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Abstract

Reinforcement learning can provide a robust and natural
means for agents to learn how to coordinate their action
choicesin multiagent systems. \We examine some of the fac-
tors that can influencethe dynamicsof the learning processin
suchasetting. We first distinguish reinforcement learners that
are unaware of (or ignore) the presence of other agents from
those that explicitly attempt to learn the value of joint actions
and the strategies of their counterparts. We study (a simple
form of) Q-learning in cooperative multiagent systems under
these two perspectives, focusing on the influence of that game
structure and exploration strategies on convergence to (opti-
mal and suboptimal) Nash equilibria. We then propose alter-
native optimistic exploration strategies that increase the like-
lihood of convergenceto an optimal equilibrium.

1 Introduction

The application of learning to the problem of coordina
tion in multiagent systems (MASs) has become increasingly
popular in Al and game theory. The use of reinforcement
learning (RL), in particular, hasattracted recent attention [22,
20, 16, 11, 7, 15]. Asnoted in [16], using RL as a means
of achieving coordinated behavior is attractive because of its
generality and robustness.

Standard techniquesfor RL, for example, Q-learning [21],
have been applied directly to MASs with some success.
However, a generd understanding of the conditions under
which RL can be usefully applied, and exactly what form
RL might take in MASs, are problemsthat have not yet been
tackled in depth. We might ask the following questions:

¢ Arethere differences between agents that learn asif there
are no other agents (i.e., use single agent RL a gorithms)
and agentsthat attempt to learn both the values of specific
joint actions and the strategies employed by other agents?

e Are RL agorithms guaranteed to converge in multiagent
settings? If so, do they convergeto (optimal) equilibria?

e How are rates of convergence and limit points influenced
by the system structure and action sel ection strategies?

In this paper, we begin to address some of these questionsin
a specific context, namely, repeated games in which agents
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have common interests (i.e., cooperative MASs). We focus
our attention on a simplified form of Q-learning, due to its
relativesimplicity (certainly not for itsgeneral efficacy), con-
sider some of thefactors that influence the dynamics of mul-
tiagent Q-learning, and provide partia answersto these ques-
tions. Though we focuson an simpl e setting, we expect many
of our conclusionsto apply more broadly.

We first distinguish and compare two forms of multiagent
RL (MARL). Independent learners (1L s) apply Q-learningin
theclassic sense, ignoringthe existence of other agents. Joint
action learners (JALS), in contrast, learn the value of their
own actions in conjunction with those of other agents via
integration of RL with equilibrium (or coordination) learn-
ing methods [24, 5, 6, 9]. We then briefly consider the im-
portance of exploitive exploration strategies and examine,
through a series of examples, how game structure and explo-
ration strategies influence the dynamics of the learning pro-
cess and the convergence to equilibrium. We show that both
JALs and ILs will converge to an equilibrium in this spe-
cific setting of fully cooperative, repeated games. In fact,
even though JALs have much more information at their dis-
posal, they do not perform much differently from ILs in the
straightforward application of Q-learningto MASs. We aso
observethat in games with multiple equilibria, optimality of
the “agreed upon” equilibrium is not assured. We then de-
scribe several optimistic exploration strategies, designed to
increase the likelihood of reaching an optimal equilibrium.
Thisprovidesone way of having JALs exploit the additional
information that they possess. We conclude with a discus-
sion of related work and mention several issuesthat promise
to make the integration of RL with coordination learning an
exciting area of research for the foreseeable future.

2 Préiminary Conceptsand Notation
2.1 Single Stage Games

Our interest isin the application of RL algorithmsto sequen-
tial decision problemsinwhichthe systemisbeing controlled
by multiple agents. However, in the interests of simplicity,
our investigationsin this paper are focussed on n-player co-
operative (or common interest) repeated games. Sequentia
optimality will not be of primary interest, thoughwewill dis-
cuss thisissuein Sections 5 and 6).! We can view the prob-

Many of our conclusionshold mutatis mutandis for sequential,
multiagent Markov decision processes[2] with multiple states; but



lem at hand, then, as a distributed bandit problem.

