
An Ordered Theory Resolution Calculus for Hybrid Reasoning in First-order
Extensions of Description Logic

Scott Sanner and Sheila McIlraith
University of Toronto

Department of Computer Science
Toronto, ON, M5S 3H5, CANADA
{ssanner, sheila} @cs.toronto.edu

Abstract

Systems for hybrid reasoning with first-order logic
(FOL) extensions of description logic (DL) date back
at least 20 years and are enjoying a renewed interest
in the context of recent FOL extensions of OWL DL
for the Semantic Web. However, current systems for
reasoning with such languages can only handle subsets
of FOL or they do not fully exploit recent advances in
both FOL theorem proving and DL inference. In re-
sponse, we present an ordered theory resolution calcu-
lus for hybrid reasoning in unrestricted FOL extensions
of the DL SHI. This calculus permits near-seamless
integration of highly optimized FOL theorem provers
and DL reasoners while minimizing redundant reason-
ing and maintaining soundness and refutational com-
pleteness. Empirical results demonstrate the potential of
this approach in comparison to the state-of-the-art FOL
theorem provers Vampire, Otter, and SPASS.

1 Introduction
It is widely acknowledged that knowledge representation
languages based on (decidable) description logics (DLs),
such as OWL DL (Patel-Schneider, Hayes, & Horrocks
2003), are not sufficiently expressive to encode many
real-world application domains (e.g., (Borgida 1996; Dean
2004)). The acknowledged merits of DL languages and the
desire for expressive languages that are upwardly compati-
ble with emerging DL-based Semantic Web languages have
been the driving force behind the development of a num-
ber of rule-based extensions to OWL DL and the like, most
notably RuleML (Boley et al. 2002) and SWRL (Horrocks
et al. 2004). Unfortunately, even these languages are not
suitable for certain tasks, such as the description of Web
service process models and their associated automated rea-
soning tasks (Berardi et al. 2004). This has contributed to
the development of first-order logic (FOL) extensions to Se-
mantic Web DL-based languages e.g., SWRL-FOL (Patel-
Schneider 2004), FOL RuleML (Boley et al. 2004), and
SWSL (Battle et al. 2005).

In this paper, we address the issue of how to reason ef-
ficiently with first-order extensions of DLs. Most DLs are
fragments of FOL; In particular OWL DL, which corre-
sponds to the expressive SHOIND−

n DL is a fragment
of FOL (Horrocks & Patel-Schneider 2003; Tsarkov et al.

2004). As such, an obvious way to reason with an FOL
extension of OWL DL is to translate it into FOL and use
a state-of-the-art theorem prover. Unfortunately, initial ex-
perimentation by Tsarkov et al (Tsarkov et al. 2004) indi-
cates that an efficient DL reasoner can outperform a highly
optimized FOL theorem prover. Tsarkov and colleagues
performed a number of experiments translating OWL DL
to FOL and performing inference using the highly op-
timized Vampire (Riazanov & Voronkov 2002) theorem
prover. Without optimization of the DL-to-FOL transla-
tion, Vampire performance was markedly worse than the
FaCT++ (Tsarkov & Horrocks 2004) DL reasoner. Even
when the translation was optimized, performance improved
but was still two orders of magnitude worse on problems that
could be solved. While Vampire was not optimized for de-
ciding DLs (c.f. Hustadt et al (2005)), it does indicate that
efficient DL reasoners are a good alternative in the absence
of DL-optimized theorem proving implementations.

Motivated by these observations, we propose a hybrid ap-
proach to reasoning with FOL extensions of expressive DLs,
henceforth referred to as DL-FOL. In DL-FOL, the DL han-
dles the SHI-expressible axioms of the theory and the FOL
handles the remaining axioms possibly relating to, and refin-
ing, the DL axioms. Rather than translating the entire DL-
FOL KB to FOL, we propose an instantiation of the ordered
theory resolution calculus (Baumgartner 1992) that permits
the use of highly optimized DL reasoners with optimized
strategies for resolution-based theorem proving. Our calcu-
lus exploits the inherent structure of DL taxonomic hierar-
chies together with ordered resolution techniques that sub-
stantially reduce the resolution search space. Preliminary
empirical results comparing our proof-of-concept DL-FOL
reasoner implementation with the state-of-the-art theorem
provers Vampire (Riazanov & Voronkov 2002), Otter (Mc-
Cune 2003), and SPASS (Weidenbach 2001) demonstrate
the potential of this approach.

The paper proceeds as follows: In Section 2 we provide
background on relevant logical languages and automated
reasoning systems. In Section 3 we define our DL-FOL lan-
guage and in Section 4, we propose a general ordered theory
resolution calculus, proving its soundness and completeness
in Section 4.3. In Section 5, we present initial empirical re-
sults and we conclude in Section 6 with a discussion of our
contributions and areas of future work.

2 Background
In this section we briefly review state-of-the-art automated
reasoning techniques that are relevant to DL-FOL reasoning.

2.1 Description Logic
Recent advances in tableaux-based DL inference algo-
rithms for (un)satisfiability checking have resulted in sound
and complete inference procedures for expressive DL lan-
guages such as SHIQ (Horrocks, Sattler, & Tobies 1999;
2000). Implementations of these inference procedures such
as Racer (Haarslev & Moeller 2001) and FaCT++ (Tsarkov
& Horrocks 2004) are known to be very efficient in prac-
tice. In this paper, we treat description logic reasoning as a
black box for unsatisfiability queries; we only require that
the DL be decidable and the reasoning system be sound and
complete.

2.2 First-order Logic
Automated theorem proving in first-order logic is a well-
explored field and we refer the reader to a standard refer-
ence (Chang & Lee 1973) for background on clausal nor-
mal form, unification, and resolution theorem proving. Re-
finements of resolution have yielded techniques such as or-
dered resolution (Bachmair & Ganzinger 2001) for restrict-
ing the search space, and theory resolution for incorporat-
ing special-purpose theory reasoning (Stickel 1985). Most
importantly for our work is the combination of both ideas
in a sound and complete ordered theory resolution frame-
work (Baumgartner 1992). On the implementation side,
there are a number of highly-optimized reasoners for full
first-order theorem proving such as Vampire (Riazanov &
Voronkov 2002), Otter (McCune 2003), and SPASS (Wei-
denbach 2001). SPASS is of particular interest because it has
special-purpose unification algorithms for handling monadic
predicates that frequently occur in sorted logics and FOL
translations of DLs.

2.3 Horn Extensions of Description Logic
Previous work on the CARIN language combines DLs and
Horn rules (Levy & Rousset 1996) but is extremely re-
stricted such that all inference is decidable. AL-Log (Donini
et al. 1998) combines DLs with Datalog rules, but requires
the concept and role symbols of the structural (DL) compo-
nent to be disjoint from the predicate symbols in the rela-
tional (Datalog) component.

A number of more expressive rule language extensions
of OWL DL have been defined for the Horn clause sub-
set of FOL with OWL DL types (Horrocks et al. 2004;
Boley et al. 2002). There have also been a number of pro-
posals for reasoning systems using default or closed-world
assumptions (Grosof et al. 2003; Golbreich 2004) in these
languages. We note that given the extremely expansive na-
ture of the Semantic Web, we often want to avoid a closed-
world assumption (Reiter 1978) so that inferences are mono-
tonic and hold even in the presence of additional KB con-
tent that could be encountered in the future. In this vein, a
full theorem prover has been used for a rule language ex-
tension of OWL DL by simply translating the DL portion to

FOL (Tsarkov et al. 2004). However, as previously noted,
such reasoning can be inefficient in certain inference tasks
for which DL reasoners are directly optimized.

