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Abstract

Much recent research in decision theoretic plan-
ning has adopted Markov decision processes
(MDPs) as the model of choice, and has at-
tempted to make their solution more tractable by
exploiting problem structure. One particular al-
gorithm, structured policy construction achieves
this by means of a decision theoretic analog of
goal regression, using action descriptions based
on Bayesian networks with tree-structured condi-
tional probability tables. The algorithm as pre-
sented is not able to deal with actions with cor-
related effects. We describe a new decision theo-
retic regression operator that corrects this weak-
ness. While conceptually straightforward, this
extension requires a somewhat more complicated
technical approach.

1 Introduction

While Markov decision processes (MDPs) have proven to
be useful as conceptual and computational models for deci-
sion theoretic planning (DTP), there has been considerable
effort devoted within the AI community to enhancing the
computational power of these models. One of the key draw-
backs of classic algorithms such as policy iteration [13] or
value iteration [2] is the need to explicitly “sweep through”
state space some number of times to determine the values
of various actions at different states. Because state spaces
grow exponentially with the number of features relevant to
the problem description, such methods are wildly imprac-
tical for realistic planning problems, a difficulty dubbed by
Bellman the “curse of dimensionality.”

Recent research on the use of MDPs for DTP has focussed
on methods for solving MDPs that avoid explicit enumera-
tion of the state space while constructing optimal or approx-
imately optimal policies. Such techniques include the use
of reachability analysis to eliminate (approximately) un-
reachable states [9, 1], and state aggregation, whereby var-
ious states are grouped together and each aggregate state or
“cluster” is treated as a single state. Recently, methods for
automatic aggregation have been developed in which cer-

tain problem features are ignored, making certain states in-
distinguishable [8, 3, 11, 5, 16].

In some of these aggregation techniques, the use of standard
AI representations like STRIPS or Bayesian networks to
represent actions in an MDP can be exploited to help con-
struct the aggregations. In particular, they can be used to
help identify which variables are relevant, at any point in
the computation of an optimal policy, to the determination
of value or to the choice of action. This connection has lead
to the insight that the basic operations in computing optimal
policies for MDPs can be viewed as a generalization of goal
regression [5]. More specifically, a Bellman backup [2] for
a specific action a is essentially a regression step where,
instead of determining the the conditions under which one
specific goal proposition will be achieved when a is exe-
cuted, we determine the conditions under which a will lead
to a number of different “goal regions” (each having dif-
ferent value) such that the probability of reaching any such
goal region is fixed by the conditions so determined. Any
set of conditions so determined for action a is such that the
states having those conditions all accord the same expected
value to the performance of a. The net result of this deci-
sion theoretic regression operator is a partitioning of state
space into regions that assign different expected value to a.
Classical goal regression can be viewed as a special case of
this, where the action is deterministic and the value distinc-
tion is binary (goal states versus nongoal states).

A decision theoretic regression operator of this form is de-
veloped in [5]. The value functions being regressed are rep-
resented using decision trees, and the actions that are re-
gressed through are represented using Bayes nets with tree-
structured conditional probability tables. As shown there
(see also [4]), classic algorithms for solving MDPs, such
as value iteration or modified policy iteration, can be ex-
pressed purely in terms of decision theoretic regression, to-
gether with some tree manipulation. Unfortunately, the par-
ticular algorithm presented there assumes that actions ef-
fects are uncorrelated, imposing a restriction on the types
of Bayes nets that can be used to represent actions.1 The
aim of this paper is to correct this deficiency. Specifically,
we describe the details of a decision theoretic regression al-1Correlated effects can be represented by clustering variables,
of course, but such a representation is often unnatural and can
cause a substantial blowup in representation size.
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gorithm that handles such correlations in the effects of ac-
tions and the difficulties that must be dealt with. We note
that this paper does not offer much in the way of a concep-
tual advance in the understanding of the decision theoretic
regression, and builds directly on the observations in [5, 4].
However, the modifications of these approaches to handle
correlations are substantial enough, both in technical detail
and in spirit, to warrant special attention.

We review MDPs and their representation using Bayes nets
and decision trees in Section 2. We briefly describe the ba-
sic decision theoretic regression operator of [5] in Section 3.
In Section 4, we illustrate the challenges posed by corre-
lated action effects for decision theoretic regression with
several examples and describe an algorithmthat meets these
challenges. We conclude in Section 5 with some remarks on
future research and related work.

