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Abstract

Much recent research in decision theoretic plan-
ning has adopted Markov decision processes
(MDPs) as the model of choice, and has at-
tempted to make their solution more tractable by
exploiting problem structure. One particular al-
gorithm, structured policy construction achieves
this by means of a decision theoretic analog of
goal regression, using action descriptions based
on Bayesian networkswith tree-structured condi-
tional probability tables. The algorithm as pre-
sented is not able to deal with actions with cor-
related effects. We describe a new decision theo-
retic regression operator that corrects this weak-
ness. While conceptually straightforward, this
extension requires asomewhat more complicated
technical approach.

1 Introduction

While Markov decision processes (MDPs) have proven to
be useful as conceptua and computational modelsfor deci-
sion theoretic planning (DTP), there has been considerable
effort devoted within the Al community to enhancing the
computational power of these models. One of thekey draw-
backs of classic agorithms such as policy iteration [13] or
valueiteration [2] isthe need to explicitly “ sweep through”
state space some number of times to determine the values
of various actions at different states. Because state spaces
grow exponentially with the number of features relevant to
the problem description, such methods are wildly imprac-
tical for realistic planning problems, a difficulty dubbed by
Bellman the “curse of dimensionality.”

Recent research on the use of MDPs for DTP has focussed
on methodsfor solving MDPs that avoid explicit enumera-
tion of the state space while constructing optimal or approx-
imately optimal policies. Such techniques include the use
of reachability analysis to eliminate (approximately) un-
reachable states [9, 1], and state aggregation, whereby var-
ious states are grouped together and each aggregate state or
“cluster” istreated as asingle state. Recently, methods for
automatic aggregation have been developed in which cer-

tain problem features are ignored, making certain statesin-
distinguishable[8§, 3, 11, 5, 16].

In some of these aggregati ontechniques, the use of standard
Al representations like STRIPS or Bayesian networks to
represent actionsin an MDP can be exploited to help con-
struct the aggregations. In particular, they can be used to
help identify which variables are relevant, at any point in
the computation of an optimal policy, to the determination
of value or to the choice of action. Thisconnection haslead
totheinsight that the basi ¢ operationsin computing optimal
policiesfor MDPs can be viewed as ageneralization of goal
regression [5]. More specifically, a Bellman backup [2] for
a specific action a is essentidly a regression step where,
instead of determining the the conditions under which one
specific goal proposition will be achieved when « is exe-
cuted, we determine the conditions under which a will lead
to a number of different “goal regions’ (each having dif-
ferent value) such that the probability of reaching any such
goa region is fixed by the conditions so determined. Any
set of conditionsso determined for action « is such that the
states having those conditionsall accord the same expected
value to the performance of a. The net result of this deci-
sion theoretic regression operator is a partitioning of state
space into regionsthat assign different expected vaueto a.
Classical goal regression can be viewed as aspecial case of
this, wherethe action is deterministic and the valuedistinc-
tionisbinary (goal states versus nongoal states).

A decision theoretic regression operator of thisform isde-
velopedin[5]. Thevauefunctionsbeing regressed are rep-
resented using decision trees, and the actions that are re-
gressed through are represented using Bayes netswith tree-
structured conditional probability tables. As shown there
(see dso [4]), classic dgorithms for solving MDPs, such
as value iteration or modified policy iteration, can be ex-
pressed purely in terms of decision theoretic regression, to-
gether with some tree manipulation. Unfortunately, the par-
ticular algorithm presented there assumes that actions ef-
fects are uncorrelated, imposing a restriction on the types
of Bayes nets that can be used to represent actions.! The
aim of this paper isto correct this deficiency. Specificaly,
we describe the detail s of adecision theoretic regression al-

' Correlated effects can be represented by clustering variables,
of course, but such a representation is often unnatural and can
cause a substantial blowup in representation size.



gorithm that handles such corréations in the effects of ac-
tions and the difficulties that must be dealt with. We note
that this paper does not offer much in the way of a concep-
tual advance in the understanding of the decision theoretic
regression, and buildsdirectly on the observationsin[5, 4].
However, the modifications of these approaches to handle
correlations are substantial enough, both in technical detail
and in spirit, to warrant special attention.

We review MDPs and their representation using Bayes nets
and decision treesin Section 2. We briefly describe the ba
sicdecision theoretic regression operator of [5] in Section 3.
In Section 4, we illustrate the challenges posed by corre-
lated action effects for decision theoretic regression with
several examplesand describean algorithmthat meetsthese
challenges. We concludein Section 5 with someremarkson
future research and related work.

