Towards a General Theory of Advanced Transaction
Modelsin the Situation Calculus
(Extended Abstract)

lHuju Kiringa
Department of Computer Science
University of Toronto, Toronto, Canada
kiringai @s.toronto. edu

Abstract

We proposeatheory for describing, reasoning about, and simul ating transaction mod-
els that relax some of the ACID properties of classical transactions. Such models have
been proposed for database applications involving long-lived, endless, and cooperative
activities. Our approach apped s to non-Markovian theories, in which one may refer to
past states other than the previousone. Weillustrateour framework by formalizing closed
nested transactions (CNTs). Wefirst formulate CNTsas asuitablenon-Markovian theory.
Then we define alegal database log as one whose actions are all possible and in which
all the Commit and Rollback actions must occur whenever they are possible. After that,
we show that the relaxed ACID constraints are properties of legal logs and logica con-
sequences of the theory corresponding to the CNTs. Finally, we use such a specification
as abackground theory for transaction programs written in the language GOLOG.

1 Introduction

Transaction systemsthat constitutethe state of the art in database systems have aflat structure
defined in terms of the so-called ACID (Atomicity-Consistency-Isolation-Durability) proper-
ties. From the system point of view, a database transaction is a sequence of operations on the
database state, which exhibit the ACID properties and are bracketed by Begin and C'ommiit
or Begin and Rollback ([9]).

A transaction is atomic when it either brings the database from the initial state to the fi-
nal state, or it appears asit had never done any work. Consistency meansthat, given aninitial
database state that satisfiesall theintegrity constraintsof the database, thefinal statealso satis-
fiesthem. Two transactionsareisolated when their interl eaved execution yiel dsthe same result
as aseria execution. Finally, durability means that from the commitment point onwards, the
results of atransaction are permanent.

Various transaction model s have been proposed to extend the classical flat transactions by
relaxing some of the ACID properties ([7],[10]). Such extensions, generally called advanced
transaction models(ATMs), are proposed for improving the functionality and the performance
of applicationsinvolving long-lived, endless, and cooperative activities.

The ATMs, however, have been proposed in an ad hoc fashion, thuslacking in generality
inaway that it isnot obviousto compare the different ATMs, to exactly say how they extend
thetraditional flat model, and to formulate their propertiesin away that oneclearly seeswhich

new functionality has been added, or which one has been subtracted. To address these ques-
tions, there isaneed for ageneral and common framework withinwhich to concisely spec-
ify ATMs, simulatethese, specify their properties, and reason about these properties. Thusfar,
ACTA ([5]) seemsto our knowledgethe only framework addressing these questionsat a high
level of generality; ACTA uses afirst order language to capture the semantics of any ATM.
In this paper, we present a framework for specifying database transactions at the logical
level usingthesituation calculus([16]). Our approach appealsto non-Markoviantheories([8]),
inwhich onemay refer to past statesother than the previousone. We providetheformal seman-
ticsof an ATM by specifying it asatheory of the situation calculuscalled basic relational the-
ory, which isaset of sentences suitable for non-Markovian control in the context of database
transactions. We illustrate our framework by formalizing closed nested transactions (CNTs:
[17]). We first formulate CNTs as basic relational theories. We then define a legal database
log as one whose actions are all possibleand inwhich dl the Commit and Rollback actions
must occur whenever they are possible. After that, we show, by means of afew examples, that
the known properties of the CNTs, including the relaxed ACID constraints, are properties of
legal logs and logical consequences of the basic relational theory corresponding to the CNTSs.
Finally, we also indicate how to implement such a specification as a background theory for
transaction programs written in the situation cal culus based programming language GOL OG.

