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Abstract

Recently Lakemeyer and Levesque proposed the
logic ���	� , which amalgamates both the situation
calculus and Levesque’s logic of only knowing.
While very expressive the practical relevance of the
formalism is unclear because it heavily relies on
second-order logic. In this paper we demonstrate
that the picture is not as bleak as it may seem. In
particular, we show that for large classes of ���
�
knowledge bases and queries, including epistemic
ones, query evaluation requires first-order reason-
ing only. We also provide a simple semantic defini-
tion of progressing a knowledge base. For a partic-
ular class of knowledge bases, adapted from earlier
results by Lin and Reiter, we show that progression
is first-order representable and easy to compute.

1 Introduction
A knowledge-based agent in a dynamic environment needs
powerful facilities to query its knowledge base. In par-
ticular, it does not suffice to only ask what the world is
like after any number of actions have occurred. As has
been argued both in the case of static knowledge bases [6;
9] and in the context of reasoning about action [15; 17;
4], the query language should be able to explicitly refer to
the agent’s knowledge � in order to make distinctions such as
knowing that versus knowing who [2] which otherwise can-
not be made. This is best illustrated by an example.

Suppose we have a simple, stationary mail sorting robot
whose task it is to pick up only the red letters in front of it.
Initially the robot has no letters and it is told that there are two
letters � and  and that at least one of them is red. (Let us
also assume that, unbeknownst to the robot, both letters are
red.) Then the robot should be able to answer the following
queries:

1. Is there a red letter? Answer: yes.

2. Do you know which one is red? Answer: no.

3. Assume the robot now senses the colour of � .
Do you now know of a particular letter that it is red?
�
While we freely use the term knowledge, we really mean belief,

but the difference is not important for the purposes of this paper.

Answer: yes. (Note that even if � were not red, the
answer would still be yes.)

4. The robot now picks up � .
Are you holding all the red letters? Answer: unknown.
(For all the robot knows,  could be red or not.)

5. Are you holding all the known red letters? Answer: yes.
( � is the only letter known to be red.)

Recently, Lakemeyer and Levesque [4] have proposed the
logic ���	� , which amalgamates the situation calculus [14]
and Levesque’s logic of only-knowing [7] and which has the
expressiveness to handle queries such as the above. However,
���	� employs heavy second-order machinery to achieve this
and it is not clear how to use the logic in practice other than
for specification purposes. In this paper we show that the pic-
ture is not as bleak as it may seem. In particular, we show
that in ���	� the evaluation of queries like those in the exam-
ple requires first-order reasoning only.

Another important issue is knowledge base progression. In
principle, the only information necessary to answer queries
after a number of actions have occurred is the initial knowl-
edge base together with the action sequence and the outcome
of sensing actions. However, for long sequences of actions
this seems hopelessly unrealistic from a computational point
of view. It seems much more sensible to update the knowl-
edge base appropriately after each action has occurred. Lin
and Reiter [13] studied progression in the context of the sit-
uation calculus without sensing and epistemic notions. They
show that progression can only be represented using second-
order logic in general, but they identify interesting classes of
theories where it remains first-order. Here we show how their
approach can be applied to the more expressive language of
���	� both at the semantic and the representational level. In
particular, we adapt Lin and Reiter’s definition of context-free
action theories and show that progression remains first-order
and efficiently computable in corresponding ���
� knowl-
edge bases.

The rest of the paper is organized as follows. In Section 2,
we introduce the logic ���	� . In Section 3, we define how to
query and progress an agent’s knowledge at an abstract level.
In Section 4, we consider concrete knowledge bases and dis-
cuss the issue of first-order query evaluation and progression
there. The paper ends with some concluding remarks. �
�
Some preliminary ideas about first-order query processing in



2 The Logic �����
Here we only give a brief introduction to the semantics of
���	� . The reader is referred to [4] for a more detailed ac-
count including a characterization using foundational axioms,
which we omit here. (We also assume a basic familiarity with
the situation calculus.)

The language of ���	� is a dialect of the second-order pred-
icate calculus with equality and has all the primitives of the
situation calculus, and some more. There are three sorts of in-
dividuals: ordinary objects, actions, and situations. For each
sort there is an infinite supply of variables. The situation vari-
able now is reserved for special use. As in the situation calcu-
lus, we have the following primitives: the constant ��� denotes
the situation which corresponds to the real world before any
actions have taken place; if � is an action and 	 a situation,
then do 
����	�� denotes the situation resulting from doing � in
	 ; the special predicate Poss 
�����	�� has the intended meaning
that � is executable in 	 ; fluents like ������
�����	�� are relations,
which have ordinary objects as arguments plus a situation ar-
gument in their final position, and are used to express how
the world evolves from situation to situation; there are only
finitely many fluents and action function symbols.

We also require two new special predicates, SF 
�����	�� and� � 
�	�� , normally not present in the situation calculus, which
are used to model sensing and knowledge and will be dis-
cussed in more detail in Section 2.2.

For simplicity, we also make the following restrictions:
there are no constants or functions of the situation sort other
than ��� and do; action functions do not take situations as ar-
guments; there are no function symbols of type object; and
all predicates other than those mentioned above are fluents.

The language also includes a set of so-called standard
names � � ��!#"$��!�%&�(')'('+* . The intended use of a standard
name is to uniquely identify an object across all possible in-
terpretations, which is useful when dealing with concepts like
knowing that versus knowing who. Indeed, the semantics as-
sumes a fixed domain of objects and these are isomorphic
with the standard names. (See [6; 9] for more details.)

