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Abstract

We study a particular model of the way in which a single agent’s knowledge
evolvesover time. Thetwo fundamental propertiesof themode arethat knowledge
aways persists (i.e., agents have perfect memory), and that ignorance persists by
default (i.e., we have compl ete knowledge of exactly how much the agent learns at
every timepoint). Despiteitsapparent simplicity, thismodel exhibitsquitecomplex
properties.

1 Introduction

Knowledge and time are two important conceptsin Al, and have attracted much research
in recent years. However, while they have each been heavily studied in isolation,

relatively little research has been reported on the interaction between them; this is
despite strong intuitions one has about such interactions. In this paper we study a

particular model of how an agent’s knowledge and ignorance persist or change over
time, and show that while some aspects of these phenomena are quite intuitive and easy
to formalize, othersare not at all.

If nesting of knowledge operatorswith different timeindicesisnot taken into account,

then one need not represent time explicitly, but instead start with a knowledge base
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describing the agent’s initial knowledge state, and define the knowledge base resulting
from the agent’s gaining or losing some knowledge. This approach was taken by
Levesque [1984] and Chandy and Misra[1986]." When one allows arbitrary nesting of
knowledge operators, one can represent more complex sentences such as“ On Wednesday
the agent knew that on Monday it didn’t know whether P = N P.” Thisapproach, which
involves explicit representation of time, was taken by Halpern and Vardi [1989] and
Shoham [1989].2 In this paper we adopt the latter approach, and treat both knowledge
and time explicitly in our language.

Our problemdoes not liein coming up with ageneral frameworkinwhichto represent
the two; that is easy. Rather, our problem is to identify in that general framework
restrictions that constitute a plausible theory of how knowledge evolves over time. We
will adopt the standard S5 model of knowledge as the idealized theory of the statics of
knowledge, and will seek a corresponding theory of the dynamics of knowledge. As a
first step, inthisarticle we consider the single agent case; as we shall see, it will already
pose sufficiently challenging problems.

What are the dynamic aspects we wish to capture? Essentiadly, there are two. The
first is that agents have memory. In fact, in this idealized model agents have perfect
memory. Thisproperty israther easy to capture, athough aready herethereisasubtlety
that is easy to miss. The other property we wish to capture is the default persistence of
ignorance; if afact is not known at some time point, and it isnot learned later, then it is
still not known later. Thisis similar in flavor to the persistence phenomena associated
with the frame problem [McCarthy and Hayes 1969]. Indeed, wereit not for the nesting
of knowledge operators, capturing the default persistence of ignorance would not be
hard. But knowledge operators may be nested, and, as we shall see, this considerably
complicates the notion of persistence.

Before we proceed, it is worthwhile to point out an important difference between
our setting and the literature on belief revison (cf. [Gardenfors 1988]) or update
(cf. [Katsuno and Mendelzon 1991]). The difference hinges on the distinction between
knowledge and belief; in the case of belief revision or update, the task is to minimize
changes to the current belief set while accommodating new information. In our case,
since knowledge is indefeasible, its persistence is uninterrupted: If 1 know now that
P = NP,and| have perfect memory, I’ [l know it forever. (Notice theimportance of the
temporal indices: If | know now that the house isred today, I’ 1l know forever that it was
red today.) Subject to this condition, we aim to capture the intuition that the new facts
explicitly mentioned are the only facts added to the knowledge base.

' Levesgue investigated a single agent case. Chandy and Misrainvestigated a special multi-agents case
where the knowledge an agent may gain or lose has some special forms.

2Halpern and Vardi studied a version of non-forgetting and non-learning in distributed computing.
Shoham studied theissuesin an informal setting.



2 Thestandard static theory of knowledge

We assume adiscrete and linear time structure, represented by the set of positive natural
numbers. We assume a propositional language augmented, for each time point ¢, by a
modal operator K. Intuitively, for any formulay, K;p meansthat at thetimet the agent
knowsthat ¢ istrue.

Our logic for K isthe standard S'5. Thus we have the following axioms:

. All tautologies.

. Ko D .

1
2
3. Ky D KiK.
4. - Kyp D KiK.
5

. I(t@ A [\’t(ﬁp D) 'QZ)) D) [\%'IJ).

The inference rules are modus ponens (from ¢ and ¢ D ¥ infer /) and knowledge
generaization (from ¢ infer K;p for any timepoint ¢). Let ® be aset of formulas, and
¢ aformula. Asconventiona, wewrite ® - ¢ if thereisafinite subset ' of ® such that
A®' D ¢ isatheorem of the above axiom system.

The semanticsfor our logicisthe conventional Kripke possible worlds semantics. A
Kripke structure S isatriple (W, R, 7), where W isanonempty set of possible worlds,
R afunction such that for each timepoint ¢, R(t¢) isan equivalencerelation over W, and
for eachw € W, w isatruth evaluation function on the primitive propositions. A Kripke
interpretationisapair (S, w), where S = (W, R, 7) isaKripkestructure, andw € W is
the actual world of M. Itisconventiona to define the satisfaction relation =" between
Kripkeinterpretations and formulas. Particularly, we have

(S,w) = Kypif forany w’ € W such that (w,w') € R(t), (S,w') = ¢.