2 MDPsand Their Representation
2.1 Markov Decision Processes

We assumethat the system to be controlled can be described
as a fully-observable, discrete state Markov decision pro-
cess[2,13, 15], withafinite set of system states.S. Thecon-
trolling agent has available afinite set of actions A which
cause stochastic statetransitions: wewritePr (s, a,t) tode-
note the probability action « causes a transition to state ¢
when executed in state s. A real-valued reward function R
reflects the objectives of the agent, with R(s) denoting the
(immediate) utility of being in state s. 2 A (Stationary) pol-
icyn : S — A denotes a particular course of action to be
adopted by an agent, with 7 (s) being the action to be exe-
cuted whenever the agent findsitself in state s. We assume
an infinite horizon (i.e., the agent will act indefinitely) and
that the agent accumul ates the rewards associated with the
states it enters.

In order to compare policies, we adopt expected total dis-
counted reward as our optimality criterion; future rewards
are discounted by rate 0 < 7 < 1. Thevalue of apolicy 7
can be shown to satisfy [13]:

Ve(s) = R(s) + 8> _ Pr(s, m(s)

tes

1) -V (1)

Thevalueof 7 at any initial state s can becomputed by solv-
ing thissystem of linear equations. A policy w isoptimal if
Vr(s) > Vp(s) foral s € S and policies «’. The optimal
value function * is the same as the value function for any
optimal policy.

A number of techniques for constructing optimal policies
exist. An especialy simpleagorithmisvalueiteration[2].
We produce a sequence of n-step optimal value functions
V™ by setting V° = R, and defining

Vi+1()_maX{R )+ 8> Pr(s,a,t)-Vit)} (1)

tes

“More general formulations of reward (e.g., adding action
costs) offer no special complications.
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The sequence of functions 1* converges linearly to V* in
thelimit. Each iterationisknown as aBellman backup. Af-
ter some finite number » of iterations, the choice of maxi-
mizing action for each s forms an optimal policy = and V"
approximatesitsvalue.

There are severa variations one can perform on the Bell-
man backup. For instance, given a policy =, we can com-
pute the value of = by means of successive approximation.
If weset V.0 = R, and define

Viti(s) = {R(s) + B _ Pr(s, m(

tes

Vi) @

Then V*(s) denotes the expected value of performing ,
starting at s, for & steps; this quantity convergesto 1 (s).
Finally, givenavaluefunction V', we define the -function
[17], mapping state-action pairsinto values, as follows:

Q(s,a) = {R(s —|—BZPr5at Oy @

tes

This denotes the value of performing action a at state s as-
suming that value V' is attained at future states (e.g., if we
acted optimally after performing « and attained /* subse-
quently). We use @), to denotethe -functionfor a particu-
laractiona (i.e, Qq(s) = Q(s,a)). Itisnot hard to see that
valueiteration and successive approximation can be imple-
mented by repeated construction of ¢-functions (using the
current value function), and the appropriate sel ection of Q-
values (either by maximization at a particular state, or by
using the policy to dictate the correct action and @)-valueto
apply to a state).

2.2 Action and Reward Representation

One of the key problems facing researchers regarding the
use of MDPs for DTP isthe*” curse of dimensionality:” the
number of states grows exponentially with the number of
problem variables. Since the representation of transition
probabilities, reward and value functions, policies, as well
as the computationsinvolved in dynamic programming al-
gorithms, al involve enumerating states, the representation
of MDPs and the computationa requirements of solution
techniques can be quite onerous. Fortunately, several good
representationsfor MDPs, suitablefor DTP, have been pro-
posed. These include stochastic STRIPS operators [14, 3]
and dynamic Bayes nets [10, 5]. Wewill use the | atter.

We assume that a set of variables V' describes our system.
To represent actions and their transition probabilities, for
each action we have a dynamic Bayes net (DBN) with one
set of nodes representing the system state prior to the action
(one node for each variable), another set representing the
world after the action has been performed, and directed arcs
representing causal influences between these sets. Our con-
vention isto use the notation X’ to denote that variable X
after the occurrence of theaction and X' to denote X before
the action. Each post-action node has an associated condi-
tional probability table (CPT) quantifying the influence of
the action on the corresponding variable, given the value
of itsinfluences (see [5, 7] for a more detailed discussion
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Figure 1: (a) Action network (no correlations); (b) Action
network (correlations); and (c) Reward Tree

of this representation).? Figures 1(a) and (b) illustrate this
representation for two different actions. We use TI(X') to
denote the parents of node X" in a network and val(X) to
denote the values variables X (or X”) can take.