Atomic formulas are obtained in the usual way from the
above primitives and formulas are built using the connec-
tives ,-��. , and / . Other connectives like 0 and 1 will be
used as abbreviations in the usual way. We will use the
following conventions: let 2�3�4� �65 � �75 ')'(' 5 �&8 be a se-
quence of actions and 	 a situation. Then do 
�2���	�� stands for
do 
�� 8 � do 
�� 8&9 � '(')'(�:�<;=
�� � ��	��')'('>�?� . @ denotes the empty se-
quence and we sometimes write do 
�@)��	�� for 	 . Finally, we
use TRUE as an abbreviation for /��'A
��B�C�#� and FALSE for
, TRUE.

2.1 Semantics

Rather than appealing to the standard semantics of FOL,
���	� comes equipped with a nonstandard semantics derived
from possible-world semantics [3], in particular, the seman-
tics of the logic �	� [7], which was developed to specify static

DFEHG
first appeared in [5]. Progression was not handled at all in

that paper.

knowledge bases. I As in possible-world semantics, the ba-
sic semantic building-block is a world. However, unlike the
static case, a world in � �
� determines what is true initially
and after any number of actions have occurred. A situation is
then interpreted simply as a world J indexed by a sequence
of actions 2� . In particular, every world “starts” with an ini-
tial situation where no actions have occurred yet. Besides the
real world, whose initial situation serves as the denotation of
� � , a model in ���	� also features a set of worlds � . As in
modal logics of knowledge like �	� , � should be understood
as the set of worlds which the agent considers epistemically
possible. In Section 2.2, we will see how, using the special
predicate

� � , the worlds in � can be accessed and how this
gives us a way to define knowledge in dynamic domains.

To simplify the semantics, we assume that besides the stan-
dard names for objects there are also standard names for ac-
tions. These are terms of the form K7
ML � �(')'('N�:L�OP� where K is
an action function and each L�Q is a standard name of an object.
A primitive formula is an atom of the form RS
ML � �('(')'N�?L�O$�
where each L Q is a standard name, and RS
M� � �('(')'N�?��O=��	�� is
a relational fluent, or of the form Poss 
�K�� or SF 
�KT� , where
K is a standard name for an action. The set of all primitive
formulas is U .

Let Act V be the set of all sequences of standard names for
actions including the empty sequence @ .
Definition 2.1: A world J is a function:

J3W�UYX Act VTZ�[\�^]_�("`*
Let a denote the set of all worlds.

Definition 2.2: A situation is a pair 
�Jb��2�_� , where Jdcea
and 2�fc Act V . An initial situation is one where 2�g�h@ .
Definition 2.3: An action model i is a pair j��<�?JTk , where
J3cla and �6m�aY'
J is taken to specify the actual world, and � specifies the epis-
temic state as those worlds an agent has not yet ruled out as
being the actual one. As we will see below, a situation term 	
will be interpreted semantically as a situation 
MJb��2�_� , consist-
ing of a world and a sequence of actions that have happened
so far. A fluent n�
�	�� will be considered true if J6o n���2�$p#�q" .

A variable map r is a function that maps object, action,
and situation variables into standard names for objects and ac-
tions, and into situations, respectively. In addition, r assigns
relations of the appropriate type s to relational variables. For
a given r , r=tu denotes the variable map which is like r except
that � is mapped into ; .
The meaning of terms
We write v 5 v wyx z for the denotation of terms with respect to
an action model i{�3j��$�:JFk and a variable map r . Then

v L|v wgx z �}L , where L is a standard name;

v K6
 2~ �Nv wyx z��}K7
:v 2~ v wgx zP� , where K6
 2~ � is an action term;
�
The reader who prefers classical logic is referred to [4], where

we provide a second-order axiomatization which is sound and com-
plete with respect to the nonstandard semantics.�

Since the type will always be obvious from the context, we leave
this information implicit.



v � � v wyx z�� 
MJb��@ � ;
v do 
 ~ � � ~ � �(v wgx zl� 
MJ � ��2� 5 � � , where v ~ � v wyx z � 
MJ � ��2�=� ,
and v ~ � v wyx z��}� ;
v � v wyx z � r#
M�#� , where � is any variable, including pred-
icate variables.

Observe that in a model i � j��<�:JFk , the only way to refer
to a situation that does not use the given world J is to use a
situation variable.

The meaning of formulas
We write i ��r v ��� to mean formula � comes out true in
action model i and variable map r :
i ��r v � RS
 2~ � ~ � � iff J � o RS
�v 2~ v wyx zP� ��2�$p�� " , where
RS
 2~ � ~ � � is a relational fluent, and v ~ � v wyx z �3
�J � ��2�=� ;
i ��r v � � 
 2~ � iff v 2~ v wyx z c r#
 � � with

�
a relational var.;

i ��r v � Poss 
 ~ � � ~ � � iff J � o Poss 
:v ~ � v wyx z<����2�$p��3" , where
v ~ � v wyx z��3
MJ � ��2�=� ;
i ��rYv � SF 
 ~ � � ~ � � iff J � o SF 
�v ~ � v wgx zP����2�PpS� " , where
v ~ � v wyx z �3
MJ � ��2�=� ;
i ��r v � � �$
 ~ � � iff v ~ � v wyx z � 
MJ � ��@ � and J � c � ;
i ��r v � ~ � �

~
� iff v ~ � v wyx z��Cv

~
� v wyx z ;i ��r v � ,�� iff i ��r v ��	� ;

i ��r v �
� .�� iff i ��rlv �
� and i ��rlv �� ;
i ��r v �h/���' � iff i ��r=tu v ��� for all ; of the appropriate
sort (object, action, situation, relation).

