Proc. 16th Int. Conf. Software Engineering
May 16-21, 1994, Sorrento, Italy. (to appear).

Under standing “Why” in Softwar e Process

Modelling, Analysis, and Design
(Research Paper)

Eric S.K. YuandJohnMylopoulos
Departmenbf ComputerScienceUniversity of Toronto
Toronto,Ontario,Canadav5S 1A4

Abstract

Intrying to under stand and redesign software processes,
it isoften necessaryto have an under standing of the* whys’
that underliethe whats’ —themotivations, intents, andra-
tionales behind the activities and input-output flows. This
paper presentsa model which capturestheintentionalstruc-
ture of a software process and its embedding organization,
in terms of dependency relationships among actors. Actors
depend on each other for goals to be achieved, tasks to
be performed, and resources to be furnished. The model
is embedded in the conceptual modelling language Telos.
W\e outline some analytical tools to be developed for the
model, and illustrate how the model can help in the system-
atic design of software processes. The examples used are
adaptations of the | SPW-6/7 benchmark example.

Keywords: softwareprocessamodelling, requirements
engineeringprganizatiormodelling,actordependenc

1 Introduction

A softwareprocesgefersto the setof tools, methods,
andpracticesusedto produceasoftwareproduct11]. His-
torically, softwaredevelopmenthave largely beenproduct-
centered. Recently mary researcher&nd practitioners
have refocusedheir efforts on the processdimensionof
softwareengineerinde.g.,[12 13, 14]).

At the core of most of theseefforts is someway of
describingor modellinga softwareprocess.In this papey
we proposea modelthat aimsto capturethe motivations,
intents,andrationaleghatunderliea softwareprocess.

Currentprocessnodelshave beenproposedo address
a variety of needs,e.g.,to improve understandingto fa-
cilitate communicatioror managemenr to supportand
sometimegutomateprocesenactmenf3]. Mostof these
modelsaim to expresswhat stepsa processonsistof, or
how they areto be performed. However, in orderto im-
prove or redesigraprocessye oftenneedo have adeeper

understandingaboutthe process- an understandindhat
revealsthe“whys” behindthe“whats” andthe “hows”.

Typically, procesperformersieednodelghatdetailthe
“hows”, processnanagergrefermodelsthathighlightthe
“whats”, while procesengineerchagedwith improving
andredesigningprocesseaeedmodelsthatexplicitly deal
with the“whys” '. Theneedfor differenttypesof software
processmodelsfor different purposesmay be compared
to the needfor differentlanguagedo represensoftware
products at differentlevels — requirementgproviding the
“why”), design(specifyingthe “what”), andimplementa-
tion (giving the“how”) (e.g.,[15]).

The needto capturedesignrationalesbehindsoftware
products is well recognizede.g.,[21]). However, to ad-
dresgrocessrationale weneedo faceuptothedistributed,
organizationahatureof processesBecausesoftwarepro-
cessesre carriedout by mary partiesor individuals,the
“whys” for aprocesaretypically notdictatedoy somepro-
cessengineerbut reflectthe comple socialrelationships
amongprocessparticipants. When consideringdifferent
options for improvement, software engineers,managers
and other stakeholder#n the organizationneedto under
standhow eachoption would affect their daily work, and
their pursuitof projectandpersonaboals. This deepeun-
derstandingvould helpthemchooserocesslesignoptions
thatmeettheir needsandinterests.

We assumehat procesgarticipantsare organizational
actorswho needto copewith problemscooperatiely on
anon-goingbasis.How actorsmakeuseof, andconstrain,
eachothers’problemsolvingactiity is thereforeanimpor-
tantaspecbf asoftwareprocesghatneedso bemodelled
andreasonedbout.In theActor Dependency model,actors
dependon eachotherfor goals to be achieved, tasks to be
performedandresourcesto befurnished.By modellingthe
structureof theseintentional dependencies amongactors,
we provide a higher level characterizatiorof a software

Twe follow [17] in distinguishinghesethreeclassesf usersof soft-
wareprocessnodels.

process.

Themodeldistinguishesimongour typesof dependen-
cies,reflectingthe typesof freedomallowed by oneactor
on the otherin a dependeng relationship. Commitment
and criticality characterizehe strengthof a dependengc
Dependenciearethreadedhroughroles andpositions, as
well asphysicalagents, creatingan intricateweb of rela-
tionshipsthatwe call theintentional structure of the soft-
wareprocess. The modelis embeddedn the conceptual
modellinglanguagelelos[18]. Thesemantic®f themod-
elling conceptsrecharacterizedsingintentionalkconcepts
developedin agentmodellingin Al (e.g.,[2]).

The Actor Dependeng model allows an analystto
explore opportunitiesopento actorsby matchingwants
againstabilities, to identify vulnerabilitiesof actorsaris-
ing from their dependenciesandto recognizechannels
by which actorscanmitigatetheir vulnerabilities,suchas
mechanism$or enforcing acommitmentassuring its suc-
cessandinsuring againsfailure. Theability to assesthese
broaderimplicationshelp differentiateamongalternatves
in effortsto designor redesigrsoftwareprocesses.

The perspectie on softwareprocesanodelling,analy-
sis,anddesignadoptedn this paperis basedon our work
in requirementengineering. In requirementengineer
ing, therehasbeenrecognitionfor sometime that under
standingand modelling the ervironmentis an important
part of systemsdevelopment. More recently framevorks
have beenproposedhattreatsystemandervironmentasa
wholeto bejointly modelled analyzedanddesignede.g.,
[7,4,8,6,19).

