
Proc. 16th Int. Conf. Software Engineering
May 16-21, 1994, Sorrento, Italy. (to appear).

Understanding “Why” in Software Process

Modelling, Analysis, and Design

(Research Paper)

Eric S.K. Yu andJohnMylopoulos
Departmentof ComputerScience,Universityof Toronto

Toronto,Ontario,CanadaM5S1A4

Abstract

In trying to understand and redesign software processes,
it is often necessary to have an understanding of the “whys”
that underlie the “whats” – the motivations, intents, and ra-
tionales behind the activities and input-output flows. This
paper presentsa model which captures the intentionalstruc-
tureof a software process and its embedding organization,
in terms of dependency relationships among actors. Actors
depend on each other for goals to be achieved, tasks to
be performed, and resources to be furnished. The model
is embedded in the conceptual modelling language Telos.
We outline some analytical tools to be developed for the
model, and illustrate how the model can help in the system-
atic design of software processes. The examples used are
adaptations of the ISPW-6/7 benchmark example.

Keywords: softwareprocessmodelling,requirements
engineering,organizationmodelling,actordependency.

1 Introduction

A softwareprocessrefersto the setof tools,methods,
andpracticesusedto produceasoftwareproduct[11]. His-
torically, softwaredevelopmenthave largelybeenproduct-
centered. Recently, many researchersand practitioners
have refocusedtheir efforts on the processdimensionof
softwareengineering(e.g.,[12, 13,14]).

At the core of most of theseefforts is someway of
describingor modellinga softwareprocess.In this paper,
we proposea modelthat aimsto capturethe motivations,
intents,andrationalesthatunderlieasoftwareprocess.

Currentprocessmodelshave beenproposedto address
a variety of needs,e.g., to improve understanding,to fa-
cilitate communicationor management,or to supportand
sometimesautomateprocessenactment[3]. Mostof these
modelsaim to expresswhat stepsa processconsistsof, or
how they areto be performed. However, in order to im-
proveor redesignaprocess,weoftenneedto haveadeeper

understandingaboutthe process– an understandingthat
revealsthe“whys” behindthe“whats” andthe“hows”.

Typically,processperformersneedmodelsthatdetailthe
“hows”, processmanagersprefermodelsthathighlight the
“whats”, while processengineerschargedwith improving
andredesigningprocessesneedmodelsthatexplicitly deal
with the“whys”

�
. Theneedfor differenttypesof software

processmodelsfor differentpurposesmay be compared
to the needfor different languagesto representsoftware
products at differentlevels – requirements(providing the
“why”), design(specifyingthe“what”), andimplementa-
tion (giving the“how”) (e.g.,[15]).

The needto capturedesignrationalesbehindsoftware
products is well recognized(e.g., [21]). However, to ad-
dressprocess rationale,weneedtofaceuptothedistributed,
organizationalnatureof processes.Becausesoftwarepro-
cessesarecarriedout by many partiesor individuals,the
“whys” for aprocessaretypicallynotdictatedbysomepro-
cessengineer, but reflectthe complex socialrelationships
amongprocessparticipants. When consideringdifferent
options for improvement,softwareengineers,managers
andotherstakeholdersin the organizationneedto under-
standhow eachoption would affect their daily work, and
theirpursuitof projectandpersonalgoals.Thisdeeperun-
derstandingwouldhelpthemchooseprocessdesignoptions
thatmeettheirneedsandinterests.

We assumethatprocessparticipantsareorganizational
actorswho needto copewith problemscooperatively on
anon-goingbasis.How actorsmakeuseof, andconstrain,
eachothers’problemsolvingactivity is thereforeanimpor-
tantaspectof asoftwareprocessthatneedsto bemodelled
andreasonedabout.In theActor Dependency model,actors
dependon eachotherfor goals to beachieved, tasks to be
performed,andresources tobefurnished.By modellingthe
structureof theseintentional dependencies amongactors,
we provide a higher level characterizationof a software

�
We follow [17] in distinguishingthesethreeclassesof usersof soft-

wareprocessmodels.

process.
Themodeldistinguishesamongfour typesof dependen-

cies,reflectingthe typesof freedomallowedby oneactor
on the other in a dependency relationship. Commitment
andcriticality characterizethe strengthof a dependency.
Dependenciesarethreadedthroughroles andpositions, as
well asphysicalagents, creatingan intricatewebof rela-
tionshipsthatwe call the intentional structure of thesoft-
wareprocess.The model is embeddedin the conceptual
modellinglanguageTelos[18]. Thesemanticsof themod-
ellingconceptsarecharacterizedusingintentionalconcepts
developedin agentmodellingin AI (e.g.,[2]).

The Actor Dependency model allows an analyst to
explore opportunitiesopen to actorsby matchingwants
againstabilities, to identify vulnerabilitiesof actorsaris-
ing from their dependencies,and to recognizechannels
by which actorscanmitigatetheir vulnerabilities,suchas
mechanismsfor enforcing acommitment,assuring its suc-
cess,andinsuring againstfailure.Theability toassessthese
broaderimplicationshelpdifferentiateamongalternatives
in efforts to designor redesignsoftwareprocesses.

Theperspective on softwareprocessmodelling,analy-
sis,anddesignadoptedin this paperis basedon our work
in requirementsengineering. In requirementsengineer-
ing, therehasbeenrecognitionfor sometime that under-
standingand modelling the environmentis an important
part of systemsdevelopment.More recently, frameworks
have beenproposedthattreatsystemandenvironmentasa
wholeto bejointly modelled,analyzed,anddesigned(e.g.,
[7, 4, 8, 6, 19]).

In our approach,we emphasizetheneedto modelhow
actorsdealwith problemson anon-goingbasis,by mod-
elling how they relateto eachotherat anintentionallevel.
The basic Actor Dependency model has beenproposed
in the context of informationsystemsrequirementsengi-
neering[24]. This presentpaperappliesthe modelto the
softwareprocessdomain,andextendsourearlierresultsin
severalways.It showshow themodelcanbeembeddedin
aconceptualmodellingframework,makinguseof structur-
ing mechanismssuchasclassificationandgeneralization.
It outlinesanalyticaltoolsfor themodel,andillustratesits
usein adesigncontext. It alsoelaboratesontheconceptsof
roles,positions,andagents,usinga richerexamplesetting
thanin previouspapers.

