
Towards a General Theory of Advanced Transaction
Models in the Situation Calculus

(Extended Abstract)

Iluju Kiringa
Department of Computer Science

University of Toronto, Toronto, Canada
kiringai@cs.toronto.edu

Abstract

We propose a theory for describing, reasoning about, and simulating transaction mod-
els that relax some of the ACID properties of classical transactions. Such models have
been proposed for database applications involving long-lived, endless, and cooperative
activities. Our approach appeals to non-Markovian theories, in which one may refer to
past states other than the previous one. We illustrateour framework by formalizing closed
nested transactions (CNTs). We first formulate CNTs as a suitable non-Markovian theory.
Then we define a legal database log as one whose actions are all possible and in which
all the

���������	�
and
 ���
��������� actions must occur whenever they are possible. After that,

we show that the relaxed ACID constraints are properties of legal logs and logical con-
sequences of the theory corresponding to the CNTs. Finally, we use such a specification
as a background theory for transaction programs written in the language GOLOG.

1 Introduction

Transaction systems that constitute the state of the art in database systems have a flat structure
defined in terms of the so-called ACID (Atomicity-Consistency-Isolation-Durability) proper-
ties. From the system point of view, a database transaction is a sequence of operations on the
database state, which exhibit the ACID properties and are bracketed by ��������� and ���� ! !�#"
or ��������� and $%��&'&'(�)+*�, ([9]).

A transaction is atomic when it either brings the database from the initial state to the fi-
nal state, or it appears as it had never done any work. Consistency means that, given an initial
database state that satisfies all the integrity constraints of the database, the final state also satis-
fies them. Two transactions are isolated when their interleaved execution yields the same result
as a serial execution. Finally, durability means that from the commitment point onwards, the
results of a transaction are permanent.

Various transaction models have been proposed to extend the classical flat transactions by
relaxing some of the ACID properties ([7],[10]). Such extensions, generally called advanced
transaction models (ATMs), are proposed for improving the functionality and the performance
of applications involving long-lived, endless, and cooperative activities.

The ATMs, however, have been proposed in an ad hoc fashion, thus lacking in generality
in a way that it is not obvious to compare the different ATMs, to exactly say how they extend
the traditional flat model, and to formulate their properties in a way that one clearly sees which

1

new functionality has been added, or which one has been subtracted. To address these ques-
tions, there is a need for a general and common framework within which to concisely spec-
ify ATMs, simulate these, specify their properties, and reason about these properties. Thus far,
ACTA ([5]) seems to our knowledge the only framework addressing these questions at a high
level of generality; ACTA uses a first order language to capture the semantics of any ATM.

In this paper, we present a framework for specifying database transactions at the logical
level using the situation calculus ([16]). Our approach appeals to non-Markovian theories([8]),
in which one may refer to past states other than the previous one. We provide the formal seman-
tics of an ATM by specifying it as a theory of the situation calculus called basic relational the-
ory, which is a set of sentences suitable for non-Markovian control in the context of database
transactions. We illustrate our framework by formalizing closed nested transactions (CNTs:
[17]). We first formulate CNTs as basic relational theories. We then define a legal database
log as one whose actions are all possible and in which all the � �� ! !�'" and $%� &'&'(�) *�, actions
must occur whenever they are possible. After that, we show, by means of a few examples, that
the known properties of the CNTs, including the relaxed ACID constraints, are properties of
legal logs and logical consequences of the basic relational theory corresponding to the CNTs.
Finally, we also indicate how to implement such a specification as a background theory for
transaction programs written in the situation calculus based programming language GOLOG.

2 Logical Foundations

We use a basic relational language, which is a finite fragment of the situationcalculus ([16],[8])
that is suitable for modeling relational database transactions. The language is a many-sorted
second order language with sorts for)+*�" � ��� � , � �'"��) " ��� � � , and � (� � *�" � . � *�" � ��� � are first order
terms consisting of an action function symbol and its arguments (e.g., the action of the transac-
tion " deleting the tuple � " ���
	 " (�) &�� from the relation " � &'&'��
 � is denoted by " � � &�� " ����	�" (�) &�	 "��).� �#"��) " � ��� � are first order terms denoting finite sequences of actions; they are represented us-
ing a binary function symbol � � : �+������	 � � denotes the sequence resulting from adding the
action � to the sequence � . There is a distinguished constant

���
denoting the initial situa-

tion;
���

stands for the empty action sequence. ��(� � *�" � represent domain specific individu-
als other than actions and situations. In formalizing databases, actions correspond to the el-
ementary database operations of inserting, deleting and updating relational tuples, and situa-
tions represent the database log. Relations and functions whose truth values vary from situ-
ation to situation are called fluents, and are denoted by predicate symbols and function sym-
bols with last argument a situation term (e.g., the relation " � &'&'��
 � is represented by the fluent
" � &'&'��
 � � " ����	�" (�)+&�	 "�	 � �). The language also includes special predicates �%� ��� , and � ; �%� ��� �#)
	 � �
means that the action) is possible in the situation � , and � � ��� states that the situation ��� is
reachable from � by performing some sequence of actions. In database terms, � � � � means
that � is a proper sublog of the log � � .

