationale for patient payment alternatives. 

As an example for another social ontology intended for a different level of analysis, we may consider the 
Action Workflow approach to business process modeling (Flores et al., 1988; Medina-Mora et al., 1992; 
Agostini et al., 1993; Denning & Medin-Mora, 1995). The focus here is on the coordination among social 
actors interacting in a collaborative work process.  The primary unit for modeling is the cycle of events that 



take place between someone who wants to get something done (the customer) and the person who provides 
that service or product (the performer).  The cycle is taken to consist of four phases: requesting, committing, 
performing, and acceptance. Diagrammatically, a four-phased loop is drawn between the names of the cus-
tomer and the performer, with the work to be done identified in the middle.  Delegation and other auxiliary 
processes can occur at any of the four phases, depicted as branching and returning arrows from the loop. 
Figure 7 shows an example of an Action Workflow model for a dental treatment that involves a pre-
authorization from the insurance company during the agreement phase in the main loop, and a delegation to 
the lab for part of the work during the performance phase. 

The analysis focuses on identifying who are the relevant actors involved in a workflow, who is the customer 
and who is the performer for each relationship, whether the four phases are properly attended to in each 
customer-performer relationship, and what breakdowns might occur and where.  This approach differs from 
more conventional workflow modeling techniques that provide basically dynamic ontologies, e.g., activity 
sequences, synchronization, and information flow.  The Action Workflow approach focuses instead on so-
cial mechanisms such as negotation, commitment, coordination, and evaluation and satisfactory achieve-
ment of results.  On the other hand, constructs from intentional ontologies such as goals or decision criteria, 
means-ends relationships and alternatives are not explicitly incorporated.  A more detailed comparison with 
the i* approach may be found in (Yu, 1995b). 

 

Figure 7.  An Action Workflow model. 

4.  DEVELOPMENT AND APPLICATION OF ONTOLOGIES IN MEDICINE 

For a given domain, the representation of relevant knowledge can be based on primitive concepts derived 
from any one or all of the proposed four ontological categories. Regardless of which category is used to 
cover particular application domain, information system development benefits from using tools that support 
ontology design and integration processes. For example, DAML and OIL define a semantic markup lan-
guage for Web resources (Connolly et al., 2001; Horrocks et al., 2002). DAML (the DARPA Agent Markup 
Language) has been designed as an extension of XML (eXtended Markup Language) and RDF (Resource 
Description Framework). It offers a language and tools developed to facilitate the concept of the semantic 
web. OIL (an Ontology Interface Layer) provides classification using constructs from frame-based AI, com-
bined with the expressiveness and reasoning power of description logics. DAML+OIL provides modeling 
primitives similar to ones defined in frame-based languages, and a set of constructs for creating ontologies. 
Ontolingua supports authoring ontologies by providing tools for assembling and enhancing a library of 
modular, reusable ontologies (Gruber, 1992). Once ontologies are defined for one or several domains, they 
may be organized into libraries, thereby enhancing their reusability (Heijst et al., 1995). Such libraries can be 
used to build information systems by supporting requirements acquisition and design (Tu et al., 1995). 

When ontologies get large, tools must be used for their management. Analysis tools can help with ontology 



verification and validation. Verification checks whether an ontology (or any formal model, for that matter) 
satisfies particular constraints. For example, verification tools can check cardinality constraints for entity-
relationship models or semantic consistency of rules and constraints such as “patient cannot have more 
embryos than she had oocytes”. Validation checks the consistency of a model with respect to its applica-
tion. Since the application is informal, validation has to be done manually, or at best semi-automatically. 
Other supporting tools include ontology editors, viewers and servers to support creation, maintenance and 
use of ontologies (Cimino, 2000; Kahn, 1998). For example, NEON (Networked-based Editor for ONtologies) 
has been designed to standardize radiology appropriateness criteria (Kahn, 1998). Individual concepts are 
represented in a semantic network and the system supports import and export of ontologies using SGML. 
Individual entities include concept name, abbreviation, synonym, and links such as affectedBy, hasPart, 
partOf and imagedBy. This approach can help to not only standardize terminology but also organize exis t-
ing vocabularies. 

On the application side, the most prevalent ontology-based activity is developing static ontologies, such as 
taxonomies or controlled vocabularies (Ashburner et al., 2000; Gennari, 1995; Godfray, 2002; Musen, 1998; 
Musen, 2002; Oliver, 1998). The goal is to standardize terminology and taxonomically organize concepts in 
specific domains to enable information sharing and system cooperation. For example, an agent in a system 
for medical diagnosis may use an ontology of clinical concepts, both during structured data entry and deci-
sion support. A diagnostic agent may need to cooperate with a bibliographic agent that uses an ontology 
for bibliographies to associate literature references with particular diseases.  