2 Logical Foundations

We useabasicrelational language, whichisafinitefragment of thesituationcalculus([16],[8])
that is suitable for modeling relational database transactions. The language is a many-sorted
second order languagewith sortsfor actions, situations, and objects. Actions arefirst order
terms consi sting of an action function symbol and itsarguments (e.g., the action of the transac-
tion ¢ deleting the tuple (tid, tbal) from therelation tellers is denoted by t_del(tid, thal, t)).
Situations arefirst order terms denoting finite sequences of actions; they are represented us-
ing a binary function symbol do: do(«, s) denotes the sequence resulting from adding the
action « to the sequence s. There is a distinguished constant .Sy denoting the initial situa-
tion; Sy stands for the empty action sequence. Objects represent domain specific individu-
als other than actions and situations. In formalizing databases, actions correspond to the el -
ementary database operations of inserting, deleting and updating relational tuples, and situa-
tions represent the database log. Relations and functions whose truth values vary from situ-
ation to situation are called fluents, and are denoted by predicate symbols and function sym-
bolswith last argument a situation term (e.g., therelation tellers is represented by the fluent
tellers(tid, thal,t, s)). Thelanguagealsoincludesspecial predicates Poss, and C; Poss(a, s)
means that the action « ispossiblein the situation s, and s C s’ states that the situation s is
reachable from s by performing some sequence of actions. In database terms, s C s’ means
that s is aproper sublog of thelog s'.

For simplicity, we consider only primitive update operations corresponding to insertion
or deletion of tuplesinto relations. For each such relation F'(Z, ¢, s), aprimitiveinternal ac-
tion is a parameterized primitive action of the situation calculus of the form F ins(Z,t) or
F_del(Z,t). Intuitively, F'_ins(Z,t) and I'_del(Z,t) denote the actions of inserting the tuple
7 into and deleting it from the relation F' by the transaction ¢, respectively; for convenience,
we will abbreviate long symbolswhen necessary (e.g., account_ins(Z,t) will be abbreviated
asa_ins(Z,t)). Below, wewill use the following abbreviation:

writes(a, F,t) =q4 (37).a = F_ins(Z,t) V a = F_del(Z,t),

one for each fluent. We distinguish the primitive internal actions from primitive external ac-

2

tionswhichare Begin(t), Spawn(t,t'), End(t), Commit(t),and Rollback (t), whosemean-
ing will be clear in the sequel of thispaper; these are externa as they do not specifically affect
the content of the database. Finally, by conventionin this paper, afree variablewill awaysbe
implicitly bound by a prenex universal quantifier.

In[16], adatabase domain isaxiomatized in the situation cal culuswith axioms describing
how and under what conditionsthe databaseis changing or not changing as aresult of perform-
ing updates. Such axioms are called basic action theory. They comprise: domain independent
foundational axiomsfor situations; action precondition axioms, onefor each action term, stat-
ing the conditions of change; successor state axioms, one for each fluent, stating how change
occurs; unique names axioms for action terms; and axioms describing theinitial situation.

3 The Specification Framewor k

We extend the basic action theories of [16] to include a specification of relational database
transactions, by giving action precondition axioms for external actions. We also give succes-
sor state axiomsthat state how change occursin databasesin the presence of bothinternal and
external actions. All these axioms providethe first dimension of the situation cal culus frame-
work for axiomatizing transactions, namely the axiomatization of the effects of transactions
on fluents; they al so comprise axioms indicating which transactions are conflicting with each
other, and what actions each transaction isresponsiblefor.

A useful concept that underlies most of the ATMs is that of responsibility over changes
operated on dataitems. In CNTSs, a parent transaction will take responsibility of changes done
by any of its committed children. The only way we can keep track of those responsibilitiesis
tolook at the transaction arguments of the actionspresent inthelog. Tothat end, weintroduce
afluent responsible(t, a, s), which intuitively means that transaction ¢ is responsiblefor the
action a in thelog s, which we characterize with an appropriate successor state axiom:

responsible(t,a’, do(a, s)) = transO f(a’,t,s) A ~(It*)parent(t,t*,s) V
(3t*)[parent(t,t*,s) A a = Commit(t*) A responsible(t*, a’)] v (1)
responsible(t,a’,s) A ~termAct(a,t),

i.e., each transaction is considered responsible for any action whose last argument bears its
name, or for the actions of its committed children, or else for those actionsit was already re-
sponsiblefor before terminating. Here, transO f(a, t, s), parent(t,t', s), andterm Act(a, t)
are defined asfollows:
transO f(a(Z,t),t, s) = true, 2
parent(t,t' do(a, s)) = a = Spawn(t, t') Vv 3
parent(t,t',s) A =termAct(a,t) A —termAct(a,t'),
termAct(a,t) =4 a = Commit(t) V a = Rollback(t). 4)
We use the axioms aboveto capturethetypical relationshipsthat hold between transactionsin
the hierarchy of a nested transaction.

