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Abstract

Query answering over commonsense knowledge
bases typically employs a first-order logic theorem
prover. While first-order inference is intractable
in general, provers can often be hand-tuned to an-
swer queries with reasonable performance in prac-
tice. Appealing to previous theoretical work on
partition-based reasoning, we propose resolution-
based theorem proving strategies that exploit the
structure of a KB to improve the efficiency of
reasoning. We analyze and experimentally eval-
uate these strategies with a testbed based on the
SNARK theorem prover. Exploiting graph-based
partitioning algorithms, we show how to compute
apartition-derived orderingfor ordered resolution,
with good experimental results, offering an auto-
matic alternative to hand-crafted orderings. We
further propose a new resolution strategy,MFS
resolution, that combines partition-based message
passing with focused sublanguage resolution. Our
experiments show a significant reduction in the
number of resolution steps when this strategy is
used. Finally, we augment partition-based mes-
sage passing, partition-derived ordering, and MFS
by combining them with the set-of-support restric-
tion. While these combinations are incomplete,
they often produce dramatic improvements in prac-
tice. This work presents promising practical tech-
niques for query answering with large and poten-
tially distributed commonsense KBs.

1 Introduction
Theorem proving in first-order logic (FOL) is intractable in
general. Nevertheless, first-order provers are commonly used
for query answering over large knowledge bases (KBs) con-
taining thousands of axioms, such as Cycorp’s Cyc and the
High Performance Knowledge Base (HPKB)[4]. To make
headway in large KBs, theorem provers usually require KB-
specific tuning and customization.

Partition-based reasoning (PBR)[2; 12] promises to speed
up reasoning, without manual tuning, by exploiting the struc-
ture implicit in such large commonsense KBs, which typi-
cally contain loosely coupled clusters of domain knowledge.

PBR uses graph-based techniques to automatically partition a
logical theory into a network of subtheories minimally con-
nected by links of shared vocabulary. Theorem proving is
performed locally in each subtheory, and relevant results are
propagated between partitions to achieve globally sound and
complete collaborative reasoning.

Previous work on PBR has presented a theoretical frame-
work and made claims about the potential for improving the
efficiency of reasoning in practice. In this paper we validate
these claims empirically, and introduce novel FOL resolution
strategies that exploit PBR techniques to improve the effi-
ciency of reasoning.

Outline: In Section 2, we review the theoretical framework
of PBR. In Section 3 we explain how a generic theorem
prover may be easily augmented with PBR, and describe the
experimental testbed we developed using the SNARK theo-
rem prover[18]. Using this testbed, in Section 4 we com-
pare the performance of the PBR message-passing algorithm
(MP) to that of popular resolution strategies[3]. MP far out-
performs unrestricted resolution, fares comparably to ordered
resolution with a default ordering, and sometimes beats set-
of-support (SOS) resolution.

In Section 5 we show how automatic partitioning[1] can
induce apartition-derived ordering(PDO) for use with or-
dered resolution. Ordering can be a highly efficient resolution
strategy, but its success has previously depended on hand-
crafted orderings tailored to a specific KB, often through trial
and error. Our PDO is competitive with hand-crafted order-
ings and far outperforms SNARK’s default ordering. This
important result will let future theorem provers incorporate
efficient automatic ordering.

In Section 6, we present a novel resolution strategy, MFS
resolution, and show it to be sound and complete. MFS
combines MP with afocused supportrestriction employed
within partitions. Focused support is a novel resolution re-
striction that is complete for consequence-finding in a speci-
fied sublanguage. In experiments, MFS significantly reduces
the number of resolution steps required to answer queries.

Finally, in Section 7 we examine combinations of each of
these strategies (MP, PDO, and MFS) with SOS. While these
combinations are, in general, incomplete, they perform well
in experimental testing. PDO+SOS was found to outperform
every other strategy and combination examined, and its theo-
retical incompleteness was never encountered in practice.



This paper introduces novel, easily implemented tech-
niques for improving the efficiency of FOL theorem proving
with large structured KBs such as commonsense KBs. It is
the first to report experimental results for PBR, and the first
to examine combinations of MP with other strategies in a the-
oretical or experimental setting.

2 Background: partition-based reasoning
The PBR framework has two components: graph-based algo-
rithms for automatic partitioning of a theory, and message-
passing algorithms for reasoning with the partitioned theory.
For further details see[2; 12; 1].

