Sequential, Temporal GOLOG

Ray Reiter
Department of Computer Science
University of Toronto
Toronto, Canada, M5S 1A4

reiter@cs.toronto.edu

Abstract

We extend the ontology and foundational ax-
ioms of the sequential situation calculus to in-
clude time. When combined with a view of ac-
tions with durations as processes that are initi-
ated and terminated by instantaneous actions,
this explicit representation of time yields a very
rich account of interleaving concurrency in the
situation calculus. Based upon this axiomatiza-
tion, we extend the semantics and interpreter for
the situation calculus-based programming lan-
guage GOLOG to the temporal domain, and il-
lustrate the resulting increased functionality of
the language via a GOLOG program describing
the temporal behaviour of a coffee delivery robot.
Among other features, this program illustrates
how, in the GOLOG framework, one can repre-
sent concurrent processes with explicit time.

1 Introduction

The situation calculus [15] has long been the formal-
ism of choice in artificial intelligence for theoretical
investigations of properties of actions (e.g. [12, 1, 4]),
but until recently, it has not been taken seriously as a
specification or implementation language for practical
problems in dynamic world modeling. Exceptions to
this are the situation calculus-based programming lan-
guages GOLOG and CONGOLOG [11, 2], and some of
their applications to planning [10, 20], robotics [7, 5, 3]
and agent programming [8, 6]. The perspective be-
ing pursued by the Cognitive Robotics Group at the
University of Toronto is to reduce the “traditional”
reliance on planning for eliciting interesting robot be-
haviors, and instead provide the robot with programs
written in a suitable high-level language [9], in our
case, GOLOG or CONGOLOG. Such programming
languages must be very expressive, providing a range
of primitives for describing agent behaviors in com-
plex worlds, for example, sensing actions, time, inter-
agent communication, beliefs; goals, intentions, etc.
Moreover, because of their complexity, they must do
so 1in a semantically clear way. As indicated above,

our approach to the design of such languages has been
through the situation calculus.

The purpose of this paper is to extend the function-
ality of these languages by endowing them with the
ability to represent time explicitly. Specifically, we
extend the ontology and foundational axioms of the
sequential situation calculus of [19] to include time.
By pursuing an idea first proposed for the situation
calculus by Pinto [17] and Ternovskaia [24], we show
how one can view actions with durations as processes
that are initiated and terminated by instantaneous ac-
tions. This conceptual shift, when coupled with an ex-
plicit representation for time, provides a rich account
of interleaving concurrency in the situation calculus.
Based upon the axioms for the sequential, temporal
situation calculus, we next extend the semantics and
interpreter for the situation calculus-based program-
ming language GOLOG to the temporal domain. Fi-
nally, we illustrate the resulting increased functional-
ity of the language with a GOLOG program describ-
ing the temporal behavior of a coffee delivery robot.
Among other features, this program illustrates how,
in the GOLOG framework, one can straightforwardly
represent concurrent processes with explicit time.

2 The Situation Calculus

The situation calculus is a second order language
specifically designed for representing dynamically
changing worlds. All changes to the world are the re-
sult of named actions. A possible world history, which
is simply a sequence of actions, is represented by a first
order term called a situation. The constant Sy is used
to denote the inzitial situation, namely the empty his-
tory. Non-empty histories are constructed using a dis-
tinguished binary function symbol do; do(«, s) denotes
the successor situation to s resulting from performing
the action a. Actions may be parameterized. For ex-
ample, put(z,y) might stand for the action of putting
object z on object y, in which case do(put(A, B),s)
denotes that situation resulting from placing A on B
when the history i1s s. In the situation calculus, ac-

tions are denoted by first order terms, and situations
(world histories) are also first order terms. For exam-
ple, do(putdown(A), do(walk(L),do(pickup(A), So)))
is the situation denoting the world history consisting
of the sequence of actions [pickup(A), walk(L), put-
down(A)]. Notice that the sequence of actions in a his-
tory, in the order in which they occur, is obtained from
a situation term by reading off the actions from right

to left.

Relations whose truth values vary from situation to
situation are called relational fluents. They are de-
noted by predicate symbols taking a situation term as
their last argument. Similarly, functions whose values
vary from situation to situation are called functional
fluents, and are denoted by function symbols taking
a situation term as their last argument. For exam-
ple, isCarrying(robot,p, s), meaning that a robot is
carrying package p in situation s, is a relational flu-
ent; location(robot, s), denoting the location of robot
in situation s, is a functional fluent.

To characterize the domain of situations, various foun-
dational axioms have been proposed for the situation
calculus [22, 13, 18]. The following set of axioms mod-
ifies these earlier proposals, and appears to be the sim-
plest appropriate formulation of foundational axioms
for the situation calculus [19]:

(VP).P(So) A (Va, s)[P(s) D P(do(a, s))]

S (Vs)P(s), (1)

do(a,s) = do(a’,s') Da=da' As=5"1 (2)
-5 C So, (3)
sCdo(a,s')=sCs. (4)

The first is a second order induction axiom. The next
is a unique names axiom for situations. The last two
axioms define an ordering relation T on situations.
(Here, s C s’ is an abbreviation for s C s’ Vs = s'.)
The intuitive reading of a situation is as a finite se-
quence of actions, in which case s C s’ means that
situation s’ can be obtained from s by adding a finite
number of actions onto s. Here, Sy is a distinguished
constant symbol of the language of the situation cal-
culus, denoting the initial situation.?

'In what follows, lower case Roman characters will de-
note variables in formulas. Moreover, free variables will
always be implicitly universally prenex quantified.