The lack of an arc from a pre-action variable X to a post-
action variable Y in the network for action « reflects the
independence of a’s effect on Y from the prior vaue of
X . We capture additional independence by assuming struc-
tured CPTs; that is, we exploit context-specific indepen-
dence (CSl) as defined in [6]. In particular, we use a deci-
siontree to represent the function that maps parent variable
valuesto (conditional) probabilities. For instance, the trees
in Figure 1(a) show that Z influences the probability of Y
becoming true (as a consequence of the action), but only if
X istrue (left arrows are assumed to be labeled “true”’ and
right arrows “false”). We refer to the tree-structured CPT
for node X’ in the network for action a as Tree( X', ). We
make specia note of the existence of the arc between X’
and Y’ in Figure 1(b). Thisindicates that the effect of ac-
tiona on X and Y iscorrelated. We will seethat such arcs
pose challenges for decision theoretic regression.

Finally, a decision tree can also be used to represent the re-
ward function R, as shown in Figure 1(c). We call thisthe
(immediate) reward tree, Tree( ). Wewill also usethisrep-
resentation for value functionsand Q-functions.

3 Decison Theoretic Regression: Uncorre-
lated Effects

Apart from the naturalness and conciseness of representa-
tion offered by DBNs and decision trees, these represen-
tations lay bare a number of regularities and independen-
ciesthat can beexploitedin optimal and approximatepolicy
congtruction. Methods for optimal policy construction can
use compact representations of policiesand valuefunctions
in order to prevent enumeration of the state space.

In [5], a structured version of modified policy iteration is
developed, in which vauefunctionsand policiesare repre-
sented using decision trees and the DBN representation of
the MDPisexploited to build these compact policies.* This

To simplify the presentation, we restric our attention to binary
variablesin our examples.

*See[12] for asimilar, though less general, method in the con-
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techniqueis applied in [4] to value iteration, and dynamic
approximation methods are considered as well. Roughly,
if one has a tree representation of a value function, only
certain variables will be mentioned as being relevant (un-
der certain conditions) to value. When performing Bellman
backups, thefact that certain variablesareirrelevant to, say,
1/ means that action-condition pairsthat are distinguished
by their influence onirrelevant variables need not be distin-
guished in the representation or computation of V" +1.

Thekey to al of these d gorithmsisadecision theoretic re-
gression operator used to construct the )-functionsfor an
action a given a specific value function. If the value func-
tion is tree-structured, this algorithm produces a )-tree, a
tree-structured representation of the @)-function that obvi-
atesthe need to compute ()-val ueson a state-by-state basis.
We notethat since: (&) theinitia valuefunction Tree( R) is
tree-structured; (b) the algorithm for producing @-trees re-
tains this structure; and (c) the algorithm for “merging” -
trees(e.g., by maximization) also retainsthisstructure; then
the resulting value function will be structured (and meth-
odsfor building structured policiesbased on thiscan be eas-
ily defined). We focus here only on the construction of Q-
trees—the remaining parts of the algorithmsare straightfor-
ward. Asin [5, 4], we assume that no action has correlated
effects (al have the form illustrated in Figure 1(a)): this
simplifies the a gorithm considerably.

Let a be the action described in Figure 1(a), and let the
tree in Figure 1(c) correspond to some value function V/
(call it Tree(1)). To produce the Q-function @), based on
V' according to Equation 3, we need to determine that the
probabilities with which different states s make the condi-
tions dictated by the branches of Tree(V/) true.® It should
be clear, since a’s effects on the variables in Tree(V) ex-
hibit certain regularities (as dictated by its network), that
@, should also exhibit certain regularities. These are dis-
covered in the following agorithm for constructing a Q-
tree representing (the future value component of) @), given
Tree(V') and anetwork for a.

1. Generate an ordering Oy of variablesin Treg(V).
2. SetTree(Qa) =0
3. For eachvariable X in Treg(V') (using ordering Ov):

(@) Determine contexts c
in Treg(V') (partial branches) that lead to an oc-
currence of X.

