Planning with Complex Actions

Sheila Mcllraith
Knowledge Systems Laboratory
Department of Computer Science
Gates Building, 2A wing
Stanford University
Stanford, CA 94305, USA.
sam@ksl.stanford.edu

Abstract

In this paper we address the problem of planning
with complex actions. We are maotivated by the
problem of automated Web service composition,
in which planning must be performed using pre-
defined complex actions or services as the build-
ing blocks of a plan. Planning with complex ac-
tions is also compelling in primitive action plan-
ning domains because it enables the exploitation
of reusable subplans, potentially improving the
efficiency of planning. This paper provides a
formal, semantically-justified account of how to
plan with complex actions using operator-based
planning techniques. A key contribution of this
work is the definition, characterization, and com-
putation of preconditions and conditional effects
for complex actions. While we use the situation
calculus and Golog to formalize the task and our
solution, the results in this paper are directly ap-
plicable to most action theories and planning sys-
tems. In particular, we have developed a PDDL-
equivalent compiler that computes the precon-
ditions and effects of complex actions, thus en-
abling wide-spread use of these results. Finally
we provide an approach to planning that enables
us to exploit deductive plan synthesis or alterna-
tively ADL planners to plan with complex ac-
tions. Our approach to complex-action planning
is sound and complete relative to the correspond-
ing primitive action domain.

1 Introduction

Given a description of an initial state, a goal state, and a
set of actions, the planning task is to generate a sequence
of actions that, when performed starting in the initial state,
will terminate in a goal state. Typically, actions are prim-
itive and are described in terms of their precondition, and

Ronald Fadel
Knowledge Systems Laboratory
Department of Computer Science
Gates Building, 2A wing
Stanford University
Stanford, CA 94305, USA.
rfadel@ksl.stanford.edu

(conditional) effects. Our interest is in planning with com-
plex actions as the building blocks for a plan. Complex ac-
tions are actions composed of primitive actions using typ-
ical programming language constructs. E.g.,complex ac-
tions move(obj,orig,dest) and goToAirpt(loc) are defined as:

move(obj,orig,dest) =! pickup(obj,orig):putdown(obj,dest)
goToAirpt(loc) = if loc=Univ then shuttle(Univ,PA);
train(PA,MB);shuttle(MB,SFO) €l se taxi(loc,SFO)

Our primary motivation for investigating complex action
planning is to automate Web service composition (e.g.,
[13]). Web services are self-contained Web-accessible
computer programs, such as the airline ticket service at
www.ual.com, or the weather service at www.weather.com.
These services can be conceived as complex actions.
Consider ual.com’s buyAirTicket(Z) service. This service
can be described as the complex action locateFlight(z);
if Available(Z) A OKPrice(Z) then buyAirTicket(Z);...>. The
task of automated Web service composition is to au-
tomatically sequence together Web services such as
buyAirTicket(Z) or getWeather(3) into a composition that
achieves some user-defined objectives. The task of auto-
mated Web service composition is, by necessity, a problem
of planning with complex actions. But how do we repre-
sent these complex actions (Web services) and how do we
plan with them?

What makes planning with complex actions difficult is that
the traditional characterization of actions as operators with
preconditions and effects does not apply, making operator-
based planning techniques such as Blackbox, FF, Graph-
Plan, BDDPIan, etc., inapplicable, at least at face value.
In this paper we provide a formal, semantically-justified
account of how to characterize, represent and precompile
the preconditions and effects of complex actions, such as
buyAirTicket(z), under a frame assumption [16]. This en-
ables us to treat complex actions such as buyAirTicket(z)
as planning operators and to apply standard planning tech-

IDenotes “defined as.”
2Example is simplified for illustration purposes.

niques to planning with complex actions. Planning results
in a plan in terms of complex actions from which a plan in
terms of primitive actions is easily expanded, if desired?.

A secondary motivation for this work is to improve the ef-
ficiency of planning by representing useful (conditional)
plan segments as complex actions. As we show, our ap-
proach to planning with complex actions can dramatically
improve the efficiency of plan generation by reducing the
search space size and the length of a plan.

The idea of planning with some form of abstraction or ag-
gregation is not new, and there has been a variety of work
in this area including ABStrips (e.g., [17]), planning with
macro-operators (e.g., [11] and [6]), and most notably HTN
planning (e.g., [5]). Our work is fundamentally different
from these approaches, and in particular from HTN plan-
ning, both in terms of i) the representation of complex ac-
tions (aka HTN non-primitive tasks), and ii) the method of
planning. In this paper we precompile complex actions into
planning operators described in terms of preconditions and
effects that embody all possible evolutions of the complex
action. In contrast, HTN planners do not use a declara-
tive representation of the preconditions and effects of tasks.
Rather, methods are associated with tasks, and tasks are
pre-arranged into a network of compositions, without the
full programming constructs we use to describe complex
actions [18]. Further, HTN planners operate by search-
ing for plans that accomplish task networks using task de-
composition and conflict resolution. In contrast, having
precompiled our complex actions, we can apply standard
operator-based planning techniques to generate a plan, fol-
lowed by plan expansion.