Section2 of this paperpresentsthemodellingconcepts
of the Actor Dependency model. Section3 sketchesthe
formal representationof the model. Section4 outlines
the typesof analysesthatcanbesupportedby themodel.
Section5 placesthemodelin thecontext of processdesign.
Section6 discussesthe proposedapproachin relation to
existing research.Section7 draws someconclusionsfrom
ourwork andoutlinesfuturework.

2 An Actor Dependency model

Thebasicfeaturesof theActorDependency (AD) model
have been presentedin an earlier paper [24], and are
briefly reviewed in section2.1. The conceptsare illus-
tratedusingasimpleexampleof asoftwareprojectorgani-
zation.Section2.2extendsthebasicmodelby distinguish-
ing rolesandpositionsfrom agents.Dependenciesacross
role/position/agentrelationshipsreflectthemoreelaborate
andsubtleaspectsof softwareprocesses.Theexampleused
is anadaptationof theISPW6/7benchmarkexample[16].

2.1 The basic model

An Actor Dependency modelconsistsof a setof nodes
andlinks. Eachnoderepresentsan actor, andeachlink
betweentwo actorsindicatesthatoneactordependsonthe
other for somethingin order that the former may attain
somegoal. We call the dependingactor the depender,
andthe actorwho is dependeduponthe dependee. The
objectaroundwhichthedependency relationshipcentresis
calledthedependum. By dependingonanotheractorfor a
dependum,anactor(thedepender)is able to achieve goals
thatit wasnotableto dowithout thedependency, or notas
easilyor aswell. At thesametime, thedependerbecomes
vulnerable. If thedependeefails to deliver thedependum,
the dependerwould be adverselyaffectedin its ability to
achieve its goals.

Figure1 showsanActorDependency modelfor ahypo-
thetical(andsimplistic)softwareengineeringprojectorga-
nization.A customerdependsonaprojectmanagertohave
a systemdeveloped.Theprojectmanagerin turn depends
on a designer, a programmer, anda testerto do the tech-
nical work andbeon schedule.Technicalteammembers
dependoneachotherfor intermediatework productssuch
asthe design,code,andtestresults. The manageris also
dependedon by his bossfor no project overrun, andby
the quality assurancemanagerfor thesystemto bemain-
tainable. The userdependson the projectmanagerfor a
user-friendly andhighperformancesystem.

TheActorDependency modeldistinguishesamongthree
maintypesof dependencies,basedontheontologicalcate-
goryof thedependum,namely, assertion,activity, or entity
[9].

In a Goal Dependency, anactordependsonanotherto
makea conditionin theworld cometrue. Becauseonly an
endstateor outcome(expressedasanassertionaboutthe
world) is specified,the dependeeis given the freedomto
choosehow to achieve it. In theexampleof Figure1, the
goaldependency relationshipsbetweentheprojectmanager
andhisstaff meansthat it is up to membersto decidehow
to dotheir job. Thecustomerdoesnotcarehow thesystem
is developed.It is theoutcomethatmatters.

2

Notification
OfCompletion

Challenging
[TaskAsgmt]

NoGoldPlating
 [Design]

Advancement
 [Career]

Payment

 Test
(Module)

TestPlan

Code

Design

Notification
OfCompletion

Notification
OfCompletion

Maintainable
 [System]

UserFriendly
 [System]

HiPerformance
 [System]

HiQuality
[Software]Developed

[System]

Completed
(Design)

Completed
(Implementation)

Completed
(Testing) OnSched

 [Design]

 OnSched
 [Implemenation]

Customer General
Manager

User Project
Manager

 QA
Manager

 Tester Programmer

 OnSched
 [Testing]

NoOverrun
 [Project]

QuickDelivery
[System]

Recognition
[Achievement]

Broadened
[TaskAsgmt]

 Designer

GoodRelation
[Customer]

Resource Dependency

Task Dependency

Goal Dependency

Soft−Goal Dependency

D

D

D

D

D

D

D

D

Depender Dependee

LEGEND

O XOpen (uncommitted) Critical

Actor

Test
Results

D
�

D

D D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

DD

D

D

D

D

D
D

D
D D

D

D
D

D

D

D

D

D

D

D

D

D�

D
�

D

D
�

D

D

D D

D

DD

D
D

D

�
D

X
�

X
�

O
�
O
�

Figure1:
	�
�	�
���������������
�����
�
�� ��������!��#"$	&%(')*��! �+%��#",�.-$/#�0�12�0�435��
���67�08�/�
�' 9�/��:' �(

In a Task Dependency, anactordependsonanotherto
performan activity. The depender’s goal for having the
activity performedis not given. The activity description
specifiesa particularcourseof action. The programmer
dependsonthetesterto testamoduleviaataskdependency
by specifyinga testplan. If the projectmanagerwereto
indicatethetechnicalstepsfor eachteammemberto carry
out, thenthemanagerwouldberelatingto hisstaff by task
dependencies.

In a Resource Dependency, an actor dependson an-
otherfor theavailability of anentity (physicalor informa-
tional). Thedependertakestheavailability of theresource
to beunproblematic(not requiringproblemsolving,from
thedepender’s standpoint).In Figure1, thegeneralman-
ager’sdependency onthecustomerfor payment,thetester’s
dependency on the programmerfor code,andthe project
manager’sdependency onhistechnicalstaff for notification
of taskcompletion,aremodelledasresourcedependencies.

A fourth typeof dependency, Soft-Goal Dependency,
is avariantof thefirst. It is differentfrom a(hard)goalde-
pendency in thatthereisnoa priori, cut-and-drycriteriafor
whatconstitutesmeetingthegoal. Themeaningof a soft-
goalis specifiedin termsof themethodsthatarechosenin
thecourseof pursuingthegoal. Thedependeecontributes
to theidentificationof alternatives,but thedecisionis taken
by thedepender. Thenotionof soft-goalallowsthemodel
to dealwith many of the usually informal concepts.For

example,theprojectmanager’sdependency onhisbossfor
recognitioncanbeachievedin many differentways.What
constitutessufficient recognitionneedsto be workedout
betweenthe two, andis ultimatelydecidedby the depen-
der. Treating“no projectoverrun” and “on schedule”as
soft-goalsindicatesthat thesearenot evaluatedasbinary
yes/noassertions. A (hard) goal dependency would be
usedif thereis a sharpcutoff, e.g.,if theproductmustbe
deliveredeitherby a promiseddate,or not deliveredatall.