A Kripkeinterpretation M isamodel of aformulay if M | ¢, thatis, ¢ istruein the
actua world of M. Itisamodel of aset of formulasif itisamodel of every member of
the set. We write ® =  if every model of @ isalso amodel of .

While intuitively we think of K, K5, ... as the knowledge of the same agent at
different times, until we add further constraints between these modalities we might as
well think of them as the knowledge of separate agents. Thus the system just presented
issimply apropositional logic of knowledge with multiple agents, and resultsfrom, e.g.,
[Halpern and Moses 1985], can be readily adopted. In particular, we have the following
soundness and compl eteness result:



Proposition 2.1 Let ® be a set of formulas, and ¢ aformula. Then @ - ¢ iff & |= .

Wenow begintorestrict the K'; modalitiesso that they indeed behaveliketheevolving
knowledge of asingle agent. Without loss of generality, in the following we consider
the changes the agent’s knowledge undergoesfrom time 1 to time 2, that is, we consider
the operators K} and K,. In the next section we capture the absolute persistence of
knowledge; in the section following that we address the default persistence of ignorance.

3 Non-forgetting

An agent does not forget anything if its knowledge does not decrease over time. Thus
if it knew that p istrue (i.e., Kip holds), then it will still know that (i.e., Kyp holds).
Similarly, if it knew that it did not know that ¢ istrue (i.e.,, K;— K¢ holds), then it will
know that it did not know that ¢ istrue (i.e., K;—K;q holds). Formally, at 2, the agent
remembers everything it knew at 1 if the following axiom holds for any formula ¢:

[/(1 2 D) ](2 . (1)

We use Mem; , to denote the set of the axioms of the above form.

Semantically, the larger the agent’s possible worlds are, the more ignorant the agent
is. Formally, the agent remembersat 2 everythingitknew at 1 inthe Kripkeinterpretation
(W, R, m),w) if the following condition holds:

Forany w’' € W, if (w,w') € R(2), then (w,w'") € R(1).

It is easy to see that we can capturein asimilar way notions such as. at ¢, the agent
remembers everything it knew at ¢, or everything it knew before ¢,, or everything it
knew from ¢, to ¢,. Intherest of this section, when there is no possibility of confusion,
weshall call theagent non-forgettingif it remembersat 2 everythingit knew at 1. Wecall
aKripkeinterpretation M non-forgetting if the agent modeled by it is non-forgetting.

The semantics completely captures (1) in the following sense:

Theorem 1 For any formula ¢, Mem, » F ¢ iff for any non-forgetting Kripke interpre-
tation M, M |= .

Proof:® Firgt of al, if M isanon-forgettingone, then M | ®. Thusif ® I ¢, then for
al non-forgetting M, M = .

3Adam Grove pointed out that the proof of this theorem was also implicitly implied in [Halpern and
Moses 1985] in the proof of the completeness theorem there.



For thereverse, we provethat for any Kripkemodel M of ¢, thereisanon-forgetting
M’ such that for any ¢, M | o iff M’ |= .

Let M = ®. We show that thereisanon-forgetting M’ such that for any ¢, M = ¢
iff M' = . Suppose M = (S,w), where S = (W, R, 7). Define M’ = (5", w) =
(W,R',m),w) asfollows. For any wy,w, € W, if t # 1, then (wy,w,) € R'(t) iff
(w1,wy) € R(t). R(1) isthe smallest equivalent relation that satisfies the following
conditions:

1. If (wy,wq) € R(1), then (wq,wy) € R'(1); and
2. If (w,wy) € R(2), then (w,wy) € R'(1).

In other words, M’ isobtained from M by merging the accessibility relation of M at the
actual word w at 2 into that at 1, and thus making M’ a non-forgetting interpretation.
Surprisingly it may seem, M and M’ are equivalent: we show by the induction on the
complexity of the formula that for any w, € W, (S,w;) | ¢ iff (5", w1) = ¢. This
istrueif o is aprimitive propositions. For the inductive step, it istrivia if ¢ = —¢,
A= ¢ Apg,0rp = Kypforsomet # 1. Leto = Ky¢. Suppose(S’,wy) E Ky¢. Then
forany wy, € W suchthat (wy,w,) € R'(1), (S, w2) = ¢, whichimplies(S, w,) = ¢ by
theinductive assumption. By our definition, if (wy, w,) isin R(1), thenitisalsoin R'(1).
Therefore we have (S, wy) = K1¢. Now suppose (S, wy) = Ki¢. If (w,wy) ¢ R'(1),
then for any ws, (wy,ws) € R'(1) iff (wy,wy) € R(1). Thereforeif (w,w,) ¢ R'(1),
then it easily followsfrom the inductive assumption that (.S, w;) = K;¢. Now suppose
that (w,w;) € R'(1). We show that (S, w) = K;¢. By our definition of R'(1), there
aretwo cases:

1. (w,wy) € R(1): trivial.