To express conflicts among transactions, we need the fluents updC'on flict(a, a’, s) and
transConflict(t,t', s), whose intuitive meaning is that the action « is conflicting with the
actiona’ in s, and thetransaction ¢ is conflicting with thetransaction+’ in s, respectively; their
characterization isas follows:
updCon flict(a,a’,s) =g v (3A%)-[F(Z,t,do(a,do(d’, 8))) = F(Z,t,do(d’, do(a, 5)))];

FeF

here, 7 isthe set of fluents of the basic relationa language; the later definition says that two
internal actionsa and a’ conflict in the log s iff the value of the fluents depends on the order
inwhich ¢ and «’ appear in s.

transCon flict NT (t,t', do(a, s)) =t # t' A responsible(t’,a, s) A
(3d’, s')[responsible(t,d’, s) A updConflict(da',a,s) A do(a',s') C s A
—responsible(t, a, s) Arunning(t', s) A ((Ft")parent (t,t", s) D —ancestor(t,t', 5)) \(5)
transCon flict NT(t,t', s) A ~term Act(a,t);

ancestor(t,t', s) is defined in the usual way using parent(t,t’, s) and running(t', s) is de-
fined below.

running(t, s) =4 (3s').{do(Begin(t),s’) C s A
(Va, s")[do(Begin(t),s") C do(a,s") T s D a # Rollback(t) A a # End(t)]V
(3t").do(Spawn(t' t),s) C s A (6)
(Va, s")[do(Spawn(t,t),s") C do(a,s") C s D a # Rollback(t) A a # End(t)]}.

Intuitively, (5) meansthat transactiont conflictswithtransactiont’ inthelog do(a, s) iff inter-
nal actionsthey are responsiblefor are conflictingin s, ' executesitsinterna action a after ¢
has executed theinternal action «’ inthelog s, ¢ is not responsiblefor the action of ¢’ it iscon-
flicting with, ¢’ is running; moreover, atransaction cannot conflict with actions his ancestors
are responsiblefor; ¢ also conflictswith ¢’ iff both did soin s and « is not terminating .

A further useful fluent that we provide in the general framework is readsFrom(t,t', s).
Thisisused in most transaction models as a source of dependencies among transactions, and
intuitively means that the transaction ¢ reads a value written by the transaction ¢’ in thelog s.
The successor state axiom for this fluent depends on the application.

The second dimension of the situation calculus framework is made of dependencies be-
tween transactions. All the dependencies expressed in ACTA ([5]) can also be expressed in
the situation calculus. As an example, we have:

Weak Rollback Dependency of ¢ ont’

do(Rollback(t'),s") C s* D
{(Vs)do(Commit(t), s) Z do(Rollback(t"),s") D (3s")do(Rollback(t),s") Cs*};

i.e, if ¢ rollsback in alog s*, then, whenever ¢ does not commit before ¢/, ¢+ must also roll
back in s*.

Further dependencies occurring in CNTs are: Commit Dependency of £ ont’, i.e., if ¢
commitsin alog s*, then, whenever t' commitsin s*, ¢ commits before ¢; Strong Commit
Dependency of t ont’, i.e, if # commitsin alog s*, then ¢ must a'so commit in that log; and
Rollback Dependency of t ont’, i.e., if ¢ rollsback in alog s*, then t must also roll back in
that log. The specification of an ATM must be given in such away that al these dependencies
are properties of legal database logs of that ATM.

To control dependencies that may develop among running transactions, we use a set of
predicates denoting these dependencies. For example, we use c_dep(t, ', s), sc_dep(t,t', s),
r_dep(t,t’,s), and wr_dep(t, ', s) to denote the commit, strong commit, rollback, and weak
rollback dependencies, respectively. These are fluents whose truth value is changed by the
relevant transaction models by taking into account dependencies generated by the execution
of theactionsof thesetransactions. Appropriate successor stateaxiomsmust begivenfor these
fluents.

