
Monitoring a Complex Physical System using a Hybrid Dynamic Bayes Net

Uri Lerner
Computer Science Dept.

Stanford University
uri@cs.stanford.edu

Brooks Moses
Mechanical Engr. Dept.

Stanford University
bmoses@stanford.edu

Maricia Scott
Computer Science Dept.

Stanford University
maricia@cs.stanford.edu

Sheila McIlraith
Computer Science Dept.

Stanford University
sam@ksl.stanford.edu

Daphne Koller
Computer Science Dept.

Stanford University
koller@cs.stanford.edu

Abstract

The Reverse Water Gas Shift system (RWGS) is a
complex physical system designed to produce oxy-
gen from the carbon dioxide atmosphere on Mars. If
sent to Mars, it would operate without human super-
vision, thus requiring a reliable automated system for
monitoring and control. The RWGS presents many
challenges typical of real-world systems, including:
noisy and biased sensors, nonlinear behavior, effects
that are manifested over different time granularities,
and unobservability of many important quantities. In
this paper we model the RWGS using a hybrid (dis-
crete/continuous) Dynamic Bayesian Network (DBN),
where the state at each time slice contains 33 discrete
and 184 continuous variables. We show how the sys-
tem state can be tracked using probabilistic inference
over the model. We discuss how to deal with the var-
ious challenges presented by the RWGS, providing a
suite of techniques that are likely to be useful in a
wide range of applications. In particular, we describe
a general framework for dealing with nonlinear behav-
ior using numerical integration techniques, extending
the successful Unscented Filter. We also show how
to use a fixed-point computation to deal with effects
that develop at different time scales, specifically rapid
changes occurring during slowly changing processes.
We test our model using real data collected from the
RWGS, demonstrating the feasibility of hybrid DBNs
for monitoring complex real-world physical systems.

1 Introduction

The Reverse Water Gas Shift System (RWGS) shown in
Fig. 1 is a complex physical system designed and con-
structed at NASA’s Kennedy Space Center to produce oxy-
gen from carbon dioxide. NASA foresees a number of pos-
sible uses for the RWGS, including producing oxygen from
the atmosphere on Mars and converting carbon dioxide to
oxygen within closed human living quarters.

In a manned Mars mission, the RWGS would operate
for 500 or more days without human intervention [Larson
and Goodrich, 2000]. This level of autonomy requires the
development of robust and adaptive software for fault diag-
nosis and control. In this paper, we focus on two key sub-
tasks — monitoring and prediction. Monitoring, or track-
ing the current state of the system, is a crucial component

Figure 1: The Prototype RWGS System

of the control system. Prediction of the system’s expected
behavior is a basic tool in fault diagnosis — discrepancies
between the predicted and the actual behavior of the system
may indicate the presence of faults.

The RWGS presents a number of significant modeling
and algorithmic challenges. From a modeling perspec-
tive, the system is very complex, and contains many sub-
tle phenomena that are difficult to model accurately. Var-
ious phenomena in the system manifest themselves over
dramatically different time scales, ranging from pressure
waves that propagate on a time scale of milliseconds to
slow changes such as gas composition that take hours to
evolve. From a tracking perspective, the system dynamics
are complex and highly nonlinear. Furthermore, the sen-
sors give only a limited view of the system state. Some key
quantities of the system are not measured, and the available
sensors are noisy and biased, with both the noise level and
the bias varying with the system state.

In this paper we model the RWGS using a hybrid (dis-
crete/continuous) Dynamic Bayesian Network (DBN), and
show how the system state can be tracked using probabilis-
tic inference over the model. We focus on the continuous
part of the model, assuming all the discrete variables are
known. We discuss how to deal with the various challenges
presented by the RWGS, both in terms of modeling and in
terms of inference. We provide a suite of techniques that
are likely to be useful in a wide range of applications, in-

cluding the case where the discrete variables are not ob-
served.

Perhaps the most interesting modeling problem pre-
sented by the RWGS is the issue of different time granu-
larities. A naive solution is to discretize time at the finest
granularity. Unfortunately, this approach is generally in-
feasible both because of the computational burden and be-
cause the number of observations is effectively reduced to
one for every few thousand time steps, leading to serious
inaccuracies. Instead, we take the approach of modeling
the system at the time granularity of the observations. We
show how to deal with the almost instantaneous changes
relative to our time discretization by modeling a part of our
system as a set of fixed-point equations.

For the inference task, we provide some new insights
into the problem of tracking nonlinear systems. This task
is commonly performed using the Extended Kalman Fil-
ter (EKF) [Bar-Shalom et al., 2001] or the simpler and
more accurate Unscented Filter (UF) [Julier and Uhlmann,
1997]. We view the problem as a numerical integration
problem and demonstrate that the UF is an instance of a
numerical integration technique. More importantly, our ap-
proach naturally leads to important generalizations of the
UF: We show how to take advantage of the structure of the
DBN and present a spectrum of filters, trading off accuracy
with computational effort.

We tested our model using real data collected from the
RWGS prototype system. Our results demonstrate the po-
tential of using hybrid DBNs as a monitoring tool for com-
plex real-world physical systems.

2 Preliminaries

In this paper, we characterize physical systems as discrete-
time stochastic processes. System behavior is described in
terms of a system state which evolves stochastically at dis-
crete time steps

���������	��
�������
We assume that the system

is Markovian and stationary, i.e., the state of the system
at time

�����
only depends on its state at time

�
, and the

probabilistic dependencies are the same for all
�
.

The system state is modeled by a set of random vari-
ables � ���������������������

. We partition the state vari-
ables � into a set of evidence (observed) variables, � , and
a set of hidden (unobserved) variables, � . Physical sys-
tems commonly comprise both continuous quantities (e.g.,
flows, pressures, gas compositions) and discrete quanti-
ties (e.g., valve open/closed, compressor on/off). Conse-
quently, we model such systems as hybrid systems, with �
comprising both discrete and continuous variables.