Our work is somewhat similar in methodology to [2],
which proposes to encode planning constraints by compil-
ing the constraints together with the original planning prob-
lem into a new unconstrained problem. The resultant plan-
ning problem can be solved using classical planning meth-
ods, and the resultant plan decompiled to provide a solution
in the original problem domain. The general methodology
of compilation and subsequent expansion is similar to what
we propose. Nevertheless, the general problem is different.
We are compiling complex actions into new plan operators.
These complex actions represent Web services that we wish
to reason with as black-box components. The constraints
used in [2] are constraints upon the domain, and thus cap-
ture different types of planning information than our more
procedural complex actions. Further the formal treatment
and results are different.

We also contrast our work to the use of Golog (e.g., [12])
in planning. In this paper we use Golog as the formal lan-
guage to describe complex actions, however the role these

3For many Web service applications, expansion is not relevant.

actions play in planning is very different. Golog complex
actions are traditionally used to specify non-deterministic
programs. In combination with deductive plan synthesis
[7], a Golog program expands to a situation calculus for-
mula which constrains the search space for a plan. This
is similar to the role of domain-specific knowledge, as ex-
emplified by systems such TALPIlanner [4], BDDPIan [10]
and ASP [18]. In all these systems, complex actions con-
strain the search space, but are not used as operators in plan
construction.

The research presented in this paper is of both theoretical
and practical significance. From a theoretical standpoint,
we provide a semantically-justified means of characteriz-
ing the preconditions, effects and successor situations of
complex actions under a frame assumption, that embodies
all possible trajectories of a complex action. This enables
us to not only use operator-based planning methods to plan
with complex actions, but also to prove formal properties
of our approach. In particular, we prove that our approach
to planning is sound and complete relative to correspond-
ing primitive action domains. From a practical perspective,
analysis shows a significant increase in the efficiency of
planning with complex actions, relative to primitive action
planning. We illustrate potential speedup with some ex-
periments on the briefcase domain, using the FF planner
([9]). Finally, this paper provides a principled approach to
automating Web service composition, that has far-reaching
application to automated component-based software com-
position

2 Background: Situation Calculus & Golog

We use the situation calculus and Golog to formalize the
task and our solution. The expressive power and formal
semantics of the situation calculus provide the theoretical
foundations for our work, and for the later translation to
PDDL.

Briefly, the situation calculus is a logical language for spec-
ifying and reasoning about dynamical systems [16]. In the
situation calculus, the state of the world is expressed in
terms of functions and relations (fluents) relativized to a
particular situation s, e.g., F(Z, s). A situation s is a his-
tory of the primitive actions, e.g., a, performed from an ini-
tial, distinguished situation So. The function do(a, s) maps
a situation and an action into a new situation. A situation
calculus theory D comprises the following sets of axioms:

o domain independent foundational axioms, X.
e successor state axioms, Dgg, one for every fluent F'.

e action precondition axioms, D,,,, one for every action a
in the domain,which define Poss(a, s).

¢ axioms describing the initial situation, Dg,.

e unique names axioms for actions, D4 -

Successor state axioms, originally proposed [15] to address
the frame problem, are created by compiling effect axioms
into axioms of this form* F(& do(a,s)) = ®x(Z,a,s)
where &7 (%, a,8) = Y4 (%,a,8) V (F(Z,8) A 5 (&, a, s)).
(See [16, pg.28-35] for details.)

Example: In the interest of simplicity, we illustrate con-
cepts in this paper in terms of an action theory with three
actions pickup(z), putdown(z) & drop(z), and three fluents
holding(z), broken(z) & hot(zx). (1)-(3) comprise D,,, and
(4)-(6) comprise Dss°.

Poss(pickup(z),s) = —holding(z,s) ®
Poss(drop(z),s) = holding(z,s) (2)
Poss(putdown(z),s) = holding(z,s) 3)

holding(z,do(a,s)) = a = pickup(z)V
holding(z, s) A a # putdown(z) A a # drop(z) (4)
broken(x,do(a,s)) = a = drop(z)V broken(z,s)5)
hot(z,do(a, s)) hot(z, s) (6)

Golog (e.g., [12, 16, 3]) is a high-level logic programming
language for the specification and execution of complex ac-
tions in dynamical domains. It builds on top of the situa-
tion calculus by providing extralogical constructs for as-
sembling primitive situation calculus actions, into complex
actions 4. [3] shows how these complex actions can be con-
sidered to be first-class objects in the language. Do(4, s, s)
is an abbreviation that macro-expands into a situation cal-
culus formula, as defined inductively below. The formula
says that it is possible to reach s’ from s by executing a
sequence of actions specified by ¢ [16].

Prim. action: Do(a, s,s') = Poss(a,s) A s’ = do(a[s], s)
Test: Do(¢?,8,8') = P[s]As=34

Seq.: Do(d1;d2,5,5") = 3s"”.Do(81,s,8") A Do(82,5",s")
Nondet. act.: Do(81 | 02, 8,8") = Do(d1,5,5") V Do(d2,s,5")
Nondet. arg.: Do((wz)d(z), s, s’) = 3z.Do(d(x), s, s")

The construct, if ¢ then &; else §» endlf is defined as
[#7;01] | [~¢#7;62]. The Golog language also includes
nondeterministic iteration, §*, which executes § zero or
more times. The while-loop construct,while ¢ do § end-
While is defined in terms of nondeterministic iteration as
[¢? : &]*;—¢?. For now, we exclude nondeterministic iter-
ation, and while-loops, whose macro-expansions are sec-
ond order, and which may be non-terminating. Instead,
we define a bounded notion of while, while x(¢) §, which
is guaranteed to terminate, and is commonly used in Web
services. while(¢) & executes like the original while-loop
except that it loops at most k times, even if ¢ still holds af-

ter the k*" iteration. Formally, while (¢) & corresponds to
k conditional branchings as follow:

while1(4) § = if ¢ then é endIf 7
while(¢) § = if ¢ then [§; while ;_1(¢)d] endIf (8)
“For space, we will only consider relational fluents here.