2Notice that in the situation calculus, the constant
So 1s just like NIL in the programming language LISP,
and do acts like cons. Situations are simply lists of
primitive actions. For example, the situation term
do(C,do(B,do(A, Sp))) is simply an alternative syntax for
the LISP list (C B A) (= cons(C,cons(B, cons(A, NIL)))).
To obtain the action history corresponding to this term,
namely the performance of action A, followed by B, fol-
lowed by C, read this list from right to left. Therefore,
when situation terms are read from right to left, the rela-
tion s C s’ means that situation s is a proper subhistory of
the situation s’. The induction axiom (1) simply provides

According to these axioms, a situation is a finite se-
quence of actions. There are no constraints on the ac-
tions entering into such a sequence, so that it may not
be possible to actually execute these actions one after
the other. Frequently, we shall be interested only in
erecutable situations, namely, those action sequences
in which it is actually possible to perform the actions
one after the other. To characterize such situations,
we rely on the distinguished predicate symbol Poss
of the language of the situation calculus. Intuitively,
Poss(a, s) means that it is possible to perform the ac-
tion a in situation s. In specifying a domain of appli-
cation, one would include axioms characterizing Poss
for each primitive action of the domain. Now we can
introduce the abbreviation:

s<s s s A (5)
(Va,s*).s C do(a, s*) £ s' D Poss(a, s™).

So s < s’ means that s is an initial subsequence of s,
and all the actions of s’ following those of s can be
executed one after the other. In particular, S < s
means that every action in s is possible, so they can
all be executed in sequence. To captures formally this
intuitive concept of the executable situations, we in-
troduce the abbreviation:

executable(s) def So <sVSy=s.

In addition to the above domain independent axioms,
one must specify other axioms when formalizing an
application domain (details in [11]):

e Action precondition arioms, one for each primitive
action, characterizing the relation Poss.

e Successor state arioms, one for each fluent. These
capture the causal laws of the domain, together
with a solution to the frame problem [21]. The
solution to the frame problem embodied in these
axioms applies only when all the primitive ac-
tions of the application domain are deterministic.
Moreover, [21] does not treat state constraints,
and therefore, does not address the ramification
or qualification problems.?

e Unique names axioms for the primitive actions.

e Axioms describing the initial situation — what is
true initially, before any actions have occurred.
This is any finite set of sentences mentioning no
situation term, or only the situation term Sj.

3 GOLOG

GOLOG [11] is a situation calculus-based logic pro-
gramming language for defining complex actions us-

induction for lists: If the empty list has property P and if),
whenever list s has property P so does cons(a, s), then all
lists have property P.

“But see [13, 16, 17] for possible ways to do this, while
preserving the successor state axiom approach.

ing a repertoire of user specified primitive actions.
GOLOG provides the usual kinds of imperative pro-
gramming language control structures as well as three
flavours of nondeterministic choice:

1. Sequence: a; . Do action «, followed by action
8.

2. Test actions: p? Test the truth value of expression
p in the current situation.

While loops: while p do a endWhile.
Conditionals: if p then « else .
Nondeterministic action choice: a | 3. Do a or .

O Ot W

Nondeterministic choice of arguments: (7 z)a.

Nondeterministically pick a value for x, and for

that value of z, do the action a.

7. Nondeterministic repetition: o*. Do a a nonde-
terministic number of times.

8. Procedures, including recursion.

The semantics of GOLOG programs is defined by
macro-expansion, using a ternary relation Do (see [11]
for a full description). Do is defined inductively on the

structure of its first argument as follows:

Primitive actions:
Do(a,s,s’) o Poss(a,s) A s' = do(a, s). (6)

Test actions:
d

Do(¢?,s,s") ef
Here, ¢ is a test expression of our programming lan-
guage; it stands for a situation calculus formula, but
with all situation arguments suppressed. ¢[s] denotes
the situation calculus formula obtained by restoring
situation variable s to all fluent names mentioned in
@.

Sequence:

[l
o

[s]As =5

Do(81:62,5,5') 2 (35%).Do(81,5,5%) A Do(ds, 5",).
Nondeterministic choice of two actions:
Do(81 | 82,5,5") = Do(b1,5,5') V Do(ds, 5, 5).

Nondeterministic choice of action arguments:
Do((rz) (), 5, 5") < (3z) Do(8(x), 5,).
Conditionals:
if p then a else ﬁdéfp? ;al-p?; B

Similar (but more complicated) definitions are given
for iteration and procedures.

Do(program, s, s') is an abbreviation for a situation
calculus formula whose intuitive reading is that s’
is one of the situations reached from s by executing
program. This means that to execute program, one
must prove, using the situation calculus axiomatiza-
tion of some background domain, the situation calcu-
lus formula (3s) Do(program, Sy, s). Any binding for

s obtained by a constructive proof of this sentence is
an execution trace of program.

In [11] a GOLOG interpreter was given, written in
Prolog. We present a variant of this here because
we shall be suitably modifying it to accommodate
time, and because we shall be presenting an exam-
ple of a corresponding temporal GOLOG program.

A Golog Interpreter in Prolog

:- op(950, xfy, [:]). /* Sequence.*/

:— op(950, xfy, [#]). /* Nondeterministic action
choice.*/

:— op(800, xfy, [&]). /* Conjunction */

:— op(850, xfy, [v]). /* Disjunction */

:— op(870, xfy, [=>]). /* Implication */

:— op(880,xfy, [<=>]). /* Equivalence */

do(E1 : E2,5,81) :- do(E1,S,52), do(E2,52,S1).
do(?(P),S,S) :- holds(P,S).
do(E1 # E2,S8,81) :- do(E1,8,S1) ; do(E2,S,S1).
do(if (P,E1,E2),8,81) :-

do(?(P) : E1 # ?(-P) : E2,58,S1).
do(star(E),S,81) :- S1 =8 ; do(E : star(E),S,S1).
do(while(P,E),S,81):-

do(star(?(P) : E) : ?(-P),S,51).

do(pi(V,E),S,S1) :- sub(v,_,E,E1), do(E1,S5,51).
do(E,S,S1) :- proc(E,E1), do(E1,S,S1).
do(E,S,do(E,S)) :- primitive_action(E), poss(E,S).