2 MDPs and Their Representation

2.1 Markov Decision Processes

We assume that the system to be controlled can be described
as a fully-observable, discrete state Markov decision pro-
cess [2, 13, 15], with a finite set of system statesS. The con-
trolling agent has available a finite set of actions A which
cause stochastic state transitions: we writePr(s; a; t) to de-
note the probability action a causes a transition to state t
when executed in state s. A real-valued reward function R
reflects the objectives of the agent, with R(s) denoting the
(immediate) utility of being in state s.2 A (stationary) pol-
icy � : S ! A denotes a particular course of action to be
adopted by an agent, with �(s) being the action to be exe-
cuted whenever the agent finds itself in state s. We assume
an infinite horizon (i.e., the agent will act indefinitely) and
that the agent accumulates the rewards associated with the
states it enters.

In order to compare policies, we adopt expected total dis-
counted reward as our optimality criterion; future rewards
are discounted by rate 0 � � < 1. The value of a policy �
can be shown to satisfy [13]:V�(s) = R(s) + �Xt2S Pr(s; �(s); t) � V�(t)
The value of� at any initial state s can be computed by solv-
ing this system of linear equations. A policy � is optimal ifV�(s) � V�0(s) for all s 2 S and policies �0. The optimal
value function V � is the same as the value function for any
optimal policy.

A number of techniques for constructing optimal policies
exist. An especially simple algorithm is value iteration [2].
We produce a sequence of n-step optimal value functionsV n by setting V 0 = R, and definingV i+1(s) = maxa2AfR(s) + �Xt2S Pr(s; a; t) � V i(t)g (1)2More general formulations of reward (e.g., adding action
costs) offer no special complications.

The sequence of functions V i converges linearly to V � in
the limit. Each iteration is known as a Bellman backup. Af-
ter some finite number n of iterations, the choice of maxi-
mizing action for each s forms an optimal policy � and V n
approximates its value.

There are several variations one can perform on the Bell-
man backup. For instance, given a policy �, we can com-
pute the value of � by means of successive approximation.
If we set V 0� = R, and defineV i+1� (s) = fR(s) + �Xt2S Pr(s; �(s); t) � V i�(t)g (2)

Then V k� (s) denotes the expected value of performing �,
starting at s, for k steps; this quantity converges to V�(s).
Finally, given a value function V , we define theQ-function
[17], mapping state-action pairs into values, as follows:Q(s; a) = fR(s) + �Xt2S Pr(s; a; t) � V (t)g (3)

This denotes the value of performing action a at state s as-
suming that value V is attained at future states (e.g., if we
acted optimally after performing a and attained V � subse-
quently). We useQa to denote theQ-function for a particu-
lar action a (i.e., Qa(s) = Q(s; a)). It is not hard to see that
value iteration and successive approximation can be imple-
mented by repeated construction of Q-functions (using the
current value function), and the appropriate selection of Q-
values (either by maximization at a particular state, or by
using the policy to dictate the correct action and Q-value to
apply to a state).

2.2 Action and Reward Representation

One of the key problems facing researchers regarding the
use of MDPs for DTP is the “curse of dimensionality:” the
number of states grows exponentially with the number of
problem variables. Since the representation of transition
probabilities, reward and value functions, policies, as well
as the computations involved in dynamic programming al-
gorithms, all involve enumerating states, the representation
of MDPs and the computational requirements of solution
techniques can be quite onerous. Fortunately, several good
representations for MDPs, suitable for DTP, have been pro-
posed. These include stochastic STRIPS operators [14, 3]
and dynamic Bayes nets [10, 5]. We will use the latter.

We assume that a set of variablesV describes our system.
To represent actions and their transition probabilities, for
each action we have a dynamic Bayes net (DBN) with one
set of nodes representing the system state prior to the action
(one node for each variable), another set representing the
world after the action has been performed, and directed arcs
representing causal influences between these sets. Our con-
vention is to use the notation X 0 to denote that variable X
after the occurrence of the action andX to denoteX before
the action. Each post-action node has an associated condi-
tional probability table (CPT) quantifying the influence of
the action on the corresponding variable, given the value
of its influences (see [5, 7] for a more detailed discussion
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Figure 1: (a) Action network (no correlations); (b) Action
network (correlations); and (c) Reward Tree

of this representation).3 Figures 1(a) and (b) illustrate this
representation for two different actions. We use �(X 0) to
denote the parents of node X 0 in a network and val(X) to
denote the values variables X (or X 0) can take.