2.1 Automatically partitioning a theory
We say that{Ai}i≤n is a partitioning of a logical theoryA
if A =

⋃
iAi. EachAi is a set of axioms called apartition,

L(Ai) is its signature (the set of non-logical symbols), and
L(Ai) is its language (the set of formulae built withL(Ai)).
Partitions may share symbols and axioms.

To partition a theory, we first construct asymbols graph
from the axioms, where each vertex represents a symbol in
the theory, and two vertices are joined by an edge iff the two
symbols appear together in an axiom. We then use one of sev-
eral tree decompositionalgorithms[16; 1] to generate a tree
where each node corresponds to a tightly connected cluster of
symbols, defining a partitionAi consisting of the axioms in
the original theory that contain only those symbols.

The result is apartition graphG : (V,E, l), where vertices
correspond to partitions, and edges correspond to communi-
cation links between partitions, labeled with theircommuni-
cation vocabulary: the labell(i, j) on the edge betweenAi

andAj is the set of symbols shared by the two partitions, that
is, l(i, j) = L(Ai)∩L(Aj). Efficient partition-based reason-
ing depends on finding a tree decomposition that keeps the
communication languages small.

Partitioning Algorithms
A tree decompositionis a tree of nodes, where each node is
a set of symbols and the tree satisfies the following property:
if a symbol appears in two different nodes, then it appears in
all the nodes and edges on the path between the two nodes.
Thewidthof a tree decomposition is the size (number of sym-
bols) of its largest node (the largest set of symbols in a single
node). Anoptimal tree decomposition is one which has the
lowest width among all tree decompositions for the graph.
This tree’s width is thetreewidthof the original graph. Tree
decomposition algorithms are commonly used in a variety
of AI applications, including constraint satisfaction problems
and Bayes Nets.

We have performed experiments with two graph partition-
ing algorithms. The first algorithm is due to[16] and is based
on an ordering heuristic namedmin fill. In this heuristic we
iterate over the symbols in the symbols graph. At each step,
we select a symbol in the graph, add all missing edges be-
tween the symbol’s neighbors in the graph, and remove that
symbol from the graph. The symbol is selected such that the
number of added edges is minimal. The tree decomposition is
extracted from this order. The experimental results reported
here are based on this partitioning algorithm.

The second algorithm is due to[1] and uses a divide-and-
conquer approach that is guaranteed to approximate the op-
timum decomposition by a factor of at mostO(log t), where
t is the treewidth of the symbols graph. Iteratively, the algo-
rithm finds a vertex cut in the graph (a set of vertices whose
removal separates the graph into two or more parts). This ver-
tex cut,W , is sent recursively to each of the separated parts,
and subsequent iterations are required to find a vertex cut that
separatesW in a balancedfashion (here, we may use algo-
rithms such as[11; 9]). The tree decomposition is built from
the final parts and the vertex-cuts’ vertex sets recursively. In
experiments, this algorithm generated partitions somewhat
fewer in number and larger in size than the first algorithm,
but yielded similar performance in answering queries.

2.2 Reasoning with message passing (MP)
Figure 1 displays Forward-Message-Passing (MP), a PBR al-
gorithm proposed in[2]. It takes as input a partitioned theory
A, an associated partition graphG = (V,E, l), and a query
formula Q in L(Ak), and returns YES if the query was en-
tailed byA. MP first directs all edges in the partition graph
G toward the goal partitionAk. SinceG is a tree, this means
each partition (except the goal) will have exactly one “out-
bound link” (leading to the next partition on the path to the
goal) and an “outbound link vocabulary”Lout. MP then per-
forms consequence finding independently in each partition,
and propagates each derived formula over the outbound link
toward the goal iff the formula’s signature matchesLout.

PROCEDURE FORWARD-M-P (MP)({Ai}i≤n, G, Q)

{Ai}i≤n a partitioning of the theoryA,
G : (V, E, l) a graph with the connections between partitions,
Q a query inL(Ak) (for somek ≤ n).

1. Definei ≺ j iff i is on the path betweenj andk in G.
2. Concurrently,

(a) Perform consequence finding for each of the partitions
Ai, i ≤ n.

(b) For every(i, j) ∈ E such thati ≺ j, for every conse-
quenceϕ of Aj found (orϕ in Aj), if ϕ ∈ L(l(i, j)),
then addϕ to the set of clauses ofAi.

(c) If Q is provena in Ak, return YES.

aWe initially add¬Q toAk and derive inconsistency.