2.4 FOL Extensions of Description Logic
Various extensions of FOL have used simple DL sort the-
ories to restrict quantified variables (Frisch 1985; Cohn
1989). However, these extensions place significant limita-
tions on the use of DLs in FOL statements. Constrained
resolution (Buerckert 1994) allows a constraint theory over
quantified variables that permits the use of DLs; however,
with a few extensions, it can be viewed as a variant of
theory resolution (Stickel 1985) that we discuss shortly.
Recent work on resolution calculi for deciding expressive
DLs (Hustadt et al. 2004; Hustadt, Motik, & Sattler 2005)
holds the interesting possibility of providing efficient rea-
soning for DLs fully within the resolution framework. How-
ever, current implementations are limited to function-free
disjunctive Datalog (Motik 2006).

Recent language extensions of OWL DL extend it with
FOL constructs, e.g., SWRL-FOL (Patel-Schneider 2004),
FOL RuleML (Boley et al. 2004), and SWSL (Battle
et al. 2005). For reasoning in such languages, systems
dating back to Krypton (Brachman, Fikes, & Levesque
1983) provided techniques for enhancing resolution using
a DL system. (Ordered) theory resolution (Stickel 1985;
Baumgartner 1992) somewhat enhanced and generalized
this result by providing a refutation-complete (ordered) res-
olution procedure for incorporating decidable first-order the-
ories into reasoning without duplicating the theory axioms in
the KB. However this work did not address theory-specific
computational issues and no follow-on work appears to pro-
vide an efficient theory resolution procedure for an expres-
sive DL theory such as SHI. As we will see, theories such
as SHI make it particularly difficult to identify the theory-
refuting substitutions required by ordered theory resolution
and carefully working around these difficulties comprises
one of the major contributions of this paper.

3 DL-FOL: an FOL Extension of DL
In this section we introduce DL-FOL, an FOL extension of
the DL SHI1. A DL-FOL KB comprises the following
components:

1. DL Component: expressed in standard SHI DL syntax.
We allow general concept inclusion (GCI) axioms since
decision procedures exist for this case (Horrocks, Sattler,
& Tobies 1999). We also allow cyclic terminologies, but
assume they have been internalized according to Horrocks
et al (1999).

2. FOL Component: expressed in a minor modification to
a standard equality-free FOL syntax (Chang & Lee 1973)
that includes the distinguished symbols > and ⊥. Inter-
nally the FOL component is stored in clausal form.

1We note that SHI is a subset of OWL DL which corresponds
to SHOIND−

n . Some of the additional expressivity provided by
OWL DL over SHI are individualsO, number restrictionsN , and
concrete data types D (such as strings and integers).

DL-FOL SHI constructors with DL, DL’ and FOL components
Constructor DL DL’ FOL

Atomic concept A A
Top (Thing) > >
Bottom (Nothing) ⊥ ⊥
Atomic role R R
Inverse role R∗(R∗ ≡ R−) R∗ ∀x, y. R(x, y) ≡ R∗(y, x)
Transitive role R∗(R∗ ≡ R,R ∈ R+) R∗ ∀x, y, z. R∗(x, y) ∧R∗(y, z)→ R∗(x, z)
Negation ¬C ¬C
Conjunction C uD C uD
Disjunction C tD C tD
Value restriction A∗(A∗ ≡ ∀R.C) A∗ ∀x. A∗(x) ≡ ∀y. R(x, y)→ C(y)
Exists restriction A∗(A∗ ≡ ∃R.C) A∗ ∀x. A∗(x) ≡ ∃y. R(x, y) ∧ C(x)
Role filler restr. A∗ A∗ ∀x. A∗(x) ≡ R(x, c)

DL-FOL axioms with DL, DL’ and FOL components
Axiom DL DL’ FOL

Concept inclusion C v D C v D
Concept equivalence C ≡ D C ≡ D
Role hierarchy R v S R v S
Role equivalence R ≡ S R ≡ S
Concept assertion C(a)
Role assertion R(a, b)
FOL axiom ψ ψ

FOL query ψ ¬ψ

Table 1: Decomposition of DL-FOL into its SHI DL, DL’ and FOL components. The DL’ component is a restriction of the DL component
that we will utilize in our completeness proofs. For the DL component, the additional statements in parenthesis denote assertions that should
be made when the respective constructors are used. A∗ and R∗ refer to newly generated concept and role names that should be used when
referring to the respective restrictions and roles they define.

Given a DL-FOL KB consisting of SHI DL and FOL as-
sertions that can freely reference the same concept and role
symbols, it is decomposed into DL and FOL components ac-
cording to Table 1.2 In Table 1 we also introduce an alternate
DL’ component, which we will utilize in our completeness
proofs. It is important to note that the DL-FOL decomposi-
tion introduces redundancy between the DL and FOL com-
ponents in the cases of inverse and transitive roles and role
restrictions. This redundancy does not occur between the
DL’ and FOL components.

To make this decomposition more concrete, we introduce
a simple DL-FOL KB and provide its DL, DL’ and FOL
components. Given a DL-FOL KB consisting of one asser-
tion {C ≡ A u ∃R−.B}, we would assert the following DL,
DL’ and FOL components:

DL :{C ≡ A u A∗, A∗ ≡ ∃R∗.B, R∗ ≡ R−}

DL’ :{C ≡ A u A∗}

FOL :{∀x. A∗(x) ≡ ∃y. R∗(x, y) ∧ B(y),

∀x, y. R(x, y) ≡ R∗(y, x)}

Note that A∗ and R∗ are newly generated symbols that
should be used to refer to their respective restriction and

2While we do not provide a procedure here, it is possible to
recognize many FOL axioms that can be represented within the
SHI DL syntax, thus allowing such FOL axioms to be asserted
and reasoned within the DL component.

role definitions. Also note that in the DL’ component
A∗ ≡ ∃R.B and R∗ ≡ R− are redundant with the FOL
component and are omitted in accordance with Table 1.

When the DL-FOL KB is queried, the query should be
negated and asserted in the FOL component regardless of
whether it is DL expressible (DL is a known subset of FOL).
In the next section, we will provide an ordered theory reso-
lution procedure for refuting the negated query.

It is important to mention that while our DL-FOL lan-
guage may evoke comparisons to sorted or constrained log-
ics with taxonomic sort theories (Frisch 1985; Cohn 1989;
Buerckert 1994), the DL component of DL-FOL is not re-
stricted to variable typing only. For example, we can define
a DL-FOL KB with the following components:

DL :{CompetentCEO ≡ CEO u CompetentWorker}

FOL :{∀x. CompetentWorker(x) ≡

Person(x) ∧ ∃y. hasJob(x, y)

∧ ∃z. requiresSkill(y, z) ∧ hasSkill(x, z)}

In this case, the FOL component asserts a non-DL express-
ible concept, and the DL component builds upon this asser-
tion with a term definition making use of the FOL concept.
Consequently, in DL-FOL, the FOL component actually ex-
tends the DL component as opposed to using it as a sim-
ple taxonomic sort theory. Thus, any non-fully redundant
calculi for reasoning in DL-FOL must address the complex
interactions between the FOL and DL components while
maintaining completeness.