®Notation: formulae are universally quantified with maximum
scope unless noted. Action arguments suppressed.

A deterministic version of the choice construct (z') is de-
fined in a longer paper. These constructs are used to specify
complex actions such as buyAirTicket(Z) or goToAirpt(loc).
Traditional usage of Golog is to apply deductive plan syn-
thesis to find a sequence of actions @ = [aa,...,a,] that
realizes a Golog program, § relative to domain theory,
D. le, D | Do(4,S0,do(d, So)). Do(8,So,do(a, So)) de-
notes that the Golog program 4, starting execution in S
will legally terminate in situation do(a, So), where do(a, So)
is an abbreviation for do(a, do(an—1, - - . ,do(a1, So))).

3 Problem: Planning with Complex Actions

Given a set of primitive actions, .4 together with an associ-
ated set of complex actions, A 4, our objective is to use an
operator-based planner to compose complex and primitive
actions to achieve some goal. To do this, we must charac-
terize the preconditions, effects, and the situation resulting
from performing a complex action.

3.1 Preconditions, Effects, Resulting Situations

For analysis, our actions .4 are axiomatized in a situation
calculus action theory D, and our complex actions A 4 are
described in Golog. For now, we restrict our focus to ter-
minating complex actions described in Section 2.

Resulting Situation: We wish to characterize the situation
resulting from performing the complex action §. Observe
that many complex actions are nondeterministic. They may
have several different executions, each terminating in a dif-
ferent situation. As such, we can’t define a function anal-
ogous to do(a, s). Instead, we introduce the abbreviation
docq(8,s) to denote a situation resulting from performing
complex action § in s. do.q(d,s) ranges over the set of exe-
cutable situations and corresponds to a so-called ghost sit-
uation [16, pg.52-53], when ¢ is not physically realizable.
The interpretation of do..(8,s) is constrained by the fol-
lowing axiom, which is added to D producing theory D.,.

For all complex actions § and situations s:

Do(4, 3,doca(d,8)) V
(=3s".Do(4, s, 8") A mexecutable(doc,(d,5))) (9)

where exzecutable(s) denotes a situation, all of whose ac-
tions in the situation action history are Poss-ible [16]. I.e.,
executable(s) = (Va,s*).do(a,s*) C 's — Poss(a,s*) It
follows that:

Deq = Vs.executable(s) A Do(d, s,docq (8, s)) —
executable(docq(d, s)) (10)

8if -then -endlf is the obvious variant of if -then -else -end|If.
"The order relation on situations in the situation tree [16].

Preconditions: Poss..(d,s) denotes the preconditions of
complex action é. Intuitively, the preconditions of a com-
plex action are the preconditions of all the actions that make
up the execution of 6. E.g., for a;; a2,

Posscqa(ar;az, s) = Poss(a1, s) A Poss(az,do(a, s)).
This is captured tidily in the inductive definition of Do. We
define the precondition of complex action § , Posscq(d, s)
as:

Possca(d, s) = 5(s) (11)

where II;(s) = 3s’.Do(d, s, s’). These are intermediate
action precondition axioms.

Proposition 1 (Properties of Poss.q (6, s))
These axioms follow from D, U (11).

Posscq(0,8) =
executable(s) A Posscq(d, 8)

Do(8,8,docq (4, 8))
executable(docq (4, 8))

Effects. Intuitively the effects of a complex action are
the effects of each action in the execution of §, modulo
the effects of subsequent actions. We assume that fluents
whose truth value is not changed by an action, persist.
F(Z,docq(8,5)) denotes that fluent F' is true in the situa-
tion resulting from performing complex action § in s. We
capture the effects of complex actions as successor state ax-
ioms. Since all but trivial complex actions involve multiple
intermediate situations, strictly speaking, we cannot define
successor state axioms for complex actions. Rather, we de-
fine the notion of a pseudo-successor state axiom. Here we
define intermediate pseudo-successor state axioms, making
them “Markovian” in the section to follow via regression.

P053co(8,8) = [F(F, doca (0, 5)) = ®%(T, d, s)], where,
@5 (%,0,s) =35 .Do(8,5,8") NF(&,8) N s' = doca(d,5). (12)

We need the s’ = do.. (4, s) since some complex actions
are nondeterministic. This enables us to identify the partic-
ular sequence of actions in the instantiation of the complex
action that leads to the truth/falsity of the fluent F.