2. Thereisaw, suchthat (w,ws) € R(2) and (ws,w,) € R(1). Inthis case, firstly,
wehave (S, w,) = Ki¢. Nowif (S, w) = —K;¢,thensince M = (5, w) satisfies
¢, we havethat (5, w) E K= Ki¢. Thus (S, w,) = —K1¢, acontradiction.

Therefore, in either case, we have that (S, w) = K1¢. We now show that thisimplies
that for any ws, if (wy,wy) € R'(1), then (S, w,) = ¢. Again we have two cases:

1. (w,wy) € R(1): trivial.

2. Thereisaws € W such that (w,ws) € R(2) and (w3, ws) € R(1). Inthiscase
we have

(S, LU) |: Kﬁb = (S, UJ) |: [(2[(1¢ = (S, ‘wg) |: I(1¢ = (S, ‘wg) |: ¢

Notice that the first “=" follows from the fact that M isamodel of &.
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Therefore by the inductive assumption we have that for any wo, if (wy,wy) € R'(1),
then (S, w;) | ¢. Thus (5, w;) = Ki¢. m

There is an interesting property about non-forgetting in S5. 1t says that in S5, if an
agent does not forget, then it knows that:
Theorem 2 For any formula ¢ we have
ZWeng F .[{2([{199 D) [X’QS«Q)

Notice that a related property, which says that if an agent does not forget anything
then it knows that it will not forget anything, is not true in general:

Memm J7L [(1([(199 D [(299).

Semantically, if an agent knew that it will not forget, then it is captured by a Kripke
interpretation M = ((W, R, ), w) that satisfies the following condition:

For any wq,wy € W, if (w,wy) € R(1) and (wq,wq) € R(2), then (wy,ws2) € R(1).
As previoudly, we can prove that the set of axioms
[(1([(199 D [(299) (2)

is sound and complete for the this class of Kripke interpretations. (Intuitively, axiom
schema (1) corresponds to non-forgetting in the actual world, while (2) correspondsto
non-forgetting in every world that is accessible from the actual world.)

In the following, we shall consider only non-forgetting as captured by (1). That is,
we do not assume that the agent will always know that it will not forget.

4 Minimal learning

Non-forgetting captures the absolute persistence of knowledge. The formal dual of
non-forgetting is non-learning, which captures the absolute persistence of an agent’'s
ignorance. It can be captured by following axiom schema:

—Kip D =K. 3

We do not continue this line of development, however. The main reason is that, given
the non-forgetting assumption, introducing non-learning would lead to atrivial system.*

40One could imagine an application which calls for non-learning but not for non-forgetting, say amodel
of senility, but thisis not the model we investigate in this paper.
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Instead, we will pursue aweaker form in which ignorance persists — default persistence.
Specifically, we will consider the following general problem: given the agent’s knowl-
edge state at 1, and the assumption that between 1 and 2 the agent learns only that the
proposition A istrue, what isthe agent’s knowledge state at 27?

Given aformula ¢, either K;p istrue or =K istrue. If K¢ holds, then from
non-forgetting we get that K> holds, no matter what else was known at time 1 or
learned subsequently. On the other hand, if =K' ¢ holds, then whether — K, still holds
depends not only on how much the agent learns but al so on the agent’s other knowledge
and ignorance. For example, suppose K1 (p D ¢), = K1p, and = K4 hold. If the agent is
non-forgetting, and learns at 2 that p istrue, then we will havethat K»(p O ¢) and Kyp
are true, and thus K,q istrue as well. Thisis the reason why we need to consider the
agent’s whole knowledge state at 1 for the concept of minimal learning to make sense,
and as we shall see, the main reason why it is hard to capture minimal learning.

In this section, we shall provide a semantic characterization of minimal learning
under the assumption of non-forgetting.

If we had not represented time explicitly, this would have been easy for the single
agent case. Specifically, the agent’sknowledge state at atime point would be represented
by an ordinary propositional theory, and learning a new fact would amount to Simply
adding this new fact into the propositional theory, and take the logical closure of the
resulting theory.

However, this procedure does not work for the framework we have presented. First
of al, the agent’s knowledge state at atime point can not be represented by an ordinary
propositional theory. For example, saying that the agent’s knowledge state at 3 is the
logical closure of {p, ¢} leavesit open whether it knows (at 3) that it knew at 2 that p is
true, or that it will continue to know at 4 that p and ¢ are true.

In our framework, the notion of knowledge states can be defined intermsof Kripkein-
terpretations. Since we have assumed non-forgetting, in the following, unless otherwise
stated, all Kripke interpretationswill be assumed to be non-forgetting.

Definition 4.1 If M isa Kripke interpretation, and ¢ a time point, then we define M ()
to be the following set:
M(t)={e | M= Ky}

A set of sentences T is called a knowledge state at the time ¢ if there is a Kripke
interpretation M such that 7' = M(t).

