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Abstract

We investigate the problem of reasoning with
partitions of related logical axioms. Our moti-
vation is two-fold. First, we are concerned with
how to reason effectively with multiple knowl-
edge bases that have overlap in content. Second,
and more fundamentally, we are concerned with
how to exploit structure inherent in a set of logi-
cal axioms to induce a partitioning of the axioms
that will lead to an improvement in the efficiency
of reasoning. To this end, we provide algorithms
for reasoning with partitions of axioms in propo-
sitional and first-order logic. Craig’s interpola-
tion theorem serves as a key to proving complete-
ness of these algorithms. We analyze the compu-
tational benefit of our algorithms and detect those
parameters of a partitioning that influence the ef-
ficiency of computation. These parameters are
the number of symbols shared by a pair of parti-
tions, the size of each partition, and the topology
of the partitioning. Finally, we provide a greedy
algorithm that automatically decomposes a given
theory into partitions, exploiting the parameters
that influence the efficiency of computation.

1 Introduction

There is growing interest in building large knowledge bases
(KBs) of everyday knowledge about the world, teamed with
theorem provers to perform inference. Three such systems
are Cycorp’s Cyc, and the High Performance Knowledge
Base (HPKB) systems developed by Stanford’s Knowledge
Systems Lab (KSL) [23] and by SRI (e.g., [12]). These
KBs comprise tens/hundreds of thousands of logical ax-
ioms. One approach to dealing with the size and complex-
ity of these KBs is to structure the content in some way,
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such as into multiple domain- or task-specific KBs, or into
microtheories. In this paper, we investigate how to reason
effectively with partitioned sets of logical axioms that have
overlap in content, and that may even have different reason-
ing engines. More generally, we investigate the problem of
how to exploit structure inherent in a set of logical axioms
to induce a partitioning of the axioms that will improve the
efficiency of reasoning.

To this end, we propose partition-based logical reasoning
algorithms, for reasoning with logical theories? that are de-
composed into related partitions of axioms. Given a par-
titioning of a logical theory, we use Craig’s interpolation
theorem [15] to prove the soundness and completeness of
a forward message-passing algorithm and an algorithm for
propositional satisfiability. The algorithms are designed so
that, without loss of generality, reasoning within a partition
can be realized by an arbitrary consequence-finding engine,
in parallel with reasoning in other partitions. We investi-
gate the impact of these algorithms on resolution-based in-
ference, and analyze the computational complexity for our
partition-based SAT.

A critical aspect of partition-based logical reasoning is the
selection of a good partitioning of the theory. The computa-
tional analysis of our partition-based reasoning algorithms
provides a metric for identifying parameters of partition-
ings that influence the computation of our algorithms: the
bandwidth of communication between partitions, the size
of each partition, and the topology of the partitions graph.
These parameters guide us to propose a greedy algorithm
for decomposing logical theories into partitions, trying to
optimize these parameters.

Surprisingly, there has been little work on the specific prob-
lem of exploiting structure in theorem proving and SAT in
the manner we propose. This can largely be attributed to
the fact that theorem proving has traditionally examined
mathematics domains, that do not necessarily have struc-
ture that supports decomposition. Nevertheless, there are

1 this paper, every set of axioms is a theory (and vice versa).
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Figure 1: A partitioning of .4 and its intersection graph.

many areas of related work, which we discuss at the end of
this paper.

2 Partition-Based Theorem Proving

In this section we address the problem of how to reason
with an already partitioned propositional or first-order logic
(FOL) theory. In particular, we propose a forward message-
passing algorithm, in the spirit of Pearl [40], and examine
the effect of this algorithm on resolution-based inference.