(b) At any leaf of Tree(Q.) such that Pr(c) > 0
for some context c: replace the leaf with a copy
of Treg( X, a) at that leaf (retain Pr(X) at each
leaf of Treg( X, a)); remove any redundant nodes
fromthiscopy; for each Y ordered before X such
that Pr(Y") labeled this leaf of Treg(Q.), copy
Pr(Y) to eachleaf of Treg( X, a) just added.

text of reinforcement learning, where deterministic action effects
and specific goal regions are assumed).

5We ignore the fact that states with different reward have dif-
ferent Q-values; these differences can be added easi Ily oncethefu-
ture reward component of Equation 3 has been spelled out.
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Figure 2: Decision theoretic regression: no correlations

4. Ateachlesf of Tree(Q. ), replace probabilities labeling leaf
with >~ Pr(c)V (c), using these probabilities to determine
Pr(c) for any context (branch) of Treg(V').

This decision theoretic regression agorithm formsthe core
of the policy construction techniques of [5, 4].

We illustrate the algorithm on the example above. We
will regress the variables of Tree(1) through action « in
the order Y, W (generally, we want to respect the order-
ing within the tree as much as possible). We first regress
Y through «, producing the tree shown in Figure 2(a).
Notice that this tree accurately reflects Pr(Y”’) when a is
executed given that the previous state satisfies the condi-
tions labeling the branches. We then regress I/ through «
and add the results to any branch of the tree so far where
Pr(Y) > 0 (see Figure 2(b)). Thus, Tree(W, a) is not
added to the rightmost branch of the tree in Figure 2(a)—
this is because if Y is known to be false, W has no im-
pact on reward, as dictated by Tree(1). Noticea so that be-
cause of certain redundanciesin thetests (internal nodes) of
Tree(Y, a) and Tree(WW, a), certain portions of Tree(WV, a)
can be deleted. Figure 2(b) now accurately describes the
probabilitiesof both Y and W given that « is executed un-
der the listed conditions, and thus dictates the probability
of making any branch of Tree(V/) true: we simply multiply
Pr(W) and Pr(Y") for thevauesof W and Y labeling this
branch. Therefore, the (future component of the) expected
value of performing a at any such state can easily be com-
puted at each leaf of thistreeusing Y _{Pr(c)V(c) : ¢ €
branches(Tree(1)) }—theresult is shown in Figure 2(c).

It is important to note that the justification for this very
simple agorithm lies in the fact that, in the network for
a, Y/ and W’ are independent given any context k la
beling a branch of Tree(R,). This ensures that the term
Pr(Y'|k) Pr(W'|k) corresponds to Pr(Y’, W'|k). There
are two reasons for this. First, since no action effects
are correlated, the effect of « on any variable is indepen-
dent given knowledge of the previous state (i.e., the post-
action variables are independent given the pre-action vari-
ables). Second, this independence does not require com-
plete knowledge of the state, but can exploit both the vari-
able independence specified by the network structure, and
the CSl relations dictated by the CPTs.

4 Regression with Correlated Action Effects

Asnoted above, thefact that action effects are uncorrel ated
means that knowledge of the previousstaterendersall post-
action variablesindependent. Thisis not the case when ef-
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Figure 3: Dec. theoretic regression: summing over parents

fects are correlated as in Figure 1(b). Thiscan lead to sev-
era difficulties for decision theoretic regression. The first
isthe fact that, although we want to compute the expected
value of a given only the state s of pre-action variables,
the probability of post-action variables that can influence
value (eg., Y’) is not specified solely in terms of the pre-
action state, but also involves other post-action variables
(e.g., X’). Thisdifficulty is rdatively straightforward to
deal with, requiring that we sum out the influence of post-
action variables on other post-action variables.

The second problem requires more sophistication. Because
action effects are correlated, the probability of the vari-
ablesin Tree(V) may aso be correlated. This means that
determining the probability of attaining a certain branch
of Tree(1) by considering the “independent” probabilities
of attaining the variables on the branch (as in the previ-
ous section) is doomed to failure. For instance, if both X
and Y lie on asingle branch of Tree(V'), we cannot com-
putePr(X”|s) and Pr(Y”’|s) independently to determinethe
probability Pr(X’,Y’|s) of attaining that branch. To del
with this, we must construct Q-trees where the joint distri-
bution over certain subsets of variablesis computed.

We illustrate the necessary intuitions behind a new ago-
rithm for decision theoretic regression that adequately deals
with correlations (i.e., arbitrary DBNS) through a series of
examples. We then present the algorithmin its entirety.