For simplicity, we consider only primitive update operations corresponding to insertion
or deletion of tuples into relations. For each such relation !��"# 	�"$	 � � , a primitive internal ac-
tion is a parameterized primitive action of the situation calculus of the form � � � ��"# 	 "�� or
 �+� &���"# 	�"�� . Intuitively, ��� � ��"# 	�"�� and �+� &���"# 	�"�� denote the actions of inserting the tuple
"# into and deleting it from the relation by the transaction " , respectively; for convenience,
we will abbreviate long symbols when necessary (e.g.,) *�*��%� � " � � � ��"# 	�"�� will be abbreviated
as) � � � ��"# 	�"��). Below, we will use the following abbreviation:

&
��'" � � �#)
	$ '	�"��)(+*-,.��/�"# �10)2(3 � � � ��"# 	�"��54!)6(3 � � &���"# 	 "��1	
one for each fluent. We distinguish the primitive internal actions from primitive external ac-

2

tions which are ��������� � "�� , � �) & � � "�	 " � � , � ���5� "�� , ���� ! !�'"1� "�� , and $%� &'&'(�) *�, � "�� , whose mean-
ing will be clear in the sequel of this paper; these are external as they do not specifically affect
the content of the database. Finally, by convention in this paper, a free variable will always be
implicitly bound by a prenex universal quantifier.

In [16], a database domain is axiomatized in the situation calculus with axioms describing
how and under what conditions the database is changing or not changing as a result of perform-
ing updates. Such axioms are called basic action theory. They comprise: domain independent
foundational axioms for situations; action precondition axioms, one for each action term, stat-
ing the conditions of change; successor state axioms, one for each fluent, stating how change
occurs; unique names axioms for action terms; and axioms describing the initial situation.

3 The Specification Framework

We extend the basic action theories of [16] to include a specification of relational database
transactions, by giving action precondition axioms for external actions. We also give succes-
sor state axioms that state how change occurs in databases in the presence of both internal and
external actions. All these axioms provide the first dimension of the situation calculus frame-
work for axiomatizing transactions, namely the axiomatization of the effects of transactions
on fluents; they also comprise axioms indicating which transactions are conflicting with each
other, and what actions each transaction is responsible for.

A useful concept that underlies most of the ATMs is that of responsibility over changes
operated on data items. In CNTs, a parent transaction will take responsibility of changes done
by any of its committed children. The only way we can keep track of those responsibilities is
to look at the transaction arguments of the actions present in the log. To that end, we introduce
a fluent
�� ��� ��� � � (�&'� � "�	�)
	 � � , which intuitively means that transaction " is responsible for the
action) in the log s, which we characterize with an appropriate successor state axiom:

 � ��� ��� � � (�&'� � "�	�) � 	�� ���')
	 � ����� "�
�) � � ��� �') � 	�"�	 � �	��
 � / "
�1� �)
�� � " � "�	�"��%	 � �54
� / " � ��� �)
 � � " � "$	�" � 	 � �	�!) (���� ! !�'"1� " � �	�
�� ��� ��� � ��(�&'� � " � 	�) � ��� 4

�� ��� ��� � ��(�&'� � "$) � 	 � �	��
 " ��
� � *�"1�')
	 "��1	

(1)

i.e., each transaction is considered responsible for any action whose last argument bears its
name, or for the actions of its committed children, or else for those actions it was already re-
sponsible for before terminating. Here, "�
�)+� � ��� �')
	 "�	 � � , �)
 � � " � "$	�" � 	 � � , and " ��
� � *�" �')�	�"��
are defined as follows:

"�
�) � � ��� �')���"# 	 "��1	 "�	 � ��� "�
%� � 	 (2)�)
�� � " � "�	�" � 	�� � �#)
	 � �����) (� �) & � � "$	�" � � 4�)
�� � " � "$	�" � 	 � ����
 " ��
� � *�"1�')
	 "�����
 " ��
� � *�" �')�	�" � � 	 (3)

" ��
� � *�"1�')�	�"�� (+*-,�) (� � ! !�#" � "�� 4!)6($%��&'&'(�)+*�, � "��10 (4)

We use the axioms above to capture the typical relationships that hold between transactions in
the hierarchy of a nested transaction.