3.2 Pseudo-Markovian Complex Actions

In order to plan with complex actions as operators, we must
make our characterization pseudo-markovian. That is, we
wish to characterize the preconditions strictly in terms of
the situation in which the complex action execution is ini-
tiated, and the effects, strictly in terms of the initiating
and terminating situations of the complex action. To do
so we appeal to regression rewriting [19], regressing over
the successor state axioms for the primitive actions in our
domain theory D. Unfortunately, the formulae over which
we need to regress are not, by definition, regressable us-
ing R [16, pg.62], since we are not regressing to Sy, and
since the macro-expansion of Do(d, s, s') does not yield a
nested representation of situations. Since regression is a

syntactic rewriting, this is problematic. We define a suit-
able (small) variant of Reiter’s regression operator, R, that
first rewrites the macro-expansion of Do so that situations
are expressed as nested do’s, and that enables regression to
an arbitrary situation s, rather than to So. We define the
preconditions and effects of § in terms of a set of action
precondition axioms, Deqqp, Of the form of (13) and a set
of pseudo-successor state axioms, D..ss, of the form of
(15).

Preconditions:

Action Precondition AXioms, Deaap, ONe forevery 6 € A:

Po0sscq (6, 8) = 15(s) (13)

where TIs(s) = from

R*[3s’.Do(4, 5,5)].

Example (continued): Consider the complex action
pickup(z); if hot(x) then drop(z) else putdown(z) endlf,
which we denote as 4§, for parsimony. Its action precondi-
tion axiom is defined as follows.

R[5 (s)] 1), e

Po088cq(01,8) =
R°[3s',s". Poss(pickup(z),s) A s" = do(pickup(zx), s) A
((hot(x,s") A Poss(drop(z),s") A s' = do(drop(z),s"))
V (=hot(z,s") A Poss(putdown(z), s) A

s’ = do(putdown(x), s")))] (14)

Following our regression, Poss., (81, s) = —holding(z, s).

Successor State Axioms: Observe that while a situation
calculus axiomatization has one successor state axiom for
every fluent, we currently define one pseudo-successor
state axiom for every fluent-complex action pair.

Pseudo-Successor State Axioms, De.ss, one for every
fluent-complex action pair:

Possca(0,s) = [F(&,doca (6, 5)) = Pr (L, 9, s)] (15)

where ®r(&,6,5) = R°[®5(&,6,5)], R°[®F(F,6,5)] =

R*[3s'.Do(8,s,5') A F(F,5") Adoca(d,8) = §']

Example (continued): The pseudo-successor state axiom

for fluent broken(z, docq (41, 8)) is:

Po0ssca(d1,8) = [broken(z,docq(d1,8)) =
R°[3s, s".Poss(pickup(z),s) A s = do(pickup(z), s) A
((hot(z,s") A Poss(drop(z),s") A s' = do(drop(z),s"))
V (—hot(z, s") A Poss(putdown(z), s) A
s' = do(putdown(z),s"))) A
broken(z,s') A doce(81,8) = 5] (16)

Applying our R® regression operator, (16) becomes:

Possca(01,8) = (broken(z,docq (1, 8)) =
—holding(z, s) A [hot(z,s) A
docq (01, 8) = do(drop(x),do(pickup(x), s))
V —hot(z, s) A broken(z, s) A
doca(d1,8) = do(putdown(x),do(pickup(x), s))])

Though the computation looks complex, regression rewrit-
ing is a powerful tool and the final pseudo-successor state
axiom is simple. Observe that a pseudo-successor state ax-
iom not only defines the conditions under which fluent F is
true after performing complex action 4, but it also defines
the action trajectory upon which the truth of F is predi-
cated. This is most valuable with nondeterministic actions.

Note that when the definition of Poss..(d,s) and the in-
termediate pseudo-successor state axiom, ((11) and (12),
respectively) are conjoined to D.,, they entail the complex
action precondition axioms and the complex action pseudo-
successor state axioms.

Proposition 2 D, U (11) U (12) | Deaap U Deass

Effect axioms. While we have encoded the effects of our
complex actions, together with a solution to the frame prob-
lem in terms of pseudo-successor state axioms, many plan-
ners use effect axioms, rather than successor state axioms,
solving the frame problem in the procedural code of their
planner, rather than representationally. Hence, for comple-
tion we define effect axioms for complex actions, Deqe -

Effect AxXioms D.,.s, Up to one positive effect axiom and
one negative effect axiom for every fluent - complex action
pair, where the execution of § can potentially change the
truth value of fluent F € F:

P055ca(d, 8) A eh (&, s) — F(Z,doca(T, 0, 3)) a7
Possca(0, 8) A €p(Z, 8) = —~F(Z, doca(Z, d, 5)) (18)

Proposition 3 (Effect Axioms Entailment)

DU Dcaap UDeass |= Dcaef

I.e., the positive and negative complex action effect axioms
are entailed by the pseudo-successor state axioms. Hence,
we can easily extract effect axioms for complex actions
from our pseudo-successor state axioms.

In this section we have provided a representation of the
preconditions, successor state axioms and effects of com-
plex actions under a frame assumption. They are char-
acterized in terms of Degap, and De,ss, and follow from
the semantically-justified account of actions in the situation
calculus. In the section to follow, we show how these rep-
resentations of complex actions lead to a simple approach
to planning with complex actions.

4 Complex Actions Planning

Given our operator-based characterization of complex ac-
tions in terms of their preconditions and effects, we turn to
the problem of operator-based planning with these complex
actions. For now, we restrict our consideration to the sub-
set of complex actions that are deterministic, I.e., primitive

actions a, sequences di; 82, conditional if ¢ then §; else d»
endIf, and while(4) &, plus others described in a longer

paper.