In our approachwe emphasizéhe needto modelhow
actorsdealwith problemson an on-goingbasis,by mod-
elling how they relateto eachotherat anintentionallevel.
The basic Actor Dependeng model has been proposed
in the context of information systemsequirementengi-
neering[24]. This presentpaperappliesthe modelto the
softwareprocesslomain,andextendsour earlierresultsin
severalways. It shavs how themodelcanbeembeddedh
aconceptuamodellingframevork, makinguseof structur
ing mechanismsuchas classificationand generalization.
It outlinesanalyticaltoolsfor the model,andillustratesits
usein adesigncontet. It alsoelaboratesntheconcept®f
roles,positions,andagentsusingaricherexamplesetting
thanin previouspapers.

Section? of this papempresentshe modellingconcepts
of the Actor Dependeng model. Section3 sketcheghe
formal representatiorof the model. Section4 outlines
thetypesof analyseghat canbe supportediy the model.
Sectionb placeghemodelin thecontext of processlesign.
Section6 discusseghe proposedapproachin relationto
existing research Section7 dravs someconclusiongrom
ourwork andoutlinesfuturework.

2 An Actor Dependency model

Thebasicfeaturef theActor Dependeng(AD) model
have been presentedin an earlier paper[24], and are
briefly reviewed in section2.1. The conceptsare illus-
tratedusinga simpleexampleof a softwareprojectorgani-
zation. Section2.2 extendsthebasicmodelby distinguish-
ing rolesandpositionsfrom agents.Dependencieacross
role/positionAgentrelationshipgeflectthe moreelaborate
andsubtleaspect®sf softwareprocessesTheexampleused
is anadaptatiorof theISPW6/7 benchmarlexample[16].

2.1 Thebasic model

An Actor Dependeng modelconsistsof a setof nodes
andlinks. Eachnoderepresentsn actor, and eachlink
betweertwo actorsindicateshatoneactordepend®nthe
other for somethingin order that the former may attain
somegoal. We call the dependingactor the depender,
andthe actorwho is dependediponthe dependee The
objectaroundwhichthedependengcrelationshipcentress
calledthedependum. By dependingpnanotheiactorfor a
dependumanactor(thedependerjs ableto achieve goals
thatit wasnotableto dowithoutthedependeng or notas
easilyor aswell. At thesametime,thedependebecomes
vulnerable. If the dependedails to deliver thedependum,
the dependemwould be adwerselyaffectedin its ability to
achieveits goals.

Figurel shavsanActor Dependengmodelfor ahypo-
thetical(andsimplistic) softwareengineeringrojectorga-
nization. A customedepend®naprojectmanageto have
a systemdeveloped. The projectmanagein turn depends
on a designera programmeranda testerto do the tech-
nical work andbe on schedule.Technicalteammembers
depencdon eachotherfor intermediatevork productssuch
asthe design,code,andtestresults. The manageis also
dependedn by his bossfor no projectoverrun, and by
the quality assurancenanageffor the systemto be main-
tainable. The userdependson the projectmanageifor a
userfriendly andhigh performancesystem.

TheActor Dependengmodeldistinguishesmonghree
maintypesof dependencie®asedntheontologicalcate-
gory of thedependumpnamely assertionactivity, or entity
[9].

In aGoal Dependency, anactordepend®n anotherto
makea conditionin theworld cometrue. Becausenly an
endstateor outcome(expressedisan assertioraboutthe
world) is specified,the dependeés given the freedomto
choosehow to achieve it. In the exampleof Figurel, the
goaldependencrelationshipdetweerntheprojectmanager
andhis staf meanghatit is up to membergo decidehow
to dotheirjob. Thecustomedoesnotcarehow thesystem
is developed.lt is the outcomehatmatters.

LEGEND
Depender Dependee O Actor

—o(_)5~ Task Dependency
-~ Goal Dependency

—8-[_]-&- Resource Dependency

5 Soft-Goal Dependency

5
UserFriendly
[System
iPerfor
[System]/

o D o Q
Design) & Notification
° OfCompgletion
¢f (Complete
onSched implemeyt St tion)
Design]

Testing)
Advancenjent OnSched
NoGoldPlating [Career] [Testing]
& [Design] OnSched
hallenging Implemenjgtion] o
q

¢ |TaskAsg) ‘] Pl Q

e
X a Deslgn
Designer] Program er
B Tes
Resu\ts

Figurel: An Actor Dependency Model of A Simple Software
Project Organization

Maintainaple
[System| QA
Manager)
Broadene
< Notification |[TaskAsgmt]
% OfCompletion

‘Completeq

(Module)

Code

In a Task Dependency, anactordepend®n anotherto
performan activity. The dependes goal for having the
activity performedis not given. The actiity description
specifiesa particularcourseof action. The programmer
depend®nthetesteito testamodulevia ataskdependengc
by specifyingatestplan. If the projectmanagemwereto
indicatethe technicalstepsfor eachteammembetto carry
out, thenthe managexvould berelatingto his staf by task
dependencies.

In a Resource Dependency, an actor dependon an-
otherfor the availability of anentity (physicalor informa-
tional). Thedependetakesthe availability of theresource
to be unproblematiqnot requiring problemsolving, from
the dependes standpoint).In Figure 1, the generalman-
agersdependenconthecustomefor paymentthetesters
dependenc on the programmeffor code,andthe project
manages dependenconhistechnicaktaf for notification
of taskcompletionaremodelledasresourcalependencies.