/* sub(Name,New,T1,T2): T2 is T1 with Name
replaced by New. */

sub(X1,X2,T1,T2) :- var(T1), T2 = T1.

sub(X1,X2,T1,T2) :- not var(T1), T1 = X1, T2 = X2.
sub(X1,X2,T1,T2) :- not T1 = X1, T1 =..[FIL1],
sub_list (X1,X2,L1,L2), T2 =..[F|L2].

sub_list (X1,X2,[1,[]).
sub_list(X1,X2,[T1|L1],[T2IL2]) :-
sub(X1,X2,T1,T2), sub_list (X1,X2,L1,L2).

/* The holds predicate implements the Lloyd-Topor
transformations on test conditions. */

holds(P & Q,8S)
holds(P v Q,8)

:- holds(P,S), holds(Q,S).
:- holds(P,S); holds(Q,S).
holds(P => Q,S) :- holds(-P v Q,8).
holds(P <=> Q,S) :- holds((P => Q) & (Q => P),S).
holds(-(-P),S) :- holds(P,S).
holds(-(P & Q),S8) :- holds(-P v -Q,8).
holds(-(P v Q),S) :—- holds(-P & -Q,8).
holds(-(P => Q),S) :- holds(-(-P v Q),8).
holds(-(P <=> Q),S) :-
holds(-((P => Q) & (Q => P)),8).

holds(-all(V,P),S) :- holds(some(V,-P),S).

/* Negation by failure */
holds (-some(V,P),S) :- not holds(some(V,P),S).
holds(-P,S) :- isAtom(P), not holds(P,S).
holds(all(V,P),S) :- holds(-some(V,-P),S).
holds (some(V,P),S) :- sub(V,_,P,P1), holds(P1,8).

/* The following clause treats the holds predicate
for all atoms, including Prolog system

predicates. For this to work properly, the
GOLOG programmer must provide, for all atoms
taking a situation argument, a clause giving
the result of restoring its suppressed
situation argument, for example:
restoreSitArg(ontable(X),S,ontable(X,8)). */

holds(A,S8) :- restoreSitArg(A,S,F), F ;
not restoreSitArg(A,S,F), isAtom(A), A.

isAtom(A) :—- not (A = -W ; A= (W1 & W2) ;
A= (W1=>W2) ; A= (Wl <=>W2) ;
A= (Wlv W2 ; A=some(X,W) ; A=all(X,W)).

restoreSitArg(poss(A),S,poss(4,8)).

It is possible to prove the soundness of this interpreter,
with respect to the above semantics, when the usual
Prolog closed world assumption is made about the ini-
tial database, namely, that complete information is
available about the initial situation. Therefore, this in-
terpreter 1s only suitable for applications in which this
closed world assumption holds.* The holds predicate
in this interpreter evaluates test conditions of GOLOG
programs. Since such test conditions can be arbitrary
first order formulas, the holds predicate first converts
them to Prolog executable form using the Lloyd-Topor
transformations [14].

4 Interleaving Concurrency in the
Situation Calculus

The possibility of concurrent execution of ac-
tions leads to many difficult formal and concep-
tual problems, quite independently of the underly-
ing knowledge representation language. For exam-
ple, what can one mean by the concurrent action
{walk(A, B), chewGum}? TIntuitively, both actions
have durations. By this concurrent action, do we mean
that both actions have the same duration? That the
time segment occupied by one is entirely contained
in that occupied by the other? That their time seg-
ments merely overlap? What if there are three actions
and the first overlaps the second, the second over-
laps the third, but the first and third do not over-
lap; do they all occur concurrently? A representa-
tional device in the situation calculus for overcoming
these problems is to conceive of such actions as pro-
cesses, represented by relational fluents, and to intro-
duce durationless (instantaneous) actions that initi-
ate and terminate these processes [17, 24]. For ex-
ample, instead of the monolithic action representa-
tion walk(z,y), we might have instantaneous actions
startWalk(z,y) and endWalk(z,y), and the process
of walking from z to y, represented by the relational

1Of course, the general theory of GOLOG does not suf-
fer from this restriction, only the specific implementation
given above.

fluent walking(x,y, s). startWalk(z, y) causes the flu-
ent walking to become true, endWalk(x,y) causes
it to become false. Similarly, we might represent
the chewGum action by the pair of instantaneous ac-
tions startChewGum and endChewGum, and the re-
lational fluent chewingGum(s). It is straightforward
to represent these fluents and instantaneous actions in
the situation calculus. For example, here are the ac-
tion precondition and successor state axioms for the
walking action:

Poss(startWalk(z,y), s) =
—(Ju, v)walking(u, v, s) A location(s) = z,

Poss(endWalk(z,y), s) = walking(z,y, s),

walking(z,y,do(a, s)) = a = startWalk(z,y) V
walking(z,y,s) A a # endWalk(z,y),

location(do(a, s)) = y = (Fz)a = endWalk(z,y) V
location(s) = y A —=(3z,y')a = endWalk(z,y').

With this device of instantaneous start and end ac-
tions in hand, we can represent arbitrarily complex
concurrency. For example,

do(endWalk(A, B), do(endChewGum,
do(startChewGum, do(startWalk(A, B), Sp)))),

in which the gum-chewing process is initiated after
the walking process, and terminated before the end
of the walking process. Or, we can have the gum-
chewing start before the walking, and terminate before
the walking ends:

do(endWalk(A, B), do(endChewGum,
do(startWalk(A, B), do(startChewGum, S)))).

In other words, we can represent any overlapping oc-
currences of the walking and chewing gum processes,
except for exact co-occurrences of any of the instan-
taneous initiating and terminating actions. For many
applications, this is sufficient. The great advantage is
that this style of interleaved concurrency can be repre-
sented in the “classical” sequential situation calculus,
and no new extensions of the theory are necessary.
However, as yet, we have no explicit representation for
time; the axioms for the situation calculus capture a
purely qualitative notion of time. Sequential action oc-
currence is the only temporal concept represented by
the axioms; an action occurs before or after another. It
may occur one millisecond or one year before its suc-
cessor; the axioms are neutral on this question. So a
situation do(Ap, do(An—1,...,do(A1, Sp) - --)) must be
understood as a world history in which, after a non-
deterministic period of time, A; occurs, then, after a
nondeterministic period of time, As occurs, etc. If|
for example, this action sequence was the result of a
GOLOG robot program execution, then the robot’s ac-
tion execution system would make the decision about
the exact times at which these actions would be per-
formed sequentially in the physical world, but the ax-
ioms, being silent on action occurrence times; con-

tribute nothing to this decision. Our objective now
is to show how to incorporate time into the situation
calculus, after which one can specify axiomatically and
via GOLOG programs the times at which actions are
to occur.