Following the problem statement in Section 3, our ap-
proach is to take as input [74,A4] — an action theory
Ta and a set of complex actions A 4, both defined in terms
of actions in 4. Following the results in the previous sec-
tion, we COMPILE [7.4,A4] into a new theory T4, in
terms of actions A’ (generally A C A"), where each com-
plex action in A 4 corresponds to a new primitive action
in A’. Next, PLANning is performed in 74 to produce a
plan in terms of A’. To extract a plan in terms of the primi-
tive actions, we REWRITE the theory, replacing primitive
actions from A" by their corresponding complex actions,
A4 . Finally, using 74 , the resulting sequence of primitive
actions is EXPANDed from the plan in A’ into a plan in
terms of A.

Next, we show how this approach is realized, first using the
situation calculus and deductive plan synthesis, and then
using an arbitrary operator-based planning system that al-
lows conditional effects of actions in PDDL.

4.1 Deductive Plan Synthesis and Expansion

The following is the theory with primitive actions 74.
Ta= X UDqap UDss UDyna UDs,.

(1) COMPIL E[TA,AA] — Tar:

o Define Deqap and Deyss @S described in Section 3.2.
 D,, « Deaap UDap. Dgs « Deass. A — A.

e V6; € A,: Create a primitive action a;. Substitute “a;”
for “6;” in D, ,& Dgg. A' + A U {a;}.

e Dyg + MERGE(Djg, Dss). Update Dy, 10 D,y -

COMPILE produces a situation calculus theory in actions
A’ , comprising all the original primitive actions A plus
new primitive actions corresponding to each complex ac-
tionin A4. Tu= £ UD,, UDgs UD,,, UDs,

(2) PLAN[T 4/ ,goal] — plan[A’]: Given a goal formula,
Goal(s) in the language of 74, planning can be achieved
via deductive plan synthesis in 74,. Following [7, 16], T4+
3s.Goal(s). From the binding of s, we can read off a plan
[a1-..,a,],a; € A, aplanin 4A’. [16] describes a variety
of situation calculus planners implemented in Prolog.

(3) REWRITE[pIan[A’]] — plan[A4,A4]: Rewrite the
plan [a; .. an],a e A asa plan [a1,...,ax,] in (A4,A4),
where a; = a;, for all a € A, otherwise «; equals the
corresponding 5 from the compllatlon in Step (1).

(4) EXPANDI[plan[A,A 4],74] — plan[.A]: Use our same
deductive machinery to extract a final plan in A from
our plan in (A4,A.4), by expanding the complex actions in
[@1,...,a,]. We do so by trivially rewriting our plan as a

sequence of complex actions in Golog éc = ai1;az;. .. ;ax.
A Golog interpreter, written in Prolog will return a
binding for situation s’ where T4+ (3s').Do(éc,s,s’) A
Goal(s'). From the situation s’ we can read off a plan
[a1-..,am],a; € A.

Note that every plan our approach finds is also a plan in the
original primitive action theory, and vice-versa.

Theorem 1 74 and 7, are defined as in Section 4.1. Let
Goal(s) be a formula uniform in s such that Goal(s) €
L(TA)NL(T4r), the intersection of the languages of 74 and
T respectively. For all ground situations ¢’ of Tr, Ta =
executable(c’) A Goal(c') iff there exists a ground situ-
ation o of T4 such that Tal= executable(c) A Goal(o)
and EXPAND[REWRITE[seq(c')],A4] = seq(c), where
seq(do(a, s)) = d.

Proof Sketch: First, by construction of 7y,
L(Ta) C L(Ta), and, for any action a in 74, T4 contains
the successor state and action precondition axioms of a in
Ta. It follows that, for any term s which denotes a situation
in the language of 74, Taf= Goal(s) A executable(s)
iff 7o Goal(s) A executable(s). Second, since
in any situation s, the expansion of an executable
complex action is also executable and has the same
effects, for any executable complex plan [a],d), ..., a})]
in Tu, EXPAND[REWRITE[a}, ab, ..., al],Aal=
[a1, a2, ...,am,] IS an executable plan in T4, and
do([a}, ab, ...,al],So) and do([a1,as, ..., an],So) are
the same states in 74 (i.e. fluents has the same truth
value in both situations). Finally, by definition of
the REWRITE and EXPAND steps, ai,as,...,a,, are
actions in T4. It follows that do([a1, a2, ..., am], So)
is a term in the language of 74 which denotes a
situation, and thus 74 Goal(do([a:...am],So)) A
ezxecutable(do([a1...am],So)) if and only if TupE
Goal(do([a}...al], So)) A executable(do([a]...al,], So)).

Planning in 74 is sound and complete with respect to plan-
ning in 74. Thus our approach to complex action planning
via transformation of the theory is well-founded.

4.2 Exploiting Existing Oper ator-Based Planners

Our approach is not limited to planners realized in the sit-
uation calculus. Most popular planners don’t use a suc-
cessor state axioms representation of the effects of actions.
E.qg., all of the planners that participate in the AIPS Plan-
ning competition use PDDL as an initial specification of
the action theory. In this section we show how to exploit an
arbitrary operator-based planner that accepts PDDL plan-
ning domains with conditional effects [14], in order to plan
with complex actions.