A fourth type of dependeng Soft-Goal Dependency,
is avariantof thefirst. It is differentfrom a (hard)goalde-
pendeng in thatthereisnoa priori, cut-and-drycriteriafor
whatconstitutesneetingthe goal. The meaningof a soft-
goalis specifiedn termsof themethodghatarechoserin
the courseof pursuingthe goal. The dependeeontritutes
to theidentificationof alternatves,but thedecisionis taken
by the dependerThenotion of soft-goalallows themodel
to dealwith mary of the usuallyinformal concepts. For

example theprojectmanages dependencon his bossfor

recognitioncanbe achievedin mary differentways. What
constitutessufficient recognitionneedsto be worked out
betweerthe two, andis ultimately decidedby the depen-
der Treating“no projectoverrun” and“on schedule”as
soft-goalsindicatesthat theseare not evaluatedasbinary
yes/noassertions. A (hard) goal dependenc would be
usedif thereis a sharpcutoff, e.g.,if the productmustbe
deliveredeitherby a promiseddate,or not deliveredatall.

The four typesof dependenciedifferentiatehow the
dependerand dependeeelateto eachotherin terms of
theirfreedomin solvingproblemsandachieiing goals.We
alsodistinguishamongthreedegreesof strength.

In anOpen Dependency, adependewouldlike to have
the dependungoal achieved, task performed,or resource
available,sothatit couldbeusedin somecourseof action.
But failure to obtain the dependumwould not affect the
dependegsgoalsto ary greatextent. Onthedependeside,
an opendependengis a claim by the dependeg¢hatit is
ableto achieve the dependunior somedepender

In a Committed Dependency, the dependehasgoals
which would be significantly affected — in that some
plannedcourseof action would fail — if the dependum
is not achieved. Becauseof its vulnerability, a committed
dependewould be concernedbouttheviability of thede-
pendeng. Onthedependeside,acommitteddependenc
meanghatthe dependeavill try its bestto deliver thede-
pendume.g. by makingsurethatits own dependenciesre
viable.

InaCritical Dependency, thedependehasgoalswhich
would be seriouslyaffected— in thatall known courseof
actionwould fail — if the dependuris not achieved. In
thiscasewe assumehatthedependewouldbeconcerned
not only aboutthe viability of thisimmediatedependeng
but alsoabouttheviability of thedependes'dependencies,
andthedependea’dependea’dependenciesindsoforth.
In Figurel, the generaimanages critical dependencon
having good relationswith the customermwould lead him
to be concernedaboutwhetherthe project managercan
(andwill) develop a systemanddeliver it quickly to the
customerandwhethertechnicalteammemberswill also
dotheirpart.

2.2 Roles, positions, agents, and associations

ThebasicActor Dependeng modelcanbe extendedby
refining the notion of actorinto notionsof role, position,
andagent.

A roleis anabstrachctor Dependencieareassociated
with a role whenthesedependencieapply regardlessof
who plays the role. For example,the role “Monitoring
ProjectProgress’dependon progresseportsfrom team
membersregardlesof whois doingthe monitoring.

LEGEND

Depender Dependee
[]-o~ Resource Dependency

@ 43_<:>_& Task Dependency
-5)b~ Goal Dependency

@ Soft-Goal Dependenc]

-
O Open (uncommitted) X Critical

&

Offwary OCCUPIES i QA
anagenje Managey
ofessig

OVERS

g
g onitorig)
ProjPlal Progresk
N—"
Notification
OfCompletion

Advancement

Q)

Detected

occ
(defects)

Softwarg 1SA <
Engineg QA
Enginee
e
BRS @

Deeper

Understahding
ProbDoynain]
COVER
D
Approved
(Design)
S, N

COVERS

odifyiny

g -
a—_Design, Approval Code
~—" 4/ N G—|Modified q
Source
a Modified Q

ObjCode Feedb
D OnCode

Figure2: An Actor Dependency model with roles, positions, and agents (adapted from ISPW-6/7 benchmark example)

An agent is anactorwith concretephysicalmanifesta-
tions,suchasa humanindividual. An agenthasdependen-
ciesthat apply regardlessof what roles he/she/ithappens
to be playing. For example,if John,the projectmanager
desiregecognitionfrom his boss,Johnwantsthe creditto
go towardshis personakelf, not to the positionof project
managefwhich hehopedo befilled by someone&lseupon
his own promotion),nor to ary of the abstractroles that
Johnplays(e.g. “Monitoring Progress”).We usetheterm
agent insteadof persorfor generalitysothatit canbeused
to referto humanaswell asatrtificial (hardware/software)
agents.

A position is intermediaten abstractiorbetweerarole
andanagent. It is a setof rolestypically assignedointly
to oneagent.For example thepositionof projectmanager
cover sthetworolesof “SchedulingAnd AssigningTasks”,
and“Monitoring Progress” We saythatanagentoccupies
aposition.

Figure 2 shavs an example of an Actor Dependeng
modelof a softwareengineeringprocesrganizatiorwith
agentsroles,andpositions.It isanadaptatiorof thelSPW
6/7 benchmarlexample[16]. The organizationincludesa
project managerdesignengineersand quality assurance
engineers.The examplesettingincludessix technicalac-
tivities (from “Modifying Design”to “Unit Testing”) and
two managemenactiities (“SchedulingAnd Assigning
Tasks”and“Monitoring Progress”pertainingto thedevel-
opmentandtestingefforts requiredto respondo a change
request.

Theintentionalstructureof this organizatiorcloselyre-
sembleghe onein Figurel. Separatingut the concepts
of roles,positions andagentgyivesafiner groupingof de-
pendenciessothatonecouldidentify morepreciselyhow
onedependencmightleadto otherdependenciesThede-
pendeng structurein Figure2 canbeunderstoodn terms
of threemain systems. One setof dependenciesanbe
tracedto thecustomers goaldependencto have amodule
changedThisleadgotheprojectmanagesdependencto
have eachportionof theprojectcompletedy therespectie
technicakoles(shavn atthebottomof thefigure),andalso
to the dependencieamongthetechnicalroles. An “ISA”
constructrepresentingonceptualjeneralizationspecial-
izationis usedto simplify the presentatiorfnearcentreof
figure).