We model the process dynamics of our system using a
Dynamic Bayesian Network (DBN) [Dean and Kanazawa,
1989]. A DBN is represented as a Bayes Net fragment
called a 2TBN, which defines the transition model "!$#"%'&
#)(where #*% �+��,������������-.�

denotes the variables at
time

�/�0�
and # �1��� � �����2�3�546�

denotes some subset of
the variables at time

�
which are persistent, in that their val-

ues directly influence the next state. More formally, a DBN

is a directed acyclic graph, whose nodes are random vari-
ables in two consecutive time slices, # and #7% . The edges
in the graph denote direct probabilistic influence between
the parents and their child. For every variable

� % at time�8�1�
we denote its parents as Par ! � % (:9;#=<>#?% . Each� % is also annotated with a Conditional Probability Dis-

tribution (CPD), that defines the local probability model
 �! � % & Par ! � % (3(. In our hybrid model, discrete nodes do
not have continuous nodes as parents.

The tracking problem in DBNs is to find the belief state

distributionBel !@#*AB(def� �!@#CAD&�E � ���F�F�F� E A (, where #*A typ-
ically consists of the persistent variables # at time

�
, and

E � ���F�F�F� E A are the evidence variables from time
�

to time
�
.

The belief state summarizes our beliefs about the state of
the system at time

�
, given the observations from time

�
to time

�
. As such, it makes current and future predictions

independent of past data. The tracking algorithm is an it-
erative process that propagates the belief state. We start
with the belief state at time

�
, Bel !@# A (and perform three

steps. We first compute "!$#GA � #HA$I
�
&JE � ��F�F�K� E A (as the

product Bel !@# A (3 �!@# A@I
�
&# A (. Next we marginalize out

A resulting in a distribution over # A$I
�
. Finally, we con-

dition on E A@I
�
, and the result is the belief state at

�L���
,

Bel !$# A@I
�
(.

Linear models are an important class of DBNs. In a
linear model, all the variables in # are continuous and
all the dependencies are linear with some added Gaussian
noise. More precisely, if a node

�
has parents M �����F�F�F� MON

then "! � &M �����F�F�F� MON�(�)P NQSR �UT Q M Q �HV , where the T Q ’s
are constants and

V
has a normal distribution W7!$X �ZY\[(.

In a dynamic linear model, tracking can be done using a
Kalman filter [Kalman, 1960], where the belief state is rep-
resented parametrically as a multivariate Gaussian in terms
of the mean vector and the covariance matrix. Kalman fil-
ters therefore allow a compact belief state representation,
which can be propagated in polynomial time and space.

When the dependencies in the model are nonlinear, the
resulting distributions are generally non-Gaussian and can-
not be represented in closed form. Consequently, the belief
state is generally approximated as a multivariate Gaussian
that preserves the first two moments of the true distribu-
tion. The traditional method for doing this approximation
is using an Extended Kalman Filter (EKF) [Bar-Shalom et
al., 2001]. Assume that # % �^] !$#�(, where

]
is some

nonlinear function and #`_�W7!@XX X ��a (. Note that we can
always assume that

]
is deterministic: If the dependency

between # and # % is stochastic we can treat the stochas-
ticity as extra random variables that

]
takes as arguments.

The EKF finds a linear approximation to
]

around the mean
of # , i.e., we approximate

]
using the first-order Taylor

series expansion around X X X . The result is the linear func-
tion

] !$#)(cb] !$X X X'(��d5] & XX X !@#fegXX Xh(, where
d5] & X X X is the

gradient of
]

evaluated at X X X .1

1A second-order EKF approximation exists, but its increased
complexity tends to limit its use.

The EKF has two serious disadvantages. The first is its
inaccuracy — the EKF is accurate only if the second and
higher-order terms in the Taylor series expansion are neg-
ligible. In many practical situations, this is not the case
and using the EKF leads to a poor approximation. The
second disadvantage is the need to compute the gradient.
Some nonlinear functions may not be differentiable (e.g.,
the ����� function), preventing the use of an EKF. Even
if the function is differentiable, computing the derivatives
may be hard if the function is represented as a black box
rather than in some analytical form.

The Unscented Filter (UF) [Julier and Uhlmann, 1997]
provides an alternative approach to tracking nonlinear be-
havior. As with the EKF, the UF assumes that #?% �?] !$#�(
and # _ W7!$X X X �Za (. The UF works by deterministically
choosing

�� �7�
points �	� ���F�F�F� � [4 , where �
� � X X X and the

other points are symmetric around X X X (the actual points de-
pend on

a
). Associated with each point is a weight T Q .

The UF computes � %Q ��] !�� Q (for � �7� �� ����� �Z
�� , result-
ing in

��h� �
points in IR

-
, from which it estimates the first

two moments of #*% as a weighted average of the � %Q ’s. In
particular, the mean �� # %�� is approximated as

P [4QSR � T Q � %Q .
The UF has several significant advantages over the EKF.

First, it is easier to implement and use than the EKF — no
derivatives need be computed, and the function

]
is simply

applied to

����H�

points. Second, despite its simplicity, the
UF is more accurate than the EKF: The UF is a third-order
approximation, i.e., inaccuracies are induced only by terms
of degree four or more in the Taylor series expansion. Fi-
nally, instead of just ignoring the higher-order terms, the
UF can account for some of their effects, by tuning a pa-
rameter used in the point selection. As shown in [Julier and
Uhlmann, 1997], the UF can be extremely accurate, even in
cases where the EKF leads to a poor approximation.

3 The RWGS System

The purpose of the RWGS is to decompose carbon diox-
ide (CO [) (abundant on Mars) into oxygen (O [) and carbon
monoxide (CO). The system, shown in Fig. 2(a) [Goodrich,
2002], comprises two loops: a gas loop that converts CO [
and hydrogen (H [) into H [O and CO, and a water loop that
electrolyzes the H [O to produce O [and H [. Under normal
operation, CO [at line (1) is combined with H [returned
from the electrolyzer via line (12), and a mixture of CO [,
H [, and CO from the reactor recycle line (11). This mixture
enters a catalyzed reactor (3) heated to � � ��� C. Approxi-
mately 10% of the CO [and H [react to form CO and H [O:��� [��� [�� ��� ��� [�
The H [O is condensed at (4) and is stored in a tank (5). The
remaining gas mixture passes through a separation mem-
brane (9), which sends a fraction of the CO to the vent (13)
while directing the remaining mixture into the recycle line
(11). A compressor (10) is used to maintain the necessary
pressure differential across the membrane. In the water
loop, the H [O in tank (5) has some CO [dissolved in it,
which would be detrimental to the electrolyzation process.