More formally, we assume a collection « of n (heteroge-
neous) agents, each agent i € « having availabletoit afinite
set of individual actions A;. Agents repeatedly play a stage
game in which they each independently select an individual
action to perform. The chosen actions at any point consti-
tuteajoint action, the set of whichisdenoted A = x ;¢ A;.
Witheach a € A isassociated adistributionover possiblere-
wards; though the rewards are stochastic, for smplicity, we
often simply refer to theexpected reward R(a). Thedecision
problem is cooperative since each agent’s reward is drawn
from the same distribution, reflecting the utility assessment
of dl agents. The agents wish to choose actions that maxi-
mize (expected) reward.

We adopt some standard game theoretic terminology [13].
A randomized strategy for agent i is a distribution 7 €
A(A;) (where A(A4;) is the set of distributions over the
agent’s action set A;). Intuitively, m(a’) denotes the proba
bility of agent i selecting theindividual actiona®. A strategy
m isdeterministicif w(a') = 1 for somea’ € A;. A strat-
egy profileisacollectionIl = {m; : i € «} of strategies
for each agent i. The expected value of acting according to
a fixed profile can easily be determined. If each 7; € Il is
deterministic, we can think of TT asajoint action. A reduced
profile for agent i isastrategy profilefor all agentsbut i (de-
noted T1_;). GivenaprofileTI_;, astrategy =; isabest re-
sponsefor agent i if the expected val ue of the strategy profile
I_; U {m;} ismaxima for agent ; that is, agent 7 could not
do better using any other strategy ;. Finally, we say that the
strategy profile IT is a Nash equilibriumiff TI[7] (s compo-
nent of IT) isabest responseto T _;, for every agent i. Note
that in cooperative games, deterministic equilibria are easy
tofind. Anequilibrium (or joint action) isoptimal if no other

has greater value.
Asan example, consider the simpletwo-agent stage game:
a0 al
0 T 0
b1 | O y

Agents A and B each have two actions at their disposal,
a0, al and b0, b1, respectively. If z > y > 0, (a0, b0) and
(al,b1) are both equilibria, but only thefirst is optimal: we
would expect the agents to play (a0, 60).

2.2 Learningin Coordination Games

Action selection is more difficult if there are multiple opti-
mal joint actions. If, for instance, z = y > 0 in the example
above, neither agent has a reason to prefer one or the other
of itsactions. If they choose them randomly, or in some way
reflecting personal biases, then they risk choosing a subopti-
mal, or uncoordinated joint action. The genera problem of
equilibrium selection [13] can be addressed in several ways.
For instance, communication between agents might be ad-
mitted [22] or one could impose conventionsor rulesthat re-
strict behavior so as to ensure coordination [18]. Here we
entertain the suggestion that coordinated action choice might
be learned through repeated play of the game with the same
agents [5, 6, 9, 11]. (Repeated play with arandom selection
of similar agents from a large population has also been the
object of considerable study [17, 10, 24].)

we will seethat interesting issues emerge.

One especialy simple, yet often effective, learning model
for achieving coordinationisfictitiousplay[3, 5]. Each agent
i keepsacount C?, foreach j € a anda’ € A;, of thenum-
ber of times agent j has used action a’ in the past. When
the game is encountered, i treats the relative frequencies of
each of j's moves asindicative of j's current (randomized)
strategy. That is, for each agent j, ¢ assumes j plays action
a’ € A; with probability Pri; = C7,;/(3 ¢ 4, Cy,)- This
set of strategiesformsareduced profileII _;, for which agent
i adopts a best response. After the play, ¢ updates its counts
appropriately, given the actionsused by the other agents. We
think of these counts as reflecting the beliefs an agent hasre-
garding the play of the other agents (initial countscan also be
weighted to reflect priors).