Ordered Factoring

C
Cσ

if (1) σ is the most general syntactic unifier for
some {L1, . . . , Ln} ⊆ C, and (2) L1σ is max-
imal in Cσ

Ordered Narrow Theory Resolution

C1 . . . Cn

(C1σ − {L1σ}) ∪ . . . ∪ (Cnσ − {Lnσ})

if (1) σ ∈ CSRT ({L1, . . . , Ln}) for some
L1 ∈ C1, . . . , Ln ∈ Cn, and (2) Liσ is maxi-
mal in Ciσ (for i = 1 . . . n)

Table 2: The inference rules of the ordered narrow theory resolution calculus.

4 Ordered Theory Resolution for DL-FOL
We begin in Section 4.1 by summarizing Baumgartner’s or-
dered theory resolution (OTR) (Baumgartner 1992) for a
generic theory T and then instantiate it with a specific SHI
DL theory for DL-FOL in Section 4.2. We prove the sound-
ness and completeness of OTR for DL-FOL in Section 4.3
and then discuss practical resolution refinements and search
strategies in Section 4.4.

4.1 Ordered Theory Resolution
For completeness, we summarize Baumgartner’s definition
of the narrow3 OTR calculus (Baumgartner 1992):

Definition 1. LITERAL ORDERING (Baumgartner 1992)
Let � be a partial ordering on terms and let � denote the
strict subset of �. Let � satisfy the following conditions,
where (X,Y) ∈ Term × Term or (X,Y) ∈ Literal ×
Literal:

1. � is stable, i.e. for all substitutions σ: if X � Y then
Xσ � Y σ.

2. � is total on ground terms and � is total on ground liter-
als.

We define X � Y iff Y � X and X ≺ Y iff Y � X . Let M
be a literal set. L ∈ M is maximal in M iff for all L′ ∈ M
it holds that L ⊀ L′ (or, equivalently, iff there does not exist
a L′ ∈ M s.t. L ≺ L′). max(M) denotes the set of all
maximal literals of M .

Examples of orderings meeting these criteria are the well-
known lexicographic path orderings and recursive path or-
derings (Dershowitz & Plaisted 2001). Orderings are ex-
tremely useful since they substantially restrict the resolution
search space.

A clause is a set of literals {L1, . . . , Ln}, often written as
L1 ∨ . . . ∨ Ln. The non-theory portion of the KB axioms
are converted to a set of clauses. We require that a theory
T be representable by a set of satisfiable clauses and that
it provide a decision procedure for determining the unsat-
isfiability of a set of literals {L1, . . . , Ln}. In determining
(un)satisfiability, it is sufficient to limit the model theory to
consider Herbrand intepretations only, so we define a Her-
brand T -interpretation to be any total function from the
set of ground atoms to {true, false}. A T -interpretation
is an interpretation satisfying the theory T . A clause set Φ

3We say narrow because the theory T must decide the unsatis-
fiability of two or more literals (Stickel 1985).

is satisfiable iff there exists an interpretation that simulta-
neously assigns true to all ground instances of its members,
or else it is unsatisfiable. A literal set L is T -satisfiable
iff there exists an interpretation that satisfies theory T and
simultaneously assigns true to all ground instances of its
members, or else it is T -unsatisfiable.

Unlike ordinary resolution, the uniqueness of a most gen-
eral unifier (MGU) is not guaranteed in theory resolution.
Thus, we must generalize the concept of most general uni-
fiers (MGUs) to that of a set of most general theory refuting
substitions.

Definition 2. THEORY REFUTING SUBSTITUTION (Baum-
gartner 1992) Let L be a literal set. L is T -
complementary4 iff for all ground substitutions γ the set
Lγ 5 is T -unsatisfiable. L is minimal T -complementary
iff L is T -complementary and all subsets L′ ⊂ L are not
T -complementary.

We say that L is (minimal) T -refutable by σ iff Lσ is
(minimal) T -complementary.

A set of substitutions is a complete and most general set
of T -refuting substitutions for L (or short CSRT (L)) iff

1. (Correctness) for all σ ∈ CSRT , L is T -refutable by σ

2. and (Completeness) for all substitutions θ such that L is
T -refutable by σ, there exists a σ ∈ CSRT and a sub-
stitution σ′ such that θ = σσ′|var(θ).

We are now ready to provide the rules of inference for the
narrow ordered theory resolution calculus. These are given
in Table 2. We note that Baumgartner proves soundness and
completeness of this calculus when a procedure can be pro-
vided for theory T that determines the complete and most
general set of T -refuting substitutions for a set of literals
L (i.e., CSRT (L)).

4.2 Ordered Theory Resolution for DL-FOL
Having defined the general ordered theory resolution calcu-
lus, we now explain how we apply it to reasoning in DL-
FOL. In our case, our theory T will consist of an SHI
DL theory that we assume is satisfiable6 and which meets
the previously outlined conditions of being expressible as a

4This subsumes the notion of “syntactically complementary”
and thus standard resolution where two literals are complementary
if they are identical but of opposite polarity.

5The substitution γ is applied to each element of L.
6If satisfiability of the DL theory is in question, we can easily

do a consistency check to verify this.

set of clauses and having a decision procedure for unsatis-
fiability. Whenever an assertion (or query) is added to the
DL-FOL system, it is asserted directly in the DL and FOL
components according to Table 1.

At each step of ordered narrow theory resolution, one of
the inference rules from Table 2 is applied to the FOL com-
ponent.7 Search terminates with a refutation if the empty
clause is derived in the FOL component at any inference
step.8 The only part of the narrow OTR calculus that is spe-
cific to DL-FOL is the task of finding a correct and complete
set of theory refuting substitutions CSRT . In Algorithm 1,
we provide the procedure FIND-CSRDL(L) which uses
an SHI DL theory as the theory T to determine a set of
T -refuting substitutions for a set of literals L.

The FIND-CSRDL(L) proceeds in a straightforward
manner. If the set of literals L contains mixed monadic,
dyadic, and n-arity (n > 2) literals, the procedure calls it-
self recursively for the monadic and dyadic subsets. Since
n-arity (n > 2) literals cannot occur in the DL theory, any
MGUs for pairs of n-arity literals are returned along with the
substitutions returned by the recursive FIND-CSRDL(L)
calls for the monadic and dyadic subsets of L. When L con-
tains only dyadic (monadic) literals, the CSR set is initial-
ized to the pairs of syntactically complementary literals in L
and CSR is augmented with any unifying substitutions for
role (concept) literals whose (conjoined) predicate names
extracted by Pred(·) are disjoint w.r.t. the DL role (concept)
taxonomy. In this way FIND-CSRDL(L) covers both the-
ory and standard resolution in accordance with Def. 2.

We note that the expressiveness of SHI poses some diffi-
cult problems that have been carefully worked around in the
definition of the DL and FOL components and the design of
FIND-CSRDL(L). Specifically, we note that theory re-
futing substitutions for a full SHI DL component without
FOL redundancies for role restrictions can introduce arbi-
trarily large function symbols, even when the literals being
refuted contain only variables and constants!

Following, we provide a few examples to demonstrate
these issues. However, we begin our examples by mak-
ing an important observation: the complete set of theory
refuting substitutions for our theory T (i.e., CSRT (L)) is
necessarily independent of the procedure we use for decid-
ing T -unsatisfiability. This is a consequence of the fact
that Def. 2 for CSRT (L) is based on T -complementarity,
which is a model-theoretic notion independent of any deci-
sion procedure for T . Thus, if we use a decidable resolution
procedure for the clausal representation of a theory T , then
the CSRT (L) given by this decision procedure must match
the CSRT (L) given by any other decision procedure for T .