To remedy this, the H [O is pumped into a second tank (6),
and has H [bubbled through it to purge the CO [. From
there, the H [O is pumped into the electrolyzer (8), which
separates a portion of it into O [and H [. The H [re-enters
the gas loop via (12), while the remaining H [O, along with
the O [, goes into tank (7), where the mixture is cooled and
separated. The H [O returns to the electrolyzer, while the
O [leaves the system through (14).

In addition to its normal operating mode, the system
may operate without the electrolyzer and water pumps. In
this mode, the H [for the reaction is supplied by a supply
line (15) paralleling the CO [supply line. This option is not
feasible for operation on Mars, but has proven useful for
testing the physical system while under development.

The RWGS is an interconnected nonlinear system
where the various components influence each other in com-
plicated and sometimes unexpected ways. For example,
during runs without the electrolyzer, it is necessary to
empty the water tank (5) periodically, to prevent water from
accumulating and eventually overflowing the tank. This
causes the gases in the tank to expand, and thus creates a
significant and sudden pressure drop, which affects the flow
throughout the whole system. This phenomenon is demon-
strated in Fig. 2(b), taken from [Whitlow, 2001]. The graph
shows the flow through the CO vent (13) as it evolves over
time — the spikes correspond to emptying the water tank.

A challenging property of the RWGS is that phenomena
in the system manifest themselves over at least three differ-
ent time scales. Pressure waves in the RWGS propagate
essentially instantaneously (at the speed of sound). Gases
flow around the gas loop on the order of seconds. Finally,
gas compositions in the gas loop take on the order of hours
to reach a steady state. Meanwhile, the sensors collect data
at a sampling rate of one second.

An additional challenge of the RWGS is its sensitivity
and unidentifiability, i.e., parts of the system state are very
sensitive to input paramaters and are not directly measured.
For example, the H [and CO [compositions in the gas loop
cannot be practically measured. However, the balance be-
tween these compositions is almost neutrally stable, thus
a small shift in the input conditions or the membrane be-
havior will cause the balance to gradually drift to a signifi-
cantly different value.

As in any real system, the RWGS sensors do not record
the underlying state exactly. In addition to some impor-
tant quantities, such as the gas compositions, which are not
measured at all, the existing sensors are noisy and biased.
The noise level of the sensors depends on many factors and
can change over time. An example is shown in Fig. 2(c),
where the difference in the readings of the pressure sensors
 � and ! (both located at (2) in Fig. 2(a)) is plotted over
time. The main reason for the noise in time steps 0–800
is the physical proximity of the sensors to the compressor
that sends pressure waves throughout the system. Since
the sensors are not synchronized with the compressor, they
take measurements at various phases of the pressure waves

COMPRESSOR

WATER TANKS

M
E
M
B
R
A
N
E

REACTOR

H2

CO2

H2

CO2

H2

O2

H2

O2

O2+H2O

H2

O2+H2O

H2

H2O

CO

CO2
H2

CO

CO

CO2
H2

CO

4

12

10

21

9

14

3

8

13

15

6 5 7

11

16

0 5000 10000 15000 20000
Time[sec]

0.0

0.2

0.4

0.6

0.8

1.0

C
O

 o
ut

 fl
ow

 (
R

9)

(b)

0 200 400 600 800 1000
Time [sec]

−0.5

0.0

0.5

1.0

P
3−

P
4

[p
si

]

(a) (c)

Figure 2: (a) The RWGS Schematic. (b) Effects of emptying a water tank. (c) Pressure difference between � and ! .
and thus measure significantly different values. After 796
seconds the compressor shuts down and the noise level de-
creases dramatically. 2 More interestingly, we note that
the two sensors are placed very close together and thus the
average difference should be zero. However, as the plot
demonstrates, this is not the case, indicating that the sen-
sors are not well calibrated and some bias is present. Fur-
thermore this bias depends on the system state, as shown by
the change in the average difference when the compressor
shuts off.

4 Modeling the RWGS

We model the RWGS using a hybrid DBN, as described in
Section 2. The 2TBN has 293 nodes, 227 of which are con-
tinuous. Currently the discrete variables in the model are
all known and correspond to computer-controlled switches
and sensor faults. The continuous variables in our model
capture the continuous-valued elements of our system (e.g.,
pressure at various points in the system, flow rates, tem-
peratures, gas composition, etc.). Of the 227 continuous
nodes, 43 represent the time

�
belief state # and 184 repre-

sent the variables #*% at time
�����

. Of the latter, 43 variables
are belief state variables for

�'���
, 72 variables are encap-

sulated variables, as discussed in Section 5.4, and the rest
are either sensor variables or transient variables.

When constructing the model, we used four techniques
for parameter estimation. Some of the parameters were
known physical constants or system properties. Of the em-

2The sensor’s noise is literally noise that can be heard — the
pressure waves are the sound waves generated by the compressor.

pirical parameters, many came from physical models. The
others (specifically, some parameters for the compressor,
the separation membrane and the overall system pressure
changes) were determined using common equations that
model the particular system behavior. All the variables in
these equations were directly observed in the data, and thus
we could use least-squares techniques to find the best fit for
the parameters. The remaining parameters were estimated
using prior knowledge of the domain.

4.1 Sensor Modeling

As discussed in Section 3, one of the challenges we address
in modeling the RWGS is dealing with noisy and biased
sensors. We deal with noisy sensors in the obvious way:
by increasing the variance of the predicted measurement
values to match the noise level in the data.