This simple adaptive strategy will converge to an equilib-
rium in our simple cooperative games assuming that agents
randomize when multiple best responses exist [12], and can
be made to converge to an optimal equilibriumif appropriate
mechanisms are adopted [1]; that is, the probability of coor-
dinated equilibrium after & interactionscan be made arbitrar-
ily high by increasing & sufficiently. It isa so not hard to see
that once the agents reach an equilibrium, they will remain
there—each best response reinforces the beliefs of the other
agents that the coordinated equilibriumremainsin force.

We note that most game theoretic model s assume that each
agent can observe the actions executed by its counterparts
with certainty. Aspointedout and addressed in[1, 7], thisas-
sumption is often unrealistic. A more general model allows
each agent to obtain an observation which isrelated stochas-
tically to the actua joint action selected, where Pr, (o) de-
notes the probability of observation o being obtained by all
agentswhen joint action a is performed. We will not investi-
gate thismodel further, but mention it here sinceit subsumes
the two special cases we describe below.

2.3 Reinforcement Learning

Action selection is more difficult still if agents are unaware
of the rewards associated with various joint actions. In such
acase, reinforcement learning can be used by the agents to
estimate, based on past experience, the expected reward as-
sociated with individua or joint actions. We refer to [8] for
asurvey of RL techniques.

A smple, well-understood agorithm for single agent
learning is Q-learning [21]. The formulation of Q-learning
for general sequential decision processes is more sophisti-
cated than we need here. Inour statel ess setting, we assume a
Q-value, Q(a), that provides an estimate of the value of per-
forming (individual or joint) action a. An agent updates its
estimate () based on sample {(a, r) asfollows:

Q(a) < Q(a) + A(r — Q(a)) D

The sample {a, r) isthe “experience” obtained by the agent:
action a was performed resulting in reward r. Here X is
thelearning rate (0 < A < 1), governing to what extent
the new sample replaces the current estimate. If A is de-
creased “slowly” duringlearning and all actions are sampled
infinitely, Q-learning will converge to true Q-values for al
actionsin the single agent setting [21].2

2 Generaly, Q(a, s) istakento denotethelong-term valueof per-



Convergence of Q-learning does not depend on the ex-
ploration strategy used. An agent can try its actions at any
time—thereisno requirement to perform actionsthat are cur-
rently estimated to be best. Of course, if we hope to enhance
overall performance during learning, it makes sense (at least
intuitively) to bias selection toward better actions. We can
distinguishtwo forms of exploration. In nonexploitive explo-
ration, an agent randomly chooses its actions with uniform
probability. There is no attempt to use what was learned to
improve performance—the aim is simply to learn Q-values.
In exploitive exploration an agent chooses its best estimated
action with probability p,, and chooses some other action
with probability 1 — p,. Often the exploitation probability
p.: isincreased slowly over time. We call anonoptimal action
choice an exploration step and 1 — p,. the exploration prob-
ability. Nonoptimal action selection can be uniform during
exploration, or can be biased by the magnitudes of Q-values.
A popul ar biased strategy isBoltzmann exploration: action a
is chosen with probability

(Q(a)/T
Za’ eQ(a")/T (2)

The temperature parameter 7' can be decreased over time so
that the exploitation probability increases (and can be done
in such away that convergence isassured [19]).

The existence of multiple agents, each simultaneously
learning, isapotentia impediment to the successful employ-
ment of Q-learning (or RL generally) in multiagent settings.
When agent 7 islearning the value of itsactionsin the pres-
ence of other agents, it islearning in anonstationary environ-
ment. Thus, the convergence of Q-valuesis not guaranteed.
Naive application of Q-learning to MA Sscan be successful if
we can ensurethat each agent’s strategy will eventualy “ set-
tle” Thisisone of the questionswe explore below. Applica
tion of Q-learning and other RL methods have met with some
success in the past [22, 16, 17, 15].