{A;}i<n is a partitioning of a logical theory A if A =
U; Ai. Each individual A; is called a partition, and £(A;)
is its signature (the non-logical symbols). Each such par-
titioning defines a labeled graph G = (V, E,l), which
we call the intersection graph. In the intersection graph,
each node ¢ represents an individual partition A;, (V =
{1, ...,n}), two nodes i, j are linked by an edge if £(A;)
and L(A;) have a symbol in common (E = {(i,7) |
L(A;) N L(A;) # 0}), and the edges are labeled with the
set of symbols that the associated partitions share (I(4, j) =
L(A;) N L(A;j)). We refer to [(i, j) as the communication
language between partitions .4; and .A;. We ensure that the
intersection graph is connected by adding a minimal num-
ber of edges to E with empty labels, I(i, j) = 0.

We illustrate the notion of a partitioning in terms of the
simple propositional theory A, depicted at the top of Fig-
ure 1. (This is the clausal form of the theory presented with
material implication in Figure 2.) This set of axioms cap-
tures the functioning of aspects of an expresso machine.
The top four axioms denote that if the machine pump is
OK and the pump is on then the machine has a water sup-
ply. Alternately, the machine can be filled manually, but it
is never the case that the machine is manually filling while
the pump is on. The second four axioms denote that there
is steam if and only if the boiler is OK and is on, and there
is a supply of water. Finally, there is always either coffee
or tea. Steam and coffee (or tea) result in a hot drink.

man-fill = water
—man-fill = on_pump
—water = —steam
—on_boiler = —steam
coffee V teabag

ok_pump A on_pump = water
man_fill = —on_pump

water A ok_boiler N on_boiler = steam
—ok_boiler = —steam

steam A cof fee = hot_drink

steam A teabag = hot_drink

Figure 2: Axiomatization of a simplified espresso machine.

The bottom of Figure 1 depicts a decomposition of 4 into
three partitions A;, As, A3z and its intersection graph.
The labels for the edges (1,2),(2,3) are {water} and
{steam}, respectively.

2.1 Forward Message Passing

In this section we propose a forward message-passing al-
gorithm for reasoning with partitions of logical axioms.
Figure 3 describes our forward message-passing algorithm,
FORWARD-M-P (MP) for finding the truth value of query
formula @ whose signature is in £(Ag), given partitioned
theory .4 and graph G = (V, E, 1), possibly the intersection
graph of A, but not always so.

PROCEDURE FORWARD-M-P({A4;}i<n, G, Q)

{Ai}i<n a partitioning of the theory A, G = (V,E,l) a
graph describing the connections between the partitions, Q
a query formula in the language of L(Ax) (k < n).

1. Let dist(i,7) (3,5 € V) be the length of the shortest
path between 7,5 in G. Let ¢ < j iff dist(i,k) <
dist(j, k) (< is a strict partial order).

2. Concurrently perform consequence finding for each of
the partitions A;, i < n.

3. Forevery (i,5) € E such thati < j, if we prove A; =
o and ¢’s signature is in £(I(z, 7)), then add ¢ to the set
of axioms of A;.

4. If we proved Q in Ay, return YES.

Figure 3: A forward message-passing algorithm.

This algorithm exploits consequence finding (step 2) to per-



form reasoning in the individual partitions. Consequence
finding was defined by Lee [33] to be the problem of find-
ing all the logical consequences of a theory or sentences
that subsume them. In MP, we can use any sound and
complete consequence-finding algorithm. The resolution
rule is complete for consequence finding (e.g., [33, 46])
and the same is true for semantic resolution [47] (and
set-of-support resolution [24]), and linear resolution vari-
ants (e.g., [30]). Such consequence finders are used for
prime implicate generation in applications such as diagno-
sis. Inoue [30] provides an algorithm for selectively gen-
erating consequences or characteristic clauses in a given
sub-vocabulary. We can exploit this algorithm to focus
consequence finding on axioms whose signature is in the
communication language of the partition.

Figure 4 illustrates an execution of MP using resolution.