The lack of an arc from a pre-action variable X to a post-
action variable Y 0 in the network for action a reflects the
independence of a’s effect on Y from the prior value ofX. We capture additional independence by assuming struc-
tured CPTs; that is, we exploit context-specific indepen-
dence (CSI) as defined in [6]. In particular, we use a deci-
sion tree to represent the function that maps parent variable
values to (conditional) probabilities. For instance, the trees
in Figure 1(a) show that Z influences the probability of Y
becoming true (as a consequence of the action), but only ifX is true (left arrows are assumed to be labeled “true” and
right arrows “false”). We refer to the tree-structured CPT
for node X 0 in the network for action a as Tree(X 0; a). We
make special note of the existence of the arc between X 0
and Y 0 in Figure 1(b). This indicates that the effect of ac-
tion a on X and Y is correlated. We will see that such arcs
pose challenges for decision theoretic regression.

Finally, a decision tree can also be used to represent the re-
ward function R, as shown in Figure 1(c). We call this the
(immediate) reward tree, Tree(R). We will also use this rep-
resentation for value functions and Q-functions.

3 Decision Theoretic Regression: Uncorre-
lated Effects

Apart from the naturalness and conciseness of representa-
tion offered by DBNs and decision trees, these represen-
tations lay bare a number of regularities and independen-
cies that can be exploited in optimal and approximate policy
construction. Methods for optimal policy construction can
use compact representations of policies and value functions
in order to prevent enumeration of the state space.

In [5], a structured version of modified policy iteration is
developed, in which value functions and policies are repre-
sented using decision trees and the DBN representation of
the MDP is exploited to build these compact policies.4 This3To simplify the presentation, we restric our attention to binary
variables in our examples.4See [12] for a similar, though less general, method in the con-

technique is applied in [4] to value iteration, and dynamic
approximation methods are considered as well. Roughly,
if one has a tree representation of a value function, only
certain variables will be mentioned as being relevant (un-
der certain conditions) to value. When performing Bellman
backups, the fact that certain variables are irrelevant to, say,V n means that action-condition pairs that are distinguished
by their influence on irrelevant variables need not be distin-
guished in the representation or computation of V n+1.

The key to all of these algorithms is a decision theoretic re-
gression operator used to construct the Q-functions for an
action a given a specific value function. If the value func-
tion is tree-structured, this algorithm produces a Q-tree, a
tree-structured representation of the Q-function that obvi-
ates the need to computeQ-values on a state-by-state basis.
We note that since: (a) the initial value function Tree(R) is
tree-structured; (b) the algorithm for producingQ-trees re-
tains this structure; and (c) the algorithm for “merging” Q-
trees (e.g., by maximization) also retains this structure; then
the resulting value function will be structured (and meth-
ods for buildingstructured policies based on this can be eas-
ily defined). We focus here only on the construction of Q-
trees—the remaining parts of the algorithms are straightfor-
ward. As in [5, 4], we assume that no action has correlated
effects (all have the form illustrated in Figure 1(a)): this
simplifies the algorithm considerably.

Let a be the action described in Figure 1(a), and let the
tree in Figure 1(c) correspond to some value function V
(call it Tree(V )). To produce the Q-function Qa based onV according to Equation 3, we need to determine that the
probabilities with which different states s make the condi-
tions dictated by the branches of Tree(V ) true.5 It should
be clear, since a’s effects on the variables in Tree(V ) ex-
hibit certain regularities (as dictated by its network), thatQa should also exhibit certain regularities. These are dis-
covered in the following algorithm for constructing a Q-
tree representing (the future value component of) Qa given
Tree(V ) and a network for a.

1. Generate an ordering OV of variables in Tree(V ).
2. Set Tree(Qa) = ;
3. For each variable X in Tree(V ) (using ordering OV ):

(a) Determine contexts c
in Tree(V ) (partial branches) that lead to an oc-
currence of X .