There are two distinct ways in which Q-learning could be
applied to a multiagent system. We say a MARL agorithm
is an independent learner (IL) agorithm if the agents learn
Q-vauesfor their individua actions based on Equation (1).
In other words, they perform their actions, obtain a reward
and update their Q-values without regard to the actions per-
formed by other agents. Experiencesfor agent : taketheform
(a’,r) where ¢’ is the action performed by ¢ and r is are-
ward. If an agent is unaware of the existence of other agents,
cannot identify their actions, or has no reason to believe that
other agents are acting strategically, then thisis an appropri-
ate method of learning. Of course, even if these conditions
do not hold, an agent may choosetoignoreinformationabout
the other agents’ actions.

A joint action learner (JAL) is an agent that learns Q-
valuesfor joint actions as opposed to individual actions. The
experiences for such an agent are of theform (a, r) wherea
isajoint action. Thisimpliesthat each agent can observe the

forming action a in state s, and incorporates consideration of the
values of possible states s’ to which action a leads. This learning
method is, in fact, a basic stochastic approximation technique [14].
We use (perhaps, misuse) the ¢ notation and terminology to empha-
size the connection with action selection.

actions of other agents. The contrast between ILs and JALS
can be illustrated in our example above: if A isanIL, then
itwill learn Q-valuesfor actionsa0 and al; if AisaJAL, it
will learn Q-valuesfor al four joint actions, (a0, b0), €tc.
For JALs, exploration strategies require some care. In the
example above, if A currently has Q-valuesfor al four joint
actions, the expected vaue of performing a0 or a1 depends
crucialy onthestrategy adopted by B. To determinetherela-
tivevaluesof their individual actions, each agentinaJAL a-
gorithmmaintainsbeliefsabout the strategi es of other agents.
Here we will use empirical distributions, possibly with ini-
tial weights as in fictitious play. Agent A, for instance, as-
sumes that each other agent B will choose actionsin accor-
dance with A’s current beliefs about B (i.e., A’'s empirical
distribution over B’s action choices). In general, agent : as-
sesses the expected value of itsindividual action a* to be

Z Q(a™" U{da'}) H{Pfi—zm}

a"teA_; J#i

EV(ai) =

Agent i can use these valuesjust as it would Q-valuesinim-
plementing an exploration strategy.?

We note that both JALs and ILs can be viewed as special
cases of the partially observable model mentioned above, by
alowing experiences of theform (a*, o, r) wherea® isthe ac-
tion performed by 7, and o isits (joint action) observation. A
preliminary version of this paper [4] studiesthe methods be-
low within thismode.

3 Comparing Independent and Joint-Action
Learners

We first compare the relative performance of independent
and joint-action learners on a simple coordination game of
the form described above:

ald al
0 | 10 0
bl 0 10

Thefirst thing to noteis that I1Ls using nonexploitive explo-
ration will not deem either of their choices (on average) to
be better than the other. For instance, A’s Q-vaues for both
action a0 and a1 will convergeto 5, since whenever, say, a0
is executed, thereisa 0.5 probability of 50 and 41 being ex-
ecuted. Of course, a any point, due to the stochastic nature
of the strategies and the decay in learning rate, wewould ex-
pect that the learned Q-values will not be identical; thus the
agents, once they converge, might each have areason to pre-
fer one action to the other. Unfortunately, these biases need
not be coordinated.