A secondsystencanbetracedto thegeneraimanages
dependencon theprojectmanagefor no projectoverrun.
Thisleadstheprojectmanageto depencdnteammembers
to beonscheduleandto notify completion.A third system
canbetracedto the generalmanages dependencon the
QA manageffor high quality on softwareproduced.This
leadsthelatter’s dependenciesn the Reviewing and Test-
ing roles. Theremainingdependenciesanbetracedto the

needfor viability of thedependencies themainsystems.
Thesewill bediscussedh sectior4.

Therecanbedependencigisom anagento theposition
thatit occupies.“Design Specialist’is a classof agents,
eachof whomhaving a dependencon the positionthatit
occupies— namely“Design Engineer”,for achie’zing the
goalthatdesignsproducedbe state-of-the-artlIf the goal
is notmet,anagentmay seekanothermposition.

Roles, positions, and agentscan eachhave subparts.
Aggregateactorsarenot compositionalvith respecto in-
tentionality Eachactor regardlesof whetherit hasparts,
or is part of a larger whole, is takento be intentional.
Eachactorhasinherenffreedomandis thereforeultimately
unpredictable.Therecanbe intentionaldependenciebe-
tweenthe whole andits parts,e.g.,a dependeng by the
wholeonits partsto maintainunity.

We usethe term association to refer to a collectionof
roles, positions,and agentswhich are interconnectedy
the “plays”, “occupies”, and “covers” relations. Various
specializedormsof associationsanbedefinedoy refering
to their intentional properties. For example, part of the
definitionof ateammightincludethepropertythatagentsn
theteamarerewardedor theireffort mainlyattheaggreate
level ratherthanattheindividuallevel.

3 A conceptual modelling framewor k

Theconceptof theActor Dependengmodelaregiven
formal interpretationto avoid ambiguity and to permit
the developmentof toolsfor manipulatingknowledgeex-
pressedn the model and for draving conclusionsfrom
them.

Actor Dependengconceptsaredefinedn termsof more
basicintentionalconceptsuchasbelief, goal, ability, and
commitment. Theseconceptshave beenformalizedin
modallogic for modellingagentsn Al (e.g.,[2, 23]). We
have adaptedthesefor formalizing the dependengc rela-
tionshipsbetweenactors. For example,we characterizea
committeddependencasa commitmenton the depender
side plus the dependes belief that the dependeés com-
mitted.

CommittedTo(a,b,) = Depender Committed(a, d)
ABelieves(a, DependeeCommitted(b, ¢))

Onthedependeside,commitmentimpliesthatthe de-
penderbelievesthat someplanwill fail if the dependum
(¢) is notachieved. Thisreflectsthevulnerabilityaspecbf
thedependengc

DependerCommitted(a, ¢) D
Believes(a,Ip(—¢ D fail(a,p)))

The enablingaspeciof the dependengis reflectedby
the dependes belief thatthe dependedasa plan which
will resultin ¢ beingtrue,andthateverythingthatthe plan
depend®n areviable.

DependeeCommitted(b,) D
Believes(b, Ip(result(p, ¢) A allDepViable(b, p)))

Theseaxiomsarepresentedn detailin [27]. A prelim-
inary versionappearedh [24].

Softwareprocessetypicallyinvolvemary roles,agents,
and positions, with comple networksof dependencies.
EmbeddingheActor Dependengmodelintoaformalcon-
ceptualmodellingframevork would allow the potentially
large amountsof knowledgeaboutsoftwareprocesses$o
be managedindusedeffectively. We have chosernto em-
bedthe conceptof the Actor Dependeng modelinto the
conceptuaiodellinglanguagélelos[18]. In doingso,we
obtainanobject-orientedepresentationdtamevork, with
classificationgeneralizationaggreation, attribution, and
time. The extensibility of Telos, dueto its metaclassi-
erarchyandtreatmenof attributesasfull-fledgedobjects,
facilitatesthe embeddingof new modellingfeaturessuch
asActor Dependeng concepts.

Class t AttributeClass

MetaMetaClasses §
MetaClasses To CommittedTo

depends/_Dependsclass dependee
DependumClass
AgentClass depended /_DepgndedClass depender P
occypies A 1A
plays ISA
PositionClass _ISA. ActorClass 1$A
covyers I1SA
RoleClass A resDepends/— ResDependsClass
resDepended ResDependedClass ResourceClass
CompositeActorClass
SmpleClasses ReviewingDesign
rd 7 I\Adifyingcade
o ! md 2 P .
ModifyingDesign f&=ModifiedDesign
Tokens ReviewingDesign3
ModifyingCode3
ModifyingDesign3 ModifiedDesign3

Figure3: A partial semantic schema for the Actor Dependency
model, with domain example (unlabelled arrows are InstanceOf
links)

The schemafor the Actor Dependeng model is de-
fined at the metaclasdevel in Telos(Figure 3). Domain
classesuchasModifyingDesign wouldbedefinedasin-
stance®f somemetaclassin this caseRoleClass. Meta-
classesireinstances®f metametaclasse$huskoleClass
andActorClass arebothinstancef the metametaclass
Class. This metaclasgacility in Telosallowsthe schema
to be expressedvithin the sameframevork asdomainob-
jects.

An instanceof ActorClass (€.9g.,ModifyingDesign)
canhave asanattributesomeinstanceof DependedClass
(e.g.,ModifiedDesign). Thisis usedasthe basiccon-
structfor representingctordependenciesTheschemdor
thisis definedby thelinks labelleddepends (if thenamed
actoris thedependeranddepended (if thenamedactoris
thedependee).