The four typesof dependenciesdifferentiatehow the
dependerand dependeerelate to eachother in termsof
theirfreedomin solvingproblemsandachieving goals.We
alsodistinguishamongthreedegreesof strength.

In anOpen Dependency, adependerwouldlike to have
the dependumgoalachieved, taskperformed,or resource
available,sothatit couldbeusedin somecourseof action.
But failure to obtain the dependumwould not affect the
depender’sgoalsto any greatextent. Onthedependeeside,
an opendependency is a claim by the dependeethat it is
ableto achieve thedependumfor somedepender.

In a Committed Dependency, the dependerhasgoals
which would be significantly affected – in that some
plannedcourseof action would fail – if the dependum
is not achieved. Becauseof its vulnerability, a committed
dependerwouldbeconcernedabouttheviability of thede-
pendency. On thedependeeside,a committeddependency
meansthatthedependeewill try its bestto deliver thede-
pendum,e.g.,by makingsurethatitsowndependenciesare
viable.

In aCritical Dependency, thedependerhasgoalswhich
would beseriouslyaffected– in thatall known coursesof
action would fail – if the dependumis not achieved. In
thiscase,weassumethatthedependerwouldbeconcerned
not only abouttheviability of this immediatedependency,
butalsoabouttheviability of thedependee’sdependencies,
andthedependee’sdependee’s dependencies,andsoforth.
In Figure1, thegeneralmanager’s critical dependency on
having goodrelationswith the customerwould leadhim
to be concernedaboutwhetherthe project managercan
(andwill) develop a systemanddeliver it quickly to the
customer, andwhethertechnicalteammemberswill also
do theirpart.

2.2 Roles, positions, agents, and associations

ThebasicActor Dependency modelcanbeextendedby
refining the notion of actor into notionsof role, position,
andagent.

A role is anabstractactor. Dependenciesareassociated
with a role when thesedependenciesapply regardlessof
who plays the role. For example, the role “Monitoring
ProjectProgress”dependson progressreportsfrom team
members,regardlessof whois doingthemonitoring.

3

 Project
Manager

Customer

Review
 Team

Test
Team

 Design
Engineer

 QA
Manager

General
Manager

Monitoring
 Progress

agent

role

position

Resource Dependency

Task Dependency

Goal Dependency

Soft−Goal Dependency

D

D

D

D

D

D

D

D

Depender Dependee

LEGEND

O X
;

Open (uncommitted) Critical

D

Technical
TaskRole

Approval
 Status Modified

 Source

Modified
ObjCode

Modified
TestPkg

Feedback
 OnCode

Notification
OfCompletion

Modified
TestPlan

Modified
 Design

Approved
 (Design)

Improved
 [Design] Improved

[TestPkg]

Completed
(TechTask) OnSched

 [TechTask]

 Team
Member

Updated
ProjPlan

Changed
(Module)

Challenging
[TaskAsgmt]

NoGoldPlating
 [Design]

StateOfArt
 [Design]

Advancement
 [Career]

Maintainable
 [Software]

Software
Engineer

 Software
Professional Design

Specialist
 QA
Specialist

Payment

 QA
Engineer

Judy Jill

John

Joe

Jack Jeff

HiQuality
[Software]

Test(Software,
 Guidelines)

Workable
 [Design]

Detected
(defects)

Recognition
[Achievement]

Scheduling&
Assigning

Modifying
 Design

Reviewing
 Design

Modifying
 Code

Modifying
TestPlan

Modifying
 TestPkg

Testing
 Unit

QuickDelivery
[Change]

NoOverrun
 [Project]

Retained
[Personnel]

D

D

D

D
D

OCCUPIES

COVERS

PART

ISA ISA

ISA

ISA ISA

OCCUPIES

OCCUPIES
OCCUPIESOCCUPIES

COVERS

COVERS

COVERS COVERS

COVERS

ISA

PART
PART

PART

PART

card=2

INS

COVERSCOVERS

Professional
QAStandards
[Software]

Deeper
Understanding
[ProbDomain]

INS

INS

INS INS

INS

GoodRelation
[Customer]

D
D

D

D

D

D

D

D

D

D

D
D

D

D

D D

D
<

D

D

D

D

D

D

D

=

D

D

>

D

D

D

D

D D

DD
D?D

DD

D

D

D

D

D

DDD

D D

D D

D

D

D
D

D
D

D
D

PLAYS

 General
Management
Professional

 Software
Management
Professional

Figure2:
	�
�	�
������@��������
�����
�
��+)A������!�-�' �CBD�0�E! ��F4GH����FI' �J' �K
�F4G@/�
�� /�8��L
��5F7MJ/���/��#�5���N":�0�K)PO %21(QSRJT�ULVXW���
�
�B�)*/���YA�[ZL/�)*��! ��\

4

An agent is anactorwith concrete,physicalmanifesta-
tions,suchasahumanindividual. An agenthasdependen-
ciesthat apply regardlessof what roleshe/she/ithappens
to beplaying. For example,if John,the projectmanager
desiresrecognitionfrom his boss,Johnwantsthecredit to
go towardshis personalself, not to thepositionof project
manager(whichhehopesto befilled by someoneelseupon
his own promotion),nor to any of the abstractroles that
Johnplays(e.g. “Monitoring Progress”).We usetheterm
agent insteadof personfor generality, sothatit canbeused
to refer to humanaswell asartificial (hardware/software)
agents.

A position is intermediatein abstractionbetweena role
andanagent. It is a setof rolestypically assignedjointly
to oneagent.For example,thepositionof projectmanager
covers thetworolesof “SchedulingAnd AssigningTasks”,
and“Monitoring Progress”.Wesaythatanagentoccupies
a position.

Figure 2 shows an exampleof an Actor Dependency
modelof a softwareengineeringprocessorganizationwith
agents,roles,andpositions.It isanadaptationof theISPW-
6/7 benchmarkexample[16]. Theorganizationincludesa
project manager, designengineersand quality assurance
engineers.The examplesettingincludessix technicalac-
tivities (from “Modifying Design” to “Unit Testing”) and
two managementactivities (“SchedulingAnd Assigning
Tasks”and“Monitoring Progress”)pertainingto thedevel-
opmentandtestingefforts requiredto respondto a change
request.