If � does not mention
� � , that is, the truth of � does not

depend on � , we also write Jb��r v ��� instead of i ��r v �
� . Similarly, if � does not mention � � and, hence, does not
depend on the real world, we write �$��r v ��� . If � mentions
neither �#� nor

� � , we simply write rhv ��� . Also, if � is a
sentence, we omit the variable map and write, for example,
i v �
� .

Finally, a formula � is valid in ���
� if for all action mod-
els i{�3j��<�?JFk and variable maps r , i ��r v ��� .

2.2 Knowledge and Action
To determine what is known initially (that is, in situation � � ),
we only need to consider

� � . More precisely, a sentence
is known initially just in case it holds in all situations 	 for
which

� �$
 	�� holds. To find out what holds in successor situ-
ations, we use the predicates SF and Poss. First note that the
logic itself imposes no constraints on either SF or Poss; it is
up to the user in an application to write appropriate axioms.
For Poss, these are the precondition axioms, which specify
necessary and sufficient conditions under which an action is
executable. So we might have, for example,

Poss 
 pickup 
M��� ��	���� Letter 
�����	��
as a way of saying that the robot is able to pick up only letters.
For SF, the user must write sensed fluent axioms, one for each
action type, as discussed in [8]. The idea is that SF 
�Kb��	��
gives the condition sensed by action K in situation 	 . So we
might have, for example,

SF 
 senseRed 
M�#����	���� Red 
M����	��

as a way of saying that the senseRed action in situation 	
tells the robot whether or not � is red. In case the action K
has no sensing component (as in simple physical actions, like
dropping an object), we require as a convention that the axiom
states that SF 
�K6��	�� is identically TRUE. Actions without a
sensing component are referred to as ordinary actions.

With these terms, we can now define
� 
 	 � ��	�� as an abbre-

viation for a formula that characterizes when a situation 	 � is
accessible from an arbitrary situation 	 : �

� 
�	 � ��	�� '�e/#�go ')'('=0 �y
 	 � ��	�� p
where the ellipsis stands for the conjunction of

/ 	 � ��	 � '��$L��
~ 
 	 � �#.��$L��

~ 
 	 � �#.
� � 
 	 � �-0��y
 	 � ��	 � �/#����	 � ��	 � '��g
�	 � ��	 � ��. 
 SF 
����	 � ��� SF 
�����	 � �:�T.
 Poss 
����	 � ��� Poss 
����	 � �?� 0�g
 do 
����	 � ��� do 
�����	 � �:��'

Here �$L�� ~ 
�	�� stands for , 1=���	 � ' 	T� do 
����	 � � .
If 	 is an initial situation, then the situations which are

�
-

related to 	 are precisely those initial situations 	 � for which� �<
�	 � � holds. The general picture, after some actions have
occurred, is best reflected by the following theorem, which
shows that our definition yields the successor state axiom for
a predicate

�
proposed in [17] as a solution to the frame

problem for knowledge. �
Theorem 2.4: [4]. The following sentence is valid:
/����	$��	 � ' Poss 
����	�� 0 � 
 	 � � do 
����	��?���

1 	 � � '�	 � � do 
����	 � � � . � 
�	 � � ��	��#. Poss 
�����	 � � �
. o SF 
�����	���� SF 
����	 � � � p .

In other words, 	 � is � -related to do 
�����	�� just in case there
is some other 	 � � which is

�
-related to 	 and from which 	 �

can be reached by doing � . Furthermore 	 and 	 � � must agree
on the values of SF and Poss for action � .

Given
�

, knowledge can then be defined in a way similar
to possible-world semantics [3; 1; 15] as truth in all acces-
sible situations. Knowing is then denoted using the follow-
ing macro, where � may contain the special situation vari-
able L ;�J . Let �����! � refer to � with all occurrences of L ;�J
replaced by 	 . Then

"$#&%�')( 
*�|� ( � '��/ ( � " 
 ( � � ( � 0+�����! ,.-
where 	 � is a new variable occurring nowhere else in � .

Note that � itself may contain
"$#&%�')(

with the un-
derstanding that macro expansion works from the inner-
most occurrence of

"$#&%�')(
to the outside. For example,"$#&%/'0( 
�, "$#&%�'0( 
 Red 
21�43)5/6 � �7305�6H���98;:)� stands for

/ 	 � 
�	$��� � � 0q
�,�/#	 � � 
 	 � ��	�� 0 Red 
M����	 � �?�
and should be read as “the agent knows in � � that it does not
know that � is red.”

<
We could have defined = as a predicate in the language as is

usually done, but we have chosen not to in order to keep the formal
apparatus as small as possible.>

Here we follow the notation from [8].



3 Queries and Progression
In this section, we will consider two related ways of answer-
ing queries in � �
� . For our purposes, a query is any for-
mula with a single free situation variable, now. An example
is 1=� Red 
����7305�6H�). , "$# %�'0( 
 ����� 
 1��7305�6-� �73)5/6F� , which asks
whether it is now the case that there is a red object which is
not known yet. The now in this query is intended to refer to
a particular situation, either an initial situation or one that is
the result of a sequence of actions. With this view, it is not
possible to answer queries wrt an action model i � j��<�?JFk
alone, since we also need to specify what sequence of actions
to use.