We makeuseof the Telosfacility for allowing attributes
on attributesto specify the other party in a dependengc
Sincethe attribute classDependedClass is afull-fledged
object,we candefineanattributedepender onit. Theex-
ampleshovsModifyingDesign ashaving two dependers
(ReviewingDesign andModifyingCode) on its depen-
dumModifiedDesign.

The four typesof dependencieare definedas special-
izationson eachof DependsClass andDependedClass.
For brevity, Figure3 only shavsthespecializationfor Re-
sourceDependeng Commitments representedsanother
attributeon ActorClass with attributevaluebelongingto
DependumClass. This canbeusedto qualify ary depen-
deng. Criticality is definedanalogously

Becausdelosallows integrity constrainton ary class,
thesemanticefthe Actor Dependengmodelcanbeincor-
poratedandenforcedy statingthemasintegrity constraints
in the appropriatenetaclassesExamplesof the syntactic
representationf the AD modelin Telosaregivenin [26].

4 Analyzing softwar e processes

A softwareprocessmodel that capturesactors’ moti-
vations,intents,andrationalesprovidesa betterbasisfor
an analystto explore the broaderimplicationsof a pro-
cess. Becausesoftwareengineeringactuities involve un-
certainty actorsneedto be flexible enoughto respondto
contingentituations andbe preparedor setbackslin ac-
knowledging actors’ freedomsand constraints the Actor
Dependeng model permitsricher typesof analysisthan
conventional,non-intenticmalmodels.Theformality of the
AD modelallows computationatools to be developedto
supportanalysis. In this sectionwe suggestsometypes
of analysedy consideringwo importantaspect®f inten-
tional dependenc — the enablingaspectandthe vulnera-
bility aspect.

By enlistingthe help of dependees dependeexpands
opportunites, and can achieve what would otherwisebe
unachi@able. The customerin the exampleof Figure 1
is ableto have a systemdeveloped,by dependingon the
projectmanagerevenif the customeihasno ability to de-
velop the systemhimself. The projectmanagerdoesnot
have ability to developmenthesystemall by himself. Heis
enabledhroughdependenciesnhistechnicateam.Given
an AD modelof a softwareprocesspnecould ask: What
new relationshipsamongactorsare possible? By match-

ing theopendependencieBom dependeranddependees,
one can explore opportunitiesthat are open. Classifica-
tion andgeneralizatiorhierarchiedacilitate the matching
of dependums.

Thedown sideof adependengcfor adependeisthatthe
dependebecomes/ulnerableto the failure of the depen-
deng. A dependewould be concernedbouttheviability
of a dependenc Variousmechanismgan contribute to
fortifying a dependencandto mitigate vulnerability. In
analyzingan AD modelfor viability of dependenciesye
look for mechanismsuchasenforcement, assurance, and
insurance.

A commitments enforceabl eif thereis somewayfor the
dependeto causesomegoal of the depende¢o fail, e.g.,
if thereis areciprocaldependeng In Figurel, eachof the
technicateammembershave dependenciesn the project
manager Thesedependenciesiakethe manages depen-
deny onteammembersenforceable.The customers de-
pendenciesntheprojectmanagearenotdirectlyenforce-
able,sincetherearenoreciprocaldependencieddowever,
thegeneramanagedepend®n the customerfor payment
andfor goodcustomerelations;andthe projectmanager
depend®n the generamanagefor recognition.The cus-
tomers dependenciearethereforeindirectly enforceable
throughthe generalmanager Eachleg of indirectnessn-
troducesuncertaintyand may weakenenforceability The
lack of dependenciefsom the projectmanageto theend-
user(asopposedo the payingcustomer)eitherdirect or
indirect,would suggesthatthe users dependenciesnthe
manageareunenforceableFigure2 containsmoreexam-
plesof enforcementnechanisms.We note that enforce-
mentloops often go throughagents sinceit is ultimately
agentgespeciallyhumanagents)who arevulnerable not
abstractolesor positions.

Anotherwayto analyzeviability of a dependencis to
look for mechanismdor assuring commitment. Assur
ancemeanghatthereis someevidencethatthe dependee
will deliver, apartfromthedependea'claim. For example,
knowingthatfulfilling thecommitmenisin thedependes’
own interestwould be an assurance.In the example of
figure 2, the professionaktandardsnd pride of QA spe-
cialists provide someassuranceo the QA managerthat
his desirefor maintainablesoftwarewould be met. Unlike
in enforcement-basemeasuresan assurancenechanism
doesnot allow the dependeto takeactionthat cancause
thedepende¢o correctits behaiour.

If a conflict of interestis detectedjt would contribute
negatively to theassurancef adependeng In figure2,the
projectmanagedepend®nthedesignengineenotto add
fanciesfeaturesdbeyondthe customers requirementg‘No
Gold-Plating”). However, designspecialist®ccupyingthe
positionof designengineepreferto do state-of-the-arnte-

signs. This is nggative assurancehat the manages no
gold-platingdependencwouldbemet. An analysttanuse
the AD modelto analyzealignmentof interestsr conflicts
of interestsamongvariouscombinationof roles, agents,
andpositions.

Insurance mechanismseducethe vulnerabilityof ade-
penderby reducingthe degree of dependencen a par
ticular dependee. A dependercan improve the chances
of a dependunbeingachieved by having morethanone
dependedor the samedependum(or partsthereof). In-
cluding two softwareengineerdrom someotherteamto
do designreviewing providessomeinsurance againsfail-
ureby thedevelopmenteamto detectheirown defectgin
additionto addressinghe problemof bias). Anothertype
of insuranceis the provision of extra resourcego enable
remedialor recovrery actionuponfailure of theoriginal de-
pendenyg. Purchasingninsurancepolicy from aninsurer
isanexampleof thistype. In contrasto enforcemenor as-
suranceijnsurancemeasuresanbetakenon the depender
sidewithoutinvolving the original dependee.