Theintentionalstructureof thisorganizationcloselyre-
semblesthe onein Figure1. Separatingout the concepts
of roles,positions,andagentsgivesa finergroupingof de-
pendencies,sothatonecouldidentify morepreciselyhow
onedependency mightleadto otherdependencies.Thede-
pendency structurein Figure2 canbeunderstoodin terms
of threemain systems. One set of dependenciescan be
tracedto thecustomer’sgoaldependency to haveamodule
changed.Thisleadstotheprojectmanager’sdependency to
haveeachportionof theprojectcompletedby therespective
technicalroles(shownatthebottomof thefigure),andalso
to thedependenciesamongthe technicalroles. An “ISA”
constructrepresentingconceptualgeneralization/special-
ization is usedto simplify thepresentation(nearcentreof
figure).

A secondsystemcanbetracedto thegeneralmanager’s
dependency on theprojectmanagerfor noprojectoverrun.
Thisleadstheprojectmanagerto dependonteammembers
to beonschedule,andto notify completion.A third system
canbetracedto thegeneralmanager’s dependency on the
QA managerfor high quality on softwareproduced.This
leadsthelatter’sdependencieson theReviewing andTest-
ing roles.Theremainingdependenciescanbetracedto the

needfor viability of thedependenciesin themainsystems.
Thesewill bediscussedin section4.

Therecanbedependenciesfromanagentto theposition
that it occupies. “DesignSpecialist”is a classof agents,
eachof whomhaving a dependency on thepositionthat it
occupies– namely“Design Engineer”,for achieving the
goal thatdesignsproducedbestate-of-the-art.If the goal
is notmet,anagentmayseekanotherposition.

Roles, positions,and agentscan eachhave subparts.
Aggregateactorsarenot compositionalwith respectto in-
tentionality. Eachactor, regardlessof whetherit hasparts,
or is part of a larger whole, is taken to be intentional.
Eachactorhasinherentfreedomandis thereforeultimately
unpredictable.Therecanbe intentionaldependenciesbe-
tweenthe whole and its parts,e.g.,a dependency by the
wholeon its partsto maintainunity.

We usethe term association to refer to a collectionof
roles, positions,and agentswhich are interconnectedby
the “plays”, “occupies”,and “covers” relations. Various
specializedformsof associationscanbedefinedby refering
to their intentionalproperties. For example,part of the
definitionof ateam mightincludethepropertythatagentsin
theteamarerewardedfor theireffort mainlyattheaggregate
level ratherthanat theindividuallevel.

3 A conceptual modelling framework

Theconceptsof theActor Dependency modelaregiven
formal interpretationto avoid ambiguity, and to permit
thedevelopmentof tools for manipulatingknowledgeex-
pressedin the model and for drawing conclusionsfrom
them.

ActorDependency conceptsaredefinedin termsof more
basicintentionalconceptssuchasbelief,goal,ability, and
commitment. Theseconceptshave been formalized in
modallogic for modellingagentsin AI (e.g.,[2, 23]). We
have adaptedthesefor formalizing the dependency rela-
tionshipsbetweenactors. For example,we characterizea
committeddependency asa commitmenton thedepender
sideplus the depender’s belief that the dependeeis com-
mitted.]7^�_S_a`5b:b�c�d�e�^(f5g hCi�h4jlk�mon cqpHcLrsd�cLt�]7^�_a_S`5b:b5c�duf5g h:jlkvxw c�y5`.c�z�cL{�f5g hIn cCpHc�rud�c�cL]7^�_a_S`5b:b5c#duf i�hJj�kCk

On thedependerside,commitmentimpliesthat thede-
penderbelieves that someplan will fail if the dependum
(|) is notachieved. Thisreflectsthevulnerabilityaspectof
thedependency.n cCpHc�rud�cLt�]7^�_a_S`5b:b5c#duf5g hIj�k�}w c�y5`.cLz�cL{Ef5g hq~ plfJ� j�}&� g(`.y:f5g h p kCkCk

The enablingaspectof the dependency is reflectedby
the depender’s belief that the dependeehasa plan which
will resultin | beingtrue,andthateverythingthattheplan
dependsonareviable.

5

n cCpucLrud�c�c�]7^E_S_a`�bJb�c�duf i�h:jlk�}w c�y5`.cLz�cL{Ef i�h[~ p�fJt�cL{��Ky5bqf�p h[j�k v g�y.y n cCps�X`.g i y.c�f i#h p kCkCk
Theseaxiomsarepresentedin detail in [27]. A prelim-

inaryversionappearedin [24].
Softwareprocessestypically involvemany roles,agents,

and positions,with complex networksof dependencies.
EmbeddingtheActorDependency modelintoaformalcon-
ceptualmodellingframework would allow the potentially
large amountsof knowledgeaboutsoftwareprocessesto
bemanagedandusedeffectively. We have chosento em-
bedtheconceptsof theActor Dependency modelinto the
conceptualmodellinglanguageTelos[18]. In doingso,we
obtainanobject-orientedrepresentationalframework,with
classification,generalization,aggregation,attribution,and
time. The extensibility of Telos, dueto its metaclasshi-
erarchyandtreatmentof attributesasfull-fledgedobjects,
facilitatesthe embeddingof new modellingfeaturessuch
asActor Dependency concepts.

plays

covers

occupies ISA

RoleClass
�

PositionClass
�

AgentClass
�

CompositeActorClass
�

ActorClass
�

DependumClass
�

ResourceClass
�

ISA

ISA

AttributeClass
�

Class
�

ISA

Tokens

SimpleClasses

MetaClasses

MetaMetaClasses

ModifyingDesign
�

ModifiedDesign
�

ModifyingDesign3
�

ModifiedDesign3
�

ReviewingDesign
�

ModifyingCode
�

ReviewingDesign3
�

ModifyingCode3
�

md

rd mc

ISA

ISA

ISA

ISA

depends

depended

ResDependsClass
�

ResDependedClass
�resDepends

resDepended

committedTo

DependedClass
�DependsClass
�

CommittedTo
�

dependee

depender

Figure3:
	���/����J' /�!�F:��)*/�
��:'
�FJ
�B��L)*/�".���(�CB���	�
��������l������
��L��
�
��)A������! G�-�' �CBA���K)*/�'
�4ZL/�)��! ��MC��
�! /�W���! ! ��� /����0��-$F�/����*O�
�F:�J/�
�
���6x"! '
LY[FC\

The schemafor the Actor Dependency model is de-
fined at the metaclasslevel in Telos(Figure3). Domain
classessuchas ���K�����H�����u�K�2�2�����u� wouldbedefinedasin-
stancesof somemetaclass,in thiscase�l�u�u�H�u�u�2�u� . Meta-
classesareinstancesof metametaclasses.Thus�l�H�u�u�u�u���u�
and �� �¡��K¢s�u�u�2�u� areboth instancesof themetametaclass�u�u�2�H� . This metaclassfacility in Telosallowstheschema
to beexpressedwithin thesameframework asdomainob-
jects.