Figure 1: A forward message-passing algorithm.

This algorithm was shown sound and complete when the
partition graph corresponds to a tree decomposition, and the
reasoning procedure employed in each partition is sound and
complete forL-consequence generation, whereL is the lan-
guage defined by the outbound link vocabularyLout:

Definition 2.1. Given a target languageL, a reasoning pro-
cedureR is complete forL-consequence generationif every
formula inL logically entailed by a set of axiomsS is also
entailed by the set of consequencesin L that is generated by
R fromS.

Ordered resolution is an example of a reasoning procedure
that satisfies this condition[7].



3 Experimental setup

To evaluate the performance of various PBR strategies, we
built an experimental platform around SNARK, a resolution-
based FOL theorem prover developed by Mark Stickel at the
SRI AI Center ([18]). Adding PBR capabilities to SNARK
was straightforward. Three extensions were required:
• Associate a set of partitions with each clause.
• Restrict resolution to occur only within partitions.
• Ensure appropriate propagation of new clauses to neigh-

boring partitions.
These modifications should be easy to implement in any
resolution-based prover.

3.1 Implementing PBR in SNARK

In SNARK, arow is a data structure that stores a clause along
with metadata such as the inference method used to derive
it. We extend this data structure to include a (non-empty) set
of partition IDs indicating the partitions in which the clause
resides. A separate data structure holds a description of the
partition graph: the partitions, the links that connect them,
and the vocabulary for each partition and link.

Resolution is restricted to occur only within partitions: two
rows may be resolved only if the intersection of their partition
sets is non-empty. The resolvent inherits this intersection as
its own partition set, so that it appears in the same partitions
as its parents. (This restriction may be superimposed on top
of other resolution restrictions, such as set-of-support.)

Finally, to implement message passing between partitions,
we examine the vocabulary of every new resolvent. If it
matches the outbound link languageLout of any partition in
its partition set, the partition set is expanded to include the
adjacent partition reached by that link.

To generate the initial partitioning, we first load the KB
axioms into SNARK and convert them to clausal form. The
clauses are passed to an external partitioning tool, which
generates the partition graph and defines the vocabulary for
each partition and link, according to the particular partition-
ing strategy selected (see Section 2.1). The partition graph
is essentially static, and can be generated just once for each
KB, so that the cost of partitioning is amortized over many
queries. However, the links between partitions are reoriented
by MP on a per-query basis, to ensure that all communication
links lead toward the goal partition.

3.2 Sample KBs, evaluation metrics

The greatest problem we encountered was obtaining large
KBs of FOL suitable for use as test data. Test suites for the-
orem provers such as TPTP[19] are biased toward proposi-
tional logic (PL) or small problems in FOL, while the minor-
ity of test problems containing significant numbers of FOL
axioms usually describe an abstract domain and employ only
a small number of symbols, making them unsuitable for par-
titioning. The best application of partitioning will be to com-
monsense KBs that contain large numbers of both axioms and
symbols. Unlike most mathematical theorem proving prob-
lems, these KBs exhibit structure that can be exploited by
partitioning to improve the efficiency of reasoning. However,

the few such KBs publically available tend to employ propri-
etary extensions to FOL, making their direct comparison in a
common testbed problematic.

In the end, we used a subset of the Cyc KB containing 730
axioms (and 150 symbols) concerning spatial relationships,
along with a set of queries supplied by an outside source.
We are continuing our efforts to remedy the paucity of ex-
perimental data by adding other large KBs. We are currently
testing queries against the Suggested Upper Merged Ontol-
ogy (SUMO) [13]; experimental results will be reported at
the project website1.

We collected a variety of statistics on each KB partition-
ing task and each query trial, including runtimes and elapsed
times. But we are most interested in metrics that allow us to
compare one trial with another by the size of the search space
explored. Processor runtime is an imperfect proxy, since it
depends greatly on implementation details that are not our
primary concern. Thus, in the remainder of this paper, we fo-
cus onnumber of resolution stepsas the best measure of the
quantity of work required for each trial.

4 Baseline evaluation of MP
As a starting point for evaluating the effectiveness of MP, we
compare it with two common resolution restriction strategies:
set-of-support(SOS) andordered resolution. SOS places the
negated query into a designated “set of support” and allows
only resolutions involving at least one clause from the set of
support, to which newly derived clauses are added. In ordered
resolution, a global ordering among predicates is given (by
the user), and clauses are resolved upon only on their highest
literals (in the predicate ordering).