5 The Sequential, Temporal Situation
Calculus

Now, we add an explicit representation for time to the
sequential situation calculus of Section 2. This will al-
low us to specify the exact times, or a range of times,
at which actions in a world history occur. For the rea-
sons indicated in the previous section, we consider only
instantaneous actions. We want to represent the fact
that a given such action occurs at a particular time.
Recall that in the situation calculus, actions are de-
noted by first order terms, like start_meeting(Susan)
or bounce(ball, wall). Our proposal for adding a time
dimension to the situation calculus is to provide a new
temporal argument to all instantaneous actions, de-
noting the time at which that action occurs. Thus,
bounce(ball, wall,7.3) might be the instantaneous ac-
tion of ball bouncing against wall at time 7.3.

We now extend the foundational axioms for the se-
quential situation calculus of Section 2 to accommo-
date time. We retain these axioms, and add only
one new axiom. Also, the definition of executable
situation requires modification. We begin by in-
troducing a function symbol time: time(a) denotes
the time of occurrence of action a@. This means
that in any application involving a particular action
A(Zt), we shall need an axiom telling us the time
of the action A: time(A(Z,t)) = t, for example,
time(start_meeting(person,t)) = t. Next, it will be
convenient to have a function start: start(s) denotes
the start time of situation s. This requires the axiom:

start(do(a, s)) = time(a). (7

We do not define the start time of Sy; this is arbitrary,
and may (or may not) be specified to be any num-
ber, depending on the application. Notice also that
we imagine temporal variables to range over the reals,
although nothing prevents them from ranging over the
integers, rationals, or anything else on which a binary
relation < is defined. In this connection, we do not
provide axioms for the reals (or integers), but rely in-
stead on the standard interpretation of the reals and
their operations (addition, multiplication, etc) and re-
lations (<, <, etc).

Next we reconsider the relation < on situations. Intu-
itively, s < s’ means that one can get to s’ from s by a
sequence of possible actions. Consider the situation
do(bounce(B, W, 4), do(start_meeting(Susan, 6), Sp)),
in which the time of the second action precedes that of
the first. Intuitively, we do not want to consider such

an action sequence executable, and we amend our def-

inition (5) for < accordingly:
s<sscs A
(Va,s*).s Cdo(a,s*) C s’ D (8)
Poss(a, s*) A start(s*) < time(a).

Now, s < s’ means that one can get to s’ from s by a se-
quence of possible actions, and moreover, the times of
those action occurrences must be nondecreasing. We
are here overloading the predicate <; it 1s used to order
situations as well as numbers in the temporal domain.
Its meaning will always be clear from context.

Finally, notice that the constraint start(s*) < time(a)
in abbreviation (8) permits executable action se-
quences in which the time of an action may be the
same as the time of a preceding action. For example,

do(end_lunch(Bill,4),
do(start_meeting(Susan,4), So))

might be a perfectly good executable situation, which
is defined by a sequence of two actions, each of
which has the same occurrence time, but one of
which (start_meeting(Susan,4)) “occurs before” the
other (end{unch(Bill,4)). This means that we pro-
vide for concurrent execution of instantaneous ac-
tions, but unlike the true concurrency treated in [23],
we are here giving an nterleaving account of con-
currency. There are many reasons for allowing two
or more interleaved actions to have the same occur-
rence times. One is we can often give an interleav-
ing account of action co-occurrences without intro-
ducing the more complex formal machinery of [23].
Another is that often an action occurrence serves as
an enabling condition for the simultaneous occurrence
of another action. For example, cutting a weighted
string at time ¢ enables the action startFalling(t).
Both actions occur at the same time, but conceptu-
ally, the falling event happens “immediately after”
the cutting. Accordingly, we want to treat the sit-
uation do(startFalling(t), do(cutString(t), So)) as an
executable situation.

There are many advantages to using interleaving in-
stead of true concurrency, whenever this is possible.
For example, the precondition interaction problem [17]
cannot arise in this case, neither can the possibility
of infinitely many action co-occurrences [23]. More-
over, as we shall see with the example to follow, the
combination of instantaneous actions, explicit repre-
sentation of time, and an interleaving account of con-
currency provides for a very rich, yet formally simple
representation language for processes that overlap in
temporally complex ways.

(1) - (4) and (7) are the foundational axioms for the
sequential, temporal situation calculus. The develop-
ment given above of these foundational axioms has
many similarities to that given by Reiter in [23] for
the concurrent, temporal situation calculus. The prin-
cipal difference is that [23] treats true concurrency,

where concurrent actions are sets of primitive instanta-
neous actions. It is possible to obtain the foundational
axioms for the sequential, temporal situation calcu-
lus from those of [23] by requiring that all concurrent
actions be singleton sets, and identifying the primi-
tive action A with the “concurrent” action {A}, but
the above approach, where we started from scratch,
seemed to us conceptually more attractive.

6 Sequential, Temporal GOLOG

With the above axioms for the sequential, temporal
situation calculus in hand, it is easy to modify the
GOLOG semantics and interpreter to accommodate
time. Semantically, we need only change the definition
of the Do macro for primitive actions (6) to:

Do(a, 5,5’)d§f

Poss(a, s) A start(s) < time(a) A s’ = do(a, s).

Everything else about the definition of Do remains
the same. One can prove that with this modification,
whenever a sequential temporal GOLOG program ter-
minates, 1t does so in an executable situation according
to the revised definition (8) for executable situations.
To suitably modify the GOLOG interpreter of Section
3, replace the clause
do(E,S,do(E,s)):- primitive_action(E),
poss(E,S).
by
do(E,S,do(E,S)) :- primitive.action(E),
poss(E,S), start(sS,T1),
time(E,T2), T1 <= T2.