(1) COMPILE[T4,A4]: Rather than employing succes-

sor state axioms, PDDL describes the effects of actions
in terms of (conditional) effects without a solution to the
frame problem. Section 3.2 provides a semantic justifica-
tion for an intuitive algorithm that compiles a PDDL rep-
resentation of the preconditions and effects of actions in
Ta, together with complex actions A 4 into a new PDDL
representation of preconditions and effects in 74/, without
going through the intermediate stage of creating successor
state axioms. (We have such an algorithm, but space pre-
cluded its inclusion in this paper.) Intuitively, the effects
of a complex action are the effects of each action in the
execution of §, modulo subsequent effects.

(2) PLAN[T,4 ,goal]: Given a compiled PDDL represen-
tation 7, we can generate a plan with any planner that
accepts PDDL with conditional effects. (We used FF [9].)

(3) REWRITE & (4) EXPAND: We can use STEP (3)-
(4) from Section 4.1. Alternatively, we can write a (fairly
straightforward) algorithm to expand the final planin A4’ .
For maximal efficiency, we would cache the conditions that
uniquely determine the expansion of each complex action
in a situation.

5 Elaborations on Complex Action Planning

In this section we examine elaborations on complex action
planning. In particular, we examine the conditions under-
which adding complex actions to a theory causes other ac-
tions to be redundant and thus removable. Removing re-
dundant actions is desirable because it reduces the plan
search space. In an extended version of this paper, we dis-
cuss concurrency in complex action planning.

5.1 Removing Weaker Actions

When a complex action §; is compiled into a primitive ac-
tion theory as a new primitive action a1, another primitive
action, a» may become redundant in the sense that in any
situation s, if a» is possible, a; is also possible and has ex-
actly the same effects as a». More generally, we define the
notion that primitive action a; is stronger than primitive ac-
tion az, a1 > a2 (and conversely that a, is weaker than a;)
as follows:
a1 > a2 ¢ [Poss(az, s) —
Poss(a1, s) A SS(do(ay, s),do(az,s))] (19)

where SS(s, s') is an abbreviation for the first-order for-
mulae that is true iff situations s and s’ have the same state.
The relation > is a preorder (it is reflexive and transitive).
It follows that for any situation calculus theory T and goal
formula G(s), T | 3s.G(s) iff T’ |= 35.G(s), where T is T
with all weaker actions removed.

Note that removal of weaker primitive actions may result in
removal of the optimal plan. In particular, if a; > a2 and a4

is a compiled complex action that can expand into multiple
primitive actions, then by removing as, we may lose the
optimal plan with respect to the number of primitive actions
in our initial domain. Also note that the notion of stronger
actions does not capture all the conditions underwhich an
action is redundant. In particular, a> may be conditionally
redundant, or it might be redundant relative to a; in some
situation, and redundant relative to a3 in others.

Example: Let a1 and a» be primitive actions in 74,
let asachieve the preconditions for a,, and let Poss(a1)
be the situation suppressed expression [16, pg.112] for
Poss(a1,s). Define complex action é3 as if =Poss(a1)
then a, endlf ; a;. If we compile a1, a2 and 6 in 74 into
primitive actions a}, a5 and aj in 74, following Section
4.1, then it follows that a} > a’.

5.2 Irrelevant Actionswith Respect to a Goal

Let G(s) be a goal predicate that is true iff s satisifies the
goal formula. If the direct effect of an action a can never
make G(s) true, and if a cannot directly achieve the pre-
conditions of any of the actions, then a is irrelevant with
respect to goal predicate G(s) and can be removed. For-
mally, given a primitive action a, and goal predicate G, we
consider a; as G-irrelevant in 7 if and only if, for a» rang-
ing over all actions in 7" except a1, it follows from T that:

executable(do(ai,s)) < [(G(do(a1,s)) = G(s)) A
(Poss(az,do(a1,s)) = Poss(az,s))] (20)

If a1 is G-irrelevant, then a; will not be in any optimal
successful plan to achieve G, and can be removed from the
set of actions when planning to achieve G.

Example (continued): In the previous example, we
showed that o} could be removed from 7. It then fol-
lows that, a% will never be needed to make a} Poss-ible.
If a5 can never directly achieve the preconditions for any
other actions in the theory, then for all goal predicate G(s)
which are not among the effects of a5, a5 is G-irrelevant.

6 Web Service Composition

The primary motivation for our work was to be able to
compose Web services using operator-based planning tech-
niques. With the results of Sections 3 and 4, we have ad-
dressed a fundamental barrier to automated Web service
composition. Service providers such as Amazon or United
Airlines will describe their Web services (Web-accessible
programs) as processes. In our vision of the Semantic
Web, this will be done using the DAML+OIL Web ser-
vice ontology, DAML-S [1], whose process description
constructs are similar to Golog. (The relationship between
DAML-S and the situation calculus is well-defined and has

been used to define the semantics of DAML-S.) To pro-
duce black-box or compiled representations of Web ser-
vices for automated composition, we can exploit the com-
pilation techniques described in this paper. Using them, we
compile process-oriented program descriptions of services
into black-box component descriptions. Once Web services
process descriptions have been compiled, we can use stan-
dard operator-based planning techniques to automatically
compose Web services.