Sensor biases present a more interesting modeling prob-
lem. The biases are not easily modeled using a simple pa-
rameter since they are unknown and can drift over time. In-
stead, we address the problem by adding hidden variables
to the belief state that model the different biases of the sen-
sors. Biases start with zero mean and a reasonably large
variance and persist over time, i.e., Bias A$I

� �
Bias A �?V ,

where
V

represents white noise with a relatively small vari-
ance, allowing for some amount of drift to occur over time.

This idea works quite well, but it tends to overfit the
data: By letting the bias account for every discrepancy be-
tween the model predictions and the actual sensor measure-
ments, the tracking algorithm might settle in an incorrect
steady state. To fix the problem we must make sure that
the model biases reflect true sensor biases — biases should

be kept as small as possible and allowed to grow only if
there is a real reason for that. We implement this idea by
introducing a contraction factor ��� �

(empirically set to
be
� �����

) into the bias formula: Bias A$I
� � ��� Bias A �7V .

Thus, biases tend to go to zero unless doing so introduces
a systematic discrepancy with the predicted system state.

4.2 Sensitivity and Unidentifiability

Recall that the equations governing the H [/CO [balance in
the gas loop are sensitive to slight variations in the physical
parameters. Thus even using the most exact form of these
equations in the model will result in (at least) the same level
of sensitivity — both to variations in the physical parame-
ters, and inherent errors in the parameters. Moreover, the
model value is also sensitive to model effects such as cal-
culation errors and sensor errors that do not affect the real
value. We therefore use equations for the H [/CO [balance
that contain an intentionally non-physical component—a
stabilizing term—that reduces the sensitivity. This term
drives the balance to a pre-determined point, which in this
case is our expected value for the balance. The magnitude
of this term is manually adjusted to provide an optimum
tradeoff between physical accuracy and model stability.

4.3 Differing Time Scales

As described in Section 3, we must deal with differing time
scales in modeling the RWGS. The naive solution to this
problem is to model the DBN at a very fine time granularity.
However, it is completely impractical to model the behav-
ior of the pressure waves using a discretized-time model.
To do so would require time steps three orders of magni-
tude smaller than the time between measurements, which
is a significant waste of resources. Furthermore, it would
require a much more complete description of the system
than is practical, and tracking the slowly-evolving aspects
of the system with a step size many orders of magnitude be-
low their time scale would allow substantial errors to build
up.

Thus, we approximate the pressure waves as occurring
instantaneously and instead of modeling their transient be-
havior, we model the quasi-steady-state results at each time
step after they have reached an equilibrium. The equa-
tions in this case are substantially simpler, and require far
fewer empirical constants. The difficulty, however, is that
these equations must be solved simultaneously; a change
in any part of the system will affect all of the other parts.
These equations include both the compressor equation and
an approximation to the membrane equations developed
in [Whitlow, 2001]; thus, they are fairly large and nonlin-
ear, and no direct simultaneous solution form exists. In-
stead, we use these equations to create a new equation that
converges to a fixed point solution.

We must insert this fixed-point equation into a (nonlin-
ear) CPD to use it in our DBN model of the RWGS. The
equation solves for the five model variables 	 that account
for the flows and pressure of the gas loop. In order to solve

for all five variables, their eight parents must also be present
in the CPD. Hence, we have a vector CPD for 	 whose def-
inition is essentially procedural: given a value of the eight
parents it executes an iterative fixed-point computation un-
til convergence, and outputs the values 	 .

5 Tracking in Nonlinear Systems

In this section, we address the problem of inference, fo-
cusing on tracking in complex nonlinear systems, such as
the RWGS. In these models, the probabilistic dependen-
cies, including sensors, can be either linear or nonlinear
functions with Gaussian noise. We restrict our attention to
the task of tracking the continuous state, assuming all the
discrete values are known. Note that although the results in
this section are presented in terms of dynamical systems,
the analysis also applies to probabilistic inference in static
nonlinear Bayes nets.

5.1 Exploiting DBN Structure

Recall the setup from Section 2: We have a Gaussian belief
state Bel !$#7(where #
 IR

4
and a 2TBN representing

 �!@#C%D& #?(as a deterministic function #)% �;] !$#�(. Our
goal is to find an approximation of �!@# % (as a multivariate
Gaussian. The classical approach, used in the EKF and
the UF, is to find the entire distribution �!$# %F(directly by
treating

]
as a function from IR

4
to IR

-
. An alternative

approach is to decompose
]

by defining
� %Q �] Q !�� Q (for

� � � �����2��
, where � Q � Par ! � %Q (. In most practical

cases the
] Q ’s have a lower dimension than

]
; as we shall

see, this reduction in the dimension lets us approximate the
resulting distribution more accurately and efficiently.

As discussed in Section 2, the first step in the be-
lief state propagation process is to compute a multivari-
ate Gaussian over

� # � #H% � . We begin with our Gaus-
sian Bel !@#?(, and add the variables from # % one at a
time, using the procedure described in Section 5.2. The
key insight is that, as

� %Q is conditionally independent of� # e�� Q �3� %� �����2�3� %Q�� � � given � Q , it suffices to approx-
imate the Gaussian "!�� Q ��� %Q (. We can then compute
 �!@# ��� %� ����� ��� %Q (� �!$# ��� %� �����2�3� %Q�� � (� �! � %Q &�� Q (,
which, for Gaussians, can be accomplished using simple
linear algebra operations.