To express conflicts among transactions, we need the fluents � � � �����	� &'��*�" �')�) � 	 � � and
"�
) � � � � �	� &'� *�"1� "�	 " � 	 � � , whose intuitive meaning is that the action) is conflicting with the
action) � in � , and the transaction " is conflicting with the transaction " � in � , respectively; their
characterization is as follows:

� � � �����	� &'��*�" �')�) � 	 � � (+*-,������� ��/ "# ��
�� !��"# 	 "�	�� ���')�	�� � �) � 	 � ��� ���3 !��"# 	�"$	�� ���') � 	$�+���')�	 � ��������

3

here, � is the set of fluents of the basic relational language; the later definition says that two
internal actions) and) � conflict in the log � iff the value of the fluents depends on the order
in which) and) � appear in � .
"�
�)+� � �����	� &'��*�"���� � "$	�" � 	�� ���')�	 � � ��� "��(" � �
�� ��� ��� � � (�&'� � " �)�	 � � �
��/) � 	 � � � �
�� ��� ��� � � (�&'� � "�	�) � 	 � �	� � � � �����	� &'� *�"1�') �)�	 � � � � � �#) � 	 � � �'� � �

�� ��� � � � � (�&'� � "�)�	 � ���
%� � � ��� � � " � 	 � ���2����/ " � � � �)
�� � "1� "�	 " � � 	 � ����
)+� *�� � " �%
�� "�	 " � 	 � ����4
"�
�) � � �����	� &'� *�"���� � "�	�" � 	 � �	��
 " ��
� � *�"1�')�	�"��� (5)

) � *�� � " �
�� "$	�" � 	 � � is defined in the usual way using �)
�� � "1� "�	 " � 	 � � and
%� � � � ��� � " � 	 � � is de-
fined below.

%� � � � ��� � "�	 � � (+*-,.� / � � �10
	 � ���'��������� � "��1	 � � ��� � �
��
)
	 � � � � � � � �#����� � � � "��1	 � � � � � � �#)
	 � � � �'� � �)��($%��&'&'(�)+*�, � "�� �!)��(� ����� "���� 4
��/ " � �10 � ��� � �) & � � " � 	 "��1	 � � ��� � �
��
)
	 � � � � � � � � � �) & � � " � 	 "��1	 � � �'� �+���')�	 � � � � � � �)��($%��&'&'(�)+*�, � "�� �)��(� ���5� "������ 0 (6)

Intuitively, (5) means that transaction " conflicts with transaction " � in the log � ���')
	 � � iff inter-
nal actions they are responsible for are conflicting in � , " � executes its internal action) after "
has executed the internal action) � in the log � , " is not responsible for the action of " � it is con-
flicting with, " � is running; moreover, a transaction cannot conflict with actions his ancestors
are responsible for; " also conflicts with " � iff both did so in � and) is not terminating " .

A further useful fluent that we provide in the general framework is
��) � � +
��� � "�	 " � 	 � � .
This is used in most transaction models as a source of dependencies among transactions, and
intuitively means that the transaction " reads a value written by the transaction " � in the log � .
The successor state axiom for this fluent depends on the application.

The second dimension of the situation calculus framework is made of dependencies be-
tween transactions. All the dependencies expressed in ACTA ([5]) can also be expressed in
the situation calculus. As an example, we have:

Weak Rollback Dependency of " on " �
�+���'$%��&'&'(�) *�, � " � � 	 � � �'� � � �
	 ��
 � ��� ��� ���� ! !�'"1� "�� 	 � ����!�+���'$%��&'& (�)+*�, � " � �1	 � � ���3��/ � � � ��� � �#$%� &'&'(�) *�, � "��1	 � � � �'� � � � ;

i.e., if " � rolls back in a log � � , then, whenever " does not commit before " � , " must also roll
back in � � .

Further dependencies occurring in CNTs are: Commit Dependency of " on " � , i.e., if "
commits in a log � � , then, whenever " � commits in � � , " � commits before " ; Strong Commit
Dependency of " on " � , i.e., if " � commits in a log � � , then " must also commit in that log; and
Rollback Dependency of " on " � , i.e., if " � rolls back in a log � � , then " must also roll back in
that log. The specification of an ATM must be given in such a way that all these dependencies
are properties of legal database logs of that ATM.

To control dependencies that may develop among running transactions, we use a set of
predicates denoting these dependencies. For example, we use * �+� � � "�	 " � 	 � � , � * � � � � "�	�" � 	 � � ,

 � � � � "�	�" � 	 � � , and &
 � � � � "�	 " � 	 � � to denote the commit, strong commit, rollback, and weak
rollback dependencies, respectively. These are fluents whose truth value is changed by the
relevant transaction models by taking into account dependencies generated by the execution
of the actions of these transactions. Appropriate successor state axioms must be given for these
fluents.

4

4 Closed Nested Transactions

A closed nested transaction is a set of transactions (called subtransactions) forming a tree struc-
ture, meaning that any given transaction, the parent, may spawn a subtransaction, the child,
nested in it. A child can commit permanently only if its parent has committed; thus it can-
not commit unilaterally.1 If a parent transaction rolls back, all its children are rolled back.
However, if a child rolls back, the parent may execute a recovery procedure of its own. Each
subtransaction, except the root, fulfills the A, C, and I among the ACID properties. The root
(level 1) of the tree structure is the only transaction to satisfy all of the ACID properties.

Notice that we do not introduce a new sort for transactions, as is the case in [3]; we treat
transactions as run-time activities, whose compile-time counterparts will be GOLOG programs
introduced in Section 5. We refer to transactions by their names that are of sort object.