Consequently, in the following examples, we use resolu-
tion on the clausal representation of an SHI DL theory as
a decision procedure for determining CSRDL(L).9 Any al-

7We defer discussion of specific clause selection strategies to
Section 4.4.

8We assume that ⊥ literals are automatically removed from
clauses in a preprocessing step.

9Standard resolution terminates on all of our DL examples.
Consult Grosof et al (2003) for an FOL (and by CNF transforma-

Algorithm 1: FIND-CSRDL(L) −→ CSRDL(L)

input : DL,L : an SHI DL theory and a set of literals

{L1, . . . , Ln} to refute using theory or standard resolution

output : CSRDL(L) : complete & most general T -refuting subst.

of L w.r.t. SHI DL plus MGUs for standard resolution
begin

// Find refuting subst. of monadic, dyadic and compl. literals separately

if (L consists of mixed monadic, dyadic, and n-arity (n > 2) literals)

then
LM := monadic literal subset of L from DL component;

LD := dyadic literal subset of L from DL component;

σC := set of MGUs for pairs of n-arity syntactically

complementary literals of L;

return FIND-CSRDL(LM) ∪ FIND-CSRDL(LD) ∪ σC ;

CSR := set of MGUs for any pair of syntactically complementary

literals of L;

if (L consists of dyadic literals) then
// Find refuting substitution of dyadic literals in DL component

// (i.e., DL roles)

foreach (pair of literals 〈L1, L2〉 from L where L1 has positive

polarity and L2 has negative polarity) do
// Predicate sumbols ignored, MGU of term lists only

σ := MGU(L1, L2);

if (σ 6= null ∧ Pred(L1) vDL Pred(L2)) then
CSR := CSR ∪ σ;

else
// Find refuting substitution of monadic literals in DL component

// (i.e., DL concepts)

for (s := 2..|L|) do
foreach (set of literals 〈L1, . . . , Ls〉 from L of size s

where a subset has not already been refuted) do
σ := ∅;

LC := >;

for (k := 2..s) do
// Pred. sumbols ignored, MGU of term lists only

σ := compose(σ, MGU(Lk−1, Lk));

LC := LC u Pred(Lk−1);

if (σ 6= null ∧ LC vDL ¬Pred(Ls)) then
CSR := CSR ∪ σ;

return CSR;

end

ternative decision procedure for CSRDL(L) must necessar-
ily derive the same substitutions (modulo renaming of func-
tions occurring only in the clausal representation of DL).

Example 1. Suppose that we are given the DL-FOL KB as-
sertions {∃R.A v B, ¬B(c), R(c, d), A(d)}.10 Then we
obtain the clausal representation of the DL and FOL com-
ponents for this KB:

DL :{¬R(x, y) ∨ ¬A(y) ∨ B(x)}

FOL :{¬B(c), R(c, d), A(d)}

We can refute this DL-FOL KB by resolving all three single-
ton FOL clauses. In this case, it is clear that CSRDL(L) =
{{x/c, y/d}} (this is the only possible theory resolution).

tion, clausal) representation of the DL theory.
10In our examples, we use w, x, y, z to denote variables, all re-

maining 0-arity terms should be interpreted as constants.

The last example was simple and no unexpected surprises
occurred. However, in the next example, we will see that if
we change the DL-FOL KB slightly then the result is not so
straightforward.

Example 2. Suppose that we are given the DL-FOL KB as-
sertions {∀R.A v B, ¬B(c), ∀z. ¬R(c, z) ∨ A(z)}. Then
we obtain the clausal representation of the DL and FOL
components for this KB:

DL :{R(x, f(x)) ∨ B(x), ¬A(f(y)) ∨ B(y)}

FOL :{¬B(c), ¬R(c, z) ∨ A(z)}

While this DL-FOL KB is refutable, we must do it in
two narrow theory resolution steps. In the first step, we
choose L = {¬R(c, z),¬B(c)} to refute. In this case
CSRDL(L) = {{z/f(c)}} (this is the only possible reso-
lution). Because the literal ¬R(c, z) came from the clause
¬R(c, z) ∨ A(z), this yields the resolvent A(f(c)). In the
next step, we choose to refute L = {A(f(c)),¬B(c)}. In
this case CSRDL(L) = {∅} (the empty substitution) and
the resolvent is ⊥. There is only one other sequence of pos-
sible resolutions and it yields the same final result.

While the previous example demonstrated a straightfor-
ward application of resolution, we note an interesting phe-
nomenon: although the FOL theory initially contained no
function symbols, the first theory resolution step introduced
a function symbol into the FOL theory. While this is obvi-
ous from the clausal representation of the DL theory, we note
that any non-resolution decision procedure for determining
CSRDL(L) would also need to introduce function symbols
in this example case. But this is only the beginning of the
problem, as it turns out in the next example, narrow theory
resolution with an SHI DL theory can introduce even larger
arity functions symbols into a function-free FOL theory.

Example 3. Suppose that we are given the follow-
ing DL-FOL KB assertions {∃S.∀R.A v B, ¬B(c),
∃w∀z. S(c, w) ∧ (¬R(w, z) ∨ A(z))}. Then we obtain the
clausal representation of the DL and FOL components for
this KB:

DL :{¬S(x, y) ∨ R(y, f(x, y)) ∨ B(x),

¬S(x, y) ∨ ¬A(f(x, y)) ∨ B(x)}

FOL :{¬B(c), S(c, d), ¬R(d, z) ∨ A(z)}

This DL-FOL KB is refutable in two nar-
row theory resolution steps. In the first steps
we refute L = {¬B(c), S(c, d),¬R(d, z)} with
CSRDL(L) = {{z/f(c, d)}} to obtain the resol-
vent A(f(c, d)). In the next step, we choose to re-
fute L = {A(f(c, d)),¬B(c), S(c, d)}. In this case
CSRDL(L) = {∅} (the empty substitution) and the resol-
vent is ⊥. There is only one other sequence of possible
resolutions and it yields the same final result.

This is all to say that narrow theory resolution for the
SHI DL theory has introduced a function symbol of arity
2 into the originally function-free FOL theory. The astute
observer will notice that we can generalize the structure of
this example to obtain arbitrary size function symbols.

Theorem 1. A complete set of theory refuting substitutions
for an SHI DL theory can introduce arbitrary sized func-
tion symbols into a function-free FOL theory.

Proof Sketch. Following the above examples, we can con-
struct DL-FOL KB of the following form for for arbitrarily
large n:

{∃S1.∃S2. . . . ∃Sn.∀R.A v B, B(c),

∃w1, w2, . . . , wn∀z. S1(c, w1) ∧ S2(w1, w2)∧

. . . ∧ Sn(wn−1, wn) ∧ (¬R(wn, z) ∨ A(z))}

While the derivation is tedious, it is a straightforward proce-
dure to verify that the DL theory introduces a function sym-
bol of size n into a function-free FOL theory. This follows
from the fact that to convert the DL GCI (v) axiom to clausal
form, we will need to negate the LHS of the GCI resulting in
a chain of quantifiers ∀w1 . . . ∀wn ∃z where the innermost
variable z will be Skolemized to f(w1, . . . , wn). On the
other hand, the FOL theory will have no function symbols
because it has the quantifier chain ∃w1 . . . ∃wn ∀z. Now,
given the complementary structure of this DL-FOL KB it is
trivial to show that it must be refutable. Following a reso-
lution derivation similar to Ex. 3 that requires exactly two
steps, we can show a refutation of this DL-FOL KB that in-
troduces the n-arity function symbol f(· · ·) into the FOL
theory after the first step. Again, this holds for any resolu-
tion refutation of this KB, no matter what order the resolu-
tions are applied. Thus, we know that any theory refutation
of this KB must introduce an n-arity function symbol.