Using FORWARD-M-P to prove hot_drink

Part.  Resolve Generating
A1 (2) ,(4)  on_pumpV water (m1)
Air (ml),(1) ok_pump V water (m2)
Ar (m2),(12) water (m3)
clause water passed from A; to A,
As (m3), (5) ok_boiler A on_boiler D steam (m4)
Az (m4),(13) -—on_boiler V steam (m5)
Az (m5),(14) steam (m6)

clause steam passed from A to As

As (9 ,(10) —steamV teabagV hotdrink (m7)
As  (m7),(11) -—steam V hot_drink (m8)
As  (m8),(m6) hot_drink (m9)

Figure 4: A proof of hot_drink from A in Figure 1 after as-
serting ok_pump (12) in A; and ok_boiler (13), on_boiler
(14) in As.

Given a partitioning whose intersection graph forms an
undirected tree, our MP algorithm is a sound and complete
proof procedure. The completeness relies on Craig’s Inter-
polation Theorem.

Theorem 2.1 (Craig’s Interpolation Theorem [15]) If
a F S, then there is a formula v involving only symbols
common to both o and 3, such thata - v and v F 3.

Craig’s interpolation theorem is true even if we take a, 8
to be infinite sets of sentences [46], and use resolution the-
orem proving [46, 29], with or without equality [15, 16]
(all after proper reformulation of the theorem). Lyndon’s
version of the interpolation theorem [35] adds sensitivity
to the polarity of relation symbols (v includes P positively
(negatively) only if P shows positively (negatively) in both
aand §).

Theorem 2.2 (Soundness and Completeness) Let A =
Ui<n A: be a partitioned theory with the intersection
graph G being a tree (i.e., no cycles). Let k < n and ¢
a sentence whose signature is in £L(Ag). Then, A | ¢ iff
MP outputs YES.

PROOF  See Appendix A.1.

If the intersection graph of A is not a tree, and MP uses it
as input, then MP may fail to be a complete proof proce-
dure. Figure 5 illustrates the problem. The left-hand side
of Figure 5 illustrates the intersection graph of partitioning
A1, As, As, A4 of a theory A. If we try to prove s (which
follows from A) from this partitioning and graph using MP,
nothing will be transmitted between the partitions. For ex-
ample, we cannot send p = s from A, to .44 because the
graph only allows transmission of sentences containing s.

Thus, using MP with the left-hand side graph will fail to
prove s. Insuch a case, we must first syntactically trans-
form the intersection graph into a tree with enlarged labels,
(i.e. an enlarged communication language) and apply MP
to the resultant tree. Algorithm BREAK-CYCLES, shown
in Figure 6, performs the appropriate transformation (| X |

is the cardinality of a set X).
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Figure 5: An intersection graph before (left) and after
(right) applying BREAK-CYCLES.

PROCEDURE BREAK-CYCLES(G = (V, E, 1))

1. Find a minimal-length cycle of nodes i1, ..., i in G. If
there are no cycles, return G.

2. Select index @ st. @ < cand 35 . [(¢,4+1) U
I(4a,a+1)| is minimal (the label of (i, i4+1) adds a min-
imal number of symbols to the rest of the cycle).

3. Forall j < ¢ 7 # a,seti(ij,ij+1) < U(ij,4541) U
1(iaytat1).

4. Set E < E\ {(fa,%a+1)} l(ta,tat+1) < D and go to 1.

Figure 6: An algorithm to transform an intersection graph
G into a tree.

Using BREAK-CYCLES, we can transform the graph
depicted on the left-hand side of Figure 5, into the



tree on its right. First, we identify the minimal cycle
((1,3), (3,4), (4,1)), remove (4,1) from E and add r to
the labels of (1, 3), (3,4). Then, we find the minimal cycle
((2,3), (3,4), (4,2)) and remove (2, 3) from E (s already
appears in the labels of (4,2),(3,4)). Finally, we iden-
tify the minimal cycle {(1, 3), (3,4), (4,2), (2,1)), remove
(4,2) and add s to the rest of the cycle. The proof of s by
MP now follows by sending p = s from A to A, sending
qV rV sfrom A to Az, sending r v s from A3 to A4, and
concluding s in Ay.