An instanceof �� �¡��(¢��u�u�2�H� (e.g., ���(�����u���L�u�K�l�2�s���u�)
canhave asanattributesomeinstanceof �l�K£s�K�u���K�s�u�u�2�u�
(e.g., ���K���L�����K�K�2�2�����u�). This is usedasthe basiccon-
structfor representingactordependencies.Theschemafor
this is definedby thelinks labelled�s�K£��K�u�l� (if thenamed
actoris thedepender)and �s�K£��K�u�s�K� (if thenamedactoris
thedependee).

Wemakeuseof theTelosfacility for allowingattributes
on attributesto specify the other party in a dependency.
Sincetheattributeclass�l�K£��(�u���K���H�u�2�u� is a full-fledged
object,wecandefineanattribute ���K£��K�H���K¢ on it. Theex-
ampleshows ���K���L�u�����u�(�l�2�����H� ashaving two dependers
(�l�(¤����K¥��L�u�K�l�2�s���u� and ���K�@���u�����H���u�K���) on its depen-
dum ���(���������(�K�l�2���L�u� .

The four typesof dependenciesaredefinedasspecial-
izationson eachof �l�K£��(�u���(�u�H�2�u� and �2�K£��K�u�s�K���u�u���u� .
For brevity, Figure3 onlyshowsthespecializationsfor Re-
sourceDependency. Commitmentis representedasanother
attributeon �� �¡��(¢��u�u�2�H� with attributevaluebelongingto�l�K£��(�u�u¦K§l�H�u�2�u� . This canbeusedto qualify any depen-
dency. Criticality is definedanalogously.

BecauseTelosallows integrity constraintsonany class,
thesemanticsof theActorDependency modelcanbeincor-
poratedandenforcedbystatingthemasintegrity constraints
in the appropriatemetaclasses.Examplesof thesyntactic
representationof theAD modelin Telosaregivenin [26].

4 Analyzing software processes

A softwareprocessmodel that capturesactors’ moti-
vations,intents,andrationalesprovidesa betterbasisfor
an analystto explore the broaderimplicationsof a pro-
cess.Becausesoftwareengineeringactivities involve un-
certainty, actorsneedto be flexible enoughto respondto
contingentsituations,andbepreparedfor setbacks.In ac-
knowledgingactors’ freedomsandconstraints,the Actor
Dependency model permitsricher typesof analysisthan
conventional,non-intentionalmodels.Theformality of the
AD modelallows computationaltools to bedevelopedto
supportanalysis. In this sectionwe suggestsometypes
of analysesby consideringtwo importantaspectsof inten-
tional dependency – the enablingaspectandthe vulnera-
bility aspect.

By enlistingthehelpof dependees,a dependerexpands
opportunities,and can achieve what would otherwisebe
unachievable. The customerin the exampleof Figure 1
is ableto have a systemdeveloped,by dependingon the
projectmanager, evenif thecustomerhasno ability to de-
velop the systemhimself. The projectmanagerdoesnot
haveability todevelopmentthesystemall byhimself.Heis
enabledthroughdependenciesonhistechnicalteam.Given
anAD modelof a softwareprocess,onecouldask: What
new relationshipsamongactorsarepossible?By match-

6

ing theopendependenciesfrom dependersanddependees,
one can explore opportunitiesthat are open. Classifica-
tion andgeneralizationhierarchiesfacilitate the matching
of dependums.

Thedownsideof adependency for adependeris thatthe
dependerbecomesvulnerableto the failure of the depen-
dency. A dependerwouldbeconcernedabouttheviability
of a dependency. Variousmechanismscan contribute to
fortifying a dependency andto mitigatevulnerability. In
analyzinganAD modelfor viability of dependencies,we
look for mechanismssuchasenforcement, assurance, and
insurance.

A commitmentisenforceable if thereissomewayfor the
dependerto causesomegoalof thedependeeto fail, e.g.,
if thereis areciprocaldependency. In Figure1, eachof the
technicalteammembershave dependencieson theproject
manager. Thesedependenciesmakethemanager’s depen-
dency on teammembersenforceable.Thecustomer’s de-
pendenciesontheprojectmanagerarenotdirectlyenforce-
able,sincetherearenoreciprocaldependencies.However,
thegeneralmanagerdependson thecustomerfor payment
andfor goodcustomerrelations;andtheprojectmanager
dependson thegeneralmanagerfor recognition.Thecus-
tomer’s dependenciesarethereforeindirectly enforceable
throughthegeneralmanager. Eachleg of indirectnessin-
troducesuncertaintyandmayweakenenforceability. The
lack of dependenciesfrom theprojectmanagerto theend-
user(asopposedto the payingcustomer),eitherdirect or
indirect,wouldsuggestthattheuser’sdependenciesonthe
managerareunenforceable.Figure2 containsmoreexam-
plesof enforcementmechanisms.We note that enforce-
mentloopsoftengo throughagents,sinceit is ultimately
agents(especiallyhumanagents)who arevulnerable,not
abstractrolesor positions.

Anotherway to analyzeviability of a dependency is to
look for mechanismsfor assuring commitment. Assur-
ancemeansthat thereis someevidencethat thedependee
will deliver, apartfromthedependee’sclaim. For example,
knowingthatfulfilling thecommitmentis in thedependee’s
own interestwould be an assurance.In the exampleof
figure2, the professionalstandardsandprideof QA spe-
cialists provide someassuranceto the QA managerthat
hisdesirefor maintainablesoftwarewouldbemet. Unlike
in enforcement-basedmeasures,anassurancemechanism
doesnot allow the dependerto takeactionthatcancause
thedependeeto correctits behaviour.

If a conflict of interestis detected,it would contribute
negatively to theassuranceof adependency. In figure2, the
projectmanagerdependsonthedesignengineernotto add
fanciesfeaturesbeyondthecustomer’s requirements(“No
Gold-Plating”).However, designspecialistsoccupyingthe
positionof designengineerpreferto dostate-of-the-artde-

signs. This is negative assurancethat the manager’s no
gold-platingdependency wouldbemet. An analystcanuse
theAD modelto analyzealignmentof interestsor conflicts
of interestsamongvariouscombinationsof roles,agents,
andpositions.