Measuregor dealingwith vulnerability are oftentaken
in combination. A weekly statusreportmight be usedby
the generalmanageto assureno projectoverrun,andasa
basisfor decidingwhetherandwhenenforcemenactionis
necessary

By analyzingthe opportunites and vulnerabilities of
actorsandtheprovisionsthatactorsmaketo dealwith vul-
nerabilities,an analystcangain a fuller understandingf
the“whys” behinda softwareprocess.Questionssuchas
“Why dowe needdesignreviews?”,“Why doesthereview
teamhave thismembershigomposition?"and“Why does
the generalmanagemantweekly statusreports?” canbe
answerednorefully. An AD modelprovidesthe concep-
tualframevork andthe basisfor analyticaltools.

5 Designing software processes

Thegreaterexpressienesof theAD modelencourages
procesengineergo discernfiner distinctionsamongpro-
cessalternatves,andto chooseamongthembasedntheir
intentionalcharacteristics. We illustrate with a small ex-
ample. Figure 4 shows four alternatve arrangement$or
accomplishingestingin a hypotheticabrganization.

Procesglesignalternatvesmay be thoughtof asbeing
organizedinto a tree (or, more generally a graph). The
figureshowvs two majorbrancheswith theleft branchcon-
sistingof threealternatives. All four alternatvesmeetthe
functionalgoalof Completed(Testing) (notshavn), but
aredifferentiatedwith regardto how well they meetnon-
functionalprocesglesigngoals(shavn in the centreof the
figure).

Therelationshifbetweerthedesigningoleandthetest-
ing role (and hencebetweendesignerandtester)are dif-

Project Spirit
Manage) + Team)
¢

Team:
[Tech
/,)

Test(Code)
O\ TestPla

Tested
(Code)

Teste
[~5—([Code,
Strateg;

+
+
Fast
Turnaroungd ™=
— \ [Testing] -

Learning —
[Tester,
Designing

HiQuality
[Software]

Rewarded
[Designer]

LEGEND

S contribution
+ +ve contribution
—- -ve contribution

Q process design go

[process design
alternative

Figure4: Four process design alternatives and their qualitative evaluation with respect to process design goals

ferentin the four alternatves. In the Task Dependeng
option (left-handside, top), the designettells the testerto
follow a detailedtestplan. This hasthe advantageof fast
turnaroundbput the disadwantagdhatno oneotherthanthe
designeiis really subjectingthe softwareto test(negative
contributionto the processlesigngoalthatthe testingand
designingolesshouldbeindependent).

In the Goal Dependeng alternatve (left, middle), the
testeris given freedomon how to test, thus achies-
ing some dgyree of independence. But testing would
likely takelongerto complete,andit would not be mak-
ing use of knowledge about the designto focus test-
ing on potential weak spots (negative contribution to
WeightedEffort[Testing, Design]). A Soft-Goal
Dependenghastheadwantageof makingtestinga cooper
ative venture fosteringteamspirit, andcontributing to the
testerslearningaboutdesign.

Looking at the relationshipbetweenthe project man-
agerandtechnicalteammembersywe seethatthe teamis
rewardedas a unit (on the left-handbranch),fosteringa
strongteamspirit. This, however, makesall threealterna-
tiveson this branchweakwith respecto independencef
testing.

On the right-handside, the designerand testerare re-
wardedseparateljor theirefforts. Eachhavedependencies
from their respectrte managerswho have no immediate

dependenciebetweenthem. This alternatve is goodfor
achieving independencketweertestinganddesigning put
is negativefor fastturnarounddesign-weightetestingand
for thetesterslearningaboutdesign.

The non-intentionalnatureof the flow of Code from
designetto tester— asopposedo a Resourcédependeng
—indicateghatthetesterdoesnot have goalsthatwould be
affectedif the codeis notreceved. This might bethe case
if the QA managedoesnot considerthe responsibilityof
testingto begin until codeis receved. Thisis in contrasto
theteamsituationon theleft, in which the testerwould be
motivatedto assurepromptcompletionof design,so that
testingcould begin on time, in orderto assurereward for
thewholeteam,of which thetesteris part.

In studyinga processand seekingwaysto improve it,
onecouldtypically comeup with mary alternatves,pos-
sibly involving changego humanproceduresas well as
selectingamonga variety of featuresin supportenviron-
ments. Thesealternatves needto be evaluatedagainst
mary criteriaincluding projectobjectves(suchasquality
andproductvity) aswell aspersonatoncerngsuchasre-
wardstructuresndcareepaths).Theproces®f designing
softwareprocessesouldbegreatlyfacilitatedby providing
toolsthatcanhelpprocesengineerso systematicallypur-
suedesigngoalsby generatingandanalyzingalternatves,
andto maketradeofs. A framevork for softwareprocess

modelling,analysis,anddesignis suggestedh thelonger
versionof this paper26], basedn a proposedramevork
for requirementgngineering25].

6 Redated work

In the SoftwareProcessModelling researctarea,non-
intentionalmodelsthatfocuson actvities andinput-output
flow arethe mostcommon. More flexible formalismsin-
cludemodelswith rulesandtriggers andextensionof Petri
nets(e.g.,[5, 1]). Thesemay be viewed asproviding the

“how”, to bettersupportor automateprocessenactment.

The intentionalmodel proposedn this paperfocuseson
the“why”, in orderto supportreasoningaboutprocessm-
provementandredesign.