Now, Theorem 1 introduces a particular difficulty for us
if we want to use a blackbox DL reasoner to determine
CSRDL(L) for our SHI DL theory. The blackbox DL rea-
soner must be able to properly interpret the function symbols
that the DL theory can introduce into the FOL theory on ac-
count of its clausal representation. Yet it is not clear how this
could be done with today’s state-of-the-art tableau reasoners
that neither perform resolution nor handle function symbols.
We work around this in our calculus by making DL role re-
strictions (and thus the potential source of function symbols
in the DL theory) redundant with the FOL component of
the DL-FOL KB. In addition, to avoid the need for the DL
theory to reason with function symbols from the FOL the-
ory, all terms including constants (i.e., nominals) are also
offloaded to the FOL component. It is not immediately clear
whether there is a generalization of Algorithm 1 that will
yield CSRDL(L) for non-redundant inverse and transitive
DL role definitions so we have also made these redundant
w.r.t. the FOL theory.

We briefly mention a few reasons which help mitigate the
fact that we have have introduced FOL redundancy w.r.t. the
DL theory: 1) Most of the redundant FOL axioms can be
represented as Horn clauses for which many efficient or-
dered resolution strategies exist. 2) Tabling and term in-
dexing optimizations permit efficient FOL resolution with
KBs consisting of large amounts of terms, so it is not nec-
essarily a bad idea to handle nominals and complex terms
in the FOL component. 3) If we extend the DL theory to
SHIN , including nominals in the theory would require that
Algorithm 1 attempt to refute arbitrary non-unifiable sets

Given DL-FOL Axioms: (PT is for partially-tangible, BW for between, SL for spatial location, and OFIL for object found in location)

PT v >, Location v >, SL v Location, City v PT, River v PT, ColdLocation v SL

ColdLocation ≡ (Cold u Location) t ∃hasRegion(∃hasClimate.arctic)

Location(canada), hasRegion(canada, nunavut), hasClimate(nunavut, arctic)

∀w, x, y, z PT (w) ∧ PT (x) ∧ PT (y) ∧ SL(z)→ OFIL(w, z) ∧OFIL(x, z) ∧BW (w, x, y)→ OFIL(y, z)

Query:

∀w, x, y. City(w) ∧ City(x) ∧River(y)→ ∃z. SL(z) ∧ (OFIL(w, z) ∧OFIL(x, z) ∧BW (w, x, y)→ OFIL(y, z))?

Convert the given axioms and negated query to the DL-FOL DL and FOL components and apply the ordered theory resolution inference
rules for DL-FOL from Table 2 as follows. We omit literal ordering in this proof, its specification would simply restrict the order in
which the following inferences are made.

1a,b,c. Given FOL Component Location(canada), hasRegion(canada, nunavut),
hasClimate(nunavut, arctic)

1d. Given FOL Component ¬SL(z) ∨ ¬PT (w) ∨ ¬PT (x) ∨ ¬PT (y)∨
¬OFIL(w, z) ∨ ¬OFIL(x, z) ∨ ¬BW (w, x, y) ∨OFIL(y, z)

2a. Given FOL Component ¬hasClimate(x, arctic) ∨A∗(x) ←− Def. for ∃hasClimate.arctic ≡ A∗

2b. Given FOL Component ¬hasRegion(x, y) ∨ ¬A∗(y) ∨A∗∗(x) ←− Def. for ∃hasRegion(A∗) ≡ A∗∗

3. Negated Query City(c1)
4. Negated Query City(c2)
5. Negated Query River(r)
6. Negated Query ¬SL(z) ∨OFIL(c1, z)
7. Negated Query ¬SL(z) ∨OFIL(c2, z)
8. Negated Query ¬SL(z) ∨BW (c1, c2, r)
9. Negated Query ¬SL(z) ∨ ¬OFIL(r, z)
10. Narrow OTR, 1c with 2a,θ = {x/nunavut} A∗(nunavut)
11. Narrow OTR, 2b with 1b,10,

θ = {x/canada, y/nunavut} A∗∗(canada)
12. Narrow OTR, 11 with 6, θ = {z/canada} OFIL(c1, canada)
13. Narrow OTR, 11 with 7, θ = {z/canada} OFIL(c2, canada)
14. Narrow OTR, 11 with 8, θ = {z/canada} BW (c1, c2, r) ←− Complex refutation: ¬SL,A∗∗ v ColdLocation v SL
15. Narrow OTR, 11 with 9, θ = {z/canada} ¬OFIL(r, canada)
16. Narrow OTR, 1d with 3-5, θ = {w/c1, x/c2} ¬SL(z) ∨ ¬OFIL(c1, z) ∨ ¬OFIL(c2, z) ∨ ¬BW (c1, c2, r) ∨OFIL(r, z)
17. Narrow OTR, 16 with 11-15, θ = {z/canada} ⊥ ←− Refutation, query proved! �

Table 3: Sample query-answering with the DL-FOL reasoning procedure.

of literals. As an example, consider the refutable DL-FOL
KB {≤ 2R v B,¬B(a), R(a, 1), R(a, 2), R(a, 3)}. In this
case, the four literals {B(a), R(a, 1), R(a, 2), R(a, 3)} will
need to be simultaneously refuted at some point even though
they are not unifiable. Having to check all non-unifable lit-
erals could lead to a huge explosion in the complexity of
DL theory reasoning. In contrast Algorithm 1 currently only
tests satisfiability of unifiable sets of literals.

Having now explained the reasoning for our DL-FOL de-
composition given in Table 1, we demonstrate a full appli-
cation of our algorithm to an application of query-answering
in Table 3 for the OpenCyc KB (CycCorp, Inc. 2005) aug-
mented with a few additional assertions.

4.3 Soundness and Completeness

We now show that this procedure satisfies the two conditions
of correctness and completeness from Definition 2 that are
required to show soundness and completeness of the DL-
FOL ordered theory resolution calculus. As a preliminary

step, we note that the DL’ component given in Table 1 is just
a weakening of the DL component where the redundant DL
axioms for the exists and value restrictions, and inverse and
transitive roles are removed. We will first prove properties
for a DL-FOL theory using a DL’ component and then show
that these results trivially generalize to a DL-FOL theory
using the DL component.
Theorem 2. Procedure FIND-CSRDL′(L) is correct.
I.e., for all σ ∈ CSRT , L is T -refutable by σ.

Proof Sketch. It is straightforward to verify that in each
case where FIND-CSRDL′(L) adds a substitution σ to
CSRDL(L), then Lσ is T -complementary under theory
DL’. Thus, no T -interpretation could simultaneously sat-
isfy all literals in Lσ. and by definition, for all σ ∈ CSRT ,
L is T -refutable by σ.
Theorem 3. Procedure FIND-CSRDL′(L) is complete.
I.e., for all substitutions θ such that L is T -refutable by σ,
there exists a σ ∈ CSRT and a substitution σ′ such that
θ = σσ′|var(θ).

Ordered Partial Narrow Theory Resolution

C1, C2

(C1σ − {L1σ}) ∪ (C2σ − {L2σ}) ∪ (L1 u L2)σ

if (1) σ ∈ MGU({L1, L2}) (term-only
MGU) for some L1 ∈ C1, L2 ∈ C2, and
(2)Liσ is maximal inCiσ (for i = 1 . . . 2)

Table 4: The ordered partial narrow theory resolution inference rule that replaces the narrow version.