A more difficult case arises when the DBN contains not
only inter-temporal edges from # to #?% , but also intra-
temporal edges between # % variables. In this case we
sort the variables

� %Q in topological order, and gradually
build up the joint distribution �!$# ��� %� �����2�3� %Q (. The
topological order ensures that when we need to compute
 �!�� Q ��� %Q (, we have already computed a Gaussian over
� Q�� #;< ��� %� �����2�3� %Q�� � � . This approach, however, may
introduce some new inaccuracies, because we now also use
a Gaussian approximation for the distribution of the rele-
vant variables from

��� %� ��������� %Q�� � � .
Even in cases where we introduce extra inaccuracies,

this method is often superior to the UF. The reason is that,
by reducing the dimension of the functions involved, we

can use more accurate techniques to approximate the first
two moments of the variables in #?% with the same compu-
tational resources. In general, there is a tradeoff between
the superior precision we achieve for each variable and the
potential for extra inaccuracies we introduce. The extra in-
accuracies depend on the quality of our Gaussian approxi-
mation for �!@# ��� %� ����� ��� %Q�� � (, and on the extent of the
nonlinearity of the dependencies within # % . If the depen-
dence of

� %Q on
�� %� ������2��� %Q�� � � is linear, then there are

no extra errors introduced: In this case the first two mo-
ments of

� %Q are only influenced by the first two moments
of
��� %� ��������� %Q�� � � which can be captured correctly by our

Gaussian approximation. It is somewhat reassuring that the
better our approximation of "!$# % (as a Gaussian is, the
less significant the extra errors we introduce are, as the en-
tire framework is based on the assumption that �!@#*%K(can
be well approximated by a Gaussian.

5.2 Numerical Integration

We now turn our attention to the task of approximating
 �!�� Q ��� %Q (as a multivariate Gaussian. To simplify our
notation, let

�
be a variable which is a nonlinear func-

tion of its parents � � M �������2� M 4 , i.e.,
� �] !��g(,

but the ensuing discussion also holds for the vector case of
�)] !��g(. We assume that �!�� (is a known multivariate
Gaussian, and the goal is to find a Gaussian approximation
for �!�� �3� (. It suffices to compute the first two moments:

�� � � � � �!��0(] !��g(� � (1)

 � � [� � � �!��0(] [!�� (� � (2)

�� � M�� � � � �!��0(] !��g(BM�� � � (3)

Note that the integrals only involve the direct parents
of
�

, significantly reducing their dimension. We can ef-
fectively compute these integrals using a version of the
Gaussian Quadrature method called the Exact Monomial
rules [Davis and Rabinovitz, 1984]. Generally speaking,
Gaussian Quadrature approximates integrals using a for-
mula of the form:

��� ! �J(] ! �c(� �0b���� R � T �] !�����(
where

� !��J(is a known function (a Gaussian in our case).
The points �	� and weights T � are carefully chosen to en-
sure that this approximation is exact for any polynomial

]
whose degree is at most
 . The degree
 is called the pre-
cision of the approximation.

Finding a set of points with a minimal size � for some
precision
 is not a trivial task. In the simple form of Gaus-
sian Quadrature, we choose points in one dimension and
use them to create a grid of points in IR

4
with the obvious

disadvantage that � grows exponentially with
�
. Fortu-

nately, we can do better. In [McNamee and Stenger, 1967]

−4 0 4 8
0.00

0.10

0.20

0.30 Optimal
EKF
Precision 3
Precision 5

28.0 32.0 36.0 40.0
3.22

3.24

3.26

3.28

Integration
From samples

(a) (b)

Figure 3: (a) Density estimates for
�f�� M [� � M [[. (b)

Random samples from the RWGS network for the flow at
point (16) and the pressure at point (2), and Gaussian esti-
mates for the distribution.

a general method is presented for � � ����� [4����N���� and pre-

cision
 �+
��5�;�
(
�

is the dimension of the integral, in
our case & �C&). In particular, rules are presented for

�� �7�
points with precision 3,

�� [� �
points with precision 5

and !� � � ���� �D�*� points with precision 7. The precision 3
rule is exactly the rule used for the Unscented Filter: It has
exactly the same

�� �7�
points and weights.

This view of the Unscented Filter has immediate prac-
tical consequences: we can trade off between the accuracy
of the computation and its computational requirements. For
example, if we are interested in a more precise filter than
the Unscented Filter and are willing to evaluate the func-
tion at

� ! � [(points then we can use the exact monomial
rule of precision 5. Depending on the function, this may
represent a significant gain in accuracy.

As a simple example we consider the nonlinear function� � � M [� � M [[where �!$M � (� W7!
 � �/(and �!$M [&
M � (� W7! ����� M � e � �� ((note that both M � and M [have the
same variance �). Fig. 3(a) shows various estimates for the
probability of

�
. The optimal estimate is the best Gaussian

approximation for the distribution of
�

computed using a
very exact numerical integration rule. We can see that the
exact monomial rules of precisions 3 and 5 provide a much
better estimate than EKF, where the precision 5 rule leads
to a more accurate estimate than the precision 3 rule.

5.3 Inaccuracies in the Approximation

Unfortunately, approximating �!�� ��� (using numerical
integration can lead to covariance matrices that are not
semi-positive definite, and hence illegal. One simple ap-
proach to this problem is to use a more accurate integration
rule, although the problem may persist. An alternative is to
find the “closest” positive definite covariance matrix. We
cast this problem as a convex optimization problem follow-
ing [Boyd and Vandenberghe, 2003].

Consider once again the problem of approximating
 �!�� �3� (as a multivariate Gaussian, where

�
is a non-

linear function of its parents � , i.e.,
� �] !��g(, and

� _�W7!$X X X"! �Za !#! (. Let
a

denote the estimated covari-

ance matrix for �!�� ��� (:
aH��� a ! ! ������ ����

If �� and �� lead to a matrix
a

that is not positive definite,
then we need to find the closest � and � to �� and �� , such
that

a
is positive definite. Given that

a ! ! is already pos-
itive definite,

a
is positive definite iff � e �	� a � �! ! ��
 � .

Thus, we can formalize our problem as follows:

Minimize � � e �� � [� ! � e �� ([(4)

Subject to � � a � �! ! � e � ���� � (5)

where

is some small positive number. Since both Eq. 4
and Eq. 5 are convex we can solve this problem by form-
ing the Lagrangian and solving the dual problem. We set
the partial derivatives of � and � to zero and plug the result
into Eq. 5. We get an equation over the Lagrangian multi-
plier which can be solved easily as it involves a monotonic
function. We omit details for lack of space.