Insurance mechanismsreducethevulnerabilityof ade-
penderby reducingthe degreeof dependenceon a par-
ticular dependee.A dependercan improve the chances
of a dependumbeingachieved by having more than one
dependeefor the samedependum(or partsthereof). In-
cluding two softwareengineersfrom someother teamto
dodesignreviewing providessomeinsurance againstfail-
ureby thedevelopmentteamto detecttheirowndefects(in
additionto addressingtheproblemof bias). Anothertype
of insuranceis the provision of extra resourcesto enable
remedialor recoveryactionuponfailureof theoriginalde-
pendency. Purchasinganinsurancepolicy from aninsurer
is anexampleof thistype. In contrastto enforcementor as-
surance,insurancemeasurescanbetakenon thedepender
sidewithout involving theoriginaldependee.

Measuresfor dealingwith vulnerabilityareoftentaken
in combination.A weeklystatusreportmight beusedby
thegeneralmanagerto assurenoprojectoverrun,andasa
basisfor decidingwhetherandwhenenforcementactionis
necessary.

By analyzingthe opportunities and vulnerabilitiesof
actors,andtheprovisionsthatactorsmaketodealwith vul-
nerabilities,an analystcangain a fuller understandingof
the“whys” behinda softwareprocess.Questionssuchas
“Why doweneeddesignreviews?”,“Why doesthereview
teamhavethismembershipcomposition?”and“Why does
thegeneralmanagerwantweeklystatusreports?” canbe
answeredmorefully. An AD modelprovidestheconcep-
tual framework andthebasisfor analyticaltools.

5 Designing software processes

Thegreaterexpressivenessof theAD modelencourages
processengineersto discernfiner distinctionsamongpro-
cessalternatives,andto chooseamongthembasedontheir
intentionalcharacteristics.We illustratewith a small ex-
ample. Figure4 shows four alternative arrangementsfor
accomplishingtestingin a hypotheticalorganization.

Processdesignalternativesmaybe thoughtof asbeing
organizedinto a tree(or, more generally, a graph). The
figureshowstwo majorbranches,with theleft branchcon-
sistingof threealternatives. All four alternativesmeetthe
functionalgoalof �u�¨§�£s�u�K¡��K��©�ª��2��¡@���u�$« (notshown),but
aredifferentiatedwith regardto how well they meetnon-
functionalprocessdesigngoals(shown in thecentreof the
figure).

Therelationshipbetweenthedesigningroleandthetest-
ing role (andhencebetweendesignerandtester)aredif-

7

+

 Project
Manager

D

PART

 Designer

Designing TestingTested
 (Code)

Tech
Team

 Tester

Rewarded
[TechTeam]

PART

PLAYS PLAYS

D

D

¬
D

 Designer

Designing Testing

 Tester

PLAYS PLAYS

 Project
Manager

D
D

D

¬

D

D
D

D

¬

D

 QA
Manager

Rewarded
 [Tester]

Test(Code,
Guidelines)

Code

Rewarded
[Designer]

Designed
 (System)

Developed
 (System)

TeamSpirit
[TechTeam]

Independent
[Testing,
 Designing]

Fast
Turnaround
[Testing]

−

+

+
+

−

−

+

−

−

−

−

+

+

+

OnSched
[Designing]

OnSched
[Testing]

OnSched
[Developing]

D
D­ D

D

D
D

D

D®
D

D

D

D

HiQuality
[Software]+

−

+

Learning
[Tester,
Designing]

Weighted
Effort
[Testing,
 Design]

+

Test(Code,
 TestPlan)

Tested
 [Code,
 Strategy]

+
−

LEGEND

contribution
+ve contribution
−ve contribution

process design goal

process design
alternative

Figure4: ¯ �K�L�l�E�0��
���F:F$����FI' 8(
°/#! �5���5
�/��J' ±���F²/E
��+�CB���' �l³K��/#! ' �J/��C' ±��+��±�/�! ��/��J' �K
+-�' �CB+�0��FC����
��x�5�°�E�0��
���F:F$����FI' 8(
N8���/�! F

ferent in the four alternatives. In the Task Dependency
option(left-handside,top), thedesignertells the testerto
follow a detailedtestplan. This hastheadvantageof fast
turnaround,but thedisadvantagethatnooneotherthanthe
designeris really subjectingthe softwareto test(negative
contributionto theprocessdesigngoalthatthetestingand
designingrolesshouldbeindependent).

In the Goal Dependency alternative (left, middle), the
tester is given freedom on how to test, thus achiev-
ing some degree of independence. But testing would
likely takelongerto complete,andit would not be mak-
ing use of knowledge about the design to focus test-
ing on potential weak spots (negative contribution to´ �����Hµu¡��K�u¶H�u���K¢u¡*·Cª��u��¡����u��¸S�l�2�����H�u¹). A Soft-Goal
Dependency hastheadvantageof makingtestingacooper-
ative venture,fosteringteamspirit, andcontributingto the
tester’s learningaboutdesign.

Looking at the relationshipbetweenthe project man-
agerandtechnicalteammembers,we seethat the teamis
rewardedas a unit (on the left-handbranch),fosteringa
strongteamspirit. This, however, makesall threealterna-
tiveson this branchweakwith respectto independenceof
testing.

On the right-handside, the designerand testerarere-
wardedseparatelyfor theirefforts.Eachhavedependencies
from their respective managers,who have no immediate

dependenciesbetweenthem. This alternative is goodfor
achieving independencebetweentestinganddesigning,but
isnegativefor fastturnaround,design-weightedtesting,and
for thetester’s learningaboutdesign.

The non-intentionalnatureof the flow of �u�K��� from
designerto tester– asopposedto a ResourceDependency
– indicatesthatthetesterdoesnothavegoalsthatwouldbe
affectedif thecodeis not received. Thismight bethecase
if theQA managerdoesnot considertheresponsibilityof
testingto begin until codeis received. This is in contrastto
theteamsituationon theleft, in which thetesterwould be
motivatedto assurepromptcompletionof design,so that
testingcouldbegin on time, in orderto assurereward for
thewholeteam,of which thetesteris part.