(b) At any leaf of Tree(Qa) such that Pr(c) > 0
for some context c: replace the leaf with a copy
of Tree(X;a) at that leaf (retain Pr(X) at each
leaf of Tree(X;a)); remove any redundant nodes
from this copy; for eachY ordered beforeX such
that Pr(Y ) labeled this leaf of Tree(Qa), copyPr(Y ) to each leaf of Tree(X;a) just added.

text of reinforcement learning, where deterministic action effects
and specific goal regions are assumed).5We ignore the fact that states with different reward have dif-
ferent Q-values; these differences can be added easily once the fu-
ture reward component of Equation 3 has been spelled out.
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Figure 2: Decision theoretic regression: no correlations

4. At each leaf of Tree(Qa), replace probabilities labeling leaf
with
Pc Pr(c)V (c), using these probabilities to determinePr(c) for any context (branch) of Tree(V ).

This decision theoretic regression algorithm forms the core
of the policy construction techniques of [5, 4].

We illustrate the algorithm on the example above. We
will regress the variables of Tree(V ) through action a in
the order Y;W (generally, we want to respect the order-
ing within the tree as much as possible). We first regressY through a, producing the tree shown in Figure 2(a).
Notice that this tree accurately reflects Pr(Y 0) when a is
executed given that the previous state satisfies the condi-
tions labeling the branches. We then regress W through a
and add the results to any branch of the tree so far wherePr(Y ) > 0 (see Figure 2(b)). Thus, Tree(W;a) is not
added to the rightmost branch of the tree in Figure 2(a)—
this is because if Y is known to be false, W has no im-
pact on reward, as dictated by Tree(V ). Notice also that be-
cause of certain redundancies in the tests (internal nodes) of
Tree(Y; a) and Tree(W;a), certain portions of Tree(W;a)
can be deleted. Figure 2(b) now accurately describes the
probabilities of both Y and W given that a is executed un-
der the listed conditions, and thus dictates the probability
of making any branch of Tree(V ) true: we simply multiplyPr(W ) and Pr(Y ) for the values of W and Y labeling this
branch. Therefore, the (future component of the) expected
value of performing a at any such state can easily be com-
puted at each leaf of this tree using

PfPr(c)V (c) : c 2
branches(Tree(V ))g—the result is shown in Figure 2(c).

It is important to note that the justification for this very
simple algorithm lies in the fact that, in the network fora, Y 0 and W 0 are independent given any context k la-
beling a branch of Tree(Qa). This ensures that the termPr(Y 0jk) Pr(W 0jk) corresponds to Pr(Y 0;W 0jk). There
are two reasons for this. First, since no action effects
are correlated, the effect of a on any variable is indepen-
dent given knowledge of the previous state (i.e., the post-
action variables are independent given the pre-action vari-
ables). Second, this independence does not require com-
plete knowledge of the state, but can exploit both the vari-
able independence specified by the network structure, and
the CSI relations dictated by the CPTs.

4 Regression with Correlated Action Effects

As noted above, the fact that action effects are uncorrelated
means that knowledge of the previous state renders all post-
action variables independent. This is not the case when ef-
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Figure 3: Dec. theoretic regression: summing over parents

fects are correlated as in Figure 1(b). This can lead to sev-
eral difficulties for decision theoretic regression. The first
is the fact that, although we want to compute the expected
value of a given only the state s of pre-action variables,
the probability of post-action variables that can influence
value (e.g., Y 0) is not specified solely in terms of the pre-
action state, but also involves other post-action variables
(e.g., X 0). This difficulty is relatively straightforward to
deal with, requiring that we sum out the influence of post-
action variables on other post-action variables.

The second problem requires more sophistication. Because
action effects are correlated, the probability of the vari-
ables in Tree(V ) may also be correlated. This means that
determining the probability of attaining a certain branch
of Tree(V ) by considering the “independent” probabilities
of attaining the variables on the branch (as in the previ-
ous section) is doomed to failure. For instance, if both X
and Y lie on a single branch of Tree(V ), we cannot com-
putePr(X 0js) andPr(Y 0js) independently to determine the
probability Pr(X 0; Y 0js) of attaining that branch. To deal
with this, we must construct Q-trees where the joint distri-
bution over certain subsets of variables is computed.

We illustrate the necessary intuitions behind a new algo-
rithm for decision theoretic regression that adequately deals
with correlations (i.e., arbitrary DBNs) through a series of
examples. We then present the algorithm in its entirety.