Our analysis treats the elements in � and � directly,
but in fact these elements are not independent since � Q �
�� M Q � �hegX���� �� � � and � � �� � [�Oe � � � [. It is desir-
able to use this relation in Eq. 4 and Eq. 5 and represent the
dependency between the various elements (e.g., a change in
�� � � may fix many of the problems simultaneously). Un-
fortunately, because of the term � � � [the problem is no
longer convex. Nonetheless, we can approximate the prob-
lem as convex (e.g., by replacing �� � � [by the best current
estimate), solve it and iterate. Again, we defer details to an
extended version of this paper.

5.4 Encapsulated Variables

Just as we can use the DBN structure to decompose the de-
pendency between # % and # , in many cases we can further
decompose the dependency

�=��] !��g(. For example, as-
sume that

] !��g(��� ! � � !�� � (��� [!�� [(3(, where � ��� � [�
� .3 Instead of directly evaluating the Gaussian over� � �3�0� we can define two extra variables: � � ��� � !�� � (
and � [��� [!�� [(. We first approximate �!�� ��� � � (as
a Gaussian and use it to find a Gaussian over

� � � � � � .
Next we approximate �!�� [� � [(as a Gaussian and from it
 �!�� � � ��� � [(. Finally, we approximate �!�� �� � [��� (as a
Gaussian and use it to find the Gaussian approximation for
 �!�� � � � � � [��� (. The same accuracy tradeoffs that were
discussed in the context of # % �] !@# (apply here: by
reducing the dimension of the integrals we can solve each
one more accurately, but may introduce further errors if the
interaction between the extra variables is nonlinear.

3E.g., flow sensors give different results depending on the gas
type. Assuming we have random variables representing the total
flow and the compositions of the different gases in it, ��� and �!
may each be a product of one of the gas compositions and the
flow, thus representing the net flow of a certain gas. The func-
tion � would be a weighted sum of these flows where the weights
correspond to the sensor’s response for the different gases.

60 64 68 72 76
0.35

0.37

0.39

0.41

0.43

0.45

Truth
Gaussian
Sampling

Figure 4: Comparison with particle filtering on simulated
data, showing the means and error bars of two standard de-
viations for our algorithm and particle filtering. The

�
axis

represents time, and the M axis the percentage of H [in the
flow at point (16). To increase readability, we shift the es-
timates generated by our algorithm by 0.1 to the left and
those generated by particle filtering by 0.1 to the right.

In principle, one could add � � and � [to the DBN and
treat them as regular variables. However, doing so makes
these variables part of # % , and thereby increases the al-
gorithm’s space complexity, which is

� ! & #?%3& [((for repre-
senting the covariance matrix of �!@#?% (). It is better to treat
the extra variables as local variables encapsulated within
the CPD and unknown to the rest of the network. After
computing the Gaussian approximation for the CPD vari-
ables, we simply marginalize over the encapsulated ones.
This approach is similar to the local computations in an
OOBN model [Koller and Pfeffer, 1997], where some of
the CPD variables are encapsulated within the CPD.

6 Experimental Results

In this section we present results from a set of experiments
that test the efficacy and robustness of our model and track-
ing algorithm. Our computational model of the RWGS con-
tains all of the components needed to monitor the full op-
eration of the physical system, although data provided to
date by KSC is for the reduced-operation mode with only
the gas loop component operational. Our experiments were
run on a Pentium III 700MHz.

We tested our algorithm with both real data and simu-
lated data that was generated from our model. Although
running with real data is the real test for our approach, run-
ning with simulated data is also of interest. The reason is

that there are two sources of errors when using real data:
model inaccuracies and errors induced by the algorithm.
When using simulated data, only errors of the second type
are present and we can better test the performance of the
algorithm.

6.1 Results on Simulated Data

We first tested whether the belief state could be well ap-
proximated as a Gaussian and whether our particular ap-
proximation was a good one. To do so, we generated a set
of samples from the model. We did not introduce any evi-
dence so the samples were indeed sampled from the correct
joint distribution. In Fig. 3(b) we show the results for two
particular variables: the flow at point (16) and the pressure
at point (2) (these variables were chosen because of their
dependency on the non-linear CPD of the membrane; other
variables produced similar results). The samples appear to
be drawn from a distribution that is either a Gaussian or
close to one. Furthermore, our estimate for the joint distri-
bution (depicted by the contours for one and two standard
deviations) is very close to the Gaussian that was estimated
directly from the samples. Thus, it is reasonable to expect
that our techniques will lead to good approximations of the
belief state.

Next, we generated a trajectory of 500 time steps from
our model and tested our algorithm on it. We compared
our results with the particle filtering algorithm[Gordon et
al., 1993], which approximates the belief state as a set of
weighted samples where the weights of the samples corre-
spond to the likelihood of the evidence given the sample.
Our algorithm took 20ms per time step, which included
computing the Gaussian approximation to the belief state,
with numerical integration when necessary, and condition-
ing on the evidence. In comparison, generating a sample
using particle filtering took 1.5ms. Thus, one step of our al-
gorithm took as much time as generating 13 samples. How-
ever, with just 13 samples particle filtering performed ex-
tremely poorly and therefore in our experiments we used
10,000 samples at every time step, giving particle filtering
a somewhat unfair advantage.

Fig. 4 shows the estimates for the percentage of H [in
the flow at point (16) that were computed by our algorithm
and by particle filtering, as well as the actual value (known
from the simulated data). We report the results on this par-
ticular variable because the gas compositions are not mea-
sured by any sensors and are therefore a potential challenge
to our algorithm. The error bars represent the uncertainty
of the estimates as plus and minus two standard deviations
(for particle filtering we computed the standard deviation
induced by the weighted samples).

Although under our setup particle filtering was slower
than our algorithm by a factor of 750, as Fig. 4 demon-
strates, the estimates of particle filtering are not as good as
the estimates of our algorithm. Over the entire sequence the
average error of our algorithm was

��� �	���
while the average

error of particle filtering was
� � � �

. Nevertheless, the more

dramatic difference is in the estimates of the variance. Of-
ten, the estimated variance for particle filtering is extremely
small, even when the estimated value is not very accurate
(e.g., time steps 72 and 73). In fact, over the entire se-
quence, according to the estimated distribution of our algo-
rithm, the correct value of the H [composition was within
two standard deviations 96% of the time (this is consistent
with the fact that the probability mass within two standard
deviations from a Gaussian mean is 95%). In comparison,
for particle filtering, the true value was within two esti-
mated standard deviations only 20% of the time. The dif-
ference was even more apparent when we computed the av-
erage log-likelihood of the true value, given the two possi-
ble estimates. For our algorithm the average log-likelihood
was

 ��F�
while for particle filtering it was only e ������� � ��� �Z� .