Notice that in terms of the new notation, if M is a Kripke interpretation, then
the agent in M remembers at 2 everything it knew at 1 iff M (1) C M(2). Now
suppose that the agent learns only that A istrue at 2. Motivated by the single agent
without explicit time case, we would like to require that M (2) be the logical closure of
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M(1) U{K;A}. Unfortunately, this does not work. Most often, thislogical closureis
not even aknowledge state. For example, for some primitive proposition p, it ispossible
that neither K5p nor —K,p isalogical consequence of M (1) U { Ky A}. But, of course,
aknowledge state at 2 hasto contain one of them.

Under the assumption that the agent learnsonly that A istrueat 2, for any primitive
proposition p, if neither K,p nor —K,p is alogical consequence of M (1) U {K;A},
then it should be the case that — K3, p, for the agent’s ignorance should persist as much
aspossible. Generalizing this reasoning, we might want to say that if aformula¢ isnot
alogical consequence of M (1) U {K,A}, then =K should bein the new knowledge
state. However, thiswill ssimply result in inconsistency. For example, it is possible that
neither p nor —K,p isalogical consequence of M(1) U {K,A}. But adding —K,p and
- K,— K, p smultaneously would result in an inconsistency. Inthiscase, our intuitionis
clear that we should add — K5 ¢, not = K, — K3 p. But the problemishow to have auniform
procedurethat worksfor every case. Our intuition isthat some kind of hierarchies based
on degrees of nested modalities should work. But an ad hoc and complicated procedure
would look suspicious. It would be best if we can “derive” this procedure in some
semantics terms. To thiswe now turn.

As we said, if the agent learns only that A is true at 2, then K3 A should hold.
Furthermore, the agent should be as ignorant as possible. Semanticaly, let M =
(W, R, ), w) beaKripkeinterpretation. One way to make M moreignorant at 2 isto
expand the set of possible worlds W into W', and keep R the same except making the
2-accessible class at the actual world w larger, where for each ¢, the t-accessible class
of M at w isthefollowing set:

{w' | (w,u') € R(1)}.
This motivates the following definition:

Definition 4.2 Let M, = ((W;, R;,m;),w;), i = 1,2, be two Kripke interpretations.
We say that M, is dtrictly as ignorant as M, at 2, written M, <, M,, if the following
conditions hold:

1. W, C Wi,

2. wy = ws;

3. Foranyw € W,, my(w) = m(w);

4. For any w € Wy, if (wz, w) € Ry(2), then (wy, w) € Ry(2).



5. For anytimepointt,andany w € Wy, ift # 2 or t = 2 but (w,, w) ¢ Ry(2), then
for any w’ € Wy, (w,w') € Ry(t) iff (w,w’) € Ry(t).

It turns out that this special way of making M more ignorant is quite enough if
we consider two Kripke models to be equivalent whenever they determine the same
knowledge states. Let us say that M, and M, are equivalent at 2, written M, =, My, if
M;(2) = M,(2). Formally we have the following definition:

Definition 4.3 Let M; and M, be two Kripke interpretations. We say that M, is as
ignorant as M, at 2, written M, <, M, if there are two Kripke interpretations M3 and
M, such that My =, M3, My =5 My, and M5 < M,. We say that M, ismore ignorant
than M, at 2, written My <, M,, if My <, M, and My #5 M.

The following non-trivial property about <, isimportant, and reassuring:
Proposition 4.1 If M; <5, M, and M, <5 My, then My =, M.

Proof: Wefirst prove the following lemma:

Lemma4.l Let M; = (W;, R;,mi),w;), © = 1,2, be two Kripke worlds, M; <, M,
and A beaformula. If for any subformula (including A itself) of theform Ky in A the
condition that M; = Ky iff My = Ky holds, then for any possible world w € W,
(W1, Ry, m),w) E Aiff (Ws, Ry, m),w) = A.

We prove by induction on the complexity of A. If A is a primitive proposition,
then the result holds because 7 (w) = m,(w). The inductive step for A = =B and
A= B,V By aretrivid. Suppose A = K;B,and ¢ # 2. Then

(Wi, Ry, m),w) = KoB

iff for any (w',w) € Ry(t), (Wi, Ry, m),w') E B

iff w’ € W, and (by inductive assumption) ((Ws, Rz, m3),w') = B
iff (Wy, Ry, ma),w) = K;B.

Suppose A = K, B. Therearetwo cases. Thecasewhere (w, w;) ¢ R»(2) issimilar
tothecasefor A = K;B. If (w,w;) € Ry(2), then (w,w,) € Ry(2), and

5Thisis our formalization that R, and R, otherwise agree with each other. For example, it says that
if w € W5 isnot accessible from the actual worldin M at time 2, then for any possibleworld w’ in My,
if w' isaccessible fromw in M; at time 2, then w’ hasto be a possibleworld of M5, and accessible from
win M, a time2 aswell.