Rather than pursuing this direction, we consider the case
where both the ILs and JALs use Boltzmann exploration
(other exploitive strategies could be used). Exploitation of
the known values alows the agents to “coordinate’ in their
choi ces for the same reasons that equilibriumlearning meth-
ods work when agents know the reward structure. Figure 1
shows the probability of two ILs and JALSs selecting an op-

®The expression for EV(a*) makes the justifiable assumption
that the other agents are selecting their actions independently. Less
reasonableis the assumption that these choices are uncorrelated, or
evencorrelated with :’schoices. Such correlations can often emerge
dueto the dynamics of belief updating without agents being aware



Choosing optimal joint actions
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Figure1: Convergenceof coordinationfor ILsand JALS (av-
eraged over 100trias).

timal joint action as a function of the number of interactions
they have. Thetemperatureparameter is7" = 16 initiallyand
decayed by afactor of 0.9* at thet + 1st interaction. We see
that ILs coordinate quite quickly. There is no preference for
either equilibrium point: each of the two equilibria was at-
tained in about half of thetrials. We do not show convergence
of Q-values, but note that the Q-values for the actions of the
equilibriaattained (e.g., (a0, 60)) tended to 10 whilethe other
actions tended to 0. Probability of optimal action selection
does not increase smoothly within individual trials; the av-
eraged probabilitiesreflect the likelihood of having reached
an equilibriumby timet, aswell as exploration probabilities.
We aso point out that much faster convergence can be had
for different parameter settings (e.g., decaying temperature
T morerapidly). We defer genera remarks on convergence
to Section 4.

The figure also shows convergence for JALS under the
same circumstances. JALsdo perform somewhat better after
afixed number of interactions, as shown in the graph. While
the JALs have more information at their disposal, conver-
genceisnot enhanced dramatically. In retrospect, thisshould
not be too surprising. While JALs are able to distinguish Q-
values of different joint actions, their ability to usethisinfor-
mation is circumscribed by the action selection mechanism.
An agent maintains beliefs about the strategy being played
by the other agents and “exploits’ actions according to ex-
pected val ue based on these beliefs. In other words, thevalue
of individual actions“plugged in” to the exploration strategy
ismore or less the same as the Q-values learned by ILs—the
only distinctionisthat JALs compute them using explicit be-
lief distributionsand joint Q-valuesinstead of updating them
directly. Thus, even though the agents may be fairly sure of
therelative Q-vaues of joint actions, Boltzmann exploration
does not let them exploit this.*

of this correlation, especialy if frequencies of particular joint ac-
tions areignored.

“The key reason for the difference in ILs and JALsis the larger
difference in Q-valuesfor JALs, which bias Boltzmann exploration
slightly more toward the estimated optimal action. Note that other
exploitive strategies alleviate this problem to a certain degree.

Likelihood of Convergence to optimal joint actions in dependency of Penalty k
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Figure2: Likelihood of convergenceto opt. equilibriumasa
function of penaty & (averaged over 100 trias).

4 Convergenceand Game Structure

In the ssmple game considered above, it isn't difficult to see
that both independent Q-learners and joint action Q-learners
will converge on equilibria, as long as an exploitive explo-
rationstrategy with decreasing explorationisused. However,
convergence is not always so smooth as illustrated in Fig-
ure 1. We know consider the ways in which the game struc-
ture can influence the dynamics of the learning process.

Consider thefollowing class of games, with avariable (ex-
pected) penalty & < 0.

| a0 al a2
60 | 10 0 k
bl 0 2 0
b2 k 0 10

This game (for any penalty) has three deterministic equi-
libria, of whichtwo ((a0, b0), (a2, b2)) are preferred. If, say,
k = —100, duringinitial explorationagent A will finditsfirst
and third actions to be unattractive because of B’s random
exploration. If A isanlL, theaverage rewards(and hence Q-
values) for a0, a2 will be quitelow; andif AisaJAL, itsbe-
liefsabout B’sstrategy will afford these actionslow expected
value. Similar remarks apply to B, and the self-confirming
nature of equilibriavirtually assure convergenceto (al, b1).
However, the closer £ isto 0, the lower the likelihood the
agents will find their first and third actions unattractive—
the stochastic nature of exploration means that, occasion-
ally, these actions will have high estimated utility and con-
vergenceto one of theoptimal equilibriawill occur. Figure?2
shows how the probability of convergence to one of the opti-
mal equilibriaisinfluenced by themagnitude of the* penalty”
k. Not surprisingly, different equilibriacan be attained with
different likelihoods.®