In studyinga processandseekingwaysto improve it,
onecould typically comeup with many alternatives,pos-
sibly involving changesto humanproceduresas well as
selectingamonga variety of featuresin supportenviron-
ments. Thesealternatives needto be evaluatedagainst
many criteria includingprojectobjectives(suchasquality
andproductivity) aswell aspersonalconcerns(suchasre-
wardstructuresandcareerpaths).Theprocessof designing
softwareprocessescouldbegreatlyfacilitatedbyproviding
toolsthatcanhelpprocessengineersto systematicallypur-
suedesigngoalsby generatingandanalyzingalternatives,
andto maketradeoffs. A framework for softwareprocess

8

modelling,analysis,anddesignis suggestedin the longer
versionof this paper[26], basedona proposedframework
for requirementsengineering[25].

6 Related work

In the SoftwareProcessModelling researcharea,non-
intentionalmodelsthatfocusonactivitiesandinput-output
flow arethe mostcommon. More flexible formalismsin-
cludemodelswith rulesandtriggers,andextensionsof Petri
nets(e.g.,[5, 1]). Thesemay beviewedasproviding the
“how”, to bettersupportor automateprocessenactment.
The intentionalmodelproposedin this paperfocuseson
the“why”, in orderto supportreasoningaboutprocessim-
provementandredesign.

Fromtheperspectiveof ourframework,portionsof soft-
wareprocessmodelsthat areenactedby machinebelong
inside one(or more)of the“agents”.Thefocusof theAD
modelis on externalrelationshipsbetweenagents(human
or otherwise).For computer-basedagents,theAD model
servesasa requirements level model. Furtherconstraints
areneededto reducetherequirementsto a designspecifi-
cation,andfrom thereto animplementation– expressedin
anon-intentionalrepresentationsuchasproceduralor Petri
net formalisms[15]. Computer-basedagentswith plan-
ning andproblem-solvingability (e.g., [10]), will require
lessreductionto reachanimplementation.

This paperextendsour earlier work [24, 25] by em-
beddingthe AD model in the Telos language,outlining
someanalyticalconceptsfor usewith theAD model,and
furtherdevelopstheconceptsof role, position,agent,and
association.Furthermore,by applyingthe framework to a
complex environment,thepowerof thefeaturesof theAD
modeltocapturesubtleorganizationalissuesaremorefully
illustrated.

Most requirementsmodelsof organizationalenviron-
mentsemploysomenotionsof entities,activities, andas-
sertions,or variations,e.g.,[9]. Conceptsof goals,rules,
methods,and tactics are usedvariously in a numberof
requirementsframeworks,e.g.,[7, 4, 8, 6, 19]. Thedistin-
guishingfeatureof thepresentframeworkis its introduction
of Actor Dependency concepts.Themotivationfor these
conceptscomesfromtheareaof organizationalcomputing,
whereit hasbeenrecognizedthatcomputingsystemdesign
needsto takeinto accounttheproblematicandcontingent
natureof work [22]. TheAD modelaccommodatesuncer-
tainty in organizationalenvironments,andacknowledges
actors’ flexibility in coping with uncertainty, by not re-
quiring designgoalsto befully reducedto non-intentional
activities and flows. The way organizationsretain some
degreeof stabilityandstructureis capturedby meansof in-
tentionaldependencies,reflectingactors’expectationson
eachothersotherwiseunpredictablebehaviour. Expecta-

tionsarenot alwaysmet,so thatanalyses of enforcement,
assurance,and insuranceare of interest. A comparable
conceptof ensuringhasbeenproposedin [4] for morecon-
trollableenvironments.

The AD model embodiesa distributed conceptionof
intentionality. The intentionaldimensionis represented
as relationshipsbetweenactors,with dependency chains
propagatingin all directions,criss-crossingthe organiza-
tion in the form of a network. This could be contrasted
with an alternative conceptionof intentionality in which
globalorganizationalgoalsarehierarchicallydecomposed
andassignedto individual agents.Similarly, designgoals
donotapplyuniformly to all actors,but reflecttheperspec-
tivesandinterestsof eachstakeholder.

The conceptsof role, position, agent,and association
reflecthow organizationsgroupandmanagecomplex pat-
ternsof socialrelationships.Theneedfor multiple views
is well recognizedin requirementsengineering(e.g.,[20]).
A view-directedstrategy for requirementsacquisitionwas
suggestedin [4]. The role/position/agentdistinctionsug-
geststhepossibilityof role-centred,position-centred,and
agent-centreddesignstrategies,makinguseof theabstrac-
tion underlying the distinction which is reminiscentof
layeredindependencein systemarchitectures.The three
strategies can potentiallyborrow designtechniquesfrom
the areasof businessdesign,job design,and humanre-
sourcemanagement,respectively.

7 Conclusions

In thispaper,wehaveproposedasoftwareprocessmodel
thatfocuseson theintentionalrelationshipsamongactors,
andhave outlinedits usein thecontext of processanalysis
and design. The model is formal so that tools can be
developed. The modellingconceptswere illustratedwith
examplesdrawn from thesoftwareprocessliterature[16].
We sketchedhow the formal propertiesof the modelcan
be specified,and showed how it can be embeddedin a
conceptualmodellinglanguage.Analysisanddesigntools
wereillustratedby example,but remainto beimplemented
andtested.

Curtis et al. [3] have identified formality, granularity,
andscriptivenessasimportantissuesfor softwareprocess
modellingresearch.TheActor Dependency modelis for-
mal without beingdeterministic. Intentionalconceptsare
usedto modelactors’expectationsabouteachother’s be-
haviour, andtheir provisionsfor unmetexpectations.Ac-
knowledgingthe inherentfreedomof actors,analyseson
themodelfocuson issuessuchasopportunitiesandrisks.
An intentionalmodelplaceslimits aroundan actor’s be-
haviour, in termsof whatisexpectedtobeachieved, without
explicitly specifyingdetailedprocesssteps.Thisavoidsthe
granularitydilemmaencountedin non-intentionalmodels,

9

wherea coarse-graineddescriptionis likely to underspec-
ify by allowing too much freedom,while a fine-grained
descriptiontendsto overspecifyby includingprocesschar-
acteristicsthatarecircumstantialratherthanessential.The
AD modelis primarily intendedto beusedin a descriptive
mode. A prescriptive or proscriptive model which only
specifiesofficially sanctionedor prohibitedactionswould
not allow us to reasonaboutthe potentialimpactsof ac-
tors’ violations of expectationsandcommitments,which
wehave illustratedin section4.