Over the years, many of these static ontologies turned into standard medical vocabularies, such as the In-
ternational Classification of Diseases (ICD-9-CM), Systematized Nomenclature of Human and Veterinary 
Medicine (SNOMED), Medical Subject Headings (MeSH), Read Codes of clinical terms, Current Procedural 
Terminology (CPT), Unified Medical Language System (UMLS), Ge neralized Architecture for Languages, 
Encyclopedia and Nomenclatures in medicine (GALEN), etc. However, none of these standards is suffi-
ciently comprehensive and accepted to meet the full needs of the electronic health record (Shortliffe, 1998; 
Langlotz et al., 2002; Strang et al., 2002). 

Despite standardization efforts, combining and synchronizing individual versions of existing medical vo-
cabularies remains an open problem (Oliver, 1998). For this reason, the National Library of Medicine has 
created a UMLS (Humphreys, 1998), which is a composite of about 60 vocabularies that contain 870,853 
concepts and 2.27 million concept names in its source vocabularies (UMLS 2002 AC). UMLS is available via 
an UMLS knowledge source server (UMLSKS) that provides a set of web-based interaction tools as well as 
an API to access the UMLS biomedical terminologies. The current UMLSKS release comprises three knowl-
edge sources: UMLS Metathesaurus (UMLS-MT), Semantic Network (UMLS-SN) and Specialist Lexicon 
(UMLS-SL). UMLS-MT comprises information about biomedical concepts from diverse controlled vocabu-
laries, as well as classifications used in patient records, administrative health data, bibliographic and full-text 
databases, and decision-support systems. A consistent categorization of all concepts from UMLS-MT is 
supported by semantic types defined in UMLS-SN. The links between the semantic types represent rela-
tionships in the biomedical domain and thus provide the structure for the Network. UMLS-SL is an English 
language lexicon containing syntactic, morphological, and orthographic information for biomedical con-
cepts. 

The Medical Ontology Group of the Italian National Research Council has been working on integrating and 
reusing existing terminological ontologies in medicine (Steve, Gangemi & Pisanelli, 1997). Steve et al. have 
designed an ontology library ON9, which is written in Ontolingua (Gruber, 1992) and Loom (MacGregor, 
1993). It includes thousands of medical concepts and organizes them into domain, generic and meta-level 
theories. They use a methodology called ONIONS to aid construction of ontologies starting from existing, 
contextually heterogeneous terminologies. This work led to a successful integration of five medical termi-
nology systems: the UMLS-SN (about 170 semantic types and relations, and their 890 defined combina-
tions), SNOMED-III (about 600 most general concepts), Gabrieli Medical Nomenclature (about 700 most 
general concepts), ICD10 (about 250 most general concepts), and the Galen Core Model- 5g (about 2000 
items). 



Another problem that must be addressed is complexity of controlled medical vocabularies. It is important to 
provide tools and techniques to facilitate the design and organization of such vocabularies. Earlier models, 
such as ICD-9-CM, DSM, SNOMED, and Read codes Version 2 (CTV2 – Clinical Terms Version 2 of the 
Read Codes) use the code not only to identify a concept uniquely, but also to indicate where a concept lies 
in the hierarchy, which thus has a tree structure. As a result, particular concept can be associated only with 
one node of the hierarchy. In addition, the number of levels in the hierarchy is usually limited, since existing 
codes have a fixed number of alphanumeric characters and each character indicates a level. For example, A--- 
specifies infectious and parasitic diseases, A1-- specifies tuberculosis, A130 specifies tuberculosis meningi-
tis, while F00- in a different part of the hierarchy specifies bacterial meningitis, and F004 meningitis - tuber-
culous. This results in duplication where the same concepts are represented by two different codes. Alterna-
tively, some systems do not use code to indicate hierarchical location, e.g., Read codes Version 3 (CTV3), 
the MED (Medical Entities Dictionary) and SNOMED-RT. The alphanumeric codes are a label for the con-
cept and no longer represent the hierarchical relationship. Li. et al. (2002) describes a DAG structure enrich-
ment of the tree-structured Semantic Network of the UMLS. Gu et al. (1999) proposes a methodology to par-
tition vocabularies into contexts where each context contains an isA tree hierarchy. Liu et al. (1999, 2002) 
shows how to partition an existing MED dictionary, which comprises 48,000 concepts, over 61,000 isA links 
and over 71,000 additional links (e.g., categoryOf, roleOf). Based on the partioning into sets of concepts 
with the same sets of properties, MED has been implemented using a commercial object-oriented database 
management system (ONTOS). 

Ontologies are also becoming an integral part of bioinformatics since they encourage common terminology 
for describing complex and evolving biological knowledge (Schulze-Kremer, 1998; Stevens et al., 2002). On-
tologies can be used to support a common access to diverse information repositories. One such example 
from biology is called TAMBIS – Transparent Access to Multiple Bioinformatics Information Sources 
(Baker et al. 1998). In this work, a uniform global schema and query interface is achieved by using an ontol-
ogy (called TaO) that describes diverse bioinformatics tasks and resources (Baker et al. 1999). The TaO 
schema does not have materialized instances. Instead, instances are extracted from several distributed data-
bases. Along similar lines, Boulos et al. (2002) describes the use of Doublin Core for creating a semantic 
medical web, to link medical web resources in a novel way to support enhanced retrieval and navigation. A 
step further in this direction is PharmaGKB, frame-based ontology for pharmacogenomics (Oliver et al., 
2002), which was designed to support heterogeneous data integration and data acquisition. Automating 
data acquisition and ontology creation further requires text mining and natural language processing (Hahn, 
Romacker & Schulz, 2002). The trend is slowly moving into automating the process of ontology creation and 
using the existing ontologies during reasoning and simulation. This trend will result in development of new 
ontologies, especially dynamic and intentional. Application of reasoning systems in medicine will require 
introduction of social ontologies. 