Thusfar, our examples show agents proceeding on adirect
route to equilibria (albeit at various rates, and with destina-
tions “chosen” stochastically). Unfortunately, convergence
is not so straightforward in general. Consider the following
climbing game:

5 Theseresults are shown for JALS; but the general pattern holds
truefor ILs aswell.
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Figure 3: A’sstrategy in climbing game
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Figure4: B’sstrategy in climbing game

a0 al a?2
0] 11 —30 0
b1 | =30 7 6
b2 0 0 5

Initialy, thetwo learners are almost certainly going to begin
to play the nonequilibrium strategy profile (a2, 62). Thisis
seen clearly in Figures 3, 4 and 5. However, once they “ set-
tle” at this point, as long as exploration continues, agent B
will soon find 41 to be more attractive—solong as A contin-
ues to primarily choose a2. Once the nonequilibrium point
(a2,b1) is attained, agent A tracks B’s move and beginsto
perform action al. Once this equilibrium is reached, the
agents remain there.

This phenomenon will obtain in genera, allowing one to
conclude that the multiagent Q-learning schemes we have
proposed will converge to equilibriaa most surely. The con-
ditionsthat are required in both cases are:

e Thelearning rate A decreases over time such that
Zt)\zo A = oo and Zg\:o A% < oo,

o Each agent samples each of its actionsinfinitely often.

b Parameter settings for these figures: initial temperature 10000
is decayed at rate 0.995".
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Figure5: Joint actionsin climbing game

e The probability P/(a) of agent i choosing action a is
nonzero.

o Each agent’s exploration strategy is exploitive. That is,
lim;, o P (X:) = 0, where X isarandom variable de-
noting the event that some nonoptimal action was taken
based on i’s estimated values at time ¢.

The first two conditions are required of Q-learning, and the
third, if implemented appropriately (e.g., with appropriately
decayed temperature), will ensure the second. Furthermore,
it ensures that agents cannot adopt deterministic exploration
strategies and become strictly correlated. Finally, the last
condition ensures that agents expl oit their knowledge. In the
context of ficticious play and its variants, this exploration
strategy would be asymptotically myopic [5]. This is nec-
essary to ensure that an equilibrium will be reached. Under
these conditions we have;

Theorem 1 Let E; bearandom variabledenoting the prob-
ability of a (deterministic) equilibriumstrategy profile being
played attimet. Then for bothlLsand JALs, for anyd, ¢ > 0,
thereisan 7'(d, ) such that

Pr(|E;—1|<e)>1—-4

forallt > T'(4,¢).

Intuitively (and somewhat informally), the dynamics of
the learning process behaves as follows. If the agentsarein
equilibrium, there is a nonzero probability of moving out of
equilibrium; but this generally requires a (rather dense) se-
riesof exploratory moves by one or more agents. The proba-
bility of thisoccurring decreases over time, making thelike-
lihood of leaving an equilibrium just obtained vanish over
time (both for JALs and ILs). If a some point the agents
estimated Q-values are such that a nonequilibrium is most
likely, the likelihood of this state of affairs remaining also
vanishes over time. As an example, consider the climbing
game above. Once agents begin to play (a2, 62) regularly,
agent B is till required to explore. After a sufficient sam-
pling of action b61—without agent A simultaneoudy explor-
ing and moving away from a2—b1 will look more attractive
than b2 and thisbest reply will be adopted. Decreasing explo-
ration ensures that the odds of simultaneous exploration de-



crease fast enough to assure that this happenswith high prob-
ability. Similar reasoning shows that a best reply path will
eventually be followed to a point of equilibrium.