((Wa, Ry, ma),w) = KB

iff ((Wa, Ry, ), w3) = Ko B
iff (Wi, Ry, m),w1) = Ky B
iff (Wi, By, m1),w) = K, B.

We now prove the proposition. We prove by induction on the degree of the nesting
of Kyping that M, = Kyp iff My = K.

By the assumption, there are four Kripke worlds M;, 3 < ¢ < 6, such that M; =,
M3 =2 M51 M2 =2 M4 =2 M61 M3 §2 M41 and M6 SQ MS-

Let ¢ be aformulathat does not contain subformulas of the form K3¢. Then

M1 |: ](299 = M3 |: ](2%0 = M4 |: I(QS«Q = M2 |: ]X’QSO

Similarly, if M, = Kyp then M, = K.

Inductively, suppose that for any formula ¢ with the degree of nesting of Ky¢ init
lessthan n, we have M, | K;p iff My = Kyp. Let ¢ be aformulawith the degree of
nesting of Ky¢ initbeingn. Weprovethat M, = K,y iff M, = Kyp. By theinductive
assumption, for any subformulaof theform Ky¢ inp, M, |= Ky¢ iff My = Ky¢. Thus
using thelemmaitiseasy toseethat if M; = Ky, then My = Kop; andif Mg = Ko,
then M5 = Kyp. m

Let 7' be the agent’s knowledge state at 1. A Kripke interpretation M models the
assumption that the agent learns only that A is true at 2, written M = T, + A, if
M(1) =T, M = K:A, and M isasignorant as possible at 2:

Definition4.4 M =T, + Aif M(1) =Ty, M = K, A, andthereisno M’ that satisfies
these two conditionsand M’ <, M.

We now have a semantic definition of minimal learning. The definition is fairly
elaborated since arbitrary nesting of knowledge operators with different timeindicesare
allowed. We now justify thisdefinition by applyingit to aclass of situations about which
we have clear intuitions, and show that our semantics gives intuitive results.

5 A classof situations: semantics

Recall that our main goal isto account for how an agent’s knowledge evolves over time.
The assumptionswe have made are that the agent never forgets, and that we know exactly
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how much the agent learns at any time point. The smplest such situationisthat initialy
the agent knew nothing, then at any later point, the agent learns only the truth value of a
primitive proposition. However, in order to formalize this situation, we need to specify
the agent’sinitial knowledge state where it knows nothing. Thisis an instance of “know
only,” a well-known difficult problem [Halpern and Moses 1984, Parikh 1984, 1991,
Halpern 1987, and Levesgue 1987].

Itiseasy to seethat “know only” isthe most convenient way to specify aknowledge
state. Thus our problem, paraphrased in English, is“Given that at time 1 the agent knew
only ¢, and that in between times 1 and 2 it learns only A, what does it know at time
27" It turns out that “know only” can be easily formalized using the notions we have
introduced in last section.

We first notice that our definitions for <5, <,, and =, can be extended straightfor-
wardly to <, (asignorant as at t), <; (moreignorant at t), and =, (equivalent at ¢), for
any time point.

Definition 5.1 Let S be a set of sentences. M isa model of the agent knowing only that
every member of S istrue at ¢, written M |, S, if M isamode of K,S, and thereis
no other model M’ of K;S such that M’ <, M, where a Kripke interpretation M isa
model of K5 if for any A € S, M isamodel of KA.

It turns out that we can define minimal learning in terms of “know only:”

Proposition 5.1 For any Kripke interpretation M, any knowledge state at 1, 7', and
anyformula A, M =T, + Aiff M e, S,where S = {Ky¢ | ¢ € T1} U {A}.

We remark that so far we have found this proposition interesting only conceptually. In
practice, knowing only S isinteresting only when S isfinite.

Our main goal in this section is to show that under certain conditions, there is a
unique Kripke interpretation that captures the situations posed at the beginning of this
section. First, we show that there is a unique knowledge state corresponding to “knows
nothing (except tautologies)” at the starting time point. To this end, we show some
properties about k;. First, we show how to obtain a more ignorant model from a
sequence of models. Our constructionissimilar tothat in [Parikh 1984, 1991]. However
our definition does not depend on “canonical models.”

Let 7 be a set of natural numbers, and for each i € I, M; = (W;, R;, m;), w;) be
a Kripke interpretation. Suppose that for any i # j in I, W; N W; = (. We define
Soter Mi = M;, 4+, M;, +, ... to bethe Kripkeinterpretation (W, R, 7), w), where

1. w = w; for theleast natural number : € 1.
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2' W = UiEII/Vi,

3. m isthe function such that for any possible world w € W, if w € W, for some
(unique) : € I, thenn(w) = m;(w), and

4. R isthe smallest equivalence relation that satisfies the following two conditions:

(@ Ri(t') C R(t') for any timepointt’,: € 1.
(b) (w,w;) € R(t) foreachi € I.