In the sequel of this paper, we use a Debit/Credit example which we now describe. The ap-
plication involvesa basic relational language with: fluents � ��
�� �����') ����	 � � , " � &'&'��
 � � " ����	�" (�)+&�	 "�	 � � ,
(1
�) � * � � � �'(�����	 (�(�) &�	�(��) !� 	 "$	 � � , and)+*�*��%� � " � �') ����	 (����
	�)+(�)+&�	 "$	 � � ; a situation independent
predicate
����%� � � " ���5�#)+���
	$
 ���%� ; and actions
�� � �%
 "1�') ��� � , " ��� � � " ���
	 " (�) &�	�"�� , " �+� &�� " ���
	 " (�) &�	 "�� ,
) ��� � �') ����	 (�����) (�)+&�	 " ����	 "�� ,) � � &��') ����	 (����
	�) (�)+&�	 " ����	 "�� , (� � � �'(����
	�(�(�)+&�	�(��)+ !� 	 "�� , and
(�+� &��'(�����	 (�(�)+&�	 (��)+ !� 	�"�� . The meaning of the arguments of fluents are self explanatory; and
the basic relational language also includes the external actions given in Section 2.

The axiomatization of a dynamic relational database with CNT properties comprises the
following classes of axioms:
Foundational Axioms. These are constraints imposed on the structure of histories represent-
ing database logs. As they play no further role in this paper, we omit them.
Integrity Constraints. These are constraints imposed on the data in the database at a given
situation � ; their set is denoted by ���
	 for constraints that must be enforced at each update
execution, and by ����� for those that must be verified at the transaction end. For example, we
may enforce the following IC:

) *�*��%� � " � �') ����	 (�����	�) (�)+&�	�" ����	 "�	 � � �)+*�*��%� � " � �') ����	 (���� �) (�) & � 	�" ��� � 	 " � 	 � ���
(����+((���� �) (�) &�()+(�) & � 	 " ��� (" ��� � 	

and similar ones for the (1
�)+� * � � � and " � &'&'��
 � fluents; these are primary key constraints. We
may verify the IC

) *�*��%� � " � �')+���
	�(�����) () &�	 " ���
	 "$	 � � �)+(�) &�
���0
Update Precondition Axioms. There is one for each update �6��"# 	 "�� , with syntactic form

�%� ��� ��� ��"# 	�"��1	 � � � ��/ " � ����� ��"# 	�" � 	 � �	��� � 	 ��� ����� ��"# 	�"�� 	 � � � �
%� � � ��� � � "$	 � � 0 (7)

Here, � � ��"# 	�"$	 � � is a formula with free variables among "# 	�" , and � , and � � 	 � � � abbreviates����� ������� � � � � � . These axioms characterize the preconditions of the update � . As an example,
the following states that it is possible for the transaction " to insert a tuple � " ����	�" (�) &�� into the
" � &'&'��
 relation relative to the database log � iff, as a result of performing the actions in the
log, that tuple would not already be present in the " � &'&'��
 relation, the integrity constraints are
satisfied, and transaction " is running:

�%� ��� � " �+� &�� " ���
	 " (�) &�	�"�� 	 � ��� � / " � � " � &'&'��
�� " ����	�" (�) &�	 " � 	 � ���
� � 	 ���+��� " � � &�� " ����	�" (�)+&�	 "��1	 � ��� �
%� � � ��� � � "$	 � � 0

1This is why the nesting considered here is called “closed”, as opposed to “open” nested transactions where
children may commit unilaterally ([17]).

5

Successor State Axioms. These have the syntactic form

 !��"# 	�"�	$�+���')�	 � ����� � / "" � ��� � ��"#)�	 "" � 	 � �	��
 ��/ " � � ��)2($%��&'&'(�)+*�, � " � � � 4
� � / " � � � 0) ($%��&'&'(�) *�, � " � � �	�
 ��/ " � � �)
�� � "1� " � 	 " � � 	 � �	�
�� � " �%
�� ����� � ���%��� � " � '	�"# 	�" � � 	 � �
� 4
� � / " � � � 0) ($%��&'&'(�) *�, � " � � �	� ��/ " � � �)
�� � "1� " � 	 " � � 	 � �	�
�� � " �%
�� � �) & ���%� ��� " �� '	�"# 	 " � � 	 � ����	 (8)

one for each relation of the basic relational language, where � � ��"#)�	 ""�	 � � is a formula with
free variables among "# 	�)
	 ""�	 � ;
�� � " �%
�� ����� � ���%��� � " � '	�"# 	�"$	 � � is the following abbreviation:

�� � " �%
�� ����� � ���%��� � " �� '	�"# 	�"�	 � � (+*-,
� ��/) � 	 � � 	 � � 	�" � �10 � ���'��������� � "��1	 � � �'� � ���') � 	 � � � � � � &
��#" � � �') � 	$ '	�"��	� !��"# 	 " � 	 � � ��� 4
� ��
) � 	 � � 	 � � �10 � � �#����� � � � "��1	 � � ���!� � �#) � 	 � � � � � ��
 &
��#" � � �') � 	� '	 "������ ��/ " � �� !��"# 	 " � 	 � � 	 (9)

and
 � � " �
�� � �) & ���%��� � "1�� '	�"# 	�"$	 � � is an abbreviation expanded in a similar way. Intuitively,

�� � " �%
�� �����������%� ��� " �� '	�"# 	 "�	 � � means that the transaction " restores the value that the fluent
 with arguments "# had before the execution of its ����� � � action in the log � if the transaction
" has updated ; it keeps the value it had in � otherwise. Given the actual situation � , the
successor state axioms characterize the truth values of the fluent in the next situation � � �#)
	 � �
in terms of all the past situations. A successor state axiom for the fluent " � &'&'��
 � � " ���
	 " (�) &�	�"$	 � �
is as follows:

" � &'&'��
 � � " ����	�" (�)+&�	 "�	�� ���')
	 � ���	� ����/ "�����) (" � � � � " ����	�" (�)+&�	 "�����4
� / "��1� " � &'&'��
 � � " ���
	 " (�) &�	�"��$	 � �	��
 ��/ "�����) (" �+� &�� " ���
	 " (�) &�	�"�� 	 " ��� ��� ��
 ��/ " � ��) ($%��&'&'(�) *�, � " � ��4
� / " � �10)2($%��&'&'(�)+*�, � " � ����
 ��/ " � � � �)
�� � "1� " � � 	 " � 	 � �	�

�� � " �%
�� ����� � ���%��� � " � " � &'&'��
 � 	 � " ����	�" (�)+&�	 " ��� �$	�" � 	 � ��4
)6($%��&'&'(�) *�, � " � �	� ��/ " � � � �)
 � � " � " � � 	 " � 	 � �	�

�� � " �%
 � � �) & �5�%����� "1� " � &'&'��
 � � " ����	�" (�)+&�	 " ��� �1	 " � 	 � �10
This states that the tuple � " ����	�" (�)+&�� will be in the " � &'&'��
 � relation relative to the log � ���')�	 � �
iff the last database operation) in the log inserted it there, or it was already in the " � &'&'��
 �
relation relative to the log � , and) didn’t delete it; all this, provided that the operation) is not
rolling the database back. If) is rolling the database back, the " � &'&'��
 � relation will get a value
according to the logic of (9).

Precondition Axioms for External Actions. This is the following set of action precondition
axioms for the external actions of CNTs:

�%� ��� �'��������� � "��1	 � � �
 ��/ " � � �)
�� � "1� " � 	�"$	 � � �
� � (� � 4 ��/ � � 	�" � �10 " �(" � � �+���'����� � � � " � �1	 � � � � � ��	 (10)

�%� ��� � � �) & � � "�	 " � �1	 � � � "��(" � �
��/ � � 	 " � � ��� �+���'����� � � � "��1	 � � ��� � 4 � ��� � �) & � � " � � 	 "��1	 � � ��� � ��	 (11)

�%� ��� � � ���5� "��1	 � � �3
%� � � � ��� � "�	 � �1	 (12)

�%� ��� � ���� ! !�#" � "��1	 � � � ��/ � � �10 � (3� ��� � ���5� "��1	 � � ��� �
��� �����
	 � � � � �	�

��
 " � � � � * �+� � � "�	 " � 	 � ��� ��/ � � � ��� ��� ���� ! !�'"1� " � � 	 � � � � � � � �
��
 " � � � * � � � � "�	�" � 	 � �	��
 ��/ � �1��� � �#$%� &'&'(�) *�, � " � �1	 � �$� � � �

��/ � � ��� � � ���� ! !�'"1� " � �1	 � � �'� � ����	
(13)

6

�%� ��� �'$%��&'&'(�) *�, � "��1	 � ��� ��/ � � �10 � (3� ��� � �5��� "��1	 � � ����
 �
��� ����� 	 � � � � ��4

��/ " � 	 � � � �10
 � � � � "$	�" � 	 � ��� � � �#$%� &'&'(�) *�, � " � �1	 � � � �'� � � 4
��/ " � 	 � � �10 &
 � � � � "�	�" � 	 � �	� �+���'$%��&'&'(�) *�, � " � � 	 � � � � � �

 ��/ � ���1��� � � ���� ! !�'"1� "��1	 � ����� � �+���'$%��&'&'(�) *�, � " � �1	 � �$�10
(14)

Dependency axioms. These are axioms used to capture how dependencies arise among trans-
actions. These axioms are also used to capture the notion of recoverability, avoiding cascading
rollbacks, etc, of the classical concurrency control theory ([2]). For CNTs, we have:

 � � � � "�	 " � 	 � � � "�
�)+� � � ��� � &'��*�"���� � "$	�" � 	 � �1	� * � � � � "$	�" � 	 � � �3
��) � � +
�� � "�	�" � 	 � � 	
* �+� � � "�	 " � 	�� � �#)
	 � ��� �!))(� �) & � � "�	 " � � 4!* � � � � "�	�" � 	 � ���
 " ��
� � *�" �')�	�"����
 " ��
� � *�" �')�	�" � �1	&
 � � � � "$	�" � 	�� ���')�	 � � � �!) (� �) & � � " � 	 "���4 &
 � � � � "$	�" � 	 � ���
 " ��
� � *�" �')�	�"����
 " ��
� � *�"1�')�	�" � �10
Unique Names Axioms. These state that the primitive updates and the objects of the domain
are pairwise unequal.
Initial Database. This is a set of first order sentences specifying the initial database state.
They are completion axioms of the form

��
 "# �10 !��"# 	 ��� � � "# ("��� ��� 4 0�0�0$4 "# ("����� � ,
one for each fluent . Here, the "��� are tuples of constants. Also, 	�

� includes unique name
axioms for constants of the database, and axioms stating the conflicting updates.

The axioms above capture the notion of a situation being located in the past relative to the
current situation which we express with the predicate � . Thus they capture non-Markovian
control ([8]). We call these axioms a basic relational theory, and define a relational database
as a pair ��� 	�	 � , where � is a basic relational language and 	 is a basic relational theory.

A fundamental property of $%��&'&'(�)+*�, � "�� and ���� ! !�'"1� "�� actions is that the database sys-
tem must execute them in any database state in which they are possible. In this sense, they are
coercive actions, and we call them system actions:

��� � " � � *�" �')�	�"�� (+*-,�))(���� ! !�'"1� "���4!) (!$%��&'&'(�) *�, � "��10
Therefore, logs must be constrained to take the system actions into account, as well as the re-
quirement that all actions in the log be possible. We capture these requirements as follows:

&'���) &�� � � (*-, ��
)
	 � �$� � � � �#)
	 � ��� � � �)�%� ��� �')�	 � � �
� �
��
) �) � � 	 � � 	�"�� � ��� � " � � *�" �') � 	�"����
�� ��� ��� � � (�&'� � "�	�) � ���

 � ��� ��� � ��(�&'� � "$) � � ��� �%� ��� �') � 	 � � ��� � � �#) � � 	 � � �'� � �) � () � � ��0
(15)

Now we state the (relaxed) ACID properties of CNTs as sentences of the situation calculus
that are logically implied by the relational theory that captures CNTs. Here, we only illustrate
the A and I of the ACID properties.

Theorem 1 (Atomicity) Suppose 	 is a relational theory. Then for every relational fluent
	�� (&'���) &�� � � � 	 � � � (3� ���'��������� � "��1	 � ����4 � � (3� ��� � �) & � � "��1	 � ����� �� � � �+���')�	 � � �'� � � � /) ��	 � �1� � � � � �+���') �%	 � ���'� �+���')�	 � � �	� &
��'" � � �#) ��	� '	 "���� �

� �') ($%� &'&'(�) *�, � "�� �3����/ "����� !��"# 	�"��1	�� ���')�	 � � ��� � ��/ " �1�� !��"# 	 "���	 � � ��� ���
��� / "����� !��"# 	�� ��� ���� ! !�'"1� "�� 	�"���	 � �$��� � ��/ " �1�� !��"# 	 "���	 � �1������� 0

7

This says that rolling back a transaction " restores any modified fluent to the value it had just
before the ��������� � "�� or

� �) & � � " � 	�"�� action, and committing endorses the value it had in the
situation just before the � �� ! !�'" � "�� action.

Theorem 2 (No-Orphan-Commits: [5]) Suppose 	 is a relational theory. Then, whenever
a child’s parent terminates before the child commits, the later, an orphan, is rolled back; i.e.,

	�� (&'����) &�� � � � 	 �)
�� � " � "$	�" � 	 � �	�!" ��
� � *�" �')�	�"�� �
� ��� ���� ! !�'"1� " � �1	 � � ���� � ���')�	 �1� � �'� � �3� / � � ��� ���'$%��&'&'(�)+*�, � " � � 	 � � �'� � � 0

This property, combined with the atomicity of all transactions of the CNT tree, leads to the fact
that, should a root transaction roll back, then so must all its subtransactions. This is where the
D in the ACID acronym is relaxed for subtransactions.