4.1 Summing out Post-Action Influences

Consider action a in Figure 1(b) and Tree(V ) in Figure 1(c).
Using the algorithm from the previous section to produce
Tree(Qa), we would first regress Y 0 through a to obtain
the tree shown in Figure 3(a). Continuation of the algo-
rithm will not lead to a legitimate Q-tree, since it involves a
post-action variable X 0. Our revised algorithm will estab-
lish the dependence of Pr(Y 0) on previous state s by “sum-
ming out” the influence of X 0 on Y 0, letting Y 0 vary with
the parents of X 0. Specifically, we will simply computePr(Y 0js) = Xx02val(X0)Pr(Y 0jx0; s) � Pr(x0jX)= Xx02val(X0)Pr(Y 0jx0; Y ) �Pr(x0jX)
This will proceed as follows. Once we have regressed Y 0
through a, we will replace the node X 0 by Tree(X 0; a).
This dictates Pr(X 0j�(X 0)). Denote the subtree of the
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replaced node corresponding to each values xi of X 0 by
STree(xi). Now at each leaf l of Tree(X 0; a) just added,
we have recorded Pr(xi). For those values of xi that have
positive probability, we merge the trees STree(xi) and copy
these at l.6 In Figure 3(b), we have placed the merged sub-
tree rooted at Y under both X = x and X = x. Now,
at each leaf we can determine (indeed, we have recorded
while building the tree) both Pr(X 0jX) and Pr(Y 0jX 0; Y )
for the appropriate values of X and Y labeling the branch.
We can then compute Pr(Y ) as needed, depending only on
pre-action variables. Once completed, it is easy to see that
regression of W 0 through a can proceed unhindered as in
the last section.

We note that had the CPT for X 0 indicated that Pr(x0jx) =1 (instead of 0:9), we would not have copied the X 0 = x0
subtree under X = x. This is because the influence ofY on Y 0 is only valid when X 0 is false. The result would
have been the simpler tree shown in Figure 3(c). Finally,
we see that had there been a chain of dependence among
post-action variables, this replacement of post-action vari-
ables in the regressed tree by their parents can simply pro-
ceed recursively. For instance, had X 0 depended on a third
variable V 0, this variable would have been introduced with
Tree(X 0; a). The influence of V 0 on Y 0 could then have
been summed out in a similar fashion.

We now consider a second example (see Figure 4) that il-
lustrates that the order in which these post-action variables
are replaced in a tree can be crucial. Suppose that we have
an action a similar to the one just described, except now we
have that variable Y 0 depends on both X 0 and Z 0 (i.e., a’s
effect on X, Y and Z is correlated). When we regress Y 0
through a, we will introduce a tree in which bothX 0 andZ 0
appear, and we assume thatX 0 andZ 0 appear together on at
least one branch of Tree(Y 0; a) that is present in Tree(Qa).
Now let us suppose that Z 0 also depends on X 0, as in Fig-
ure 4. In such a case, it is important to substitute Tree(Z 0; a)
forZ 0 before substituting Tree(X 0; a) forX 0. If we replaceX 0 first, we will computePr(Y 0jZ 0;�(X 0))= Xx02val(X0)Pr(Y 0jx0; Z 0) Pr(x0j�(X 0))
(we suppress mention of other parents of Y 0). Subse-6Merging simply requires creating a tree whose branches make
the distinction contained in each subtree. We do this by order-
ing the trees, and grafting each tree in order onto the leaves of the
tree resulting from merging it predecessor, and removing redun-
dant nodes (i.e., duplicated tests) as appropriate.

quently, we would replace occurrences ofZ 0 with Tree(Z 0)
and computePr(Y 0j�(Z 0);�(X 0)) =Xz02val(Z0)Pr(Y 0jz0;�(X 0)) Pr(z0j�(Z 0))
This ordering has two problems. First, since X 0 is a parent
of Z 0, this approach would reintroduceX 0 into the tree, re-
quiring the wasted computation of summing out X 0 again.
Even worse, for any branch of Tree(Z 0) on which X 0 oc-
curs, the computation above is not valid, for Y 0 is not inde-
pendent of X 0 (an element of �(Z 0)) given Z 0 and �(X 0)
(since X 0 directly influences Y 0).
Because of this, we require that when a variable Y 0 is re-
gressed througha, if any two of its post-action parents lie on
the same branch of Tree(Y 0), these nodes in Tree(Y 0) must
be replaced by their trees in an order that respects the depen-
dence among post-action variables in a’s network. More
precisely, let a post-action ordering OP for action a be any
ordering of variables such that, if X 0 is a parent of Z 0, thenZ 0 occurs before X 0 in this ordering (so the ordering goes
against the direction of the within-slice arcs). Post-action
variables in Tree(Y 0), or any tree obtained by recursive re-
placement of post-action variables, must be replaced ac-
cording to some post-action ordering OP .