4.1 Summingout Post-Action Influences

Consider action a in Figure 1(b) and Tree(V') in Figure 1(c).
Using the agorithm from the previous section to produce
Tree(,), we would first regress Y’ through « to obtain
the tree shown in Figure 3(a). Continuation of the algo-
rithmwill not lead to alegitimate Q-tree, sinceit involvesa
post-action variable X’. Our revised algorithm will estab-
lish the dependence of Pr(Y’) on previousstate s by “sum-
ming out” the influence of X’ on Y, letting Y’ vary with
the parentsof X’. Specifically, we will smply compute

Pr(Y'ls) = >

ereval(x)

- ¥

ereval(x)

Pr(Y'|2,s) - Pr(2'|X)

Pr(Y'|2',Y) - Pr(2'| X)

This will proceed as follows. Once we have regressed Y’
through @, we will replace the node X’ by Tree(X’, a).
This dictates Pr(X'|TI(X’)). Denote the subtree of the
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Figure 4: Ordering variablesfor replacement

replaced node corresponding to each values z; of X’ by
STree(x;). Now a each leaf [ of Tree(X’, a) just added,
we have recorded Pr(z;). For thosevalues of x; that have
positive probability, we merge thetrees STree( ;) and copy
theseat 1.5 In Figure 3(b), we have placed the merged sub-
treerooted a Y under both X = z and X = Z. Now,
at each leaf we can determine (indeed, we have recorded
while building the treg) both Pr(X’|X) and Pr(Y'| X', Y)
for the appropriate values of X and Y labeling the branch.
We can then compute Pr(Y") as needed, depending only on
pre-action variables. Once completed, it is easy to see that
regression of 1’ through « can proceed unhindered as in
the last section.

We notethat had the CPT for X indicated that Pr(2'|z) =
1 (instead of 0.9), we would not have copied the X’ = 7’
subtree under X = =z. This is because the influence of
Y onY”’ isonly vaid when X’ isfdse. The result would
have been the simpler tree shown in Figure 3(c). Finally,
we see that had there been a chain of dependence among
post-action variables, this replacement of post-action vari-
ablesin theregressed tree by their parents can smply pro-
ceed recursively. For instance, had X’ depended on athird
variable 1/, thisvariable would have been introduced with
Tree(X', a). The influence of ¥/ on Y’ could then have
been summed out in a similar fashion.

We now consider a second example (see Figure 4) that il-
lustrates that the order in which these post-action variables
arereplaced in atree can be crucia. Suppose that we have
an action a similar to the one just described, except now we
have that variable Y’ depends on both X’ and 7’ (i.e, a’s
effect on X, Y and 7 is correlated). When we regress Y’
through a, wewill introduce atreein which both X’ and 7'
appear, and we assume that X’ and 7/ appear together on at
least one branch of Tree(Y”, «) that is present in Tree(Q,).
Now let us supposethat 7’ also dependson X', asin Fig-
ure4. Insuchacase, itisimportant to substitute Tree( 7', a)
for Z' before substituting Tree( X’ @) for X'. If wereplace
X' first, we will compute

Pr(Y'|Z/ TI(X"))=

ereval(x)

Pr(Y'|2', Z") Pr(2'|TI(X"))

(we suppress mention of other parents of Y'). Subse-

SMerging simply requires creating atree whose branchesmake
the distinction contained in each subtree. We do this by order-
ing the trees, and grafting each tree in order onto the leaves of the
tree resulting from merging it predecessor, and removing redun-
dant nodes (i.e., duplicated tests) as appropriate.
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quently, wewould replace occurrences of 7' with Tree(Z")
and compute

Pr(Y'|IN(Z"), (X)) =
Z Pr(Y'|Z, TI(X")) Pr(2'|T1(Z"))
z'eval(z

This ordering has two problems. First, since X’ isa parent
of 7', thisapproach would reintroduce X into thetree, re-
quiring the wasted computation of summing out X’ again.
Even worse, for any branch of Tree(Z’) on which X" oc-
curs, the computation above isnot valid, for Y/ isnot inde-
pendent of X" (an element of TI(Z")) given Z/ and TT(X”)
(since X" directly influences Y”).