7 Efficiency of Complex Action Planning

A secondary motivation for our work was to potentially im-
prove the efficiency of planning (e.g., [11, 8]) through our
operator-based approach to complex action planning. We
restrict our attention to complex action planning with the
deterministic actions listed in Sect. 4. Compiling a com-
plex action ¢ is polynomial in the number of primitive ac-
tion occurrences in its definition. Note that this step can be
performed offline, and is amortized over multiple planning
runs. The expansion step is itself linear in the length of the
plan, and in the number of branchings in the complex ac-
tion definition. Of no surprise, plan generation dominates
the computational cost. In particular: i) complex action
operators tend to have more complex preconditions and ef-
fects than primitive actions, and ii) the size of the search
space will be changed. However, i) causes only a linear
slowdown and thus, the crucial point is ii).

Although the following analysis can be adapted to almost
any classical planner, for simplicity of the argument, let’s
consider a breadth-first search forward planner. Given n
ground actions, if the shortest successful plan is of length
I, the size of the primitive action domain search space is
O(nt). Adding d ground complex actions yields n’ = n+d
ground actions in the compiled domain. [8] claims that
adding actions that correspond to compositions of other ac-
tions will yield a larger search space. We identify condi-
tions under which this is false.

Suppose the use of complex actions results in success-
ful plans of length I/k, & > 1. One way to ensure
this is by requiring complex actions to correspond to non-
overlapping subplans in the shortest plan. In this case, the
number of states visited to find a plan of length I/k will
be O(n''/*) and the difference between the search spaces
will be O(n! — n'V/*). If (n* — n') has a strictly positive
lower bound for any problem, the new search space will
be exponentially smaller than the old, as problem complex-
ity increases. Informally, complex action planning reduces
the planning search space when the complex actions signif-
icantly shorten the smallest successful plan relative to the
increase they cause in the breadth of the search space.

Finally, in addition to this potential search space reduction,

some complex actions remove conflicts between the goals.
This results in less backtrackings and enables the use of
very efficient hill-climbing techniques (e.g., [9]).

8 Experimental Results

The techniques of Section 4.2 were implemented using
the operator-based breadth-first search forward planner, FF
[9]. FF supports conditional effects and uses its “enforced
hill-climbing” whenever possible. We tested our approach
on the ADL BRIEFCASE domain (BCD) 8. This domain
moves objects between locations using a briefcase. Three
experiments were run on multiple instances of the problem,
varying numbers of locations (#1) and portables (#p)°.

The first experiment was simply BCD alone. Note that FF
struggles as we increase (#p) and (#l). The next experi-
ments involved the addition of the complex action Move-
object. Move-object MO(loclnit, locObj, Obj, locFinal) takes
as input the location of the briefcase loclinit, an object Obj,
its location locObj, and a destination locFinal. It moves the
briefcase to locObj, puts the object in the briefcase, moves
the briefcase to locFinal, and removes Obj. MO is not a sub-
plan of the shortest plan, so we would not necessarily ex-
pect it to do well. Further, it does not reduce the search
space as it does not shorten the successful plan enough
to compensate for the number of ground complex actions
((n*—n') is not positive). Nevertheless, adding the complex
action move-object (BCD+MO) turns on FF’s hill-climbing
techniques, which reduce the number of nodes considered.

Finally, we designed a complex action that does correspond
to subplans of the shortest successful plan and thus reduces
the search space. The complex action LOC(loc-bc, loc),
takes as input the location of the briefcase loc-bc, moves
the briefcase to location loc, removes all the objects in the
briefcase that should be at loc, and puts all other objects
at loc in the briefcase. The goal defines where an object
should be. To encode this complex action in PDDL, the ac-
tion must know the goal at the time it executes. Hence, we
added a persisting predicate ShouldBeAt(Obj, Loc) to the
domain. This predicate always has the same values as the
At(Obj, Loc) predicate in the goal statement. This complex
action reduces the search space (k ~ #p/#l,d ~ #I) and
allows the use of hill-climbing techniques. Of no surprise,
(BCD+LOC) presented the best results of all three experi-
ment runs.

#1:5, #p:20 #1:6, #p:30 #I.7, #p:42
BCD 5549 (1.39) | 201006 (2261) | ? (> 40h)
BCD+MO | 859 (11.83) | 2345 (201.47) | 5195 (2211)
BCD+LOC | 75 (.08) 139 (.27) 260 (.85)

Number of nodes (and time of run in seconds).

8http://rakaposhi.eas.asu.edu/domain-syntax.html
®Experiments run on Sun Sparc v9, 2x 750GHz, 4GB of mem.

9 Discussion and Summary

The work in this paper was motivated by the problem of
automating Web service composition. In particular, we
posed the problem of composing Web services such as
UAL’s buyAirTicket(Z) or CNN’s getWeather(3) in order to
achieve a user-defined goal. These Web services are de-
scribable as simple programs, using typical programming
language constructs. We conceived this task as the problem
of planning with complex actions, with the restriction that
the complex actions had to be the primitive building blocks
of a plan. Consequently, we posed the problem of how to
represent and plan with complex actions, using operator-
based planning techniques. To this end, we embarked upon
a theoretical analysis of the problem of how to represent
complex actions as operators. The situation calculus pro-
vided the formal foundation for our work, enabling us to
provide a formal definition of the preconditions, successor
state axioms, and effects of complex actions under a frame
assumption.