This theoretical guarantee of convergence may be of lim-
ited practical value for sufficiently complicated games. The
key difficulty is that convergence relies on the use of de-
caying exploration: this is necessary to “approximate’ the
best-response condition of fictitious play. This gradua de-
cay, however, makes the time required to shift from the cur-
rent entrenched strategy profileto abetter profilerather long.
If theagentsinitialy settle on aprofilethat isalarge distance
(interms of abest reply path) from an equilibrium, each shift
required can take longer to occur because of the decay in ex-
ploration. Furthermore, as pointed out above, the probability
of concurrent explorationmay haveto be sufficiently small to
ensure that the expected value of a shift along the best reply
path is greater than no shift, which can introduce further de-
laysintheprocess. Thelonger these delays are, thelower the
learning rate A becomes, requiring more experience to over-
come theinitially biased estimated Q-values.

Finally, the key drawback for JALs (which know thejoint
Q-vaues) isthefact that beliefs based on alot of experience
require a considerable amount of contrary experience to be
overcome. For example, once B has made the shift from 52
to b1 above, a significant amount of time is needed for A
to switch from a2 to al: it hasto observe B performing b1
enough to overcome the rather large degree of belief it had
that B would continue doing 42. Although we don’t report
on thishere, our initial experiments using windows or finite
hi stories upon which to base beliefs has shown considerable
practical value.”

5 Biasing Exploration Strategiesfor
Optimality

One thing we notice about the MARL strategies described
above is that they do not ensure convergence to an optimal
equilibrium. Little can be done about thisisthe case of 1Ls.®
However, JALs have considerably more information at there
disposd in the form of joint Q-values. For example, in the
penalty game, agents A and B might converge to the subop-
timal equilibrium (a1, b1); but both agents have learned the
game structure and redlize their coordinated strategy profile
issuboptimal. Once attained, the usual exploration strategies
permit escape from this equilibrium only with small, dimin-
ishing probability.

Intuitively, we can imagine both agentstrying to break out
of this equilibrium in an attempt to reach a more desirable
point (say, (a2, b2)). For instance, agent B might sample 62
anumber of timesin order to induce A to switch its strategy
to a2. In fact, this can be worthwhile if the “pendlties’ re-
ceived in the attempt are compensated for by the long run
sequence of high rewards obtained once the optimal equi-
librium is achieved. Note that this type of action selection
runs counter to the requirement that a best response be cho-

"Fictitious play based on histories of an appropriately chosen
length is shown to convergein [24].

8 Onecould imaginethat an IL might biasits action selection to-
ward those whose Q-values have high variance, or adhereto amul-
timodal distribution, perhapsindicative of another agent acting si-
multaneously; but this seemsto run contrary to the “ spirit” of ILs.

Combined strategy ——
WOB strategy -+~
NB strategy -8--

10 OB strategy

Accumulated reward

L L
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Figure 6: Sliding avg. reward in the penalty game

sen except for “random” exploration. Thistypeof switchre-
quiresthat agentsintentionally choose (immediately) subop-
timal actions.

Ultimately, the decision to attain along run optimal equi-
librium at the expense of a finite sequence of penalties can
be cast as a sequentia decision problem. For instance, if fu-
ture rewards are highly discounted, agents may not risk de-
viating from a suboptimal equilibrium. However, such ade-
cision problem (especially when we move to more complex
settings) can beintractable. Instead, we consider augmented
exploration strategies that will encourage long run optimal-
ity. What we propose below are myopic heuristics, based
only on the current state, that tend to induce long run optimal
behavior. Three such heuristics are:

Optimistic Boltzmann (OB): For agent i, action a; € A;,
let MaxQ(a;) = maxn_, Q(T1_;, a;). Choose actions
with Boltzmann exploration (another exploitive strategy
would suffice) using MaxQ(a;) asthevalue of a;.

Weighted OB (WOB): Exploreusing Boltzmannusingfac-
tors MaxQ(a;) - Pr;(optima match T1_; for a;).