Because of this, we require that when a variable Y’ is re-
gressed through«, if any two of itspost-action parentslieon
the same branch of Tree(Y'), these nodesin Tree(Y’) must
bereplaced by their treesin an order that respectsthe depen-
dence among post-action variables in «’s network. More
precisaly, let apost-action ordering Op for action « be any
ordering of variables such that, if X’ isaparent of 7/, then
7' occurs before X in this ordering (so the ordering goes
against the direction of the within-dlice arcs). Post-action
variablesin Tree(Y'), or any tree obtained by recursive re-
placement of post-action variables, must be replaced ac-
cording to some post-action ordering Op.

4.2 Computing Local Joint Distributions

Consider again Tree(1) showninFigurel(c) anditsregres-
sion throughthe action a shown in Figure 5(a). Figure 5(b)
shows theregression of Y/ through a. We would normally
then insert Tree(W', ) at each leaf of thistree, and replace
theY’ node of thistreewith Tree(Y”, a). Of course, Pr(Y”)
already labels each leaf, so we can immediately replace the
node Y’ in Tree(W’, a) with its merged subtrees (as de-
scribed in the previous subsection).” The structure of this
tree isindicated in Figure 5(c). If we were to proceed as
above, wewould simply sum out theinfluence of Y’ on W’
to determine Pr (W) at each leaf. That is, we compute

Pr(W W, X, Y)= >
yeval(y

Pr(W'ly', W)-Pr(y'|X,Y)

This, unfortunately, does not provide an accurate picture
of the probability of attaining the conditions ¢ labeling
the branches of Tree(V). If we labeled the leaves of
the tree in Figure 5(c) with Pr(Y”’) and Pr(W') so com-
puted, these probabilities, while correct, are not sufficient
to determine Pr(Y', W’): Y’ and W' are not indepen-
dent given X, Y, W. Instead, we need thejoint distribution
Pr(Y’, W’) labeling the leaves, as shown in Figure 5(c).
We note that this joint is obtained in a very simple fash-
ion. At each leaf we haverecorded Pr(Y”’) and Pr(W'|Y")
(under the appropriate conditions). Instead of summing out

” And asdescribed above, we do not needtoincludethe Y’ = i
subtree (from Treg(W”', a)) at the X = « leaf, sincePr(Y') =1
labelsthat leaf.
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Figure 6: Decision theoretic regression: correlated reward variables

the influence of Y/ on W, we explicitly store the terms
Pr(Y’, W’) we compute.®

This approach, explicitly representing the joint probability
of different action effects instead of summing out theinflu-
ence of in-dice parents, allowsusto accurately capture the
correlations among action effects that directly impact the
valuefunction. We need only computethejoint distribution
betweentwo relevant variablesin contextsinwhich they are
actualy correlated. For instance, suppose that we switched
thelocations of variables Y’ and W in Tree(W’, a) in Fig-
ure 5(a). We see then that 17" only depends on Y/ when
W isfdse. Inthiscase, thefinal regressed tree (before ex-
pected value is computed) would have a similar shape, as
shown in Figure 5(d); but we would compute jointsonly at
the w-leaves (labeled .J). Independent probabilitiesfor Y
and W' can be computed and stored in the usual fashion at
the other leaves (labeled 1).

Thelast piecein the puzzle pertainsto the decision of when
to sum out a variable's influence on an in-slice descendent
and whento retainthe (local) joint representation. Consider
the usual value tree and the action a shown in Figure 6(a);
notice that the dependence of 17 on Y’ has been reversed.

#\We should emphasizethat thislocal joint distribution doesnot
need to be computed or represented explicitly. Any factored rep-
resentation, e.g., storing directly Pr(Y”) and Pr(W'|Y"), can be
used. In fact, when anumber of variables are correlated, we gen-
erally expect this to be the approach of choice. However, we will
continueto speak as if the local joint were explicitly represented
for ease of exposition.

Regression of Y’ leads to the tree in Figure 6(b). When
removing the influence of variable W' on Y, we obtain
the tree shown in Figure 6(c). Using the usua ideas from
above, we would betempted to sum out theinfluence of W’
onY’, computing

Pr(Y'|Y, W) =

D

w'eval(w)

Pr(Y'|w',Y) - Pr(w'|W)

However, if we “look ahead,” we see that we will later
have to regress W’ at both leaf nodes for which we are at-
tempting to compute Pr(Y”). Clearly, since these are cor-
related, we should leave Pr(Y") uncomputed (explicitly),
leaving thejoint representation of Pr(Y’, W') asshownin
Figure 6(c). When subsequently regressing 1/’ at each leaf
wherePr(Y’) > 0, our work isalready doneat these points.