4.2 Computing Local Joint Distributions

Consider again Tree(V ) shown in Figure 1(c) and its regres-
sion through the action a shown in Figure 5(a). Figure 5(b)
shows the regression of Y 0 through a. We would normally
then insert Tree(W 0; a) at each leaf of this tree, and replace
the Y 0 node of this tree with Tree(Y 0; a). Of course, Pr(Y 0)
already labels each leaf, so we can immediately replace the
node Y 0 in Tree(W 0; a) with its merged subtrees (as de-
scribed in the previous subsection).7 The structure of this
tree is indicated in Figure 5(c). If we were to proceed as
above, we would simply sum out the influence of Y 0 onW 0
to determine Pr(W 0) at each leaf. That is, we computePr(W 0jW;X; Y ) = Xy02val(Y 0)Pr(W 0jy0;W )�Pr(y0jX;Y )
This, unfortunately, does not provide an accurate picture
of the probability of attaining the conditions c labeling
the branches of Tree(V ). If we labeled the leaves of
the tree in Figure 5(c) with Pr(Y 0) and Pr(W 0) so com-
puted, these probabilities, while correct, are not sufficient
to determine Pr(Y 0;W 0): Y 0 and W 0 are not indepen-
dent given X;Y;W . Instead, we need the joint distributionPr(Y 0;W 0) labeling the leaves, as shown in Figure 5(c).
We note that this joint is obtained in a very simple fash-
ion. At each leaf we have recorded Pr(Y 0) and Pr(W 0jY 0)
(under the appropriate conditions). Instead of summing out7And as described above,we do not need to include the Y 0 = y
subtree (from Tree(W 0; a)) at the X = x leaf, since Pr(Y 0) = 1
labels that leaf.
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the influence of Y 0 on W 0, we explicitly store the termsPr(Y 0;W 0) we compute.8
This approach, explicitly representing the joint probability
of different action effects instead of summing out the influ-
ence of in-slice parents, allows us to accurately capture the
correlations among action effects that directly impact the
value function. We need only compute the joint distribution
between two relevant variables in contexts in which they are
actually correlated. For instance, suppose that we switched
the locations of variables Y 0 and W in Tree(W 0; a) in Fig-
ure 5(a). We see then that W 0 only depends on Y 0 whenW is false. In this case, the final regressed tree (before ex-
pected value is computed) would have a similar shape, as
shown in Figure 5(d); but we would compute joints only at
the w-leaves (labeled J). Independent probabilities for Y 0
and W 0 can be computed and stored in the usual fashion at
the other leaves (labeled I).

The last piece in the puzzle pertains to the decision of when
to sum out a variable’s influence on an in-slice descendent
and when to retain the (local) joint representation. Consider
the usual value tree and the action a shown in Figure 6(a);
notice that the dependence of W 0 on Y 0 has been reversed.8We should emphasize that this local joint distribution does not
need to be computed or represented explicitly. Any factored rep-
resentation, e.g., storing directly Pr(Y 0) and Pr(W 0jY 0), can be
used. In fact, when a number of variables are correlated, we gen-
erally expect this to be the approach of choice. However, we will
continue to speak as if the local joint were explicitly represented
for ease of exposition.

Regression of Y 0 leads to the tree in Figure 6(b). When
removing the influence of variable W 0 on Y 0, we obtain
the tree shown in Figure 6(c). Using the usual ideas from
above, we would be tempted to sum out the influence ofW 0
on Y 0, computingPr(Y 0jY;W ) = Xw02val(W 0)Pr(Y 0jw0; Y ) � Pr(w0jW )
However, if we “look ahead,” we see that we will later
have to regress W 0 at both leaf nodes for which we are at-
tempting to compute Pr(Y 0). Clearly, since these are cor-
related, we should leave Pr(Y 0) uncomputed (explicitly),
leaving the joint representation of Pr(Y 0;W 0) as shown in
Figure 6(c). When subsequently regressingW 0 at each leaf
wherePr(Y 0) > 0, our work is already done at these points.