Finally, because we have introduced a new predicate,
start, taking a situation argument, we must also aug-
ment the earlier GOLOG interpreter with the clause:

start(do(4,S),T) :- time(A,T).

We can now write sequential, temporal GOLOG pro-
grams. However, to execute such programs, the
GOLOG interpreter must have a temporal reasoning
component. It must, for example, be able to infer that
Ty = Ty when given that 77 < To ATy < T1. While
such a special purpose temporal theorem prover could
be written and included in the GOLOG interpreter, we
prefer to rely on a logic programming language with
a built-in constraint solving capability. Specifically,
we appeal to the ECRC Common Logic Programming
System ECLIPSE 3.5.2; this provides a built-in Sim-
plex algorithm for solving linear equations and in-
equalities over the reals. So we shall assume that our
GOLOG program makes use of linear temporal rela-
tions like 2 x 77 + Ty = 5 and 3 %1y —5 < 2% T3,
and rely on ECLIPSE to perform the temporal rea-
soning for us. ECLIPSE provides a special syntax for
those relations over the reals for which it provides a
built-in theorem prover. These are: § =, $ <>, § >=,
$ > % <=, $ <, with the obvious meanings. So, in

ECLIPSE, the above modification of the GOLOG in-

terpreter to include time is:

do(E,S,do(E,S)) :- primitive_action(E),
poss(E,S), start(sS,T1),
time(E,T2), T1 $<= T2.

All other clauses of the earlier interpreter as given in

Section 3 will work correctly under ECLIPSE.

6.1 Example: A Coffee Delivery Robot

Here, we describe a robot whose task is to deliver coffee
in an office environment. The robot is given a schedule
of every employee’s preferred coffee periods, as well as
information about the times it takes to travel between
various locations in the office. The robot can carry
just one cup of coffee at a time, and there is a central
coffee machine from which it gets the coffee. Its task
is to schedule coffee deliveries such that, if possible,
everyone gets coffee during his/her preferred time pe-
riods. For simplicity, we assume that both the actions
of picking up a cup of coffee, and giving it to someone
are instantaneous. We represent the action of going
from one location to another, which intuitively does
have a duration, by a process and a pair of instanta-
neous start and end actions, as described in Section 4.

Primitive actions:

o pickupCoffee(t). The robot picks up a cup of
coffee from the coffee machine at time .

e giveCoffee(p,t). The robot gives a cup of coffee
to p at time ¢.

o startGo(locq,loca,t). The robot starts to go from
location loc; to locy at time £.

e endGo(locq,locs,t). The robot ends its process of
going from location locy to locs at time .

Fluents:

o robotLocation(s). A functional fluent denoting
the robot’s location in situation s.

e hasCoffee(person,s). person has coffee in s.
e going(locy,loca, s). In situation s, the robot is
going from locy to locs.

e holdingCoffee(s). In situation s, the robot is
holding a cup of coffee.

Situation Independent Predicates and Func-
tions

o wantsCoffee(person,tq,ts). person wants to re-
ceive coffee at some point in the time period
[t1,12].

e office(person). Denotes the office of person.

o travelTime(loci,locy). Denotes the amount of
time that the robot takes to travel between loc,

and locs.
e C'M. Constant denoting coffee machine’s loca-
tion.

e Sue, Mary, Bill, Joe. Constants denoting peo-
ple.

Action Precondition Axioms:
Poss(pickupCoffee(t),s) = —holdingCoffee(s) A
robot Location(s) = CM,
Poss(giveCoffee(person,t),s) = holdingCoffee(s) A

robot Location(s) = office(person),

Poss(startGo(locy,locs, t),s) = =(3L, 1) going(L, ', 5) A

locy # locs A robot Location(s) = locy,
Poss(endGo(loct, loca, t), s) = going(loct, loca, s).

Successor State Axioms
hasCof fee(person, do(a,s)) =
(Ft)a = giveCoffee(person,t) V
hasCoffee(person,s),

robot Location(do(a, s)) = loc =
(3t,loc')a = endGo(loc' ,loc,t) V
robot Location(s) = loc A
(3¢, loc’ loc"Ya = endGo(loc' loc” 1),

going(l,l', do(a, s)) = (It)a = startGo(l,l',t) V
going(l,l',s) A =(3t)a = endGo(l,l',1),

holdingCoffee(do(a, s)) = (It)a = pickupCoffee(t) V
holdingCoffee(s) A
—(3person, t)a = giveCoffee(person,t).

Initial Situation

Unique names axioms stating that the following terms
are pairwise unequal:

Sue, Mary, Bill, Joe, CM, office(Sue),
office(Mary), of fice(Bill), office(Joe).

Initial Fluent values:

robot Location(Sg) = CM, start(Sp) =0,
—(3p)hasCoffee(p, So), ~holdingCoffee(Sy),
=(3, 1" going(L,1', So).

Coffee delivery preferences. The following expresses
that (Swue, 140, 160), ..., (Joe,90,100) are all, and
only, the tuples in the wantsCoffee relation.

wantsCoffee(p,t1,12) =
p==SueAty =140 Ats = 160 V
p=MaryAt; =130 A1, =170V
p=DBillANt; =100 Aty =110V
p=Joe ANty =90 Aty = 100.
Robot travel times:
travelTime(C M, office(Sue)) = 15,
travelTime(C M, office(Mary)) = 10,
travelTime(C M, office(Bill)) = 8§,
travelTime(C M, office(Joe)) = 10.

travelTime(l,l') = travelTime(l' 1),
travelTime(l,1) = 0.

Action Occurrence Times:

time(pickupCoffee(t)) =t,
time(giveCoffee(person,t)) =1,

time(startGo(locy, loca, t)) =1,
time(endGo(locy, loca, t)) = 1.