4 Closed Nested Transactions

A closed nested transactionisaset of transactions(called subtransactions) forming atree struc-
ture, meaning that any given transaction, the parent, may spawn a subtransaction, the child,
nested in it. A child can commit permanently only if its parent has committed; thusit can-
not commit unilaterally.! If a parent transaction rolls back, al its children are rolled back.
However, if achild rolls back, the parent may execute a recovery procedure of itsown. Each
subtransaction, except the root, fulfillsthe A, C, and | among the ACID properties. The root
(level 1) of thetree structureisthe only transaction to satisfy al of the ACID properties.

Notice that we do not introduce a new sort for transactions, as isthe case in [3]; we treat
transactionsasrun-timeactivities, whose compil e-time counterpartswill be GOL OG programs
introduced in Section 5. We refer to transactions by their names that are of sort object.

Inthesequel of thispaper, we useaDebit/Credit example which wenow describe. The ap-
plicationinvolvesabasicrelational languagewith: fluentsserved(aid, s),tellers(tid, thal,t, s),
branches(bid, bbal, bname,t, s),andaccounts(aid, bid, abal,t, s); asituationindependent
predicaterequested(aid, req); and actionsreport(aid),t_ins(tid, thal,t),t_del(tid, thal,t),
a_ins(aid, bid, abal, tid,t), a_del(aid, bid,abal, tid,t), b_ins(bid, bbal, bname,t), and
b_del(bid, bbal, bname, t). The meaning of the arguments of fluentsare self explanatory; and
the basic relational language also includes the external actions given in Section 2.

The axiomatization of a dynamic relational database with CNT properties comprises the
following classes of axioms:

Foundational Axioms. These are constraintsimposed on the structure of histories represent-
ing database logs. Asthey play no further role in this paper, we omit them.

Integrity Constraints. These are constraintsimposed on the data in the database at a given
situation s; their set is denoted by ZC. for constraints that must be enforced at each update

execution, and by ZC,, for those that must be verified at the transaction end. For example, we
may enforce the following IC:

accounts(aid, bid, abal, tid, t, s) A accounts(aid, bid', abal’ tid' ', s) D
bid = bid', abal = abal’, tid = tid’,
and similar ones for the branches and tellers fluents; these are primary key constraints. We
may verify thelC
accounts(aid, bid, abal, tid,t,s) D abal > 0.

Update Precondition Axioms. There isone for each update A(Z, t), with syntactic form
Poss(A(Z,t),s) = (I a(Z,t',s) N C*(do(A(T,1),s)) A running(t,s). (7)

Here, 1 4(Z,t, s) isaformulawith free variables among &, ¢, and s, and /C*(s) abbreviates
Nicere 1C (). Theseaxiomscharacterize the preconditionsof the update A. Asan example,
the following statesthat it is possible for the transaction ¢ to insert atuple (tid, thal) into the
teller relation relative to the database log s iff, as aresult of performing the actions in the
log, that tuple would not already be present intheteller relation, the integrity constraintsare
satisfied, and transaction ¢ is running:

Poss(t_del(tid, thal, t), s) = (3t)teller(tid, thal,t', s) A
1C®(do(t_del(tid, tbal,t),s)) A running(t, s).

1This is why the nesting considered here is called “ closed”, as opposed to “open” nested transactions where
children may commit unilaterally ([17]).

Successor State Axioms. These have the syntactic form

F(&,t,do(a,s)) = (3)Op(F,a,t,5) A ~(3t")a = Rollback(t") v

[(3t").a = Rollback(t") A =(3t*)parent(t*,t”, s) A restore Begin Point(F, Z,t", s)] V

[(3t").a = Rollback(t") A (3t*)parent(t*,t", s) A restoreSpawnPoint(F, Z,t", s)],(8)
one for each relation of the basic relational language, where ® ;-(%, a, £, s) is aformulawith
free variablesamong 7, a, t, s; restore Begin Point(F, Z, t, s) is the following abbreviation:

restore BeginPoint(F, Z,t,s) =g

[(Fa*,s*, &', t").do(Begin(t), s') T do(a*, s*) C s A writes(a®, F,t) A F(Z,t,s)] v