Combined: Let C(a;) = p MaxQ(a;) + (1 — p)EV(ai),
forsome 0 < p < 1. Choose actions using Boltzmann
explorationwith C'(a;) asvdueof a;.

OB is optimigtic in the sense that an agent assesses each
of its actions as though the agents around it will act in order
to “match” its choice of an action. WOB isamoreredistic
version of OB: the assessment of an action is tempered by
thelikelihood that a matching will be made (according to its
current beliefs). Finally the combined strategy is more flex-
ible: it uses anormal exploration strategy but introduces the
MaxQ factor to biasexpl orationtoward actionsthat have " po-
tential.” The coefficient p allows one to tunethisbias. The
experiment below uses p = 0.5.

We have performed some preliminary experimentation
with these heuristics. Figure 6 illustrates the results of these
three heuristics, as well as normal Boltzmann (NB) explo-
ration, for the penalty game (¢ = —10). It shows (did-
ing) average reward obtained over thelast ten interactionsfor
each strategy. Thus it shows not only the convergence be-
havior, but the penaties incurred in attempting to reach an



optimal equilibrium. NB behaves as above, sometimes con-
verging to the optimal (10) and suboptimal (2) equilibrium.
Not surprisingly, OB fares poorly: the presence of multiple
equilibriamake it impossibleto do well (althoughit behaves
reasonably well in simpler games). The two agents cannot
coordinate because the are not permitted to account for the
strategy of the other agent. WOB circumvents the difficulty
with OB by using beliefsto ensure coordination; it converges
to an optimal equilibrium each time. The Combined strategy
also guarantees long run optimality, but it has better perfor-
mance aong the way.

We can draw few formal conclusions at this time; but we
think the use of myopic heuristics for exploration deserves
considerably more study. Methods like the Combined strat-
egy that alow problem dependent tuning of the exploration
strategy seem especially promising. By focusing on particu-
lar sequentia optimality criteria, intelligent parameter tuning
should be possible.

6 Concluding Remarks

We have seen described two basic waysin which Q-learning
can be applied in multiagent cooperative settings, and exam-
ined the impact of various features on the success of thein-
teraction between equilibrium selection learning techniques
with RL techniques. We have demonstrated that the integra-
tion requires some care, and that Q-learning is not nearly as
robust as in single-agent settings. Convergence guarantees
are not especialy practical for complex games, but new ex-
ploration heuristicsmay help in thisregard.

Several proposas have been put forth that are closely re-
lated to ours. Tan [20] and Sen, Sekaran and Hale [16] ap-
ply RL toindependent agentsand demonstrate empirical con-
vergence. These results are consistent with ours, but proper-
ties of the convergence points (whether they are optimal or
even inequilibriumare not considered). Wheeler and Naren-
dra [23] develop a learning automata (LA) mode for fully
cooperative games. They show that using this model agents
will converge to equilibrium if there is a unique pure strat-
egy equilibrium; thusthe coordination problem that interests
us hereisnot addressed directly. Furthermore, the LA model
isdifferent fromthe Q-learning model we address. However,
the connections between the two models deserve further ex-
ploration.

A number of important directions remain to be pursued.
The most obviousis the generalization of theseideasto gen-
eral, multistate, sequentia problems for which Q-learningis
designed (for instance, as addressed in [20, 16]. An interest-
ing issue that emerges when one tries to directly apply fic-
titious play models to such a setting is estimating the value
of actions using the Q-values of future states when the ac-
tual future value obtained can hinge on coordination (or lack
thereof) at these future states. The application of generaliza-
tion techniques to deal with large state and action spaces is
also of great importance, especially in multiagent domains
where the size of joint action spaces can grow exponentially
with the number of agents. Finaly, we expect these ideas to
generalize to other settings (such as zero-sum games) where
fictitious play isaso known to converge.
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