GOLOG Procedures

proc deliverCoffee(t) % Beginning at time t
% the robot serves coffee to everyone,
% if possible. Else the program fails.
now < 17 ;

{[(Vp, ¥, t").wantsCoffee(p,t',t") D hasCoffee(p)]?

if robot Location = C'M then deliverOneCoffee(t)
else goto(CM,t) ; deliverOneCoffee(now)
endIf}

endProc

The above procedure introduces a functional fluent
now(s), which is identical to the fluent start(s).
We use it instead of start because it has a certain
mnemonic value, but, like start, it denotes the current
time.

proc deliverOneCoffee(t) % Assuming the robot
% is at the coffee machine,
% it delivers one cup of coffee.
(mp,t1,to, wait) {wantsCoffee(p, t1,12) A
—hasCoffee(p) AN wait > 0 A
t1 <t+ wait +
travelTime(C M, office(p))
<ta}?y
pickupCoffee(t + wait) ;
goto(office(p), now) ;
giveCoffee(p, now) ;
deliverCoffee(now)]

endProc

% Beginning at time t the

% robot goes to loc.

goBetween(robot Location, loc,
travelTime(robot Location,loc),t)

proc goto(loc,t)

endProc

proc goBetween(locl, loc2, A1) % Beginning at
% time t the robot goes from locl to loc2,
% taking A time units for the transition.
startGo(locl,loc2,t) ; endGo(locl,loc2,t + A)
endProc

The following sequential temporal GOLOG program
implements the above specification.

Sequential Temporal GOLOG Program for a
Coffee Delivery Robot

/* GOLOG Procedures */

proc(deliverCoffee(T),
?(some(t, now(t) & t $<=T)) :
(7(all(p,all(t1,all(t2,wantsCoffee(p,t1,t2) =>
hasCoffee(p)))))
#
pi(rloc, ?(robotLocation(rloc)) :
if(rloc = cm,

/* THEN %/

deliverOneCoffee(T),
/* ELSE %/
goto(em,T) : pi(t, 7(now(t))

deliverOneCoffee(t)))))).

proc(deliverOneCoffee(T),
pi(p, pi(t1, pi(t2, pi(wait, pi(travTime,
?(wantsCoffee(p,t1,t2) & -hasCoffee(p) &
wait $>= 0 &
travelTime(cm,office(p),travlime) &
t1 $<= T + wait + travTime & T + wait +
travTime $<= t2)
pi(t, ?(t $= T + wait) : pickupCoffee(t))
pi(t, ?(now(t)) : goto(office(p),t))
pi(t, ?(now(t)) : giveCoffee(p,t)) :
pi(t, ?(now(t)) : deliverCoffee(t)))))))).

proc(goto(L,T),
pi(rloc,?(robotLocation(rloc))
pi(deltat,?(travelTime(rloc,L,deltat))
goBetween(rloc,L,deltat,T)))).

proc(goBetween(Loc1l,Loc2,Delta,T),
startGo(Loc1l,Loc2,T)
pi(t, ?(t $= T + Delta) : endGo(Locl,Loc2,t))).

/* Preconditions for Primitive Actions */

poss (pickupCoffee(T),S) :- not holdingCoffee(S),
robotLocation(cm,S).

poss (giveCoffee(Person,T),S) :- holdingCoffee(S),
robotLocation(office (Person),S).

poss (startGo(Loc1,Loc2,T),S) :- not going(L,LL,S),
not Locl = Loc2, robotLocation(Loc1,S).

poss (endGo(Loc1,Loc2,T),8) :- going(Locl,Loc2,8).

/* Successor State Axioms %/

hasCoffee(Person,do(A,S)) :-
A = giveCoffee(Person,T) ; hasCoffee(Person,S).

robotLocation(Loc,do(4A,S))
robotLocation(Loc,S), not A=endGo(Loc2,Loc3,T).

going(Loc1,Loc2,do(4,S))
going(Loc1,Loc2,8), not A = endGo(Locl,Loc2,T).

holdingCoffee(do(A,S)) :- A = pickupCoffee(T) ;
holdingCoffee(S), not A = giveCoffee(Person,T).

/* Initial Situation */

robotLocation(cm,s0). start (s0,0).
wantsCoffee(sue, 140,160) .
wantsCoffee(bill,100,110).
wantsCoffee (joe,90,100).

wantsCoffee (mary,130,170).
travelTimeO (cm,office(sue),15).
travelTimeO (cm,office (mary),10).
travelTimeO (cm,office(bill),8).

:- A=endGo(Loc1,Loc,T) ;

:—- A=startGo(Locl,Loc2,T)

travelTimeO (cm,office(joe),10).
travelTime(L,L,0).
travelTime(L1,L2,T) :- travelTimeO(L1,L2,T) ;

travelTime0O(L2,L1,T).
/* Action occurrence time is its last argument. */

time (pickupCoffee(T),T).

time (endGo(Loc1,Loc2,T),T).
time (giveCoffee(Person,T),T).
time(startGo(Loc1,Loc2,T),T).

/* Restore situation arguments to fluents. */

restoreSitArg(robotLocation(Rloc),S,
robotLocation(Rloc,S)).
restoreSitArg(hasCoffee(Person),S,
hasCoffee(Person,S)).
restoreSitArg(going(Locl,Loc2),S,
going(Locl,Loc2,8)).
restoreSitArg(holdingCoffee,S,
holdingCoffee(S)).

/* Primitive Action Declarations */

primitive_action(pickupCoffee(T)).
primitive_action(giveCoffee(Person,T)).
primitive_action(startGo(Locl,Loc2,T)).
primitive_action(endGo(Loc1,Loc2,T)).

/* Fix on a solution to the temporal
constraints. */

chooseTimes (s0).
chooseTimes (do(A,S)) :- chooseTimes(S),

time(A,T), rmin(T).
/* "now" is a synonym for "start". x/

now(S,T) :- start(S,T).
restoreSitArg (now(T),S,now(S,T)).