Itiseasy toseethat forany k € I, (W, R, ), wi) <¢ My. Thus Y ic; M; <, M, for
any k € I. Similar to Lemma4.1, we have the following result:

Lemma 5.1 Let F' be any formula such that for any subformula (including £ itself) of
the form K, Fy in F, M; = K. I, iff M; & K,Fy, forany¢,jin . Let 3! ; M; be
((W, R, ﬂ'), ’lU), and M; be ((VVZ, Ri, TI'Z'), 'wi) for anyz e I. Then

o Forany: € I, (W, R,m),w;) | Fiff M; |= F.
o Yo/ M E K, Fiff M; = K,F for every i € I.

Proof: The proof issimilar to that of Lemma4.1. m

From thislemma, we can prove the following theorem:

Theorem 3 Let A be a formula such that for any subformula of the form K, B in A,
either A = K;Bor A = -K,B. If K;A is consistent, then there is a unique M such
that M |, {A} inthe sense that for any M', if M’ |, {A}, then M =, M'.

Proof: Suppose that K;A is consstent. Let M, = (W;, R;,m;),w;), 1 = 1,2, ..., be
a sequence of models of K;A such that for any 7 # j, W; N W, = (), and for any
model M of K, A, thereisa: such that M =, M,. Therefore, for any model M of
KA, i, M; <, M. Thus for the proof of the theorem, we only have to show that
Sio, M; | KA. But thisfollows from the above lemma. m

Thus according to the theorem, there is a unique M such that M ke ). Let
Ty = M(1). Intuitively, Tj captures the situation where the agent knows nothing (except
tautologies) at 1. Let p, be a primitive proposition, then 7 + p, describes the situation
where the agent goes from knowing nothing at 1 to knowing only that p, is true at 2.
More generaly, T + p2 + ... + p, + ... will describe the situation where initialy at 1,
the agent knows nothing, then at any time point ¢ > 1, the agent learns only that p; is
true. Formally, it is defined as follows.
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Definition 5.2 Let 77 beaknowledge stateat 1, and A,, ..., A,, beformulas. We say that
an interpretation A models the situation where initially the agent’s knowledge state is
Ty, and at any later point¢ < n, the agent learnsonly A;, written

MET + A+ ...+ Ay,
if the following properties are satisfied:
L. MET +As+ ...+ A,y
2. M = K,A,.
3. Thereisno M’ suchthat M'(n — 1) = M(n — 1), M’ E K, A,,,and M’ <,, M.

Notice that since M |= T iff M(1) = T;, Definition 5.2 generalizes Definition 4.4.
The following theorem semantically capturesthe situation posed at the beginning of the
section.

Theorem 4 Let {K;A; | + = 2,3,...} beaconsistent set of formulas such that for any
1 > 2, A; does not contain any modal operators. Let 7 be the knowledge state at 1
where the agent knows nothing except tautologies. Then for any» > 2, thereisaunique
M suchthat M |= Ty + Az + ... + A, inthesense that if M’ |= Ty + Az + ... + Ay,
then M (z) = M'(z) for 1 <i <n.

Proof: We prove by induction on . We first prove the theorem for n = 2.
Let My, M,, ... be asequence of interpretations such that

1. For each i, M; isnon-forgetting, M;(1) = Ty, and M; = K, A,.
2. For any M satisfying the above condition, thereisa: such that M =, M;.

Wefirst show that such asequence exists, i.e., thereisanon-forgettingmodel M such that
M(1) =T;,and M | K,A,. By Theorem 3, thereisamodel M’ suchthat M'(1) = T;.
Since K1 A; A Ky A, isconsistent, and none of A; and A, contain modal operators, it is
easy to see that there isa non-forgetting model M” such that M” |= KA A Ky A, It
iseasy toseethat M = M" +, M’ satisfies the required conditions.

Let M; = (W;, R;, m;), w;). Without the loss of generality, we suppose that for any
i # 3, W;nW; = (. Foreachi, let M! = (W], R, w!),w!) be arename of M, such
that for any 7, j, W; N W/ =0, and for any i # j, W/ N W/ = ().

Now let M = Y4, (M; 4+, M!). We claim that (A) for each i, M <, M;; (B)

M = KyA,; (C) M(1) = Ty; and (D) M satisfies the non-forgetting axiom schema (1).

13



For each ¢, let M;; = M; 4+, M!. Thenitis easy to see that M, is non-forgetting
for each ;. By Lemma5.1 we notice that M;; = M; in the sense that for any formula ¢,
M;; = ¢iff M; |= ¢. Thus(A) followsfrom M <, M;;. (B)isalsoan easy consequence
of Lemma5.1. Suppose M = (W, R, m),w,) = (K,wy). Then M =, (K, w}). But
(K,w}) <; M;, and (K,w}) | K;A; according to Lemma5.1. Therefore M(1) =
(K,w})(1) = Ty. Thus (C) isproved. Similarly, we can prove that for each i,