To assess the effectiveness of a resolution strategy, we ex-
amine how much work is required to answer a query using
the strategy, relative to usingnostrategy (that is, allowing any
possible resolution). As described in Section 3.2, we use the
number of resolution steps as a measure of the work done in
answering a query. The absolute number of resolution steps
is typically in the thousands, but since this number may vary
widely from one query to the next, we must normalize in or-
der to make meaningful comparisons across queries. Thus,
for each query and strategy, we report the number of reso-
lution steps required to answer the query as a percent of the
number of resolution steps required using no strategy.

Results for a representative selection of queries are shown
in the first three histograms of Figure 2. Relative to using no
strategy, MP reduces the numbers of steps required to answer
most queries by one-third to two-thirds.

However, MP is significantly outperformed by SOS on
many queries (though not all). Why? This “vanilla” version
of MP operates only at the global level: it restricts resolution
betweenpartitions, but allows unrestricted resolutionwithin
partitions, equivalent to using no strategy at the local level.
In the following sections, we show how to complement MP
with smart local strategies for enhanced performance.

The trials for ordered resolution used a default (arbitrary)
ordering, so the unimpressive results are no surprise. In Sec-

1http://www.ksl.stanford.edu/projects/
Partitioning



tion 5, we introduce a mechanism for automatically inducing
efficient orderings from a partition structure.

5 Partition-derived ordering
A major obstacle to the effective use of ordered resolution is
finding a good predicate ordering, which will minimize in-
ference. SNARK provides a default ordering, but as we saw
in Section 4, it is undistinguished compared to MP and SOS,
though better than using no strategy. Efficient ordered reso-
lution is usually achieved by arduous hand-crafting of a pred-
icate ordering by a theorem-proving expert.

In this section, we propose to use automatic partitioning,
and in particular PBR tree-decomposition algorithms, to au-
tomatically produce a predicate ordering. This is an impor-
tant contribution as it paves the way to improving theorem-
proving software for ordered resolution, providing more ef-
fective ordered resolution for the non-expert, and relieving
the expert from arduous hand-coding of predicate ordering.

Figure 4 describes the P2O algorithm for inducing a sym-
bol ordering from a computed partitioning. It takes as input a
partition graphG : (V,E, l) for partitioned theoryA :

⋃
iAi,

and a queryQ in L(Ak), and outputsOrd(A), a symbol or-
dering onA. We call this ordering apartition-derived or-
dering. When combined with ordered resolution, we call the
strategy PDO. Recall that ordered resolution uses an ordering
on predicate symbols, so PDO in fact usesOrd(A) restricted
to predicate symbols and ignores the ordering imposed on
constant and function symbols.

The underlying intuition is as follows: in MP, we perform
resolution and message passing starting with the partitions
farthest away from the goal partition. All predicates are re-
solvedexceptthose in the outbound link language, which are
resolved in the next partition downstream, unless they con-
tinue to appear in subsequent outbound link languages. In
this way, the ordering of partitions along paths toward the
goal determines an ordering among predicates resolved.

PROCEDURE P2O(G, Q)

G : (V, E, l) is a partition graph for the partitioned theoryA :
{Ai}i≤n andQ is a query inL(Ak) (k ≤ n).

1. Definej ≺ i iff j is on the path betweeni andk in G.
2. LetLouti = L(l(i, j)) for j such that(i, j) ∈ E andj ≺ i

(there is at most one suchj; if there is none, then letLouti =
∅). Louti is the output language of partitionAi.

3. LetLini =
S

h L(l(h, i)) for h such that(h, i) ∈ E and
i ≺ h (there may be none or multiple suchh’s). Lini is the
input language of partitionAi.

4. InitializeOrd(A) = empty list.
5. Traverse the tree from furthest leaves to root following≺, in

a decreasing order, for everyi ≤ n.
Ord(A) =

append(Ord(A),Lini \ Louti ,L(Ai) \ Louti).
6. Ord(A) = append(Ord(A),L(Ak),).

Figure 4: An algorithm to compute a predicate ordering.

Theorem 5.1. Let A =
⋃
{Ai}i≤n be a partitioning ofA

based on predicates only (so all function and constant sym-
bols appear in all partitions), letG be a tree decomposition

corresponding toA, and letQ be a query. Then, ordered
resolution with orderOrd(A) is equivalent to MP, where in-
ference within each partition uses ordered resolution with an
order compatible withOrd(A).