In our first specification of query answering, we are given
an initial i , and a sequence of actions 2� , and we answer
according to what would be known in the situation resulting
from doing 2� . In other words, we answer a query � with yes
if according to i , � is known in do( 2� , ��� ):

ASK � o � ��i ��2�$p��
�

yes �	� i v � "$# %�'0( 
2� � do 
�2
 � 8;:(�?�
no �	� i v � "$# %�'0( 
�,�� � do 
�2
 � 8;:(�?�
unknown ����������������P'

Note the difference between
";#&%�'0( 
2�-o 305�6 p � do 
�2
 �98$:)�:� as

above, and
"$# %�'0( 
2�-o do 
�2
 �73)5/6H� p � 8$:)��' In the former, we are

asking if � would be known after doing 2� ; in the latter, we
are asking if it is known initially that � would be true after
doing 2� . It is not hard to show that the former is implied by
the latter, but not vice-versa.

While this is a simple form of query answering, note that
it needs to use the world J in i to decide what is known. If
2� consists of a single sensing action like senseRed 
 �b� , then
after doing the sensing, the agent should know whether � is
red or not. But which one is known is determined by J , which
specifies (via SF) how sensing will turn out.

There is, however, a different view where we only need the
epistemic state � to answer a query. The idea is that while an
agent performs her actions, her epistemic state gets updated
to reflect the changes caused by those actions. In particular,
a sensing action leads to the removal of worlds which con-
tradict the sensed value. We can define ��������o �$�:Jb��2�$p to be
the epistemic state that results from executing 2� starting with
initial state � with sensing as specified by J , by the following:

1. �������To �<�?J6�:@:p�� � .
2. If �������To �<�?J6��2�$p#�}� � , then ��������o �<�:Jb��2� 5 K p#��^J � v J � cl� � and

r ���� x� �"! � -��� - x# �$!-v � o SF 
�Kb��	�� � SF 
�Kb��	 � � p .
o Poss 
�Kb��	�� � Poss 
�K6��	 � � p�*

Now given an � that is equal to ���%���To ���$�?J �$��2�$p , we can de-
fine a new query operation for any query � which does not
mention � � :& ��'So � �:�<��2�$p��)(* + yes if for all J3cl� , �<��r �/�! ��� x� �,! v ��� .

no if for all J3cl� , �<��r)�/�! ��� x� �"! v � ,�� .
unknown ����������������`'

Restricting ourselves to queries that do not mention ��� is
necessary since ASK does not carry with it the real world,
which is needed as the denotation of � � . In fact, mentioning
� � within a query does not make much sense in the first place.

Consider, for example, � �.-S
�� � � . Asking whether � is
true is completely independent of any epistemic state � and
depends only on the initial state of the real world.

In order to compare our two notions of ASK, it is necessary
to restrict the class of queries even further. In fact, we restrict
ourselves to queries whose only situation term is now. In
particular, this has the effect that we cannot ask about other
past or future situations.

Definition 3.1: The interaction language / � .
Atomic formulas whose only situation term is now are / � -
formulas. If � and � are / � -formulas, then ,�� , � .�� , /� � ,
where � is an object variable, and

";#&%�'0( 
2� �73)5/6 � are / � -
formulas. Nothing else is an / � -formula. From now on, un-
less stated otherwise, a query is an / � -formula where now is
the only free variable.

An example query in / � is

1&� Red 
M���7305�6F�#. , "$# %�'0( 
 ����� 
 1��7305�6 � �7305�6H��'
The formula

1&� Red 
M���7305�6F� .
, ";#&%�'0( 
 ����� 
21��73)5/6-��� do 
 senseRed �43)5/6 �:���

on the other hand, is not in / � .
The formulas of / � are interpreted by first converting them

into � �
� -formulas using the definition of
"$#&%�'0(

introduced
in the previous section.

We then have the following relationship between ASK �
and ASK:

Theorem 3.2: For any �Bc0/ � , � , J and 2� ,
ASK �$o �|�^j��<�?JTk ��2�<p � & ��'So � �,���%����o �<�?Jb��2�Pp ��2�$p '

The theorem can be strengthened considerably as it holds
for many queries outside of / � as well. In a nutshell, the
only restriction needed is that a query does not refer to what
is known before the actions 2� have occurred. Roughly, this is
because ��������o �<�:Jb��2�$p knows more about the past than � be-
cause it has fewer worlds than � . However, the formulation of
a broader class of queries for which the theorem holds turns
out to be somewhat awkward. / � , on the other hand, is sim-
ple and intuitive. Moreover, it is / � for which we develop a
first-order query evaluation method in Section 4.2.

3.1 Progression
For ASK to make sense, we needed to assume that � reflected
the epistemic changes that occurred during the execution of
2� , as reflected in SUCC. In a different context, Lin and Reiter
(LR) [13] have called the process of updating a knowledge
base of an acting agent progression and they studied it in de-
tail in the framework of the standard situation calculus.

One major difference between progression and the SUCC
operation above is that in the former we attempt to forget the
history of actions, and treat the resulting knowledge base as
if it were an initial one. 1 Indeed, for many applications, it is
sufficient to maintain information about a single “current” sit-
uation. Our definition of progression below adapts the ideas
of LR to the more expressive language of � �
� . In fact, our2

See [12] for a formalization of forgetting.



formulation is somewhat simpler, which is possible because
the semantics assumes a fixed set of worlds. It is also more
general because LR do not deal with sensing.