With this representational problem addressed we turned to
the practical matter of how to plan. We proposed a method
of planning that produced sound and complete plans rel-
ative to a corresponding primitive action domain. We
showed how to use our results to plan via deductive plan
synthesis as well as using an arbitrary operator-based plan-
ning system that accepts ADL as input.

We are currently incorporating these representation and
compilation results into DAML-S [1], an Al-inspired
markup language ontology for Web services. We’re also
incorporating the results into ongoing Web service compo-
sition work [13].

Finally, the second mativation for this work was to poten-
tially improve either the efficiency of planning or the qual-
ity of the plans generated, by exploiting complex actions
that capture some preferred subplans. We have shown how,
in some domains, using relevant complex actions will re-
sult in a dramatic speedup of the planning process. We dis-
cussed the impact of our approach on the planning search
space and illustrated predicted speedup with experiments.

Acknowledgements

We would like to thank Srini Narayanan for conversa-
tions related to this work. We gratefully acknowledge
the financial support of the US Defense Advanced Re-
search Projects Agency DARPA Agent Markup Language
(DAML) Program #F30602-00-2-0579-P00001.

References

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

A. Ankolekar, M. Burstein, J. Hobbs, O. Lassila,
D. Martin, S. Mcllraith, S. Narayanan, M. Paolucci,
T. Payne, K. Sycara, and H. Zeng. Daml-s: Seman-
tic markup for web services. In Proc. International
Semantic Web Working Symposium (SWWS), 2001.

M. Baioletti, S. Marcugini, and A. Milani. Encod-
ing planning constraints into partial order planning
domains. In Proc. 6th Conference on Knowledge Rep-
resentation and Reasoning, pages 608 — 616, 1998.

G. De Giacomo, Y. Lespérance, and H. Levesque.
ConGolog, a concurrent programming language
based on the situation calculus. Artificial Intelligence,
121(1-2):109-169, 2000.

P. Doherty and J. Kvarnstrom. TALplanner: A tem-
poral logic based forward chaining planner. Annals of
Mathematics and Artificial Intelligence, 30:119-169,
2001.

K. Erol, J. Hendler, and D. Nau. HTN planning:
Complexity and expressivity. In Proc. of the Twelfth
National Conference on Artificial Intelligence (AAAI-
94), volume 2, pages 1123-1128, 1994,

R.E. Fikes, P.E Hart, and N.J Nilsson. Learning and
executing generalized robot plans. Atrtificial Intelli-
gence, 3:251-288, 1972.

C. C. Green. Theorem proving by resolution as a
basis for question-answering systems. In B. Meltzer
and D. Michie, editors, Machine Intelligence 4, pages
183-205. American Elsevier, New York, 1969.

Patrik Haslum and Peter Jonsson. Planning with re-
duced operator sets. In Artificial Intelligence Plan-
ning Systems, pages 150-158, 2000.

Jorg Hoffmann and Bernhard Nebel. The FF planning
system: Fast plan generation through heuristic search.
Journal of Artificial Intelligence Research, 14:253-
302, 2001.

S. Holldobler and H.-P. Storr. BDD-based rea-
soning in the fluent calculus — first results. In
8th. Intl. Workshop on Non-Monotonic Reasoning
(NMR’2000), 2000.

R. E. Korf. Planning as search: A quantitative ap-
proach. Artificial Intelligence, 33(1):65-88, 1987.

H. Levesque, R. Reiter, Y. Lesperance, F. Lin, and
R. Scherl. GOLOG: A logic programming language
for dynamic domains. Journal of Logic Program-
ming, 31(1-3):59-84, April-June 1997.

[13]

[14]

[15]

[16]

[17]

[18]

[19]

S. Mcllraith, T. Son, and H. Zeng. Semantic Web
services. In IEEE Intelligent Systems (Special Issue
on the Semantic Web), March/April 2001.

E. Pednault. ADL: Exploring the middle ground be-
tween STRIPS and the situation calculus. In Proc.
KR’89, pages 324-332, 1989.

R. Reiter. The frame problem in the situation calcu-
lus: A soundness and completeness result, with an ap-
plication to database updates. In Proceedings First In-
ternational Conference on Al Planning Systems, Col-
lege Park, Maryland, June 1992.

R. Reiter. KNOWLEDGE IN ACTION: Logical Foun-
dations for Specifying and Implementing Dynamical
Systems. The MIT Press, 2001.

E. Sacerdoti. Planning in a hierarchy of abstraction
spaces. Artificial Intelligence, 5:115-135, 1974.

T. C. Son, C. Baral, and S. Mcllraith. Planning with
different forms of domain-dependent control knowl-
edge — an answer set programming approach. In 6th
International Conference on Logic Programming and
Nonmonotonic Reasoning, Programming Approach
Proceedings, pages 226—239, 2001.

R. J. Waldinger. Achieving several goals simulta-
neously. In E. W. Elcock and D. Michie, editors,
Machine Intelligence 8: Machine Representations of
Knowledge, pages 94-136. Ellis Horwood, Chich-
ester, 1977.