Proof. For everyp ∈ L(A), letP (p) be the≺-smallest parti-
tion, i, such thatp ∈ L̃(i). There is exactly one such partition;
otherwise there would be two that are not connected, contra-
dicting the fact thatG is a tree decomposition (it guarantees
that if a symbol appears in two partitions then it appears on
the edges on the path between them).

Define <0, an order between symbols, byp <0 q iff p
precedesq in Ord(A) (equivalently,P (p) ≺ P (q)). Define
<A to be a total order that agrees with<0. Let {pi}i≤m be
an enumeration of the predicate symbols ofA according to
<A. Notice that if ordered resolution with<A resolved two
clauses uponpi, thenpi is the highest symbol in both clauses.

We show that ordered resolution is equivalent to MP by
showing that ordered resolution step can be done by MP, and
vice versa. LetC1, C2 be two clauses resolved onp by or-
dered resolution using the order<A. Let i1, i2 be such that
C1 is in partitioni1 andC2 is in partitioni2. Assume that MP
cannot resolve the two clauses. That means that they are in
different partitions and that at least one of the clauses, sayC2,
should be sent to another partition,Aj , with j ≺ i2, in order
for the two clauses to be resolved (j is the≺-largest partition
such thatj ≺ i1 andj ≺ i2).

SinceC2 was not sent to partitionj, its vocabulary is not
in the label of one of the edges on the path betweeni2 and
p in G. Let q be a symbol that appears inC2 but is not on
one of the edges in the path between partitionsi2 andj. p
is the<A-largest symbol for bothC1 andC2, meaning that
p appears on the path betweeni1, i2 (thus it also appears on
the path betweeni2, j, which is a subset of the path between
i1, i2) and thatq <A p (becauseq does not appear on that
path (thus, it is notp) andp is the<A-largest inC2).

Sinceq is not in L̃(j) (otherwise it would be on the path
betweeni2, j) and the path betweenj, i2 includesp, it must
be thatP (p) � j, andP (p) � j ≺ P (q) implies thatp <A q.
This contradicts the previous observation thatq <A p. Thus,
q appears on the path betweeni2, j andC2 must be sent to
partition j. The same holds forC1. Thus, MP will resolve
the two clauses.

The other direction (every resolution in MP is a resolu-
tion in ordered resolution) is simpler, and follows from The-
orem 5.2 below.

It is interesting to observe that we can, conversely, generate
a theory partitioning from a symbol ordering, should one be
given by an expert. The algorithm is as follows: LetS be
a stack containing the predicate symbols in logical theoryA
in the designated orderOrd(S). Let Z be an empty stack.
Pop a symbols from S. Create a set of symbols that includes
s, and all the symbols still inS that appear withs in some
axiom inA. If this set of symbols is contained by another set
on Z, discard it. Otherwise, push it ontoZ. Continue until
S is empty. Then, setG : (V,E) to be an empty graph, and
iteratively pop sets of symbols fromZ. For a set of symbols
Zi, add it toV as a neighbor (inG) to a set of symbols in
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Figure 2: Performance comparison of reasoning strategies: set-of-support (SOS), ordered resolution, vanilla MP, partition-
derived ordering (PDO), MP with focused support (MFS), and several combinations of strategies. For a representative selection
of queries, we show the number of resolution steps required to answer the query using each strategy, expressed as a percent of
the number of steps required using no strategy. Columns exceeding 100% represent timeouts.

V with which it shares the largest number of symbols. When
Z is empty, create a partitionAi for every set of symbols
Zi ∈ V such thatAi includes all the axioms fromA that are
in L(Zi). Call the resulting set of partitionsP(Ord(S)), and
the graphG(Ord(S)).

Theorem 5.2. Assume thatOrd is an order on the nonlogical
symbols of theoryA, and thatQ is a query such thatL(Q) are
the final symbols in orderOrd. Then, ordered resolution with
order Ord is equivalent to MP with partitionsP(Ord) and
graph G(Ord), where inference within each partition uses
ordered resolution with an order compatible withOrd(A).

Proof Sketch.To see that MP does not perform more resolu-
tions than ordered resolution with order≤A, we only need
to notice that every partition corresponds to abucketin the
ordered resolution algorithm. If MP resolvesC1, C2 on pred-
icateP , thenC1, C2 were together in some partitionj, and
were resolved on their highest predicate. Thus,C1, C2 will
also be resolved by ordered resolution with order≤A.