We can define a progression operator �������yo �$�:Jb��2�$p anal-
ogous to ���%��� that produces a new epistemic state, but
which loses information about the past. Given worlds J and
J � , we say that J � agrees with J after 2� if for all 2� and n ,
J � o n���2� 5 2

� p-� J6o n���2� 5 2
� p . Note that J and J � may differ ar-

bitrarily in all situations before the last action of 2� has been
performed. Then we define ������� by the following:

1. �������yo �$�:Jb�:@:p�� � .
2. If �������yo �$�:Jb��2�$p�� � � , then �������7o �<�?Jb��2� 5 K p���^J � � v:1&J � cl� � �:J � agrees with J � � after 2� 5 K and

r ���� x� �"! � -��� - x# �$! v � o SF 
�Kb��	�� � SF 
�Kb��	 � � p .
o Poss 
�Kb��	�� � Poss 
�K6��	 � � p�*

When � �	�������yo �^�P�?J �$��2�$p , we say that � is a progression
at 2� wrt j�� � �?J � k .

The following theorem states that progression is faithful
in that it agrees with the original epistemic state for queries
in / � about what is true after a sequence of actions has oc-
curred.

Theorem 3.3: Let i � j��<�:JFk and i  � � j��  � �?JFk , where
�  � is a progression at 2� wrt i . Then for all queries �Bc0/ � ,

1. ASK � o � ��i ��2� 5 2
� p�� ASK � o �|��i  � ��2� 5 2� p .

2. ASK �<o � ��i ��2�$p#� & ��'So �|���  � ��2�$p .
Note that in the case of the empty sequence of actions,
ASK � o � ��i ��@?p#� & ��'So � �:�<��@?p follows immediately.

4 ����� Knowledge Bases
So far, we have only talked about the agent’s knowledge in
the abstract, namely as a set of worlds, which include all pos-
sible ways they could evolve in the future. Let us now turn
to representing the agent’s knowledge symbolically and see
how this connects with the semantic view taken so far.

In the situation calculus an application domain is typically
characterized by the following types of axioms: action pre-
condition axioms, successor state axioms, and axioms de-
scribing the current (often initial) situation. Successor state
axioms were proposed by Reiter as a solution to the frame
problem [16]. When there are sensing actions, there is also
a fourth type called sensed fluent axioms specifying what the
outcome of sensing is.
���
� -knowledge bases, as we envisage them, consist of

formulas of these types and they have a special syntactic
form. We call a formula objective if it does not mention the
predicate

� � .
A formula 
 is called simple in

~ � if 
 is first-order and
objective,

~ � is the only situation argument occurring in any
of the predicates, and any variable in

~ � occurs only free
in � . ( 1=��' Red 
M���:�<;=
�Kb��	��?� is simple in do 
�Kb��	�� , whereas
1 	$�?��' Red 
M�����$;=
�Kb��	��:� is not.)

In the following, let K be an action and R a fluent. Let

 
)2� � denote a formula whose free variables are among the
variables in 2� .

Let 	�h	 � denote that situation 	 � is a successor of 	 , which
is defined as:

	�� 	 � '� /��go+'('('=0��g
�	$��	 � � p
with the ellipsis standing for the conjunction of

/ 	 � '��g
 	 � ��	 � �/#����	 � '��y
 	 � � do 
����	 � �?�/ 	 � ��	 � ��	 I '��y
 	 � ��	 � �#. �y
 	 � ��	 I �f0 �g
�	 � ��	 I �
Action Precondition Axioms:
/ 	 / 2� ' 3)5�6�� 	b0 o Poss 
�K6
)2� � ��	�����
�
^2����	�� p , �
where 
�
^2����	�� is simple in 	 .

Sensed Fluent Axioms:
/ 	 / 2� ' 3)5�6�� 	b0 o SF 
�K6
)2� ����	�����
 
)2� ��	�� p
where 
�
^2����	�� is simple in 	 .

Successor State Axioms:
/ 	 /#�P/ 2�#' 3)5�6�� 	 0 o Poss 
�����	��f0 o RS
)2��� do 
����	��:� �

 
)2� �:���	�� p+p , where 
�
^2� �:���	�� is simple in 	 .

Current State Axioms:

 , where 
 is simple in do 
�2���43)5�6H� .

A knowledge base (at 2� ) is then a collection of formulas'�e� '��������� '��� u � � � '��� �!� '� � � �
where '� � u � � , '� �"� , and '� � � contain the action pre-

conditions, sensed fuent axioms, and successor state axioms,
respectively, and '� ����� is the set of current state axioms for
a fixed 2� . A knowledge base at @ is called an initial knowledge
base.

We define the epistemic state corresponding to a KB as the
set of all worlds satisfying the formulas in KB, where now is
interpreted by initial situations. Formally,

# o o '� p p � �)J v�Jb��r ���! �#� x $ ! v � '�F*$'
Defining the epistemic state this way reflects the intuition

that the KB is all the agent knows, hence she cannot rule out
any world compatible with the sentences in KB. (See [4] for
how to formalize “all I know” in ���	� .)

4.1 An Example KB
Here we consider the mail-sorting robot example in more de-
tail. There are letters of different colours laid out in front of
the robot and its task is to pick up only the red letters. To keep
matters simple, there are only two actions, pickup 
M�#� , which
is possible if � is a letter, and senseRed 
M��� , which tells the
robot whether the sensed object is red and which is always
possible. There are three fluents, Letter, Red, and HoldRLs.
Letter and Red never change and HoldRLs 
�����	�� is true if the
robot is holding the red letter � in situation 	 .