[(Va*,s*, s').do(Begin(t), s') Cdo(a*, s*) Cs D —~writes(a*, F,)]\ (') F(Z,t, s), ©)
and restoreSpawnPoint(F, Z,t, s) isan abbreviation expanded inasimilar way. Intuitively,
restoreBegin Point(F, Z,t, s) means that the transaction ¢ restores the value that the fluent
F with arguments z” had before the execution of its Begin actioninthelog s if thetransaction
t has updated F'; it keeps the value it had in s otherwise. Given the actud situation s, the
successor stateaxiomscharacterize thetruth valuesof thefluent /” inthenext situationdo(a, s)

interms of all the past situations. A successor state axiom for the fluent tellers(tid, thal, t, s)
isasfollows:

tellers(tid, tbal,t,do(a,s)) = ((3t1)a = t_ins(tid, thal, t,) v
(3ty)tellers(tid, thal, ty, s) A =(Tts)a = t_del(tid, thal, ts, tid)) A ~(Ft')a = Rollback(t') v
(3t").a = Rollback(t'y A —(3t")parent(t",t', s) A
restore Begin Point(tellers, (tid, thal, tid),t', s) v
a = Rollback(t') A (3t")parent(t” 1, s) A
restoreSpawnPoint(tellers(tid, thal, tid),t', s).

This states that the tuple (tid, tbal) will bein the tellers relation relative to the log do(a, s)
iff the last database operation « in the log inserted it there, or it was aready in the tellers
relationrelativetothelog s, and a didn't deleteit; al this, provided that the operation a is not

rolling the database back. If a isrolling the database back, thetellers relation will get avalue
according to thelogic of (9).

Precondition Axiomsfor External Actions. Thisisthe following set of action precondition
axiomsfor the external actions of CNTS:

Poss(Begin(t), s) = =(3t')parent(t', t, s) A

[s=SoV (3, t').t#t' A do(Begin(t'),s') C s,
Poss(Spawn(t,t'),s)=t #t'A

(3s',t")[do(Begin(t), s") T sVdo(Spawn(t”,t),s") C s], (11)

(10)

Poss(FEnd(t),s) = running(t, s), (12)
Poss(Commit(t),s) = (3s').s = do(End(t),s") A /\ IC(s) A
I1Ce1C,
(Vt')[sc_dep(t,t', s) D (Fs")do(Commit(t'), s") C s] A (13)

(Vt')[e-dep(t,t', s) A =(3s*)do(Rollback(t'), s*) C s D
(3s")do(Commit(t'),s') T s)],

Poss(Rollback(t), s) = (3s').s = do(End(t), s A= J\ 1C(s)V

rcere,
(3, s").r_dep(t, ', s) A do(Rollback(t'),s") C s’ v
(3t', s*).wr_dep(t,t', s) A do(Rollback(t'),s*) C s A (14)

=(3s**)do(Commit(t), s*) C do(Rollback(t'), s*).

Dependency axioms. These are axioms used to capture how dependencies arise among trans-
actions. These axiomsare also used to capture thenotion of recover ability, avoiding cascading
rollbacks, etc, of the classical concurrency control theory ([2]). For CNTs, we have:

rdep(t,t',s) = transCon flictNT (t,t', s),
sc_dep(t,t', s) = readsFrom(t,t',s),
cdep(t,t',do(a, s))=a=Spawn(t,t') V c_dep(t,t', s) A—~term Act(a,t) \—term Act(a,t),
wr_dep(t,t',do(a, s))=a=Spawn(t',t)Vwr_dep(t,t', s) A—termAct(a,t) A\—termAct(a,t').
Unique Names Axioms. These state that the primitive updates and the objects of the domain
are pairwise unequal .
Initial Database. Thisis aset of first order sentences specifying the initial database state.
They are completion axioms of the form

(V&).F(Z,S0) =d=CDv.. .vi=C0),

one for each fluent F. Here, the ¢ are tuples of constants. Also, D, includes unique name
axioms for constants of the database, and axioms stating the conflicting updates.