This leads to an obvious question: when removing a post-
action variable V 0 from the tree produced when regressing
another variable Y 0 which depends on it, under what cir-
cumstances should we sum out the influence of V 0 on Y 0 or
retain the explicit joint representation of Pr(V 0; Y 0)? Intu-
itively, we want to retain the “expansion” of Y 0 in terms ofV 0 (i.e., retain the joint) if we will need to worry about the
correlation between Y 0 and V 0 later on. As we saw above,
this notion of need is easily noticed when one of the vari-
ables in directly involved in the value tree, and will be re-
gressed explicitly afterward (under the conditions that la-
bel the current branch of course). However, variables that
may be needed subsequently are not restricted to those that
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Figure 7: Detecting future need for parents

have to be regressed directly (i.e., they needn’t be part of
Tree(V )); instead, variables that influence those in Tree(V )
can sometimes be retained in expanded form.

Consider the action in Figure 7(a) (we again use the usual
Tree(V )). When we regress Y 0 through a, we obtain a tree
containing node V 0, which subsequently gets replaced by
Tree(V 0; a). The term Pr(Y 0) should be computed explic-
itly by summing the terms Pr(Y 0jv0) � Pr(v0jV ) over val-
ues v0. However, looking at Tree(V ), we see that W 0 will
be regressed wherever Pr(Y 0) > 0, and that W 0 also de-
pends onV 0. This means that (ignoringany CSI)W 0 andY 0
are correlated given the previous state s. This dependence
is mediated by V 0, so we will need to explicitly use the
joint probabilityPr(Y 0; V 0) to determine the joint probabil-
ityPr(Y 0;W 0). In such a case, we say that V 0 is needed and
we do not sum out its influence on Y 0. In an example like
this, however, once we have determinedPr(Y 0; V 0;W 0)we
can decide to sum out V 0 if it won’t be needed further.

Finally, suppose that W 0 depends indirectly on V 0, but that
this dependence is mediated byY 0, as in Figure 7(b). In this
case, we can sum out V 0 and claim that V 0 is not needed:V 0 can only influence W 0 through its effect on Y 0. This ef-
fect is adequately summarized by Pr(Y 0jV ); and the termsPr(Y 0; V 0jV ) are not needed to compute Pr(Y 0;W 0jV )
since W 0 and V 0 are independent given Y 0. We provide a
formal definition of need in the next section.

4.3 An Algorithm for Decision Theoretic Regression

The intuitions illustrated by the previous examples can be
put together in an algorithm. We assume that an action a in
network form has been provided with tree-structured CPTs
(that is, Tree(X 0; a) for each post-action variable X 0), as
well as a value tree Tree(V ). We let OV be an ordering of
the variables within Tree(V ), and OP some post-action or-
dering for a. The following algorithm constructs a Q-tree
for Qa with respect to Tree(V ).

1. Set Tree(Qa) = ;
2. For each variable X in Tree(V ) (using OV ):

(a) Determine contexts c in Tree(V ) (partial branches) that
lead to an occurrence of X .
(b) At any leaf l of Tree(Qa) such that Pr(c) > 0 for some
context c, add simplify(Tree(X 0; a); l; k) to l, where k is the
context in Tree(Qa) leading to l (we treat l as its label).

3. At each leaf of Tree(Qa), replace the probability terms (of
which some may be joint probabilities) labeling the leaf with

Pc Pr(c)V (c), using these probabilities to determinePr(c)
for any context (branch) of Tree(V ).

The key intuitionsdescribed in our earlier examples are part
of the algorithm that produces simplify(Tree(X 0; a); l; k).
Recall that l is a leaf of the current (partial) Tree(Qa) and
is labeled with (possibly joint) probabilities of some sub-
set of the variables in Tree(V ). Context k is the set of con-
ditions under which those probabilities are valid; note thatk can only consist of pre-action variables. Simplification
involves the repeated replacement of the post-action vari-
ables in Tree(V ) and the recording of joint distributions if
required. It proceeds as follows:

1. Reduce Tree(X 0; a) for context k by deleting redundant
nodes.

2. For any variablesY 0 in Tree(X 0; a)whose probability is part
of the label for l, replace Y 0 in Tree(X 0; a), respecting the
orderingOP in replacement. That is, for each occurrence ofY 0 in Tree(X 0; a):
(a) merge the subtrees underY 0 corresponding to valuesy ofY 0 that have positive probability, deleting Y 0;
(b) compute Pr(X 0jY 0;m) � Pr(Y 0) for each leaf in the
merged subtree (let this leaf correspond to context m =k ^ k0, where k0 is the branch through Tree(X 0; a));
(c) if Y 0 has been regressed at l or is needed in context m,
label this leaf of the merged tree with the joint distribution
over X 0; Y 0; otherwise, sum out the influence of Y 0.