We can formalize this by defining appropriate precondition
axioms, sensed fluent axioms and successor state axioms, all
parameterized by 3)5/6 .

Let ALL 
 305�6F� stand for the set of these formulas:
%
In the situation calculus without epistemic concepts, & ranges

over all situations, namely those reachable from ')( . Here we need to
relativize quantification wrt now because there are initial situations
other than ' ( .



/ 	P�:� ' 3)5�6 ��	b0 Poss 
 pickup 
M�#����	�� � Letter 
M����	��
/ 	P�:� ' 3)5�6 ��	b0 Poss 
 senseRed 
�������	���� TRUE

/ 	P�:� ' 3)5�6 ��	b0 SF 
 pickup 
M��� ��	���� TRUE

/ 	P�:� ' 3)5�6 ��	b0 SF 
 senseRed 
M�#����	���� Red 
M����	��
/ 	P����?� ' 3)5/6�� 	�0 Letter 
���� do 
����	��:��� Letter 
M����	��
/ 	P����?� ' 3)5/6�� 	�0 Red 
M��� do 
����	��?��� Red 
M����	��
/ 	P����?� ' 3)5/6�� 	�0 HoldRLs 
M��� do 
����	��?���
oA
��g� pickup 
M����. Red 
M����	��?� � HoldRLs 
M����	�� p

Initially, the robot knows that there are at least two letters
� and  and that one of them is red. Hence let

'� ����� �
�

Letter 
 �T�43)5/6F��� Letter 
  �73)5/6F���

 Red 
 �T�43)5�6F� � Red 
  �7305�6F�:���
/���' , HoldRLs 
M���7305�6F��'

�

Let '��� ALL 
 305�6H� � '������� .
Let the real world J be any world such that J v �

ALL 
!3)5�6F� ���! ��� . Letter 
 �T��� � ��. Red 
 �T��� � ��. Letter 
  ��� � ��.
Red 
  �����`� , that is, the actions indeed behave as the robot ex-
pects them to and there are at least two red letters � and  .
Finally, let i{�3j # o o '� p p �?JTk be our action model.

4.2 First-Order Query Evaluation
By lifting results from Levesque [6; 9], we show that answer-
ing epistemic queries for KB’s like the above requires only
first-order reasoning.

For any formula � simple in do 
�2��7305�6H� let ��� be �
with all occurrences of do 
�2��73)5/6H� removed. For example,
Red 
 �T�43)5/6F� �=� Red 
 �b� . Let � U denote the set of sentences
expressing the unique names assumption for standard names
and actions, and let v � FOL denote classical first-order logical
implication.

The following definition of ��� �#o 
��,'� p shows how to
compute in FOL the known instances of 
 and representing it
as a first-order equality expression.

Definition 4.1: Let '� � '������� � '� � u � � � '���"� �'� � � and 
 an objective query and let L � �(')'('N�:L�O be all the
standard names occurring in KB and 
 and let L � be a name
not occurring in KB or 
 . Then ��� � o 
���'� p is defined as:

1. If 
	� has no free variables, then ��� �#o 
���'� p is
TRUE, if '������� �� � U v � FOL 

� , and
FALSE, otherwise.

2. If � is a free variable in 

� , then ��� �#o 
���'� p is

:
M� �}L � ��. ��� �#o 
�t8�� ��'�|p�� � ')'('

:
M� �}L O �#. ��� ��o 
t8� �,'� pM� �

:
M� ��}L � ��. ')'(').�
M� ��hL�O`�#. ��� �#o 
 t8 - ��'�|p 8 -t � .

If we consider our example KB, then ��� �#o Letter 
����43)5�6F� p
reduces (after simplification) to 
�� � �b� � 
M� �  � whereas
��� �#o Red 
����43)5�6F� p reduces to FALSE because there are no
known red things. The next definition applies RES to all
occurrences of

"$# %�'0(
within a query using a recursive de-

scent denoted by v v 5 v v ��� . The idea is that any occurrence of"$#&%/'0( 
2� �7305�6 � in a query is replaced by an equality expres-
sion describing the known instances of � .

Definition 4.2:
Given a KB as defined above and an arbitrary query � ,
v v � v v ��� is the objective formula simple in now defined by

v v �-v v ��� ��� , when � is objective;
v v ,��-v v ��� �}, v v �-v v ��� ;
v v+
2� .�� �(v v ��� � 
:v v �-v v ��� . v v � v v ��� � ;
v v /� � v v ��� � /� v v � v v ��� ;
v v ";#&%�'0( 
2� � #&%�' �(v v ��� � ��� �#o v v � v v ��� �,'� p '

Theorem 4.3: Let KB be a knowledge base at 2� with current
state axioms '� ����� . Then

& ��'So � � # o o '� p p ��2�$p�� yes iff'� ����� ��� � U v � FOL v v � v v �����g'
In essence, the theorem says that answering an epistemic

query can be achieved by computing a finite number of first-
order implications. Restricting ourselves to queries in / � is
essential in this case.

To illustrate what this theorem says consider the ex-
ample KB and the query � � 1&� Red 
M���?L ;�JT�h.
, "$#&%/'0( 
 Red 
21�43)5/6 �:� . Then

& ��'So � � # o o '� p p �7305�6 pF� yes
because of the following: ��� ��o Red 
M���73)5/6F���,'� p simplifies
to FALSE because there are no known instances of red ob-
jects. Hence v v � v v ����� is equivalent to 1&� Red 
M��� .B, FALSE
and, furthermore, '� ��� ����� � U v � FOL 1&� Red 
���� .