This work representsaninitial stepin usingintentional
conceptsto help understandand analyzesoftwarepro-
cesses,and in the useof a requirementsengineeringap-
proachto softwareprocessdesign. We have found that
requirementsengineeringconceptscancontributetowards
a numberof softwareprocessissues,anddeserve further
exploration. We believe that the modellingframework is
particularly suited to softwareprocesses(as opposedto
moregeneralbusinessprocesses)becauseof theoftencol-
laborative problem-solvingnatureof softwarework, the
highcomplexity of theproducts,andtheamenabilityof the
work to computertool support.However, theadequacy of
theframework have yet to betestedin practice.

For futurework,weneedto integratefeaturesof theAD
modelinto Telosimplementations,andto developpractical
algorithmswith tractablecomputationalproperties,so as
to contributetowardsa setof toolsto aid in thesystematic
modelling,analysis,anddesignof softwareprocesses.

Acknowledgements. Wethanktheanonymousreview-
ers,L. ChungandB. Nixon for commentsandsuggestions
thatled to theimprovedpresentationin thispaper.

References
[1] S.BandinelliandA. Fuggetta,ComputationalReflectionin

SoftwareProcessModeling: theSLANG Approach,Proc.
15th Int. Conf. Soft. Eng., 1993,pp.144-154.

[2] P. R. CohenandH. J. Levesque,Intentionis Choicewith
Commitment,Artif. Intell., 42 (3), 1990.

[3] W. Curtis, M. I. Kellner andJ. Over, ProcessModelling,
Comm. ACM, 35(9), 1992,pp.75-90.

[4] A. Dardenne,A. van Lamsweerdeand S. Fickas, Goal-
DirectedRequirementsAcquisition, Science of Computer
Programming, 20,pp.3-50,1993.

[5] W. DeitersandV. Gruhn,ManagingSoftwareProcessesin
the EnvironmentMELMAC, Proc. 4th Int. Symp. Practi-
cal Software Development Environments, Irvine1990,SIG-
SOFTNotes15,no.6., pp.193-205.

[6] E. Dubois,Ph.Du Bois andA. Rifaut, Elaborating,Struc-
turing and ExpressingFormal Requirementsof Compos-
ite Systems,Proc. Fourth Conf. Advanced Info. Sys. Eng.,
Manchester, U.K., May 12-15,1992.

[7] M. S.Feather, LanguageSupportfor theSpecificationand
Developmentof CompositeSystems,ACM Trans. Prog.
Lang. and Sys. 9, 2, April 1987,pp.198-234.

[8] S.FickasandR.Helm,KnowledgeRepresentationandRea-
soningin the Designof CompositeSystems,IEEE Trans.
Soft. Eng., 18,6, June1992,pp.470-482.

[9] S. J. Greenspan,Requirements Modelling: A Knowledge
Representation Approach to Software Requirements Defi-
nition, Ph.D.Thesis,Dept. Comp.Sci., Univ. of Toronto,
1984.

[10] K. E. Huff andV. R. Lesser, A plan-basedintelligentassis-
tantthatsupportsthesoftwaredevelopmentprocess,Proc.
3rd Symp. Practical Softw. Dev. Envs., Soft. Eng. Not. 13(5)
1989,pp.97-106.

[11] W. Humphrey, Managing the Software Process, Addison-
Wesley, Reading,Mass.,1989.

[12] Proc. 8th International Software Process Workshop,1993.
[13] Proc. 2nd International Conference on the Software Pro-

cess, Berlin, Germany, Feb. 1993.
[14] Proc. 15th Int. Conf. Soft. Eng., Baltimore,May 1993.
[15] M. Jarke, J. Mylopoulos, J. W. Schmidt, Y. Vassiliou,

DAIDA: An Environmentfor Evolving Information Sys-
tems,ACM Trans. Info. Sys., 10(1)Jan.1992,pp.1-50.

[16] M. Kellner, P. Feiler, A. Finkelstein,T. Katayama,L. Os-
terweil, M. Penedo,and H. Rombach,SoftwareProcess
Modeling ExampleProblem,from 7th Int. Software Pro-
cess Workshop, Yountville,California,Oct.1991.

[17] N. Madhavji, TheProcessCycle,IEE Software Engineering
Journal, Spec.Issueon SoftwareProcessandIts Support,
N. Madhavji, W. Scḧafer,eds.,6(5)Sept.1991,pp.234-242.

[18] J.Mylopoulos,A. Borgida,M. Jarke,M. Koubarakis,Telos:
RepresentingKnowledgeaboutInformationSystems,ACM
Trans. Info. Sys., 8 (4), 1991.

[19] J.Mylopoulos,L. Chung,B. Nixon, RepresentingandUs-
ingNon-FunctionalRequirements:A Process-OrientedAp-
proach,IEEE Trans. Soft. Eng., 18 (6), June1992.

[20] B. Nuseibeh,J.Kramer, A. Finkelstein,ExpressingtheRe-
lationshipsBetweenMultipleViewsin RequirementsSpeci-
fication,15th Int. Conf. Soft. Eng., Baltimore,1993,pp.187-
196.

[21] C. PottsandG. Bruns,RecordingtheReasonsfor Design
Decisions,Proc. Int. Conf. Soft. Eng., 1988,pp.418-427.

[22] L. Suchman,Office ProceduresasPracticalAction: Mod-
els of Work andSystemDesign,ACM Trans. Office Info.
Systems, 1(4)Oct.1983,pp.320-328.

[23] B. Thomas,Y. Shoham,A. Schwartz,andS.Kraus,Prelim-
inary Thoughtson an AgentDescriptionLanguage,Int. J.
Intell. Sys., Vol. 6, 1991,pp.498-508.

[24] E. Yu, Modelling Organizationsfor InformationSystems
RequirementsEngineering,Proc. 1st IEEE Symp. on Re-
quirements Engineering, SanDiego,Jan.1993,pp.34-41.

[25] E. Yu, An OrganizationModelling Framework for Infor-
mationSystemsRequirementsEngineering,Proc. 3rd Ws.
Info. Techs. & Sys., Orlando,Dec.1993,pp.172-179.

[26] E. Yu andJ. Mylopoulos,Understanding “Why” in Soft-
ware Process Modelling, Analysis, and Design, Tech.Re-
port DKBS-TR-94-3,Dept.Comp.Sci.,Univ. of Toronto,
Feb. 1994.

[27] E. Yu, A Framework for Organization Modelling, Ph.D.
Thesis,Dept.Comp.Sci.,Univ. of Toronto,forthcoming.

10