The axioms above capture the notion of a situation being located in the past relative to the
current situation which we express with the predicate C. Thus they capture non-Markovian
control ([8]). We call these axioms a basic relational theory, and define a relational database
asapair (R, D), wherefR isabasic relationa language and D isabasic relational theory.

A fundamental property of Rollback(t) and Commit(t) actionsisthat the database sys-
tem must execute them in any database statein which they are possible. In this sense, they are
coercive actions, and we call them system actions:

systemAct(a,t) =q4 a=Commit(t) V a= Rollback(t).

Therefore, logs must be constrained to take the system actionsinto account, aswell asthere-
guirement that al actionsin the log be possible. We capture these requirements as follows:

legal(s) =g (Va,s")[do(a, s*) EsDPoss(a,s™)]| A
(Va',a", s t)[systemAct(a’,t) Aresponsible(t,a’) A (15)
responsible(t,a”) A Poss(a’,s') Ado(a”,s') C s D d' = a"].

Now we statethe (relaxed) ACID propertiesof CNTs as sentences of the situation cal culus
that are logically implied by the relationa theory that captures CNTs. Here, we only illustrate
the A and | of the ACID properties.

Theorem 1 (Atomicity) Suppose D isa relational theory. Then for every relational fluent
D [legal(s) D{[s' = do(Begin(t), s1) V s’ = do(Spawn(t), s1)] A
s’ Cdo(a, sy) C s A (Ja*,s*)[s' T do(a*, s*) C do(a, s3) A writes(a*, F,t)] D
[(a = Rollback(t) D ((3t1)F(Z,t1,do(a, s3)) = (Tt2) F(Z,t2,51))) A
((3t1) F(Z, do(Commit(t), t1, s2)) = (3t2) F(Z, t2, 82))]}-

7

This says that rolling back atransaction ¢ restores any modified fluent to the value it had just
before the Begin(t) or Spawn(t',t) action, and committing endorses the value it had in the
Situation just before the C'ommit(t) action.

Theorem 2 (No-Orphan-Commits: [5]) Suppose D is a relational theory. Then, whenever
a child's parent terminates before the child commits, the |ater, an orphan, isrolled back; i.e.,

D k= legal(s) D {parent(t,t', s) A termAct(a,t) A
do(Commit(t'),s") I do(a,s") C s D (Is*)do(Rollback(t'), s*) C s}.

Thisproperty, combined with theatomicity of all transactionsof the CNT tree, leadsto the fact
that, should aroot transaction roll back, then so must al its subtransactions. Thisiswherethe
D inthe ACID acronym isrelaxed for subtransactions.

Finally, we turn to the important property of serializability which we express as follows:

transConflict NT*(t,t',s) =4 (YC)[(Vt)C(t,t,s) A
(Vs t,t', ") [C(t,t", s) ANtransConflict NT(t",¢',s) D C(t,t',s)] D C(t, ¢, s)],

serializable NT (s) =g (Vt).do(Commit(t),s') C s D ~transCon flict NT*(t,t, s).

Theorem 3 (Isolation) Suppose D isarelational theory. Then
D [legal(s) D serializable NT(s).

5 Simulating CNTs

GOLOG, introduced in [12] and enhanced with parallelism in [6] (ConGolog), is a language
for defining complex actionsin termsof primitiveactionsaxiomatized in thesituationcal culus.
It has the following Algol-like control structures sequence ([« ; 3]; Do action «, followed by
action 3); test actions (p?; Test thetruth value of expression p in the current situation); nonde-
terministic action choice (« | 8; Do « or 5); nondeter ministic argument choice ((r z)«; pick
any valuefor z, and for that value of z, do action «); conditionalsand loops; and procedures.
Thefollowing are ConGolog constructsfor expressing parallelism: concurrency ([« || 3]; Do
o and 8 in paralld); concurrent iteration (o!l; Do o zero or moretimesin parallél).

In[6], asingle-stepssemantics of GOLOG programsisintroduced. Single-stepingagiven
program § meansthat § may perform one step in situation s, ending up in situation s’, where a
further program &', achunk of ¢, remainsto be executed. This process goes on until no chunk
remains. Finally, to processprograms, aternary relation Do(prog, S, s') isintroduced withthe
intuitive meaning that s’ is one of the situations reached by evaluating the GOLOG program
prog, beginning in agiven situation .S. Notice that we need to modify a Do-based interpreter
described in [6] to accommodate non-Markovian features and generate only lega logs.