Being able to reduce query evaluation in ���	� to first-
order reasoning under certain restrictions is somewhat analo-
gous to a result by Lin and Reiter [13] for the standard (non-
epistemic) situation calculus. They show that, even though
their foundational axioms for the situation calculus include
a second-order axiom to characterize the set of all situations,
this axiom is not needed when doing temporal projection, that
is, when inferring whether a formula 
 simple in do 
�2���������
follows from the domain theory together with the founda-
tional axioms. There are also other examples such as [11]
which show that theories which are inherently second-order
nevertheless have interesting special cases where first-order
reasoning alone suffices.

4.3 Context-Free Knowledge Bases
Lin and Reiter showed that in their framework, progression
is not always first-order definable. We conjecture that the
same is true in � �
� , but just as in LR’s case there are
interesting classes of knowledge bases which are not only
first-order representable but where progression is also easily
computable. LR discuss in particular the classes they call
relatively-complete and context-free action theories. Here we
adapt and extend context-free action theories for ���	� and
obtain very similar results. (The same is true for relatively
complete theories, but we omit them for space reasons.)

A fluent R is called situation independent if its successor
state axiom has the form / 	N/��P/ 2�#' 3)5/6 �3	g0Yo Poss 
����	��F0
o RS
)2� � do 
����	��?� � RS
)2����	�� p+p , that is, R never changes. Oth-
erwise R is called situation dependent. A formula is called
situation independent if it contains only situation independent
fluents.
Definition 4.4: [Lin and Reiter] A KB is context-free if� '� � � consists of successor state axioms of the form
/ 	 /#�P/ 2�#' 3)5�6�� 	 0 o Poss 
�����	��f0 o RS
)2��� do 
����	��:� ����� 
)2���:���	�� � 
�RS
)2����	�� . , � 9� 
)2� �:���	��:� pAp , where���� 
)2���:���	�� and � 9� 
^2�������	�� are situation independent. ��

The idea is that ���� describes the conditions which cause  to
be true and �"!� those which cause it to be false.



� '� ����� consists of situation independent formulas and
formulas of the form / 2� ' � 0 RS
)2��� do 
�2��43)5�6H�:� or
/ 2��' �Y0Y, RS
)2� � do 
�2��73)5/6F�?� , where � is a situation in-
dependent formula with free variables in 2� and now.� For every action precondition axiom
/ 	 / 2� ' 3)5�6�� 	b0 o Poss 
�K6
)2� � ��	�����
�
^2����	�� p ,

 
)2� ��	�� is situation independent.� For every sensed fluent axiom
/ 	 / 2� ' 3)5�6�� 	b0 o SF 
�K6
)2� ����	������T
)2� ��	�� p ,
�T
)2� ��	�� is situation independent.

The conditions on the sensed fluent and action precondition
axioms are missing in LR’s definition because they do not
deal with sensing and they do not consider the case where an
agent successfully performs an action even though she does
not know that it is possible. In a sense, finding out that an ac-
tion is possible by doing it can be thought of as a special form
of sensing. Note also that SF and Poss are treated completely
symmetricly in our semantic definition of progression.

Definition 4.5: Let '� � '������� � '� � u � � � '���"� �'� � � be a context-free knowledge base at 2� , J � a world,
K � K � ~ 
(2L�� an action, and let 	 � � do 
�2��43)5�6F� and 	 � �
do 
�2� 5 Kb�43)5/6F� . Let the action precondition and sensed fluent
axioms for K be

/ 	 / 2� ' 3)5�6�� 	b0 o Poss 
�K � ~ 
^2������	�����
�� 
)2� ��	�� p and
/ 	 / 2� ' 3)5�6�� 	b0 o SF 
�K � ~ 
)2�#� ��	������ � 
)2����	�� p .

Then let '� � � '� � ����� � '� � u � � � '� � � � '� � � , where'� � ��� � is constructed as follows:

1. Let K be a sensing action. Then:
- If 
 c '� ����� then 
 � ���� c '� � ����� ;
- if J � v � Poss 
�Kb� do 
�2���� � �?� then 
 � 
(2L ��	 � �-c '� � ��� �

else , 
 � 
(2L ��	 � � c '� � ����� ;
- if J � v � SF 
�K6� do 
�2���� � �?� then � � 
(2L ��	 � � c '� � �����

else ,�� � 
(2L ��	 � � c '� � ����� .
2. Let K be an ordinary action. Then:

- If 
 c '������� is sit. independent, then 
 � ���� c '� � ����� ;
- for any situation dependent fluent R add to '� � �����
/ 2� ' � �� 
)2����Kb��	 � � 0�RS
)2����	 � � and
/ 2� ' � 9� 
^2����Kb��	 � � 0 , RS
^2����	 � � ;

- If / 2��' �h0 RS
)2� ��	 � � is in '� ����� , then add
/ 2� ' � � ���� . , � 9� 
)2� �:K6��	 � �-0�RS
)2� ��	 � � ;

- If / 2��' �h0h, RS
)2� ��	 � � is in '������� , then add
/ 2� ' � � �� � . , � �� 
)2� �:Kb��	 � �-0 , RS
)2� ��	 � �:� ;

- if J � v � Poss 
�Kb� do 
�2���� � �?� then 
 � 
(2L ��	 � �-c '� � ��� �
else , 
 � 
(2L ��	 � � c '� � ����� .