 

5. DISCUSSION  

Current literature on knowledge management generally agrees that the main challenges ahead lie in the realm 
of organizational culture and practices (Ruggles, 1998). However, the impact and potential of advanced in-
formation technologies, both positive and negative, should not be underestimated. Given today’s vast, 
complex and dynamic information environments, the potential for using information technology to help dis-
cover, deliver and manage knowledge is enormous (Jurisica et al., 2001). Unfortunately, the pitfalls are also 
plentiful. This is why the complementary use of concepts and techniques from information science and in-
formation systems is crucial. 

The ontological approach with an information modeling bias described in this paper derives its power from 
formal models of domain knowledge. Such models can be formally analyzed and processed for useful pur-
poses. However, many domains resist precise formalization. In such domains, formalization can become a 
straitjacket. For this reason, formal modeling techniques need to be integrated with informal ones. For in-
stance, the Unified Modeling Language (UML) has gained a foothold in software engineering practice, even 
though parts of it are informal. Informal models can help understanding a domain and bring consensus 



among collaborating software engineers. The challenge is therefore to blend the two approaches so that 
they can be used together in a seamless way. 

For example, consider the design of a form. If the content of the form fields can be arbitrary text strings, then 
there is little to be formalized. Consequently, little computational leverage can be derived from the formaliza-
tion. At the same time, such a format is highly flexible and can accommodate a broad range of inputs. How-
ever, if a field content is restricted to a finite set of pre-defined values, which obey specific rules, these rules 
can facilitate automated consistency checking, albeit at a loss in flexibility. In an e-mail message, the format 
of the address and date fields is formally defined and can be operated on by automated procedures, such as 
those for routing and sorting. One can hardly imagine an e-mail system that requires human intervention to 
interpret addresses to manually sort and route the mail through the Internet. To gain the benefit of speedy 
communication, we have learned to live with the inflexibility of formally defined email addresses. The mes-
sage body, however, is arbitrary text that requires human interpretation. When one is faced with thousands 
of messages week after week, some kind of technology support becomes desirable.  

There can be many shades in between full formalization (and the computational support it entails) and no 
formalization, as well as many forms of interactive, semi-automated support. One can do string-based re-
trieval, filter out unwanted messages, or file them automatically into pre-defined folders. To do more power-
ful processing, one would need to attribute more meaning to the content. For example, one could define pat-
terns, which would be recognized as dates within a message body. One could define concepts related to 
meetings so as to recognize meeting announcements. One could then have reminders automatically inserted 
into an appointments calendar. In order to achieve this, one needs to define an ontology of appointment 
dates (the concept of dates and available time slots in the context of appointments), and perhaps also an 
ontology of meeting scheduling – what constitutes a scheduling conflict, when is a meeting room available, 
who can approve or cancel a scheduled meetings, and the like.   

This example illustrates that ontologies are often not about an objective world, but are based on social con-
ventions and agreements. Concepts, meanings, and interpretations are relative to some community and can 
change over time. Community boundaries and identities can also be dynamic. Here again, the experience and 
expertise in Information Science for dealing with much more open-ended kinds of human knowledge can be 
invaluable. Technical frameworks are increasingly paying attention to these factors, as exemplified in the 
intentional and social ontologies outlined above. However, technological support for dealing with these 
issues, such as contextual mechanisms for knowledge scoping and sharing, multiple perspectives and mean-
ings, negotiation support, knowledge evolution, etc., can only be partial – again due to inherent limits to the 
formalization of human knowledge. 

 

6. CONCLUSIONS 

The technologies of information systems have been progressing at a rapid pace. Information systems are 
now being called upon to support knowledge management, and not just to process data or information. 
Many advances contribute to taking information systems beyond mere data into the realm of knowledge. 
These include: cooperative query processing (Chu et al., 1996), similarity-based retrieval and browsing 
(Jurisica, Glasgow & Mylopoulos, 2000), data mining and knowledge discovery (Jurisica et al., 2001), text 
understanding (Hahn, Romacker & Schulz, 2002; Riloff, 1996), data translation services (Gruber, 1993), and 
knowledge sharing (Orthner, Scherrer & Dahlen, 1994), to name a few.  

However, the key to providing useful support for knowledge management is founded on how meaning is 
embedded in information models as defined in terms of ontologies. In this paper, we have surveyed some of 
the basic concepts found under four ontological categories. We outlined the benefits and limitations of the 
ontology-based approach, and argued for the need to combine techniques from Information Science and 
Information Systems. 
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