Proposition 5.3. PDO is sound and complete.

In our experimental evaluation, illustrated in Figure 2,
PDO made a strong showing. Its performance was compa-
rable with that of SOS for most queries; for a few queries,
PDO was up to two orders of magnitude more efficient than
SOS. Unsurprisingly, PDO invariably outperformed ordered
resolution with SNARK’s default ordering. PDO also outper-
formed vanilla MP, which by itself does not focus reasoning
at the local level. When MP is augmented with focused sup-
port (the MFS combination), PDO’s comparative advantage
largely disappears. In Section 7, we will see that the perfor-

mance of PDO can be enhanced even further by combining it
with other strategies.

6 A new restriction strategy: MFS resolution
MP operates at the global level to focus reasoning by restrict-
ing between-partition resolution and passing relevant results
toward the goal partition. However, MP has no impact on
local reasoning, that is, reasoning within partitions. In fact,
this is one of the strengths of MP: individual partitions may
employ heterogeneous reasoning methods, including special-
purpose reasoners optimized for particular domains. (As de-
scribed in Section 2.2, the global soundness and completeness
of MP follow from the soundness and completeness of the
reasoners used in each partition.) MP can thus be used to or-
chestrate collaborative reasoning between disparate systems,
provided that they share a common vocabulary. Neverthe-
less, the absence of a local strategy limits gains in efficiency.
In this section we exploit PBR to propose a new restriction
strategy,MFS resolution, that combines global MP with a lo-
cal strategy for focused sublanguage resolution.

With vanilla MP, all possible resolutions are performed
within a partition, but resolvents can be propagated to other
partitions only if they are in the outbound link language. We
propose a local resolution strategy,focused support, that takes
inspiration from strategies described by Slagle[17], SOL re-
striction[8], and SFK-resolution[7].

Definition 6.1 (Focused Support Restriction).Let T be a
clausal theory and letL be a designated subset ofL(T ). Ini-
tialize S to be the set of clauses inT that non-exhaustively
include symbols fromL. Two clauses may be resolved only if
one of them is inS and the resolved predicate is not inL. The



Query no strategy ordering SOS MP PDO MFS MP+SOS PDO+SOS MFS+SOS
Number of resolution steps

q1 29 19 28 20 11 16 16 11 16
v5 4,343 2,157 467 2,504 2,318 1,869 441 294 –
p5 3,575 1,948 598 1,999 826 673 585 348 350
p7 3,958 2,273 556 2,250 972 664 507 332 334
vn2 3,681 2,007 696 2,115 839 1,922 690 364 –
p1 4,182 2,410 729 2,413 1,029 1,131 653 391 –
v10 3,862 2,182 489 2,187 963 656 458 326 328
p4 – – 13,191 15,004 1,715 1,088 2,938 382 381
p3 – – 38,943 25,956 1,942 1,285 8,243 594 566

Runtime in seconds
q1 0.1 0.1 0.1 0.1 0.0 0.1 0.1 0.1 0.1
v5 31.9 10.2 1.7 27.0 12.1 9.8 4.6 1.2 –
p5 24.8 9.8 2.4 18.5 3.3 3.3 5.8 1.7 2.6
p7 26.5 11.6 2.2 21.4 3.9 3.2 5.4 1.6 1.7
vn2 25.1 9.5 2.7 12.4 3.5 13.3 2.7 1.7 –
p1 27.3 14.0 2.8 20.1 4.0 8.2 6.5 1.8 –
v10 26.4 10.8 2.9 13.7 3.7 3.4 2.0 1.5 1.6
p4 – – 217.5 454.3 9.6 7.1 32.0 1.7 1.8
p3 – – 1,191.0 1,067.4 8.8 7.9 100.8 2.1 2.1

Figure 3: Absolute performance metrics for several reasoning strategies: no strategy, ordered resolution using a default ordering,
set-of-support (SOS), vanilla MP, partition-derived ordering (PDO), MP with focused support (MFS), and combinations. For a
representative selection of queries, we show the number of resolution steps and the runtime required to answer the query using
each strategy. Blanks indicate timeouts.

resolvent is added toS.

When focused support is used as a local strategy in PBR,
clausal theoryT is an individual partitionAi from a parti-
tioned theory, andL is the output communication language
of that partitionAi.