Proof Sketch. T -refuting substitutions θ for L are only pos-
sible in three cases: (1) θ unifies two syntactically comple-
mentary literals in L where their MGU must subsume θ and
be in CSRDL′(L); (2) θ unifies two dyadic literals in L that
are complementary via a role subsumption chain where their
MGU must subsume θ and be in CSRDL′(L). This follows
from the observation that the only DL’ role axioms are sim-
ple role inclusions and these are all representable as binary
Horn clauses. In this case, the role taxonomy provides the
closure of all inferences w.r.t. these axioms; Or (3) θ unifies
a set (or subset) of monadic literals in L that renders the con-
junction of the literal concept-names unsatisfiable in the DL’
theory. This last statement follows from the fact that all DL’
axioms for monadic literals consist solely of monadic literals
sharing the same variable (the DL’ axioms were designed to
enforce a separation of the concept and role theories). This
implies that no dyadic literals could influence unsatisfiabil-
ity of Lθ since there would be no way to derive a refutation
from the clausal representation of DL’. So we know that if
Lθ is purely monadic, it is unsatisfiable under the DL’ the-
ory iff L1 u . . . u Ln is unsatisfiable under the DL’ theory.
Now, assume there does not exist a σ ∈ CSRDL′(L) and
a substitution σ′ such that θ = σσ′|var(θ). But we know
that θ must unify some unsatisfiable set of literals, and that
the MGUs for all possible sets and subsets of unsatisfiable
literals L are in CSRDL′(L). Then θ = σσ′|var(θ) for
some σ ∈ CSRDL′(L) and substitution σ′. Thus, by contra-
diction, we satisfy completeness for case (3). By construc-
tion of the DL and FOL theories, no other cases could exist.
Thus, from the fact that cases (1), (2), and (3) are exhaustive
and individually complete, we can infer the completeness of
FIND-CSRDL′(L).

Having shown that FIND-CSRDL′(L) satisfies the cor-
rectness and completeness conditions, the soundness and
refutation completeness of ordered theory resolution for DL-
FOL for a weakened DL theory DL’ is a direct consequence
of Baumgartner’s proof of the soundness and completeness
of the ordered narrow theory resolution calculus (Baumgart-
ner 1992). By strengthening the DL theory to the full DL of
Table 2 and using FIND-CSRDL(L), we only introduce
redundancy (with the advantage of shorter refutation deriva-
tions), so soundness and refutation completeness are clearly
preserved. This gives us our final result:

Theorem 4. The ordered narrow theory resolution calculus
for DL-FOL is sound and refutation complete.

We note that in standard resolution calculi, tautologi-
cal clauses are redundant and can be safely deleted with-
out affecting completeness. Unfortunately, this result does
not extend to (ordered) theory resolution (Stickel 1985;
Baumgartner 1992). For example, consider a DL-FOL KB

with DL component {A ≡ B,B ≡ C} and FOL component
Φ containing the clauses {A(x) ∨ B(x) ∨ C(x),¬A(x) ∨
¬B(x) ∨ ¬C(x)}. While this set of clauses is refutable via
narrow OTR, any derivation of the empty clause necessarily
requires the intermediate derivation of a tautology. We con-
jecture that extending ordered factoring to consider theory
implication as opposed to syntactic equivalence may resolve
this problem.

4.4 Ordered Theory Resolution Strategies

Ordered theory resolution leaves open the possibility of res-
olution strategy, yet this is perhaps the most critical aspect
of the system w.r.t. efficient and effective reasoning. In this
section, we adapt concepts used in modern resolution theo-
rem proving strategies to exploit structure in DL-FOL.

A refutation-complete resolution strategy would assign
each clause an index 1 . . . n (newly generated clauses re-
ceive the next free index) and apply all inference rules for
clause index k that involve clauses 1 . . . k.11 We’ll call this
the age selection strategy, i.e., older clauses are selected be-
fore younger, more recently inferred clauses. A major re-
finement of this idea used in many modern theorem provers
is the age-weight ratio a : w selection strategy (McCune
2003) where for every a + w clauses chosen, a are cho-
sen according to the age selection strategy and w are cho-
sen from a priority queue where each clause is assigned a
weight. Clearly, so long as a is non-zero, the strategy re-
mains refutation-complete, while allowing the incorporation
of heuristic knowledge to select clauses that are likely to
contribute to a refutation (e.g., clauses with fewer literals).

In a moment, we show how we can additionally exploit
DL-FOL structure for determining the heuristic weight, but
first we digress with a discussion of how to reduce nar-
row OTR to partial narrow OTR so that we need only re-
solve a maximum of two clauses at a time. To do this,
we note that FIND-CSRDL(L) is extremely efficient for
theory resolution cases where |L| = 2. That is, to deter-
mine whether the conjunction of two role or concept liter-
als L1 and L2 are unsatisfiable, it suffices to check whether
Pred(L1) v ¬Pred(L2) in a DL taxonomy (where the
Pred(·) function returns the predicate name for the literal).

Unfortunately, binary resolution is not complete
for OTR. For example, take the following DL KB
{D1 = A u ¬B,D2 = B u ¬C,D3 = C u ¬A} and FOL
KB with three clauses {D1(x) ; D2(y) ; D3(z)}. While

11Of course, the literal ordering is also important and we note
that using a lexicographic path ordering where non-DL literals and
DL role literals are given precedence over DL concept literals is a
good choice since it postpones the most difficult literal resolutions
until they are needed to obtain a refutation.

the FOL KB can be refuted by one narrow OTR step, no
binary OTR steps with |L| = 2 can be applied.

Fortunately, there is a refinement of theory resolution
that restricts T -unsatisfiability checking to cases where
|L| = 2 and retains completeness. This refinement is known
as partial narrow theory resolution (Stickel 1985) and it is
given in Table 4. Of course, such simplicity must come with
a catch, and this catch is that a partial narrow OTR must be
applied regardless of whether (L1 u L2)σ can be refuted. If
(L1 u L2)σ can be refuted by the DL theory then this lit-
eral can be removed from the consequence (this case is just
standard OTR), otherwise the compound literal (L1 u L2)σ
is a residue that must be resolved away by additional par-
tial narrow OTR steps. With proper precedence assigned to
the residue literals, we can prove the completeness of partial
narrow OTR.

Theorem 5. If all compound residue literals are assigned an
ordering precedence that is equal to the maximal precedence
among their primitive constituents, then partial narrow OTR
is complete.

Proof Sketch. The proof of completeness follows from the
fact that partial narrow OTR with the specified precedence
for compound literals essentially simulates narrow OTR. By
the age-weight ratio selection strategy, we know that we will
eventually derive all possible combinations of axioms us-
ing partial narrow OTR (if the resolved literals do not re-
fute, they are retained as compound residue literals to be
resolved later). It is only sufficient to show that when liter-
als would be resolved in the narrow OTR case, they would
also be resolved in the case of partial narrow OTR. In short,
if a non-binary resolution was performed on the clause set
{C1, . . . , Cn} with maximal refutable literal set L, then two
binary clauses together representing partial narrow theory
resolvents for {C1, . . . , Cn} would have to have a set of (po-
tentially compound) maximal literals equivalent to L. This
follows from the fact that literal maximality is maintained
under substitutions due to the stability property of orderings,
and the precedence conditions of compound literals ensure
their maximality in derived clauses. (We know these literals
were maximal in their original clauses because of the nar-
row OTR resolution.) Thus, partial narrow OTR essentially
simulates narrow OTR which was already proved complete.