The reason for this problem is the relatively high dimen-
sion of the evidence which leads to a very high variance for
the weights of the samples. Although we generated 10,000
samples at each time step only a very small number of them
had a significant effect on the estimate. Over the entire se-
quence, in 65% of the time steps one sample accounted for
more than 0.5 of the total probability mass, in 27% one
sample accounted for more than 0.9 of the mass, and in
15% one sample accounted for more than 0.99. Obviously
in cases where one sample completely dominates the rest,
the estimates of particle filtering are not very reliable and
in particular the variance estimates can be extremely small
and misleading.

Thus, not only is our algorithm faster than particle fil-
tering with 10,000 samples by a factor of 750, its estimates
are much more reliable.

6.2 Results on Real Data

We next ran a set of experiments on real data. Our data set
consisted of a long sequence of 13,875 time steps, most of
it collected while the system was running in steady state.
We divided our data into a training set, used to estimate
and tune the model parameters, and a test set on which we
report our results.

We conducted a variety of experiments in which we
compared model predictions with the actual measurements
recorded by the system under various scenarios: steady
state and non-steady state, removing sensors, and modify-
ing the sensor models. In order to make the comparison
informative, the model predictions for values at time

�'�7�
as reported in this section are not adjusted with evidence at
time

�'�)�
, i.e., they are the predictions based on evidence

from times
� �� ����� � �

.
Our first experiment, shown in Fig. 5(a), illustrates the

efficacy of our tracking algorithm during steady-state op-
eration of the system. In particular, the graph illustrates
the predicted (thick lines) and measured (thin lines) pres-
sures, � and ! at point (2) in Fig. 2(a). Observe that
the predicted value for � appears to be consistently lower
than the measurement. This is the result of the model’s
bias weighting, � � � � �

, discussed in Section 4.1, which

0 50 100 150 200
33.8

34.0

34.2

34.4

34.6

P3/P4 (steady state)
P3/P4 (measured)

0 100 200
18.00

18.20

18.40

Flow (predicted)
Flow (predicted, no R8 sensor)
Flow (predicted, no R9/R10 sensor)

0 250 500
0.80

0.90

1.00

1.10

R9 (predicted, fitted LL sensor variance)
R9 (predicted, reduced LL sensor variance)
R9 (measured)

(a) ��� / ��� (Steady-State) Pressure (b) Flow at point (11) w/ Missing Sensors (c) ��� Flow w/ Reduced Sensor Variance

0 100 200 300 400 500
20.5

21.0

21.5

22.0

22.5

R8 (predicted, no bias variables)
R8 (predicted, before adding bias)
R8 (measured)

200 220 240 260
32.5

33.0

33.5

34.0

34.5

Estimate (area=31.6)
P3/P4 (measured)
Estimate (area=27.1)

0 100 200 300 400
14.0

16.0

18.0

20.0

22.0

24.0 R8/R12 (predicted)
R8/R12 (measured)

(d) ��� Flow with(out) Bias (e) Pressure Transition (f) Flow Transition

Figure 5: Experimental Results Tracking the RWGS. The
�

axis represents time, and the M axis the value of the appropriate
quantity.

tends to pull the estimates slightly away from the measured
value. While, in this case, it produces a slightly poorer re-
sult, overall, the bias weighting technique does less data
overfitting and works better in non-steady state sequences.

Next we experimented with “removing” sensors from
the system. (This is easily achieved by ignoring selected
sensor evidence when running the tracking algorithm.)
Sensor removal can be used to evaluate the robustness of
the algorithm as well as to determine the importance of a
sensor for monitoring the system. In Fig. 5(b), we show
the flow of gas from the compressor at point (11). The two
overlaid lines are our estimates of this flow value — one
with all of the sensors, and the other with sensors 	�
 and
	 � � (located at (13)) removed. In contrast, when flow sen-
sor 	 � (located at (16)) is removed, the predicted flow rate
quickly strays. These results indicate that, at least for this
sequence, 	 � is a more valuable sensor than 	
 and 	 � � .

We also tested the effects of changing the liquid level
(LL) sensor noise parameter 4 on our prediction of the gas
flow 	
 at (13). Recall from Section 4.1 that to correctly
model a sensor we introduced both some Gaussian noise on
the sensor and a hidden bias variable. We tried both a vari-

4The liquid level sensor is very noisy, as splashing and bub-
bling from the dissolved CO and from drops splashing from the
condenser hit the sensor rod and create considerable noise in the
sensor reading.

ance value of
� � ���

, which we estimated using “reasonable”
prior knowledge, and a variance value of � which was fit to
the data. Fig. 5(c) shows the effect of the variance of the LL
sensor for the water tank at (5). With the fitted variance, the
algorithm tracked quite well. In contrast, with the smaller
variance, the performance was poor and erratic, following
the fluctuations in the LL measurements.

The utility of the bias variables is shown in Fig. 5(d).
The upper line is a prediction of the flow rate, made using
a version of the model that contained no bias variables for
the flow sensors at (10), (13) and (16). The middle line
corresponds to the model with the bias variables present,
but shows the prediction for the true (unbiased) flow (i.e.,
the sensor prediction minus the bias). When we explicitly
modeled the sensor bias, our (unbiased) predictions of the
true system state better matched the measurements, an in-
dication of a better estimate of the system state.

Finally, we tested the ability of the model to track non-
steady-state behavior — in particular, the behavior of the
system when the CO [supply is turned off during the shut-
down process. Unfortunately, we only had one data set con-
taining this transition, and thus we expect our parameters
are still not tuned optimally. In addition, having only one
such transition in our data, we report results on the same
data that was used for training.