Focused support is sound and complete for generating con-
sequences in the restricted vocabulary ofL. The proof relies
on the following lemma:

Lemma 6.2 ([17]). If P is an ordering of the predicate sym-
bols in a finite, unsatisfiable setU of clauses and ifM is
a model, then there is a semanticP -deduction of the empty
clause fromU .

Roughly, P-deduction resolves clausesC1, C2 on predicate
R only if C1 satisfiesM , C2 does not satisfyM , andR is the
largest among the predicates inC2, in some preset order.

Theorem 6.3. Focused support is sound and complete forL-
consequence generation (c.f. Definition 2.1).

Proof. Let A be a clausal theory andD ∈ L(L) a clause
such thatA |= D. We show that focused support eventually
generatesD as a result ofA. Assume thatA is consistent.
Thus, there is a modelM that satisfiesA. Let S be as in the
definition of the focused support strategy forL.

Lemma 6.2 says that there is aP -resolution of{} fromA
for the modelM and for every orderingP of the predicate
symbols. Since everythingD resolves with is already inS,
we can remove¬D from the resolution graph of this proof
and yieldD from the P -deduction ofA. This shows that
there is aP -deduction ofD fromA.

To show that there is a focused support deduction ofD
from A we still need to show that restricting resolution to
occur only on non-L literals does not prevent provingD.
ChooseP to be an order such that the symbols not inL come
before those inL. Sentences that are not inS have no sym-
bols fromL. When we resolve sentences fromS with those
not in S, then clearly the focused support condition holds.
We move all the clauses ofS that are completely inL(L)
(i.e., have no symbols outsideL) into a distinguished set,̄S.
Now, when we resolve two sentences fromS, both of them
have symbols that are not inL. Those symbols take prece-
dence over the ones fromL, so the focused support condition
is held. If the resolvent has only literals fromL, then we put
it in S̄. Otherwise, we put it inS.

Finally, assume that̄S 6|= D. Then,S̄∪{¬D} is consistent.
However,S̄∪S |= D (as shown above with theP -deduction),
soS̄ ∪S ∪{¬D} is not consistent. However, for sentences in
S, S̄ resolution with our semantic support condition is equiv-
alent to using ordered resolution with the order only specify-
ing that literals inL are resolved after literals not inL. Since
this is known to be complete forL-consequence finding[20;
7], we know thatS̄ |= D, and the proof is done.

MFS resolution is the combination of MP with the focused
support restriction within partitions. As discussed in Section
2.2, MP is sound and complete provided that each partition
uses a reasoning procedure that is sound and complete for
L-consequence finding. Since focused support is such a pro-
cedure, MFS resolution is also sound and complete:



Corollary 6.4 (Soundness and Completeness of MFS).
MP with the focused support restriction(MFS resolution)is
sound and complete.

The relative performance of MFS, as depicted in Figure 2,
is encouraging. For most queries, the performance of MFS
is comparable to that of SOS; and for a minority of queries
MFS is one or even two orders of magnitude more efficient.

We also examined the performance of MFS combined with
PDO (MFS+PDO), which was slightly superior to that of
MFS alone. However, unlike MFS, MFS+PDO is incom-
plete. Section 7 discusses the incomplete strategy MFS+SOS,
which exhibited even better performance.

Theorem 6.5 (Incompleteness of MFS+PDO).PDO with
the focused support restriction(MFS+PDO)is incomplete.

The incompleteness of MFS+PDO can be seen by noticing
that focused support is stricter than each of SOS and semantic
resolution. When we add PDO to this restriction, we elim-
inate resolutions with any clause that does not share pred-
icates with the clauses in the negated query. Interestingly,
MFS+PDO is very close to being complete, in the following
sense. A close examination of the proof of Theorem 6.3 re-
veals that we can apply a predicate order restriction to clauses
that do not contain predicates fromL and still maintain com-
pleteness forL-consequence finding. Thus, a simple modifi-
cation of MFS+PDO, allowing clauses in the focused support
of a partition to resolve on any non-L literal (without consid-
erations of ordering) is complete.

7 Combinations of strategies
Preceding sections examined three reasoning strategies that
are shown to be complete: MP, PDO, and MFS. In this
section we examine combinations of these strategies with
SOS. Though none of these combinations is complete, they
have some interesting theoretical properties, and in practice
showed the best performance of all strategies evaluated. Re-
sults of experimental evaluation are summarized in Figure 5.