A problem with our constraint logic programming ap-
proach to coffee delivery is that the execution of the
GOLOG call do(deliverCoffee(1),s0,S) will not,
in general, result in a fully instantiated sequence of ac-
tions S. The actions in that sequence will not have their
occurrence times uniquely determined; rather, these
occurrence times will consist of all feasible solutions
to the system of constraints generated by the program
execution. So, to get a fixed schedule of coffee delivery,
we must determine one or more of these feasible solu-
tions. The relation chooseTimes(S) in the above pro-
gram does just that. Beginning with the first action in
the situation history, S, chooseTimes determines the
time of that action (which, in general, will be a Prolog
variable since the ECLIPSE constraint solver will not
have determined a unique value for that action’s oc-
currence time). Tt then minimizes (via rmin(T)) that
time, relative to the current set of temporal constraints
generated by executing the coffee delivery program.
Then, having fixed the occurrence time of the first ac-
tion, it repeats with the second action, etc. In this

way, chooseTimes selects a particular solution to the
linear temporal constraints generated by the program,
thereby producing one of many possible schedules for
the robot. Of course, there is nothing special about
chooseTimes; any method for obtaining one or more
solutions to the constraints would do just as well.

The following is the output obtained from this pro-
gram under the temporal GOLOG interpreter of Sec-
tion 6. We use the relation chooseTimes(S) to select
a solution to the temporal constraints.

[eclipse 2]: do(deliverCoffee(1),s0,8),
chooseTimes (S).

S = do(giveCoffee(mary,165),do(endGo (cm,
office(mary),165) ,do(startGo(cm,office(mary),155),
do (pickupCoffee(155) ,do(endGo (office(sue),cm,155),
do(startGo(office(sue), cm, 140), do(giveCoffee(
sue, 140) ,do (endGo(cm,office(sue),140) ,do(startGo(
cm,office(sue),125) ,do(pickupCoffee(125) ,do(

endGo (office(bill) ,cm,116) ,do(startGo(office(bill)
cm,108) ,do(giveCoffee(bill, 108) ,do (endGo (cm,
office(bill),108),do(startGo(cm,office(bill), 100),
do (pickupCoffee(100) ,do(endGo (office(joe),cm,100),
do(startGo(office(joe),cm,90) ,do(giveCoffee(joe,
90) ,do (endGo(cm,office(joe) ,90) ,do(startGo(cm,
office(joe) ,80),do(pickupCoffee(80), s0))))))))))
1)) More? (;)

As is usual with GOLOG applications, the above com-
putation would be done off line; as yet, the robot has
not performed any physical actions in the world. To
have it physically deliver coffee, the action sequence
in the above execution trace would be passed to the
robot’s primitive execution module.

6.2 A Singing Robot

To simplify the exposition, we did not endow the above
program with any interleaving execution of processes,
as described in Section 4. This would, however, be
easy to do. Suppose we wanted our robot to sing a
song, but only while it is in transit between locations.
Introduce two instantaneous actions startSing(t) and
endSing(t), and a process fluent singing(s), with ac-
tion precondition and successor state axioms:

Poss(startSing(t), s) = —singing(s).

Poss(endSing(t), s) = singing(s),

singing(do(a, s)) = (It)a = startSing(t) V

singing(s) A —(3t)a = endSing(t).

Then the following version of the GOLOG procedure
goBetween turns the robot into a singing waiter:

proc goBetween(locl,loc2, A, t)
startGo(locl,loc2,t) ;
startSing(t) ; endSing(t + A) ;
endGo(locl,loc2,t + A)

endProc

This provides a temporal, interleaving account of the

concurrent execution of two processes:
moving between locations.

singing and

7 Conclusions and Future Work

We have extended the ontology and foundational ax-
ioms of the sequential situation calculus to include
time, and showed how one can view actions with du-
rations as processes that are initiated and terminated
by instantaneous actions. This conceptual shift, when
coupled with an explicit representation for time, pro-
vides a rich account of interleaving concurrency in the
situation calculus. Based upon the axioms for the se-
quential, temporal situation calculus, we extended the
semantics and interpreter for the situation calculus-
based programming language GOLOG to the temporal
domain. Finally, we illustrated the resulting increased
functionality of the language with a GOLOG program
describing the temporal behavior of a coffee delivery
robot, including the concurrent processes of delivering
coffee while singing a song.

CONGOLOG [2] is a much richer language than
GOLOG, that includes facilities for interleaving con-
current execution, prioritized interrupts and exoge-
nous actions. Augmenting CONGOLOG with a tem-
poral component is a straightforward exercise, and can
be done by changing its semantics and implementation
in a manner exactly parallel to the approach of Section

6 for GOLOG.

Ongoing work along the lines of this paper includes
controlling an RWI B21 autonomous robot to perform
temporal scheduling tasks in an office environment. In
this setting, it would be unrealistic to expect the robot
to execute a schedule like that returned by our coffee
delivery program. Frequently, it will be impossible to
meet the exact times in such a schedule, for example,
if the robot is unexpectedly delayed in traveling to the
coffee machine. One approach we are exploring is to
have the robot monitor its own execution, using the
situation calculus-based execution monitor of [3], re-
computing what remains of the schedule after it has
determined (by sensing its internal clock) the actual
occurrence times of its actions. We do not instanti-
ate a schedule’s action occurrence times (as we did
using chooseTimes(S)), but leave these free, subject
to the constraints generated by the GOLOG program.
Whenever the robot physically performs an action, it
senses the action’s actual occurrence time, adds this to
the constraints, then computes a remaining schedule,
or fails if no continuing schedule can be found.

Acknowledgements:

This research was supported by grants from the Natu-
ral Sciences and Engineering Research Council of Canada,
the Institute for Robotics and Intelligent Systems of the
Government of Canada, and the Information Technology

Research Centre of the Government of Ontario.

Mikhail

Soutchanski provided valuable feedback and corrections for
an earlier version of this paper.

References

(1]

[10]

M. Gelfond, V. Lifschitz, and A. Rabinov. What are
the limitations of the situation calculus? In Working
Notes, AAAI Spring Symposium Series on the Logical

Formalization of Commonsense Reasoning, pages 59—
69, 1991.