Finally, we turn to the important property of serializability which we express as follows:

"�
) � � � � �	� &'� *�" ��� � � "�	 " � 	 � � (+*-, ��
 � � � ��
 "�� � � "�	 "�	 � � �
��
 � 	 "�	�" � 	 " � � � � � � "�	 " � � 	 � ��� "�
) � � � � �	� &'� *�" ��� � " � � 	�" � 	 � ��� � � "�	�" � 	 � ��� � � � "�	 " � 	 � �
��	

� ��
��) &'���) (�&'� ��� � � � (+*-,.��
 "��10 � ��� ���� ! !�#" � "��1	 � � �'� � �
 "�
�)+� � �����	� &'��*�"���� � � "$	�"$	 � � 0
Theorem 3 (Isolation) Suppose 	 is a relational theory. Then

	 � (&'���)+&�� � � � � ��
��) &'���) (�&'� ��� � � �10

5 Simulating CNTs

GOLOG, introduced in [12] and enhanced with parallelism in [6] (ConGolog), is a language
for defining complex actions in terms of primitive actions axiomatized in the situationcalculus.
It has the following Algol-like control structures sequence (� �� � � ; Do action � , followed by
action

�
); test actions (��� ; Test the truth value of expression � in the current situation); nonde-

terministic action choice (� � � ; Do � or
�

); nondeterministic argument choice (��� # ��� ; pick
any value for # , and for that value of # , do action �); conditionals and loops; and procedures.
The following are ConGolog constructs for expressing parallelism: concurrency (� ��� � � ; Do
� and

�
in parallel); concurrent iteration (�
	 ; Do � zero or more times in parallel).

In [6], a single-steps semantics of GOLOG programs is introduced. Single-steping a given
program � means that � may perform one step in situation � , ending up in situation � � , where a
further program � � , a chunk of � , remains to be executed. This process goes on until no chunk
remains. Finally, to process programs, a ternary relation � ��� �
�� � 	 � 	 � � � is introduced with the
intuitive meaning that ��� is one of the situations reached by evaluating the GOLOG program�
�� � , beginning in a given situation

�
. Notice that we need to modify a � � -based interpreter

described in [6] to accommodate non-Markovian features and generate only legal logs.
Now we express a transaction behaviour for our Debit/Credit example as a set of proce-

dures. For brievety, we only give a sample main procedure; this is enclosed between a ��������� � "��
and an � ���5� "�� actions to enforce ACID properties; it spawns subtransactions:

proc
�� ����������� � �������	���� � � �!�"� � ��#%$&�(' ���!)�* ���()+* ����� ��*'� �!)+* � ��,-��./ �������-0+� ����� ���()+* ���()+* ����� ��*'� �!)+*'���21
� ��,-0+��� ����)+� � �!)+* � ��,-��1435��� �-6 ��)+�����!)��87:9;# � �
 � � �������!)<�=#

>
 ��?
�"� ��* ���()��%#
+� ���������
 ��,��	��*'� �!)+* ���!)�* � ��,-�@#5AB��)�� ���()��!C�D
#
3%���!E ���!)�* � ��,-� � ��,-0���� ����)+�����!)�* � ��,-����9;#5AF��)+�	���

endProc

8

Here, the procedure �
���*�� ��� $%����� "$	�" ����) ����	�
 ���%� is used by the transaction " to process a
pending debit or credit request
���� from a user with account)+��� at teller " ��� . Notice that a
formula � in a test � � is in fact a situation suppressed formula whose situation argument is
restored at run-time by the interpreter. Notice also the use of parallel iteration in the last pro-
cedure; this spawns a new parallel child transaction for each account that emitted a request, but
has not yet been served. The action
�� � �%
 "1�') ��� � is used to indicate that a request emitted by
the owner of the account) ��� has been granted. These requests are registered in the predicate

����%� � � " �����') ����	�
����%� . Finally, the following successor state axiom is used for synchronization:

� ��
��+���5�#)+���
	$�+���')�	 � ���	�3
�� � �%
 "1�') ��� �54 � ��
 � �����') ����	 � �10
Now we can simulate the program, say �
���*�� ��� �
�)+� � � � � , by performing the theorem

proving task of establishing the entailment 	 � (��/ � � �%� � � �
�� *�� ��� �
�)+� � � � �1	 � � 	 � � � , where���
is the initial, empty log, and 	 is the basic relational theory that comprises the axioms

above; this exactly means that we look for some log that is generated by the program � . We
are interested in any instance of � resulting from the proof obtained by establishing this entail-
ment. Such an instance is obtained as a side-effect of this proof.

6 Discussion

ACTA ([5]) is a framework similar to ours. It allows to specify effects of transactions on ob-
jects and on other transactions. In fact, we use the same building blocks for ATMs as those used
in ACTA. However, the reasoning capability of the situation calculus exceeds that of ACTA
for the following reasons: (1) the database log is a first class citizen of the situation calculus,
and the semantics of all external actions are defined with respect to constraints on this log;
ACTA does not quantify over histories, so it has no straightforward way of expressing closed
form formulas involving histories. (2) Our approach goes far beyond ACTA as it is an im-
plementable specification, thus allowing one to automatically check many properties of the
specification using an interpreter. Finally, (3) although ACTA deals with the dynamics of the
database, it is not explicitly formulated as a logic for actions.

In [3], Bertossi et al. extend Reiter’s specification of database updates to transactions. In
fact, the idea of using external actions for flat transactions in the situation calculus was first
introduced in [3], as was the the axiomatization of the notion of consistency verification at the
transaction end. Our approach, however, provides theories that are explicitly non-Markovian;
it deals with ACID properties, and goes beyond flat transactions to account for ATMs which
are much more complex. Notice that our non-Markovian formalization permits a formalization
of ATMs that is not verbose; this would not be the case if one appeals to a transformation of
non-Markovian actions into Markovian ones (See [1] for such a transformation).