Fromtheperspectie of ourframework, portionsof soft-
ware procesamodelsthat are enactedoy machinebelong
inside one(or more)of the“agents”. Thefocusof the AD
modelis on externalrelationshipdbetweeragentyhuman
or otherwise). For computetbasedagentsthe AD model
senesasa requirements level model. Furtherconstraints
areneededo reducethe requirementso a designspecifi-
cation,andfrom thereto animplementatior- expressedn
anon-intentionatepresentatiosuchasprocedurabr Petri
net formalisms[15]. Computetbasedagentswith plan-
ning and problem-solvingability (e.g.,[10]), will require
lessreductionto reachanimplementation.

This paperextendsour earlier work [24, 25] by em-
beddingthe AD modelin the Telos language,outlining
someanalyticalconceptdor usewith the AD model,and
further developsthe conceptf role, position,agent,and
association Furthermorepy applyingthe framework to a
comple ervironment,the power of thefeaturesof the AD
modelto capturesubtleorganizationaissuesaremorefully
illustrated.

Most requirementamodelsof organizationalenviron-
mentsemploysomenotionsof entities,actvities, andas-
sertions,or variations,e.g.,[9]. Conceptof goals,rules,
methods,and tactics are usedvariously in a number of
requirementéramevorks,e.g.,[7, 4, 8, 6, 19]. Thedistin-
guishingfeatureof thepresenframavorkisitsintroduction
of Actor Dependeng concepts.The motivationfor these
concepteomedrom theareaof organizationatomputing,
whereit hasbeerrecognizedhatcomputingsystendesign
needgo takeinto accounthe problematicandcontingent
natureof work [22]. The AD modelaccommodategncer
tainty in organizationakervironments,and acknavledges
actors’ flexibility in coping with uncertainty by not re-
quiring designgoalsto befully reducedo non-intentimal
actvities and flows. The way organizationsretain some
degreeof stability andstructures capturedy meansf in-
tentionaldependenciesgflectingactors’ expectationson
eachothersotherwiseunpredictabldbehaiour. Expecta-

tionsarenot alwaysmet, sothatanalyses of enforcement,
assuranceand insuranceare of interest. A comparable
concepbf ensuringhasbeenproposedn [4] for morecon-
trollableenvironments.

The AD model embodiesa distributed conceptionof
intentionalit.. The intentional dimensionis represented
as relationshipshetweenactors,with dependenc chains
propagatingn all directions,criss-crossinghe organiza-
tion in the form of a network. This could be contrasted
with an alternatie conceptionof intentionality in which
globalorganizationaboalsarehierarchicallydecomposed
andassignedo individual agents.Similarly, designgoals
donotapplyuniformlyto all actors but reflecttheperspec-
tivesandinterestf eachstakeholder

The conceptof role, position, agent,and association
reflecthow organizationggroupandmanagecomple pat-
ternsof socialrelationships.The needfor multiple views
is well recognizedn requirementgngineerinde.g.,[20]).
A view-directedstratgy for requirementgcquisitionwas
suggestedn [4]. Therole/positionAgentdistinctionsug-
geststhe possibility of role-centredposition-centredand
agent-centredesignstratgies,makinguseof the abstrac-
tion underlying the distinction which is reminiscentof
layeredindependencén systemarchitectures.The three
stratgies can potentially borronv designtechniquesrom
the areasof businessdesign,job design,and humanre-
sourcemanagementespectiely.

7 Conclusions

Inthispaperwehaveproposedsoftwaregrocessnodel
thatfocuseson theintentionalrelationshipsamongactors,
andhave outlinedits usein the context of processanalysis
and design. The model is formal so that tools can be
developed. The modellingconceptsvere illustratedwith
examplesdravn from the softwareprocesditerature[16].
We sketchedhow the formal propertiesof the modelcan
be specified,and shaved how it can be embeddedn a
conceptuamodellinglanguage Analysisanddesigntools
wereillustratedby example,but remainto beimplemented
andtested.

Curtisetal. [3] have identified formality, granularity
andscriptvenessasimportantissuesfor softwareprocess
modellingresearch.The Actor Dependeng modelis for-
mal without being deterministic. Intentionalconceptsare
usedto modelactors’ expectationsabouteachother’s be-
haviour, andtheir provisionsfor unmetexpectations.Ac-
knowledgingthe inherentfreedomof actors,analyseon
the modelfocusonissuessuchasopportunitiesandrisks.
An intentionalmodel placeslimits aroundan actors be-
haviour, in termsof whatis expectedo beachieved, without
explicitly specifyingdetailedorocessteps.Thisavoidsthe
granularitydilemmaencountedn non-intentionamodels,

wherea coarse-grainedescriptionis likely to underspec-
ify by allowing too muchfreedom,while a fine-grained
descriptiontendsto overspecifyby includingprocesshar
acteristicghatarecircumstantiatatherthanessential The
AD modelis primarily intendedo beusedin a descriptive
mode. A prescriptie or proscriptve modelwhich only
specifiesofficially sanctionedr prohibitedactionswould
not allow us to reasonaboutthe potentialimpactsof ac-
tors’ violations of expectationsand commitmentswhich
we have illustratedin sectioré4.

This work representsininitial stepin usingintentional
conceptsto help understandand analyzesoftware pro-
cessesandin the useof a requirement®ngineeringap-
proachto softwareprocessdesign. We have found that
requirementengineeringconceptsancontributetowards
a numberof softwareprocessssues,anddesere further
exploration. We believe that the modellingframevork is
particularly suited to software processegas opposedto
moregenerabusinesgprocessed)ecaus®f theoftencol-
laborative problem-solvingnatureof softwarework, the
high compleity of the productsandtheamenabilityof the
work to computertool support.However, the adequag of
theframevork have yetto betestedn practice.