To deal with the potential inefficiencies of partial narrow
OTR, we must introduce weighting heuristics to be used
with the age-weight ratio selection strategy. Heuristically,
the larger a residue literal (L1 u . . . u Ln)σ grows, the less
likely it is to be refuted given that no proper subset could
be refuted. We can build this heuristic into our strategy by
assigning the priority weight w of a clause to scale with the
size of a residue literal in the clause. When used with the
age-weight ratio selection strategy, this postpones resolution
of clauses with large residues that are unlikely to be resolved
away, and thus yield even larger residues.

Another useful weighting heuristic is that of giving higher
priority to literals associated with concepts and roles that are
deeper in the taxonomy. We call this the Prefer-Deep strat-
egy and its inverse the Prefer-Shallow strategy. The reason
that we expect the Prefer-Deep strategy to be more efficient

is that it prefers inferences relevant to specialized concepts
and roles that are often much less prolific than inferences
for concepts and roles near the top of their respective hier-
archies. Since we need to refute all literals in a clause, it
only makes sense to try refuting the more difficult ones first,
i.e. the ones that deal with more specific requirements and
for which fewer inference opportunities exist. In doing this,
the size of the KB is also minimized which is important for
efficient inference.

Altogether, partial narrow OTR with age-weight selec-
tion and the above weighting strategies give us a refutation-
complete strategy that need only refute binary sets of literals
and that exploits taxonomic information for selecting clauses
to resolve.

5 Experiments with a Proof-of-Concept
System

We investigated the application of DL-FOL reasoning to
the spatial reasoning subset of the OpenCyc KB (CycCorp,
Inc. 2005). For this KB, we extracted a small subset of
the CycL language that could be represented as a subset of
the SHI DL and translated the rest to FOL. We applied the
partial narrow theory resolution procedure for DL-FOL us-
ing FaCT++ (Tsarkov & Horrocks 2004) as our black-box
DL reasoner and compared it to the highly-optimized Vam-
pire (Riazanov & Voronkov 2002), Otter (McCune 2003),
and SPASS (Weidenbach 2001) theorem provers. We used
three versions of our DL-FOL reasoner: the DL-FOL or-
dered resolution prover using only the full FOL translation
of the DL-FOL KB and two versions of the partial narrow
OTR inference system presented in this paper – one for
the Prefer-Deep weighting heuristic and one for the Prefer-
Shallow weighting heuristic.

While our experimental results illustrate the potential of
our technique in minimizing clause generation and proof
length, it should be noted that Vampire typically posted over
an order of magnitude faster CPU time than our DL-FOL
prover. Clearly an objective comparison of our proposed
technique with Vampire, Otter and SPASS is not achiev-
able. In particular, because of a lack of suitable DL plus
FOL KBs12, we constructed a set of benchmark problems
that we felt would be difficult for current theorem provers
to address (i.e., inferences that involve complex subsump-
tion chains). This skewed the results slightly in our favor
although Vampire slightly edges out DL-FOL in the average
number of clauses generated. On the other hand, it is unfair
to compare our proof-of-concept system with these highly
optimized theorem provers. Better CPU performance by
these systems is bound to reflect engineering efforts as much
as an intrisically better approach. We additionally note that
DL ontologies such as Galen (Rector, Nowlan, & Glowin-
ski 1993) and Tambis (Baker et al. 1998) that have proved
difficult for theorem provers such as Vampire (Tsarkov et al.
2004) may fare better for DL-FOL OTR reasoners if they
were extended with full FOL axioms since the FaCT++ rea-
soner performed very well on these ontologies.

12Probably in part because there are no effective reasoners for
DL plus FOL KBs.

Combined Results for the OpenCyc KB
Reasoner # Successes Avg. Clauses Gen. Avg. Resolution Proof Length
Vampire v8 25/25 137 10.5
Otter v3.3 25/25 603 9.6
SPASS v2.1 25/25 4763 9.4
DL-FOL (FOL Translation Only) 5/25 N/A N/A
DL-FOL (Partial Narrow OTR – Prefer-Shallow) 25/25 346 7.3
DL-FOL (Partial Narrow OTR – Prefer-Deep) 25/25 147 7.3

Table 5: For our subset of the OpenCyc KB, each reasoner was run on 25 queries. We report the total number of successful queries (all
were provable as verified by the results), the average number of clauses generated, and the average number of resolution steps in the resulting
proofs. Results are not shown when the theorem prover could not answer all queries within a 5 minute time limit.

Since our DL-FOL prover was not heavily optimized, per-
haps the most telling results come from self-comparison.
The DL ontology in our OpenCyc KB was fairly small, con-
taining only 132 concepts, but this proved to be a prob-
lem when the entire DL-FOL KB was translated to FOL.
In this case, ordered resolution spent the majority of its time
making simple taxonomic inferences with the DL subclass
axioms and only managed to prove a very small subset of
the queries. On the other hand, these unneccessary infer-
ences did not occur for the partial narrow OTR reasoners
which performed much better. While they both found the
same proofs, we note that the Prefer-Deep strategy gener-
ated fewer clauses than the Prefer-Shallow strategy since it
focused on refuting the “deeper” literals in the taxonomy
for which there were fewer inferences to be made. Conse-
quently, we see that the intuitions behind the Prefer-Deep
heuristic were appropriate for this particular test KB and set
of queries.

6 Conclusion
We have presented an instantiation of Baumgartner’s or-
dered theory resolution calculus (Baumgartner 1992) for hy-
brid inference in FOL extensions of the SHI DL that mini-
mizes redundancy of DL reasoning relative to the FOL com-
ponent. This is a notable accomplishment since theory re-
futing substitutions for the SHI DL can introduce arbitrar-
ily large function terms and DL reasoning languages (even
those handling nominals) were not designed for such reason-
ing. In addition, we presented refinements of the basic or-
dered theory resolution strategy that were intended to further
restrict and guide search using taxonomic information. As a
result of all these considerations, the DL-FOL ordered the-
ory resolution calculus permits the near-seamless integration
of highly optimized off-the-shelf DL reasoners with opti-
mized strategies for resolution-based theorem proving. Em-
pirically, a proof-of-concept implementation of the DL-FOL
hybrid reasoner demonstrates the potential of this approach
in comparison to the alternate strategy of using a theorem
prover on an FOL translation of the DL-FOL KB.

This research is just the beginning of an exciting new class
of reasoners, and there are many extensions. We would like
to explore saturation and redundancy extensions (Bachmair
& Ganzinger 2001). In addition, we would like to look at
superposition extensions of ordered resolution with equality
as it appears in DL theories (c.f. (Hustadt, Motik, & Sat-

tler 2005)), thus ultimately allowing us to define a complete
ordered resolution calculus for the SHIQ DL or beyond.
Also, given the difficulty of implementing an optimized the-
orem prover, but the simple way in which the DL-FOL cal-
culus allows theorem provers and DL reasoners to interact,
we would like to consider integrating our ordered theory res-
olution technique into a highly-optimized theorem prover.
Such approaches hold the promise of allowing us to engi-
neer state-of-the-art reasoning systems that can scale to the
inference demands of large DL-FOL ontologies, especially
those that we expect to encounter as such languages take
hold on the Semantic Web.

Acknowledgements
We would like to thank Mark Stickel and the anonymous
reviewers for their thorough comments and suggestions re-
garding this work. Many ideas in this paper stemmed from
their input.