Now we express a transaction behaviour for our Debit/Credit example as a set of proce-
dures. For brievety, weonly giveasamplemain procedure; thisisenclosed betweena Begin(t)
and an E'nd(t) actionsto enforce ACID properties; it spawns subtransactions:

proc processTrans(t)
Begin(t); [(7 bid, aid, abal, tid, req).
{accounts(aid, bid, abal, tid, t) A
requested(aid, req) A —served(aid)}? ; report(aid) ;
Spawn(t, aid) ; processReq(t,tid, aid, req) ; End(aid)]” ;
—((3 aid, req)requested(aid, req))? ; End(t)
endProc

Here, the procedure processReq(t, tid, aid, req) is used by the transaction ¢ to process a
pending debit or credit request req from a user with account aid at teller t2d. Notice that a
formula ¢ in atest ¢? isin fact a situation suppressed formula whose situation argument is
restored at run-time by the interpreter. Notice also the use of paralld iteration in the last pro-
cedure; thisspawnsanew parallel child transaction for each account that emitted arequest, but
has not yet been served. The action report(aid) isused to indicate that a request emitted by
the owner of the account aid has been granted. These requests are registered in the predicate
requested(aid, req). Finally, thefollowing successor state axiomisused for synchronization:

served(aid, do(a, s)) = report(aid) V served(aid, s).

Now we can simulate the program, say processTrans(T), by performing the theorem
proving task of establishingthe entailment D |= (3s’) Do(processTrans(T), So, s'), where
So istheinitial, empty log, and D is the basic relational theory that comprises the axioms
above; thisexactly means that we look for some log that is generated by the program 7. We
areinterested in any instance of s resulting from the proof obtained by establishingthis entail-
ment. Such an instance is obtained as a side-effect of this proof.

6 Discussion

ACTA ([5]) isaframework similar to ours. It allowsto specify effects of transactionson ob-
jectsand on other transactions. Infact, we usethe same buildingblocksfor ATMsasthoseused
in ACTA. However, the reasoning capability of the situation cal culus exceeds that of ACTA
for the following reasons: (1) the database log is afirst class citizen of the situation calculus,
and the semantics of all externa actions are defined with respect to constraints on this log;
ACTA does not quantify over histories, so it has no straightforward way of expressing closed
form formulas involving histories. (2) Our approach goes far beyond ACTA asitisan im-
plementable specification, thus allowing one to automatically check many properties of the
specification using an interpreter. Finaly, (3) athough ACTA deals with the dynamics of the
database, it isnot explicitly formulated as alogic for actions.

In[3], Bertossi et al. extend Reiter’s specification of database updatesto transactions. In
fact, the idea of using external actions for flat transactions in the situation calculus was first
introduced in [3], as was the the axiomati zation of the notion of consistency verification at the
transaction end. Our approach, however, providestheoriesthat are explicitly non-Markovian;
it dealswith ACID properties, and goes beyond flat transactionsto account for ATMs which
aremuch more complex. Noticethat our non-Markovianformalization permitsaformalization
of ATMsthat is not verbose; this would not be the case if one appeals to a transformation of
non-Markovian actionsinto Markovian ones (See [1] for such a transformation).

Transaction Logic ([4]) and Statelog ([13]) are languages for database state change that
include a clean model theory. However, these approaches, unlike the situation calculus, do
not view elementary updates asfirst order terms; they appeal to specia purpose semantics to
account for database transactions; finally, we are not sure of their generality to be used for
modeling any given transaction model or “inventing” a new one from scratch at a sufficiently
high level asisthe casein ACTA and the situation calculus.

Thusfar, we have given axioms that accommodate a completeinitia database state. This,
however, isnot arequirement of thetheory we are presenting. Therefore our account could, for
example, accommodate initial databases with null values, open initial database states, initial
databases accounting for object orientation, or initial semistructured databases.