Note the different treatment depending on whether K is a
sensing action or not. In the former case, the old contents
of '� ����� is simply copied to the new knowledge base with
the new situation 	 � replacing the old 	 � . If K is an ordi-
nary action, we need to treat the situation dependent fluents
in '������� in a special way in order to reflect the changes that
result from doing K . In the case of a sensing action we also
need to record the values of 
 � and � � depending on the

truth value of Poss 
�KT� and SF 
�KT� at 
�J � ��2� � . If K is an or-
dinary action, this needs to be done only for 
 � because we
assume that ��� is equivalent to TRUE for ordinary actions.

It is not hard to see that the property of being context-free
is preserved by our syntactic form of progression.

Lemma 4.6: Let KB, '� � , and K be as in Definition 4.5.
Then '� � is context-free.

In their paper [13], LR describe some very simple (and
reasonable) consistency requirements for context-free knowl-
edge bases. � � We will not repeat those conditions here and
simply refer to them as LR-consistency. We are now ready
to show that syntactic progression of context-free KB’s con-
forms with our semantic definition.

Theorem 4.7: Let '� � be an initial knowledge base, J � a
world and � � � # o o '� � p p . Let KB, '� � and K be as in Defi-
nition 4.5 such that

# o o '� p p is a progression at 2� wrt j�� � �?J � k .
If KB is LR-consistent, then

# o o '� � p p is a progression of# o o '� p p at 2� wrt j��^�$�?J ��k .
Note that, by definition, '� � is itself a progression at @

wrt j��^�$�?J �^k . Hence, the theorem tells us that, starting in an
initial context-free knowledge base, doing an action K will
lead to a progression which itself is represented by a context-
free knowledge base, and this process iterates.

To illustrate how progression works, let us consider
the initial KB and the corresponding action model i �
j # o o '� p p �?JTk from Section 4.1. First, it is easy to verify that it
conforms to the definition of a context-free KB.

1. Let us consider progressing KB by K � senseRed 
 �b�
resulting in '� � with corresponding '� � . Let 	 � stand for
do 
 senseRed 
 �b���43)5/6F� .
Since K is a sensing action (case (1) of Def. 4.5), we ob-
tain '� � ����� simply by replacing every occurrence of now in'����� � by 	 � and adding Red 
 �T��	 � � to it, because we assume
that i v � SF 
 senseRed 
 �b����� ��� . Then

# o o '� � p p is a pro-
gression at K .

Let � � 1=� Red 
����7305�6F�F. "$#&%�')( 
 ����� 
 1��43)5�6 ���7305�6H� .
Then

& ��'So � � # o o '� � p p �:K p � yes because now there is a
known red letter, namely � .

2. Let us now progress '� � by K � � pickup 
 �b� result-
ing in '� �	� - with corresponding '� �	� -��� � . Let 	 � stand for
do 
 pickup 
 �b����	 � � .

Starting with the empty set we construct '� �	� -����� by adding
the following sentences: � �
- Letter 
 �T��	 � ��� Letter 
  ��	 � ��� Red 
 �T��	 � �
(The disjunction 
 Red 
 �T��	 � �

�
Red 
  ��	 � �?� is omitted be-

cause it is clearly subsumed by Red 
 �T��	 � � .)
Given the successor state axiom for R � HoldRLs, we

obtain� 9� � FALSE and� �� 
�����Kb��	 � � � o n&� ��
 � n 
 �b� �Bn � ��
 � n�
M�#��. Red 
M����	 � � p .� ( One such requirement is that � �� and � !� may never be true
simultaneously. The example KB is LR-consistent.� �

For simplicity, we omit adding sentences that turn out to be
valid or subsumed by others.



Hence we add

- /��' ���� 
M����Kb��	 � � 0 HoldRLs 
M����	 � �
Finally, the last case of Definition 4.5 applies and we add

- /��' , � �� 
M����Kb��	 � � 0h, HoldRLs 
M����	 � �
Given the unique names assumption for standard names of
objects and actions, � �� 
�����Kb��	 � � is true just in case �B� � ,
that is, the agent is holding precisely � in 	 � .

Given this progressed knowledge base it is then not hard to
show that the robot does not know in 	 � whether it is holding
all the red letters. Formally, let

� �e/��' Red 
����43)5�6F� . Letter 
M���7305�6F� 0";#&%�'0( 
 Red 
 1��7305�6H� . Letter 
 1��43)5�6H� �73)5/6H� .
Then

& ��'So �|� # o o '� �	� - p p ��K 5 K
� pb� unknown. This is be-

cause there are worlds in
# o o '� �	� - p p where � is the only red

letter and others where there are red letters other than � after
doing K 5 K

�
.

5 Conclusions
Using the second-order logic ���	� , we specified a query fa-
cility for knowledge bases in dynamic worlds. Despite the
expressiveness of the logic, we showed that query evaluation
often requires only first-order reasoning. Moreover, by adapt-
ing and extending results by Lin and Reiter, we gave a seman-
tic definition of progression and showed that it is first-order
representable in the case of context-free knowledge bases.

Future work includes finding more powerful classes of
knowledge bases with first-order progressions and applying
the results to the action programming language GOLOG [10].
We defined progression in a way that is very close to the orig-
inal definition by Lin and Reiter. The exact relationship be-
tween the two still needs to be determined. Also, our earlier
definition of SUCC can be thought of as a progression op-
erator in its own right. It is more powerful in that nothing
about the past is forgotten. It is an interesting open problem
to determine syntactic variants of this notion of progression.
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