References
Bachmair, L., and Ganzinger, H. 2001. Resolution theorem
proving. In Robinson, A., and Voronkov, A., eds., Hand-
book of Automated Reasoning, volume I. Elsevier Science.
chapter 2, 19–99.
Baker, P.; Brass, A.; Bechhofer, S.; Goble, C.; Paton, N.;
and Stevens, R. 1998. Tambis: Transparent access to mul-
tiple bioinformatics information sources: an overview. In
Sixth International Conference on Intelligent Systems for
Molecular Biology, 25–34.
Battle, S.; Bernstein, A.; Boley, H.; Grosof, B.; Gruninger,
M.; Hull, R.; Kifer, M.; Martin, D.; McIlraith, S.;
McGuinness, D.; and Su, J. 2005. Semantic web
service language (swsl). Document located on-line at
http://www.w3.org/Submission/SWSF-SWSL/.
Baumgartner, P. 1992. An Ordered Theory Resolution Cal-
culus. In Voronkov, A., ed., Logic Programming and Au-
tomated Reasoning (Proceedings), volume 624, 119–130.
St. Petersburg, Russia: Springer.
Berardi, D.; Gruninger, M.; Hull, R.; and McIlraith, S.
2004. Towards a first-order ontology for semantic web
services. In Working notes of the W3C Workshop on
Constraints and Capabilities for Web Services. Docu-
ment located on-line at http://www.w3.org/2004/09/ws-cc-
program.html.

Boley, H.; Grosof, B.; Sintek, M.; Tabet, S.; and Wagner,
G. 2002. RuleML design. Document located on-line at
http://www.ruleml.org/indesign.html.
Boley, H.; Dean, M.; Grosof, B.; Sintek, M.; Spencer, B.;
Tabet, S.; and Wagner, G. 2004. FOL RuleML: The first-
order logic web language. Document located on-line at
http://www.ruleml.org/fol/.
Borgida, A. 1996. On the relative expressiveness of de-
scription logics and predicate logics. Artif. Intell. 82(1-
2):353–367.
Brachman, R. J.; Fikes, R. E.; and Levesque, H. J. 1983.
KRYPTON: Integrating terminology and assertion. In
AAAI-83, 31–35.
Buerckert, H.-J. 1994. A resolution principle for con-
strained logics. Artif. Intell. 66(2):235–271.
Chang, C.-L., and Lee, R. 1973. Symbolic Logic and Me-
chanical Theorem Proving. Orlando, FL, USA: Academic
Press, Inc.
Cohn, A. G. 1989. Taxonomic reasoning with many-sorted
logics. Artificial Intelligence Review 3:89–128.
CycCorp, Inc. 2005. OpenCyc. OpenCyc website:
http://www.opencyc.org/.
Dean, M. 2004. Semantic Web rules: Covering the use
cases. In RuleML ’04, volume 3323 of Lecture Notes in
Computer Science, 1–5.
Dershowitz, N., and Plaisted, D. 2001. Rewriting. In
Robinson, A., and Voronkov, A., eds., Handbook of Au-
tomated Reasoning, volume I. Elsevier Science. chapter 9,
535–610.
Donini, F. M.; Lenzerini, M.; Nardi, D.; and Schaerf, A.
1998. Al-log: integrating datalog and description log-
ics. J. of Intelligent and Cooperative Information Systems
10:227–252.
Frisch, A. M. 1985. An investigation into inference with
restricted quantification and a taxonomic representation.
SIGART Bull. (91):28–31.
Golbreich, C. 2004. Combining rule and ontology reason-
ers for the Semantic Web. In RuleML ’04, volume 3323 of
Lecture Notes in Computer Science, 6–22.
Grosof, B. N.; Horrocks, I.; Volz, R.; and Decker, S. 2003.
Description logic programs: Combining logic programs
with description logic. In WWW 2003.
Haarslev, V., and Moeller, R. 2001. Racer reasoner imple-
mentation. Racer website: http://www.racer-systems.com/.
Horrocks, I., and Patel-Schneider, P. 2003. Reducing owl
entailment to description logic satisfiability. In 2nd Inter-
national Semantic Web Conference (ISWC-03).
Horrocks, I.; Patel-Schneider, P. F.; Boley, H.; Tabet, S.;
Grosof, B.; and Dean., M. 2004. SWRL: A semantic web
rule language combining OWL and RuleML. Document
located on-line at http://www.daml.org/2004/04/swrl/.
Horrocks, I.; Sattler, U.; and Tobies, S. 1999. Practical
reasoning for expressive description logics. In Ganzinger,
H.; McAllester, D.; and Voronkov, A., eds., Proceed-
ings of the 6th International Conference on Logic for Pro-

gramming and Automated Reasoning (LPAR’99), number
1705 in Lecture Notes in Artificial Intelligence, 161–180.
Springer-Verlag.
Horrocks, I.; Sattler, U.; and Tobies, S. 2000. Practical rea-
soning for very expressive description logics. Logic Jour-
nal of the IGPL 8(3):239–264.
Hustadt, U.; Motik, B.; ; and Sattler, U. 2004. Reducing
SHIQ- description logic to disjunctive datalog programs.
In KR 2004. Los Altos, CA: Morgan Kaufmann.
Hustadt, U.; Motik, B.; and Sattler, U. 2005. A decom-
position rule for decision procedures by resolution-based
calculi. In LPAR 2004, number 3452 in Lecture Notes in
Computer Science. Springer Verlag.
Levy, A. Y., and Rousset, M.-C. 1996. CARIN: A rep-
resentation language combining horn rules and description
logics. In ECAI-96, 323–327.
McCune, W. 2003. Otter: An Automated Deduction Sys-
tem. Technical Report ANL/MCS-TM-263, Argonne Na-
tional Laboratory, Illinois.
Motik, B. 2006. KAON2 reasoner implementation.
KAON2 website: http://kaon2.semanticweb.org/.
Patel-Schneider, P. F.; Hayes, P.; and Horrocks, I.
2003. Web ontology language (owl): Abstract syn-
tax and semantics. Document located on-line at
http://www.w3.org/TR/owl-semantics/.
Patel-Schneider, P. F. 2004. A proposal for a SWRL ex-
tension to first-order logic. Document located on-line at
http://www.daml.org/2004/11/fol/proposal.
Rector, A.; Nowlan, W.; and Glowinski, A. 1993. Goals
for concept representation in the GALEN project. In 17th
Annual Symposium on Computer Applications in Medical
Care, 414–418.
Reiter, R. 1978. On closed world data bases. Logic and
databases.
Riazanov, A., and Voronkov, A. 2002. The design and
implementation of Vampire. AI Communications 15(2–3).
Stickel, M. J. 1985. Automated deduction by theory reso-
lution. 4(1):333–355.
Tsarkov, D., and Horrocks, I. 2004. FaCT++
reasoner implementation. FaCT++ website:
http://owl.man.ac.uk/factplusplus/.
Tsarkov, D.; Riazanov, A.; Bechhofer, S.; and Horrocks, I.
2004. Using Vampire to reason with OWL. In Proceedings
of the 3rd International Semantic Web Conference, volume
3298 of Lecture Notes in Computer Science, 471–485.
Weidenbach, C. 2001. SPASS: Combining superposition,
sorts and splitting. In Robinson, A., and Voronkov, A.,
eds., Handbook of Automated Reasoning, volume II. Else-
vier Science. chapter 27, 1965–2013.