(K wi)(1) = (K, uf)(1) = Ty 4

For the proof of (D), define M’ = (W, R',m),w) = (K’, w;), where R’ isthe smallest
equivalencerelation such that R C R’, and foreach ¢, (wy,w;) € R'(1). Sinceeach M;
isnon-forgetting, therefore M’ isalso non-forgetting. We now show that M = M’ inthe
sensethat for any o, M =  iff M’ |= ¢. For any ¢, we prove by using induction on the
complexity of ¢ that forany w € W, (K, w) | ¢ iff (K',w) | . The base case that
© isaprimitive proposition istrivial. Inductively, the casesfor ¢ = —¢, ¢ = 1 V o,
andy = K ;¢ fort # 1 areeasy tosee. Now supposethat p = K1 ¢. If (w,w,) € R'(1),
then (K,w) = K¢ iff (K, w) = ¢ for every (w',w) € R(1) iff (K',w') = ¢ for
every (w',w) € R'(1) iff (K',w) = K;¢. Now suppose (w,w;) € R'(1). We show
that (K,w,) = K¢ iff (K’ wl) = Ki¢. Other cases are similar. (K',w,) = K¢
iff (K',w) = ¢ for every (w wy) € R(1). But (w,wy) € R'(1) iff thereisat such
that (w,w;) € R(1). Therefore by the inductive assumption, (K’ w;) | K¢ iff
(K,w;) E K¢ forevery . Thusby (4), (K',wy) E K¢ iff (K,w,) E Ki¢.

Therefore we have proved (A) to (D). Thus M = Ty + A,, and for any M’, if
M =T, + p, then M =, M'.

Suppose we have proved the theorem for », we show that itisalso truefor n + 1. Let
MET + A+ ...+ A,,and T, = M(n). Similartothecase of n = 2, let My, M,, ...
be a sequence of interpretations such that

1. For each i, M; isnon-forgetting at n, M;(n) = T,,and M; E K41 A,41.
2. For any M satisfying the above condition, thereisa: suchthat M =, M.

Let M; = (W;, R;,m;),w;). Without the loss of generality, we suppose that for any
i # 3, W;nW; = 0. Foreach i, let M! = (W], R, w!),w!) be arename of M, such
that for any z, j, W; N W/ =0, and for any i # j, W/ N W/ = ().

Now let M = "%, (M; +; M!). Againwe claim that (A) for each i, M <, M;;
B)M = K,11A.; (C) M(n) = T,; and (D) M satisfies the non-forgetting axiom
schema at », which isthe schema (1) with the time point 1 being replaced by r, and the
timepoint 2 by n + 1.
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The proof is similar to the case for 2 by noticing that for model M’, if M'(n) = T,,
thenforany ¢t <n, M'(t) =T, m

Theorem 3 and 4 are the main technical results of the paper. They showed that for
the situations posed at the beginning of this section, our definitions of “know only” and
“learn only” correspond to our intuitions.

6 A classof situations: decision procedures

As we said in section 4, we would like to somehow derive a procedure for deciding
whether a proposition is known after the agent learns only something. Fortunately, as
corollariesto the proofsof Theorem 3 and 4, we have two inductive decision procedures
for the class of the theories studied in last section.

The proof of Theorem 3 shows the following decision procedure for “know only,”
which to our knowledge is the first one about “know only” in a language with multiple
modal operators:

Proposition 6.1 Let A be a formula satisfying the condition in Theorem 3. Let K; A be
consistent, and M |, {A}. For any formula ¢, ¢ € M(t) iff K, A A sub(p) E o,
where sub; () isthe conjunction such that for any subformula of ¢ (including ) having
theform K¢, if ¢ € M(t), then K¢ isa conjunct, otherwise — ;¢ is a conjunct.

Thus = K1p € Ty since suby(—Kyp) is —Kip, and - Kp = K;—K;p. Similarly
_|[(1 [{2—|[{1p € TQ) S-nce _|](1p |7£ [(1 [(’Qﬁ[(lp.
The proof of Theorem 4 also givesthe following result:

Proposition 6.2 Let K, A, ..., K, A, beasthosein Theorem4,and M = Ty + A; +
..+ A,. For any formula ¢, o € M(n) iff

Ko(M(n — 1)) U{Kp... oA A oo A Ky Ay A SUBW(9)} F Ko, (5)

where K,,(M(n — 1)) = {K,¢ | ¢ € M(n — 1)}, and SUB,(¢) is the conjunction
such that for any subformula of  of theform K¢, 1 <t < n, if ¢ € M(n), then K;¢
isaconjunct of SU B, (y), otherwise -~ K¢ isa conjunct of SUB,,().

However, this procedure is hard to use since K,,(M(n — 1)) is an infinite set. We
conjecture that (5) holdsiff

Ky . KAy N NKR A ANSUBL (@) F K

holds. In generd, thisis not trueif A;, 2 <: < n, contains modal operators. It seems
plausibleto usif A;’sdo not contain modal operators, which isthecaseintheproposition.