On-going work extending our framework includes: accounting for some of the most re-
cent ATMs, for example those reported in [10], implementing the specifications of signifi-

9

cant ATMs, proving the correctness of the approach, accommodating initial semistructured
databases, and introducing active rules ([11]).

Acknowledgments

Wethank R. Reiter, A. Gabadon, and J. Pinto for helpful discussions. Ray suggested the link
to an explicit non-Markovian account. Thanks a so to the anonymous referees for insightful
comments. We gratefully mention the support by NSERC, IRIS (Institute for Robotics and
Intelligent Systems), and I TRC (Information Technology Research Centre of Ontario).

References

[1] M. Arenasand L. Bertossi. Hypothetical tempora queriesin databases. Proceedings of the 5th
KRDB, pages 4.1-4.8, 1998.

[2] PA.Berngtein, V. Hadzilacos, and N. Goodman. Concurrency control and recovery in database
systems. Addison-Wesley, Reading, MA, 1987.

[3] L. Bertoss, J. Pinto, and R. Vadivia. Specifying database transactions and active rules in the
situation calculus. InH. Levesque and F. Pirri, editors, Logical Foundationsof Cognitive Agents.
Contributionsin Honor of Ray Reiter, pages 41-56, New-York, 1999. Springer Verlag.

[4] A.Bonner and M. Kifer. Transaction logic programming. Tech. report, Univ. of Toronto, 1992.

[5] PK. Chrysanthis. ACTA, A Framework for Modeling and Reasoning about Extended Transac-
tions. PhD thesis, Dept. of Computer and Information Science, Univ. of Massachusetts, Amherst,
1991.

[6] G.DeGiacomo, Y. Lespérance, and H.J. Levesgue. Reasoning about concurrent execution, prior-
itized interrupts, and exogeneous actionsin the situation calculus. In Proceedings of the Fifteenth
International Joint Conference on Artificial Intelligence, pages 1221-1226, 1997.

[7] Ahmed K. EImagarmid. Database transaction model sfor advanced applications. Morgan Kauf-
mann, San Mateo, CA, 1992.

[8] A.Gabadon. Non-markovian control inthesituationcalculus. In G. Lakemeyer, editor, Proceed-
ings of the Second I nternational Cognitive Robotics Workshop, pages 28-33, Berlin, 2000.

[9] J. Gray and Reuter A. Transaction Processing: Concepts and Techniques. Morgan Kaufmann
Publishers, San Mateo, CA, 1995.

[10] S. Jgodiaand L. Kerschberg. Advanced Transaction Models and Architectures. Kluwer Aca
demic Publishers, Boston, 1997.

[11] I. Kiringa. A Formal Account of Relational Active Databases in the Stuation Calculus. PhD
thesis, Computer Science, University of Toronto, Toronto, forthcoming.

[12] H.Levesque, R. Reiter, Y. Lespérance, Fangzhen Lin, and R.B. Scherl. Golog: A logic program-
ming language for dynamic domains. J. of Logic Programming, 31(1-3):59-83, 1997.

[13] B. Ludascher, W. May, and G. Lausen. Nested transactionsin alogica languagefor activerules.
Technical Report Jun20-1, Technica Univ. of Munich, June 1996.

[14] N.Lynch, M.M. Merritt, W. Weihl, and A. Fekete. A theory of atomictransactions. InM. Gyssens,
J. Parendaens, and D. Van Gucht, editors, Proceedings of the Second I nter national Conference on
Database Theory, pages 4171, Berlin, 1988. Springer Verlag. LNCS 326.

[15] J Moss. Nested Transactions: An Approach to Reliable Distributed Computing. Information Sys-
tems Series. The MIT Press, Cambridge, MA, 1985.

[16] R.Reiter. Knowledgein Action: Logical Foundationsfor Describing and Implementing Dynam-
ical Systems. MIT Press, Cambridge, 2001.

[17] G.Weikum and H.J. Schek. Concepts and applications of multilevel transactions and open nested
transactions. In A.K. Elmagarmid, editor, Database Transaction Models for Advanced Applica-
tions, pages 516-553, San Mateo, CA, 1992. Morgan Kaufmann.

10