Fig. 5(e) shows a comparison between the predicted and

measured output from pressure sensors � and ! , for two
versions of the model. The first set of predictions, shown in
solid lines, was calculated using our best estimates of the
empirical parameters, including the membrane area (calcu-
lated from other parts of the data set) of 27.1. The second
set of predictions, shown in dashed lines, was calculated us-
ing an earlier estimate of the membrane area of 31.6. While
in the steady-state prior to timestep 220, the two predic-
tions are equivalent as the differences were absorbed into
the bias errors, in the transient part, the model with inaccu-
rate parameters underpredicts the initial drop in pressure,
and retains this error throughout the rest of the sequence.

Fig. 5(f) presents the predictions of the correct model
for the flows at 	 � (16) and 	 � [(10), over a longer period
of time. Initially, when the CO [supply was cut off, the
flows dropped; however, gradually the CO and CO [in the
system were vented and the only remaining gas was H [. As
the membrane presented less resistance to H [the flow rates
started to go up. The model tracked this complex behavior
surprisingly well.

7 Conclusions and Future Work

In this paper we address the problem of monitoring a large
complex physical system — NASA’s Reverse Water Gas
Shift system — perhaps the largest and most complex hy-
brid DBN developed to date. This paper makes contri-
butions both to the modeling and the monitoring of com-
plex nonlinear systems. On the modeling side, we have
shown how to model physical systems whose effects man-
ifest themselves at dramatically different time scales, and
that involve biased sensors, where the bias is state depen-
dent and varies over time. On the monitoring side, we have
presented a general framework for approximating nonlin-
ear behavior using integration methods that extend the Un-
scented Filter, improving the accuracy of the approxima-
tion with minimal additional computation. Experimen-
tal results indicate that this approach is much faster and
more reliable than particle filtering. More generally, we
have demonstrated the feasibility of hybrid DBNs for mon-
itoring a complex real-world physical system such as the
RWGS using real data.

There are several interesting directions for future work.
The tracking algorithms presented in this paper assume a
known mode of operation, i.e., all the discrete variables are
observed. Our long-term goal is to diagnose the RWGS
when components fail. In order to track both the discrete
and continuous state, we intend to combine the results pre-
sented in this paper with algorithms that handle hidden dis-
crete events such as Rao-Blackwellized Particle Filtering
(RBPF) [Doucet et al., 2000] or the algorithms presented
in [Lerner and Parr, 2001; Lerner et al., 2000]. The speed
of our algorithm (taking just 20ms to generate a Gaussian
over all the state variables) is a promising indication that
we can use these techniques for real-time fault diagnosis.

Acknowledgements

We are very grateful to Charlie Goodrich and the rest of
the RWGS team at the Kennedy Space Center — Bill Lar-
son, Clyde Parrish, Jon Whitlow, Curtis Ihlefeld, and Dan
Keenan — for their tremendous help and support. We also
thank Dan Clancy, Ronald Parr, and Stephen Boyd for use-
ful suggestions and discussions. This research was sup-
ported by ONR Young Investigator (PECASE) under grant
number N00014-99-1-0464, by ONR under the MURI pro-
gram “Decision Making under Uncertainty”, grant num-
ber N00014-00-1-0637, and by NASA under grant number
NAG2-1337.

References
[Bar-Shalom et al., 2001] Y. Bar-Shalom, X. R Li, and

T. Kirubarajan. Estimation with Application to Tracking
and Navigation. John Wiley & Sons, 2001.

[Boyd and Vandenberghe, 2003] S. Boyd and L. Vandenberghe.
Convex Optimization. 2003. To appear.

[Davis and Rabinovitz, 1984] P. J. Davis and P. Rabinovitz.
Methods of Numerical Integration. Academic Press, 1984.

[Dean and Kanazawa, 1989] T. Dean and K. Kanazawa. A model
for reasoning about persistence and causation. Computational
Intelligence, 5(3):142–150, 1989.

[Doucet et al., 2000] A. Doucet, S. Godsill, and C. Andrieu. On
sequential Monte Carlo sampling methods for Bayesian filter-
ing. Statistics and Computing, 10(3):197–208, 2000.

[Goodrich, 2002] C. Goodrich. Reverse water gas shift system
presentation. Stanford University, April 2002.

[Gordon et al., 1993] N. J. Gordon, D. J. Salmond, and A. F. M.
Smith. Novel approach to nonlinear/non-Gaussian Bayesian
state estimation. IEE Proceedings-F, 140(2):107–113, April
1993.

[Julier and Uhlmann, 1997] S. Julier and J. Uhlmann. A new
extension of the Kalman filter to nonlinear systems. In Pro-
ceedings of AeroSense: The 11th International Symposium on
Aerospace/Defence Sensing, Simulation and Controls, 1997.

[Kalman, 1960] R.E. Kalman. A new approach to linear filtering
and prediction problems. J. of Basic Engineering, 82:34–45,
1960.

[Koller and Pfeffer, 1997] D. Koller and A. Pfeffer. Object-
oriented Bayesian networks. In Proc. UAI, pages 302–313,
1997.

[Larson and Goodrich, 2000] W. Larson and C. Goodrich. Intel-
ligent systems software for human mars missions. In 2000
International Aeronautical Foundation Congress, 2000.

[Lerner and Parr, 2001] U. Lerner and R. Parr. Inference in hy-
brid networks: Theoretical limits and practical algorithms. In
Proc. UAI, pages 310–318, 2001.

[Lerner et al., 2000] U. Lerner, R. Parr, D. Koller, and G. Biswas.
Bayesian fault detection and diagnosis in dynamic systems. In
Proc. AAAI, pages 531–537, 2000.

[McNamee and Stenger, 1967] J. McNamee and F. Stenger. Con-
struction of fully symmetric numerical integration formulas.
Numerische Mathematick, 10:327–344, 1967.

[Whitlow, 2001] J. E. Whitlow. Operation, modeling and analy-
sis of the reverse water gas shift process. In NASA CR-2001-(In
Press), 2001.