G. De Giacomo, Y. Lespérance, and H.J. Levesque.
Reasoning about concurrent execution, prioritized
interrupts, and exogenous actions in the situation
calculus. In Proceedings of the Fourteenth Inter-
national Joint Conference on Artificial Intelligence,
pages 1221-1226, Nagoya, Japan, 1997.

G. De Giacomo, R. Reiter, and M. Soutchanski. Ex-
ecution monitoring of high-level robot programs. In
A.G. Cohn and L.K. Schubert, editors, Principles of
Knowledge Representation and Reasoning: Proceed-
ings of the Sizth International Conference (KR’98).
Morgan Kaufmann Publishers, San Francisco, CA,
1998.

S. Hanks and D. McDermott. Default reasoning, non-
monotonic logics, and the frame problem. In Proceed-
ings of the National Conference on Artificial Intelli-
gence (AAAI’'86), pages 328-333, 1986.

M. Jenkin, Y. Lespérance, H.J. Levesque, F. Lin,
J. Lloyd, D. Marcu, R. Reiter, R.B. Scherl, and
K. Tam. A logical approach to portable high-level
robot programming. In Proceedings of the Tenth
Australian Joint Conference on Artificial Intelligence
(A1°97), Perth, Australia, 1997. Invited paper.

Y. Lespérance, H. Levesque, F. Lin, D. Marcu, R. Re-
iter, and R. Scherl. Foundations of a logical ap-
proach to agent programming. In M. Wooldridge, J.P.
Muller, and M. Tambe, editors, Intelligent Agents Vol.
Il — Proc. 1995 Workshop on Agent Theories, Archi-
tectures, and Languages (ATAL-95), pages 331-346.
Springer-Verlag, Lecture Notes in Art. Intell., 1996.

Y. Lespérance, H.J. Levesque, F. Lin, D. Marcu,
R. Reiter, and R. Scherl. A logical approach to
high-level robot programming — a progress report. In
Control of the Physical World by Intelligent Systermns,
Working Notes of the 1994 AAAI Fall Symp., 1994.

Y. Lespérance, H.J. Levesque, and R. Reiter. A situa-
tion calculus approach to modeling and programming
agents. In A. Rao and M. Wooldridge, editors, Foun-
dations and Theories of Rational Agency, 1997. In
press.

H. L. Levesque and R. Reiter. High-level robotic con-
trol: beyond planning. Position paper. AAAI 1998
Spring Symposium: Integrating Robotics Research:
Taking the Next Big Leap. Stanford University, March
23-25, 1998. http://www.cs.toronto.edu/“cogrobo/.

H.J. Levesque. What is planning in the presence of
sensing? In Proceedings of the National Conference on
Artificial Intelligence (AAAI’96), pages 1139-1146,
1996.

[11]

[12]

[13]

[14]

[15]

[19]

[20]

[21]

[22]

[23]

[24]

H.J. Levesque, R. Reiter, Y. Lespérance, F. Lin, and
R. Scherl. GOLOG: a logic programming language for
dynamic domains. J. of Logic Programming, Special
Issue on Actions, 31(1-3):59-83, 1997.

V. Lifschitz. Toward a metatheory of action. In
J. Allen, R. Fikes, and E. Sandewall, editors, Pro-
ceedings of the Second International Conference on
Principles of Knowledge Representation and Reason-
ing (KR’91), pages 376-386, Los Altos, CA, 1991.

Morgan Kaufmann Publishers, San Francisco, CA.

F. Lin and R. Reiter. State constraints revisited. J. of
Logic and Computation, special issue on actions and
processes, 4:655-678, 1994.

J.W. Lloyd. Foundations of Logic Programming.
Springer Verlag, second edition, 1987.

J. McCarthy. Situations, actions and causal
laws. Technical report, Stanford University, 1963.
Reprinted in Semantic Information Processing (M.
Minsky ed.), MI'T" Press, Cambridge, Mass., 1968, pp.
410-417.

Sheila A. Mcllraith. Towards a Formal Account of
Diagnostic Problem Solving. PhD thesis, Department
of Computer Science, University of Toronto, Toronto,
Ontario, Canada, 1997.

J.A. Pinto. Temporal Reasoning in the Situation Cal-
culus. PhD thesis, University of Toronto, Department
of Computer Science, 1994.

Javier Pinto. Occurrences and Narratives as Con-
straints in the Branching Structure of the Situation
Calculus. Submitted to the Journal of Logic and Com-
putation

URL = ftp://lyrcc.ing.puc.cl/pub/jpinto/jlc.ps.gz.

F. Pirri and R. Reiter. Some contributions to the
metatheory of the situation calculus. 1998. Submitted
for publication.

http://www.cs.toronto.edu/ “cogrobo/.

R. Reiter. Knowledge in Action: Logical Foun-
dations for Describing and Implementing Dynam-
tcal Systems. In preparation. Draft available at
http://www.cs.toronto.edu/“cogrobo/.

R. Reiter. The frame problem in the situation calcu-
lus: a simple solution (sometimes) and a completeness
result for goal regression. In Vladimir Lifschitz, edi-
tor, Artificial Intelligence and Mathematical Theory
of Computation: Papers in Honor of John McCarthy,
pages 359-380. Academic Press, San Diego, CA, 1991.

R. Reiter. Proving properties of states in the situation
calculus. Artificial Intelligence, 64:337-351, 1993.

R. Reiter. Natural actions, concurrency and contin-
uous time in the situation calculus. In L.C. Aiello,
J. Doyle, and S.C. Shapiro, editors, Principles of
Knowledge Representation and Reasoning: Proceed-
ings of the Fifth International Conference (KR’96),
pages 2-13. Morgan Kaufmann Publishers, San Fran-
cisco, CA, 1996.

E. Ternovskaia. Interval situation calculus. In Proc. of
ECATI’'94 Workshop W5 on Logic and Change, pages
153-164, Amsterdam, August 812, 1994.