3. For any remaining variables Y 0 in Tree(X 0; a), replace Y 0
in Tree(X 0; a), respecting ordering OP in replacement; i.e.,
(a) replace each occurrence of Y 0 with Tree(Y 0; a) (and re-
duce by context n = k ^ k0, where k0 is the branch through
Tree(X 0; a) leading to Y 0);
(b) to each leaf l0 of the Tree(Y 0; a) just added, merge the
subtrees underY 0 corresponding to values y of Y 0 that have
positive probability at l0;
(c) proceed as in Step (2).

4. Repeat Step 3 until all new post-action variables introduced
at each iteration of Step 3 have been removed. For any vari-
able removed from the tree, we construct a joint distribution
with X 0 if it is needed, or sum over its value if it is not.

These steps embody the intuitions described earlier. We
note that when we refer to Pr(Y 0) as it exists in the tree,
it may be that Pr(Y 0) does not label the leaf explicitly but
jointly with one or more other variables. In such a case,
when we say that Pr(X 0; Y 0) should be computed, or Y 0
should be summed out, we intend that X 0 will become part
of the explicit joint involvingother variables. Any variables
that are part of such a cluster are correlated with Y 0 and
hence with X 0. Variables can be summed out once they are
no longer needed.

The last requirement is a formal definition of the concept of
need—as described above, this determines when to retain a
joint representation for a post-action variable that is being
removed from Tree(Qa). Let l be the label of the leaf whereX 0 is being regressed, k be the context leading to that leaf,Y 0 be the ancestor of X 0 being replaced, and k0 the context
labeling the branch through (partially replaced) Tree(X 0; a)
where the decision to computePr(X 0) orPr(X 0; Y 0) is be-
ing made. We say that Y 0 is needed if:
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1. there is a branch b of Tree(V ) on which Y 0 lies, such
that b has positive probability given l; or

2. there is a branch b on whichZ lies, such that b has pos-
itive probability given l; Pr(Z 0) is not recorded in l;
and there is a path from Y 0 to Z 0 in a’s network that is
not blocked by fX 0; k; k0g.

5 Concluding Remarks

We have presented an algorithm for the construction of Q-
trees using a Bayes net representation of an action, with
tree-structured CPTs, and a tree-structured value function.
This forms the core of a decision theoretic regression algo-
rithm. Unlike earlier approaches to this problem, this al-
gorithm works with arbitrary Bayes net action descriptions,
and is not hindered by the presence of “intra-slice” arcs in
the network reflecting correlated action effects. This is an
important feature because this representational power al-
lows one to concisely represent actions in a natural fashion.
Forcing someone to specify actions without correlations is
often unnatural, and the translation into a network with no
intra-slice arcs (e.g., by clustering variables) can cause a
blowup in the network size and the inability to exploit many
independencies in decision theoretic regression.

One concern about such approaches is the overhead in-
volved in constructing appropriate trees. We note that this
algorithm will behave exactly as the algorithmsdiscussed in
[5, 4] if there are no correlations. While we expect MDPs
to often contain actions that exhibit correlations, it seems
likely that many of these correlations will be localized. Fur-
thermore, the use of context-specific independence allows
clustering to be performed only under the specific condi-
tions that give rise to the dependencies among effects. Fi-
nally, we observe that we are only concerned with main-
taining correlations among variables that actually influence
value. If we are dealing with effects that impact other rele-
vant effects, but are not of direct interest themselves, these
are summed out immediately with little overhead.

We are currently exploring the extent to which networks can
be preprocessed to alleviate some of the repeated operations
at different regression steps. There is also an interesting
connection to the recent work of Michael Littman (personal
communication); he has suggested the transformationof ac-
tion representations such as ours into a STRIPS representa-
tion of actions that does not require correlated effects to be
represented explicitly. This is achieved by a radical trans-
formation of the problem, but one that is polytime, requires
only a polynomial size increase, and from which an optimal
policy can be extracted in polynomial time. It is an open
question if that method exploits the same type of structural
regularities as our approach. Finally, we hope to consider
the use of other compact CPT representations in decision
theoretic regression.
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