Transaction Logic ([4]) and Statelog ([13]) are languages for database state change that
include a clean model theory. However, these approaches, unlike the situation calculus, do
not view elementary updates as first order terms; they appeal to special purpose semantics to
account for database transactions; finally, we are not sure of their generality to be used for
modeling any given transaction model or “inventing” a new one from scratch at a sufficiently
high level as is the case in ACTA and the situation calculus.

Thus far, we have given axioms that accommodate a complete initial database state. This,
however, is not a requirement of the theory we are presenting. Therefore our account could, for
example, accommodate initial databases with null values, open initial database states, initial
databases accounting for object orientation, or initial semistructured databases.

On-going work extending our framework includes: accounting for some of the most re-
cent ATMs, for example those reported in [10], implementing the specifications of signifi-

9

cant ATMs, proving the correctness of the approach, accommodating initial semistructured
databases, and introducing active rules ([11]).

Acknowledgments

We thank R. Reiter, A. Gabaldon, and J. Pinto for helpful discussions. Ray suggested the link
to an explicit non-Markovian account. Thanks also to the anonymous referees for insightful
comments. We gratefully mention the support by NSERC, IRIS (Institute for Robotics and
Intelligent Systems), and ITRC (Information Technology Research Centre of Ontario).

References
[1] M. Arenas and L. Bertossi. Hypothetical temporal queries in databases. Proceedings of the 5th

KRDB, pages 4.1–4.8, 1998.

[2] P.A. Bernstein, V. Hadzilacos, and N. Goodman. Concurrency control and recovery in database
systems. Addison-Wesley, Reading, MA, 1987.

[3] L. Bertossi, J. Pinto, and R. Valdivia. Specifying database transactions and active rules in the
situation calculus. In H. Levesque and F. Pirri, editors, Logical Foundations of Cognitive Agents.
Contributions in Honor of Ray Reiter, pages 41–56, New-York, 1999. Springer Verlag.

[4] A. Bonner and M. Kifer. Transaction logic programming. Tech. report, Univ. of Toronto, 1992.

[5] P.K. Chrysanthis. ACTA, A Framework for Modeling and Reasoning about Extended Transac-
tions. PhD thesis, Dept. of Computer and Information Science, Univ. of Massachusetts, Amherst,
1991.

[6] G. De Giacomo, Y. Lespérance, and H.J. Levesque. Reasoning about concurrent execution, prior-
itized interrupts, and exogeneous actions in the situation calculus. In Proceedings of the Fifteenth
International Joint Conference on Artificial Intelligence, pages 1221–1226, 1997.

[7] Ahmed K. Elmagarmid. Database transaction models for advanced applications. Morgan Kauf-
mann, San Mateo, CA, 1992.

[8] A. Gabaldon. Non-markovian control in the situation calculus. In G. Lakemeyer, editor, Proceed-
ings of the Second International Cognitive Robotics Workshop, pages 28–33, Berlin, 2000.

[9] J. Gray and Reuter A. Transaction Processing: Concepts and Techniques. Morgan Kaufmann
Publishers, San Mateo, CA, 1995.

[10] S. Jajodia and L. Kerschberg. Advanced Transaction Models and Architectures. Kluwer Aca-
demic Publishers, Boston, 1997.

[11] I. Kiringa. A Formal Account of Relational Active Databases in the Situation Calculus. PhD
thesis, Computer Science, University of Toronto, Toronto, forthcoming.

[12] H. Levesque, R. Reiter, Y. Lespérance, Fangzhen Lin, and R.B. Scherl. Golog: A logic program-
ming language for dynamic domains. J. of Logic Programming, 31(1-3):59–83, 1997.

[13] B. Ludäscher, W. May, and G. Lausen. Nested transactions in a logical language for active rules.
Technical Report Jun20-1, Technical Univ. of Munich, June 1996.

[14] N. Lynch, M.M. Merritt, W. Weihl, and A. Fekete. A theory of atomic transactions. In M. Gyssens,
J. Parendaens, and D. Van Gucht, editors, Proceedings of the Second International Conference on
Database Theory, pages 41–71, Berlin, 1988. Springer Verlag. LNCS 326.

[15] J. Moss. Nested Transactions: An Approach to Reliable Distributed Computing. Information Sys-
tems Series. The MIT Press, Cambridge, MA, 1985.

[16] R. Reiter. Knowledge in Action: Logical Foundations for Describing and Implementing Dynam-
ical Systems. MIT Press, Cambridge, 2001.

[17] G. Weikum and H.J. Schek. Concepts and applications of multilevel transactions and open nested
transactions. In A.K. Elmagarmid, editor, Database Transaction Models for Advanced Applica-
tions, pages 516–553, San Mateo, CA, 1992. Morgan Kaufmann.

10