This leads to an obvious question: when removing a post-
action variable 1V’ from the tree produced when regressing
another variable Y/ which depends on it, under what cir-
cumstances should we sum out theinfluenceof v/ onY”’ or
retain the explicit joint representation of Pr(V’, Y/)? Intu-
itively, we want to retain the “expansion” of Y in terms of
V' (i.e, retain thejoint) if we will need to worry about the
correlation between Y’ and V' later on. Aswe saw above,
this notion of need is easily noticed when one of the vari-
ablesin directly involved in the value tree, and will be re-
gressed explicitly afterward (under the conditions that la
bel the current branch of course). However, variables that
may be needed subsequently are not restricted to those that
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Figure 7: Detecting future need for parents

have to be regressed directly (i.e., they needn’t be part of
Tree(V)); instead, variablesthat influencethosein Tree(1")
can sometimes be retained in expanded form.

Consider the action in Figure 7(a) (we again use the usual
Tree(V)). When we regress Y through «, we obtain atree
containing node V’, which subseguently gets replaced by
Tree(V’, a). Theterm Pr(Y"’) should be computed explic-
itly by summing the terms Pr(Y”/|v') - Pr(v'|V) over va-
ues v’. However, looking at Tree(V'), we see that W’ will
be regressed wherever Pr(Y”’) > 0, and that W' aso de-
pendson V. Thismeansthat (ignoringany CSI) W' and Y’
are correlated given the previous state s. This dependence
is mediated by V’, so we will need to explicitly use the
joint probability Pr(Y”, V') to determinethejoint probabil-
ity Pr(Y’, W’). Insuchacase, wesay that V' isneeded and
we do not sum out itsinfluenceon Y”. In an example like
this, however, oncewehave determined Pr(Y”, V', WW') we
can decide to sum out 1/ if it won't be needed further.

Findly, supposethat 1/’ dependsindirectly on V', but that
thisdependenceismediated by Y, asin Figure7(b). Inthis
case, we can sum out ¥V’ and claim that V' is not needed:
V' can only influence W’ through itseffect on Y’. Thisef-
fect is adequately summarized by Pr(Y’|V); and the terms
Pr(Y’, V'|V) are not needed to compute Pr(Y', W'|V)
since W’ and V' are independent given Y. We provide a
formal definition of need in the next section.

4.3 An Algorithm for Decision Theoretic Regression

The intuitionsillustrated by the previous examples can be
put together in an algorithm. We assume that an action a in
network form has been provided with tree-structured CPTs
(that is, Tree(X", a) for each post-action variable X'), as
well asavaluetree Tree(V). Welet Oy be an ordering of
the variables within Tree(1), and O p some post-action or-
dering for . The following algorithm constructs a Q-tree
for (), with respect to Tree(V).

1. SetTreg(Q.) =
2. For eachvariable X in Treg(V') (using Ov'):
(8) Determine contexts ¢ in Tree(V') (partial branches) that

lead to an occurrenceof X .
(b) At any leaf I of Tree(Q.) suchthat Pr(c) > 0 for some

context ¢, add simplify(Tree( X', a), 1, k) tol, where k isthe
contextin Tree(Q.) leadingto I (we treat ! asits label).

3. At each leaf of Treg(Q.), replacethe robability terms (of
which somemay bejoint probabilities) abellngt e |eaf Wlth
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> Pr(c , using theseprobabilitiesto determinePr(c)
for any context (branch) of Treg(V').

Thekey intuitionsdescribed in our earlier examplesare part
of the agorithm that produces simplify(Tree(X"’, a),l, k).
Recall that / is aleaf of the current (partia) Tree(Q,) and
is labeled with (possibly joint) probabilities of some sub-
set of thevariablesin Tree(V). Context k isthe set of con-
ditions under which those probabilities are valid; note that
k can only consist of pre-action variables. Simplification
involves the repeated replacement of the post-action vari-
ablesin Tree(V') and the recording of joint distributionsif
required. It proceeds as follows:

1. Reduce Treg( X', a
nodes.

2. ForanyvariablesY” in Tree( X', «) whoseprobability is part
of the label for I, replace Y in Tree( X', a), respecting the
ordering O p in replacement. That is, for each occurrence of
Y'inTreg( X', a):

(a) mergethe subtreesunder Y’ correspondingto valuesy of
Y’ that have positive probabllity, deleting Y,

(b) compute Pr(X’|Y’, m) - Pr(Y") for each leaf in the
merged subtree (let this |eaf correspond to context m =

k A k', wherek' isthe branch through Tree( X', a));

c) if Y’ has been regressed at ! or is needed in context m,
label this leaf of the merged tree with the joint distribution

over X', Y'; otherwise, sum out the influenceof Y.