15



7 Restricting our language?

As we have seen throughout the paper, most of our difficulties are with formulas with
nested modalities. For example, we see that for any formula A that does not include any
modal operators, and isnot atautology, we have - K1 A € Ty. By S5 axioms, thisin turn
impliesthat K1~ KA € Ty, K1~ Ky K A € Ty, K1 K3~ K~ Ky;K{ A € Ty, etcetera.
However, it is doubtful that formulas such as K-~ K3—~K;— K, K A would be needed
in practice. It makes sense to focus our atention on formulas of smpler forms. For
example, if we focus only on formulas without nested modal operators, then we have
the following result:

Proposition 7.1 Let Ky A,, ..., K, A, beasthosein Theorem4,and M = Ty + Ay +
..+A,. LetT,, = M(n). For any formula A not containing modal operators, K, A € T,
iff either ¢ > n and A isatautology, or ¢t <n,and A; A ... A A, = A.

Notice that this proposition essentially captures minimal learning for the single agent
case without explicit times. However, thistime it is “justified” under a more general
definition. It could also be seen as an evidence for the correctness of our more general
definition.

We can also restrict our language to the set of formulas that are constructed from
primitive propositions and formulas of theform K’; A by using logical connectives — and
D, where A does not contain modal operators. Thisis still a considerable restriction of
the full modal language. However, we'll be able to express in the language facts such
as.

KspV Ks—p

(the agent will know the truth value of p at 5),
_|[(4p D) ([(7(] \% ](7"(])

(if at 4 the agent does not know that p istrue, then it will know the truth value of ¢ at 7),
and

_|[/(9p A _‘Iﬁfg_'p
(the agent will never know the truth value of p until time 9). We hope we shall have

some computationally positive results to report about minimal learning in thisrestricted
language in the near future.

8 Concludingremarks

We have studied a particular model of the way in which a single agent’s knowledge
evolves over time. The two fundamental properties of the model are that knowledge
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alwayspersists (i.e., agents have perfect memory), and that ignorance persists by default
(i.e., we have complete knowledge of exactly how much the agent learns at every time
point). Despite the apparent ssimplicity of thismodel, it turnsout to exhibit quite complex
properties. For some peopl e thismay sound surprising, sincethemodel isquitesimilar to
other, well understood frameworks, involving various combinations of time, knowledge
and nonmonotonicity. The complexities become clear once it is realized that nested
knowledge operatorsinteract with each other in anon-trivial way. We have showed that,
for a class of situations about which we have clear intuitions, our formalization gives
intuitive results. For more complicated cases, we are forced to restrict the language in
order to retain intuition.

Acknowledgements

We would like to thank Adam Grove, Joe Halpern, Hector Levesgue, Becky Thomas,
and the other members of the 1991 Stanford Nobotics group for their ideas, comments,
and suggestions. Most of the research was done while the first author was with the
Department of Computer Science at Stanford University, where both authors' research
was supported in part by a grant from the Air Force Office of Scientific Research. The
work of thefirst author wasal so supported in part by the Government of Canada I nstitute
for Robotics and Intelligent Systems.

References

[1] Chandy, K. M. and J. Misra (1986), How processes learn, Distributed Computing
1:1, 1986.

[2] Halpern, J. (1987), Review of Parikh [1984], Mathematical Review, 87h:68110.

[3] Halpern, J. Y. and Y. O. Moses (1984), Towards a theory of knowledge and igno-
rance: preliminary report, IBM Technical Report RJ 4448 (48136), 1984.

[4] Hapern,J. Y.and Y. O. Moses (1985), A guide to the modal logics of knowledge
and beliefs: preliminary draft, IBM Technical Report RJ 4753 (50521), 1985.

[5] Halpern, J. Y. and M. Y. Vardi (1989), The complexity of reasoning about knowl-
edge and time, |: lower bounds, IBM Technical Report RJ 5764 (58103), 1989.

[6] Gardenfors, P. (1987), Knowledge in Flux: modeling the dynamics of epistemic
states, MIT Press, Cambridge, MA, 1987.

17



[7] Katsuno, H and A. O. Mendelzon (1991), On the difference between updating
a knowledge base and revising it, in Proc. Second Conference on Knowledge
Representation and Reasoning, Boston, MA, 1991.

[8] Levesque, H. (1984), Foundations of a functional approach to knowledge repre-
sentation, Artificial Intelligence, 23(2), 1984.

[9] Levesque, H. (1987), All | know: an abridged report, Conference Proceedings of
AAAI-87, 426-431.

[10] Levesgue, H. (1990), All I know: A study in autoepistemic logic, Artificial Intelli-
gence 42 (1990) 263 — 309.

[11] McCarthy, J. and P. Hayes (1969), Some philosophical problems from the stand-
point of artificial intelligence. In Machine Intelligence 4, Meltzer, B and Michie,
D. (eds), Edinburgh University Press.

[12] Parikh, R. (1984), Logicsof knowledge, gamesand dynamic logic, FST-TCS 1984,
Springer LNCS 181.

[13] Parikh, R.(1991), Monotonic and non-monotoniclogicsof knowledge, Manuscript,
1991.

[14] Shoham, Y. (1989), Time for action, in Proceedings of |JCAI-89.

18