To combine MP with SOS, we maintain a global set of sup-
port, which initially contains only the negated query, and we
allow resolution between two clauses only if they are in the
same partition and at least one of them is in the support. Be-
cause messages are sent only toward the goal partition in MP,
never away, resolution will occur only in the goal partition
unless we place the negated query in every partition whose
language includes it. In either case, SOS resolution will oc-
cur in partitions in which the negated query appears.

Clearly, the MP+SOS combination is not complete. Infor-
mation crucial to proving the query may reside in partitions
that do not participate in the computation. However, the algo-
rithm determines the clauses that are most relevant to proving
the query, in a simple and dynamic way. This sort of infer-
ence is used extensively with large KBs, where the selection
of the KB fragments needed to answer the query is done by
hand. Our automatic selection mechanism may suffice for
many applications, and our experiments bear this out.

The argument given for the incompleteness of MP+SOS
also shows that PDO+SOS is incomplete. This follows from
the relationship between MP and ordered resolution presented
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Figure 5: Performance comparison of three combinations of
reasoning strategies. In contrast to Figure 2, the vertical axis
is normalized relative to SOS.

in Theorem 5.2. When the PDO predicate ordering is de-
termined by the same partitioning being used in MP, then
PDO+SOS restricts resolution to only those clauses that in-
clude predicates that appear in the support. Despite its in-
completeness, PDO+SOS performed extremely well in exper-
imental evaluation. Incompleteness was never encountered
in practice, and the PDO+SOS combination answered every
query in fewer steps than any other strategy or combination
of strategies.

The combination of MFS with SOS (MFS+SOS) is incom-
plete as well, since MFS is a restricted form of MP, and
MP+SOS is incomplete. This incompleteness was revealed
in experimental testing, when the MFS+SOS combination
failed to answer a few queries. However, when it did not fail,
MFS+SOS was highly efficient, answering most queries in as
few steps as PDO+SOS.

8 Summary and related work
We propose, analyze, and experimentally evaluate a variety of
strategies that improve the efficiency of resolution-based FOL
theorem provers. We also propose an algorithm to automat-
ically induce predicate orderings for ordered resolution. Ex-
perimental results confirm significant performance improve-
ments using our techniques. This work makes promising
practical contributions to the theorem proving community,
presented in a manner designed to facilitate replication. (For
software and data, seehttp://www.ksl.stanford.
edu/projects/Partitioning .) Our results are par-
ticularly significant for query answering with commonsense
KBs, whose size, structure, and sometimes distributed nature
make them well-suited to our structure-based efficiency im-
provements.

There is a diversity of related work. Our algorithm to in-
duce a predicate ordering is the first to use graphical structure,
and in particular treewidth approximation algorithms, with
FOL resolution. Current automated approaches to ordering



predicates use properties of those predicates, such as their ar-
ity (e.g., the Knuth-Bendix method[10] when applied to a
uniform weight function, as in[21]), or generate an arbitrary
default ordering (e.g., lexical, as in[18]). Our work is most
significantly distinguished from work on CSPs (e.g.,[6]) and
propositional reasoning (e.g.,[5; 15]) in that we partition (and
subsequently order) a graph that includes all the nonlogical
symbols in the theory, whereas propositional methods order
nodes in a graph that correspond to propositional symbols and
ordering is often dynamic.

Our focused supportrestriction (on which MFS is based)
resembles SFK resolution[7] and SOL resolution[8] in its
computation of resolvents in a target language. However, in
contrast to SFK resolution, our target language is not closed
under subsumption. Further, in[7] there is no clear way to
determine a predicate ordering. MFS resolution combines fo-
cused support with predicate ordering imposed by MP, gen-
erating a significant improvement in performance.

Finally, there has been little experimental work studying
the behavior of theorem proving strategies on large KBs, and
none on commonsense KBs. The success rate of leading theo-
rem provers, such as SPASS, Otter, Setheo, Protein and 3TAP,
in formal verification problems with hundreds of axioms, is
shown in[14] to depend strongly on how good they are at
finding the few relevant axioms needed in the proofs. Our
work presents a principled method to successfully elicit such
a set of relevant axioms, the PDO+SOS strategy being most
notably successful.

In the future, we plan to continue our experimental eval-
uation with additional KBs. We also hope to demonstrate
the use of MP for collaborative theorem proving among dis-
tributed KBs and diverse (perhaps special-purpose) reasoners.
Finally, we note that PBR naturally enables parallelization
of the FOL theorem proving task. The benefits of partition-
driven parallelism can be evaluated with little further imple-
mentation effort.
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