) for context k& by deleting redundant

3. For any remaining variables Y’ in Treg( X', a), replace Y’
in Tree( X', a), respecting ordering O » in replacement; i.e.,
() replace each occurrence of Y’ with Tree(Y’, a) (and re-
duce by context n = k A k', where k' is the branch through
Tree( X', a) leading to Y');
(b) to each leaf I of the Treeg(Y”, a) just added, merge the
subtreesunder Y’ correspondingto valuesy of Y’ that have
positive probability at I’;
(c) proceed asin Step (2).

4. Repeat Step 3 until all new post-action variablesintroduced

at eachiteration of Step 3 have been removed. For any vari-
able removed from the tree, we construct ajoint distribution

with X if it is needed, or sum over its valueif it is not.

These steps embody the intuitions described earlier. We
note that when we refer to Pr(Y”’) as it exists in the tree,
it may be that Pr(Y’) does not label the leaf explicitly but
jointly with one or more other variables. In such a casg,
when we say that Pr(X’,Y”) should be computed, or Y’
should be summed out, we intend that X’ will become part
of theexplicitjointinvolvingother variables. Any variables
that are part of such a cluster are correlated with Y’ and
hencewith X’. Variables can be summed out once they are
no longer needed.

Thelast requirement isaformal definition of the concept of
need—as described above, thisdetermines when to retain a
joint representation for a post-action variable that is being
removed from Tree(Q), ). Let! bethelabel of theleaf where
X'’ isbeing regressed, & be the context leading to that | eaf,
Y’ bethe ancestor of X’ being replaced, and %’ the context
labeling thebranch through (partialy replaced) Tree( X', a
wherethe decision to compute Pr(X") or Pr(X’,Y") isbe-
ing made. We say that Y’ is needed if:



1. thereisabranch b of Tree(V') on which Y lies, such
that b has positive probability given; or

2. thereisabranch b onwhich 7 lies, such that b has pos-
itive probability given /; Pr(Z’) is not recorded in/;
andthereisapathfromY’ to 7' ina’snetwork that is
not blocked by { X" &, k'}.

5 Concluding Remarks

We have presented an agorithm for the construction of Q-
trees using a Bayes net representation of an action, with
tree-structured CPTs, and a tree-structured value function.
Thisforms the core of a decision theoretic regression algo-
rithm. Unlike earlier approaches to this problem, this al-
gorithmworkswith arbitrary Bayes net action descriptions,
and is not hindered by the presence of “intra-dice” arcsin
the network reflecting correlated action effects. Thisisan
important feature because this representational power al-
lowsoneto concisaly represent actionsin anatural fashion.
Forcing someone to specify actions without correlationsis
often unnatural, and the translation into a network with no
intra-glice arcs (e.g., by clustering variables) can cause a
blowupinthe network size and theinability to exploit many
independenciesin decision theoretic regression.

One concern about such approaches is the overhead in-
volved in constructing appropriate trees. We note that this
algorithmwill behave exactly asthealgorithmsdiscussed in
[5, 4] if there are no correlations. While we expect MDPs
to often contain actions that exhibit correlations, it seems
likely that many of these correlationswill belocalized. Fur-
thermore, the use of context-specific independence alows
clustering to be performed only under the specific condi-
tions that give rise to the dependencies among effects. Fi-
nally, we observe that we are only concerned with main-
taining correlations among variabl es that actually influence
value. If we are dealing with effects that impact other rele-
vant effects, but are not of direct interest themselves, these
are summed out immediately with little overhead.

We are currently exploring the extent to which networkscan
be preprocessed to all eviate some of therepeated operations
at different regression steps. There is aso an interesting
connection to the recent work of Michael Littman (persona
communication); he has suggested the transformation of ac-
tionrepresentationssuch asoursintoa STRIPS representa-
tion of actionsthat does not require correlated effects to be
represented explicitly. Thisis achieved by aradical trans-
formation of the problem, but onethat is polytime, requires
only apolynomial sizeincrease, and from which an optimal
policy can be extracted in polynomia time. It is an open
guestion if that method expl oitsthe same type of structural
regularities as our approach. Finally, we hope to consider
the use of other compact CPT representations in decision
theoretic regression.
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