For futurework, we needto integratefeaturef the AD
modelinto Telosimplementationsandto developpractical
algorithmswith tractablecomputationaproperties,so as
to contributetowardsa setof toolsto aid in the systematic
modelling,analysisanddesignof softwareprocesses.

Acknowledgements. We thankthe anorymousreview-
ers,L. ChungandB. Nixon for commentandsuggestions
thatledto theimprovedpresentatiolin this paper

References

[1] S.BandinelliandA. FuggettaComputationaReflectionin
SoftwareProcessviodeling: the SLANG Approach,Proc.
15th Int. Conf. Soft. Eng., 1993,pp. 144-154.

P. R. CohenandH. J. Levesquententionis Choicewith

CommitmentArtif. Intell., 42 (3), 1990.

[3] W. Curtis, M. 1. Kellner andJ. Over, ProcessModelling,
Comm. ACM, 35(9), 1992,pp. 75-90.

[4] A. Dardenne,A. van Lamsweerdeand S. Fickas, Goal-
Directed Requirementg\cquisition, Science of Computer
Programming, 20, pp. 3-50,1993.

[5] W. DeitersandV. Gruhn,ManagingSoftwareProcessem

the EnvironmentMELMA C, Proc. 4th Int. Symp. Practi-

cal Software Development Environments, Irvine 1990,SIG-

SOFTNotes15,no.6., pp.193-205.

E. Dubois,Ph.Du Bois andA. Rifaut, Elaborating Struc-

turing and ExpressingFormal Requirement®f Compos-

ite SystemspProc. Fourth Conf. Advanced Info. Sys. Eng.,

ManchesterU.K., May 12-15,1992.

M. S.FeatherLanguageSupportfor the Specificatiorand

Developmentof CompositeSystems,ACM Trans. Prog.

Lang. and Sys. 9, 2, April 1987,pp.198-234.

(2]

(6]

[7]

10

[8] S.FickasandR.Helm,KnowledgeRepresentatioandRea-
soningin the Designof CompositeSystems]EEE Trans.
Soft. Eng., 18,6, Junel992,pp.470-482.

S. J. GreenspanRequirements Modelling: A Knowledge
Representation Approach to Software Requirements Defi-
nition, Ph.D. Thesis,Dept. Comp.Sci., Univ. of Toronto,
1984.

K. E. Huff andV. R. LesserA plan-basedhtelligentassis-
tantthat supportghe softwaredevelopmentprocesspProc.
3rd Symp. Practical Softw. Dev. Envs., Soft. Eng. Not. 13(5)
1989,pp.97-106.

W. Humphrey, Managing the Software Process, Addison-
Wesley, ReadingMass.,1989.

Proc. 8th International Software Process Workshop, 1993.
Proc. 2nd International Conference on the Software Pro-
cess, Berlin, Germary, Feh 1993.

Proc. 15th Int. Conf. Soft. Eng., Baltimore,May 1993.

M. Jarke, J. Mylopoulos, J. W. Schmidt, Y. Vassiliou,
DAIDA: An Environmentfor Evolving Information Sys-
tems,ACM Trans. Info. Sys., 10(1)Jan.1992,pp.1-50.

M. Kellner, P. Feiler, A. Finkelstein,T. Katayamal.. Os-
terweil, M. Penedo,and H. Rombach,SoftwareProcess
Modeling ExampleProblem,from 7th Int. Software Pro-
cess Workshop, Yountville, California, Oct. 1991.

N. Madhavji, TheProces€ycle,l EE Software Engineering
Journal, Spec.Issueon SoftwareProcessand Its Support,
N. Madhavji, W. Schéfer, eds. 6(5) Sept.1991,pp.234-242.
J.Mylopoulos,A. Borgida,M. Jarke M. KoubarakisTelos:
RepresentinginowledgeaboutinformationSystemsACM
Trans. Info. Sys., 8 (4), 1991.

J.Mylopoulos,L. Chung,B. Nixon, RepresentingndUs-
ing Non-FunctionaRequirementsA Process-Orientefip-
proach|EEE Trans. Soft. Eng., 18 (6), Junel992.

B. Nuseibeh,). Kramer A. Finkelstein Expressinghe Re-
lationshipsBetweerMultiple Viewsin RequirementsSped-
fication,15th Int. Conf. Soft. Eng., Baltimore,1993,pp.187-
196.

C. Pottsand G. Bruns, Recordingthe Reasongor Design
DecisionsProc. Int. Conf. Soft. Eng., 1988,pp.418-427.
L. SuchmanQffice ProceduressPracticalAction: Mod-
els of Work and SystemDesign,ACM Trans. Office Info.
Systems, 1(4) Oct. 1983,pp.320-328.

B. Thomasy. ShohamA. SchwartzandS.Kraus,Prelim-
inary Thoughtson an Agent DescriptionLanguage/nt. J.
Intell. Sys., Vol. 6,1991,pp. 498-508.

E. Yu, Modelling Organizationsfor Information Systems
Requirement&ngineering,Proc. 1st IEEE Symp. on Re-
quirements Engineering, SanDiego, Jan.1993,pp.34-41.
E. Yu, An OrganizationModelling Frameavork for Infor-
mation SystemsRequirement&ngineeringProc. 3rd Ws.
Info. Techs. & Sys., Orlando,Dec.1993,pp.172-179.

E. Yu andJ. Mylopoulos, Understanding “ Why" in Soft-
ware Process Modelling, Analysis, and Design, Tech.Re-
port DKBS-TR-94-3,Dept. Comp. Sci., Univ. of Toronto,
Feh 1994.

E. Yu, A Framework for Organization Modelling, Ph.D.
ThesisDept.Comp.Sci., Univ. of Toronto,forthcoming.

9]

[10]

[11]

[12]
(13]

[14]
[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

[27]