Notice that when executing BREAK-CYCLES, we may re-
move an edge that participates in more than one minimal
cycle (as is the case of removing the edge (4, 1)), but its
removal influences the labels of only one cycle.

Theorem 2.3 (Soundness and Completeness) Let A =
Ui<n A:i be a partitioned theory with the intersection
graph G. Let k < n and ¢ a sentence whose signature
isin L(Ag). A [ o iff applying BREAK-CYCLES and
then MP outputs YES.

PROOF  See Appendix A.2.

BREAK-CYCLES is a greedy algorithm that has a worst-
case complexity of O(|E|?> x m) (where m is the num-
ber of symbols in £(A)). An algorithm for finding a
minimum spanning tree (e.g., [22]) can be used to com-
pute the optimal subgraph for our purpose (minimizing
Yiper 1@, 5)]) in time O(n® + m * n), if we assume
that the labels are mutually disjoint. It is not clear whether
the algorithm can be generalized to provide an optimal so-
lution to the case of arbitrary labels.

Note that MP requires that query @ be in the language of a
single partition, £(A). One way to answer a query ) that
comprises symbols drawn from multiple partitions is to add
a new partition Ag, with L(Ag) = £(Q), the signature
the query. Ag may contain =@ or no axioms. Following
addition of this new partition, BREAK-CYCLES must be
run on the new intersection graph. To prove @ in Ag, we
run MP on the resulting graph.

Our MP algorithm uses the query ) to induce an ordering
on the partitions, which in turn may guide selective con-
sequence finding for reasoning forward. Many theorem
proving strategies exploit the query more aggressively by
reasoning backwards from the query. Such strategies have
proven effective for a variety of reasoning problems, such
as planning. Indeed, many theorem provers (e.g., PTTP
[49]) are built as backward reasoners and must have a query
or goal in order to run.

One way to use MP for an analogous backward message-
passing scheme is to assert =@ in A, choose a partition
Aj; that is most distant from A in G, and try to prove
{} in A;. If we wish to follow the spirit of backward-

reasoning more closely, we can connect all the nodes of G,
and run BREAK-CYCLES with the stipulation that it must
produce a chain graph with Ay at one end. The resultant
chain graph may then be used for query-driven backward
message-passing, from 4. With resolution, the goal of a
partition at a given time can be taken to be the disjunction
of the negation of the messages it has received. Note that
for the algorithm to be complete, each partition’s reasoner
must be complete for consequence finding.

2.2 Resolution-Based Inference

We now analyze the effect of forward message-passing
(MP) on the computational efficiency of resolution-based
inference, and identify some of the parameters of influ-
ence. Current measures for comparing automated deduc-
tion strategies are insufficient for our purposes. Proof
length (e.g., [28]) is only marginally relevant. More rel-
evant is comparing the sizes of search spaces of different
strategies (e.g., [41]). These measures do not precisely ad-
dress our needs, but we use them here, leaving better com-
parison for future work.

In a resolution search space, each node includes a set of
clauses, and properties relevant to the utilized resolution
strategy (e.g., clause parenthood information). Each arc is
a resolution step allowed by the strategy. In contrast, in an
MP resolution search space the nodes also include partition
membership information. Further, each arc is a resolution
step allowed by the utilized resolution strategy that satisfies
either of: (1) the two axioms are in the same partition, or
(2) one of the axioms is in partition A;, the second axiom
is drawn from its communication language (4, j), and the
query-based ordering allows the second axiom to be sent
from A; to A;. Legal sequence of resolutions correspond
to paths in these spaces.

Proposition 2.4 Let A = |J;,, A; be a partitioned the-
ory. Any path in the MP resolution search space of
{A;}i<n is also a path in the resolution search space of
the unpartitioned theory A.

A similar proposition is true for linear resolution (each par-
tition A; uses linear resolution in which messages to A; are
treated as regular (non-input) sentences in A;).

From the point of view of proof length, it follows that the
longest proof without using MP is as long or longer than
the longest MP proof. Unfortunately, the shortest MP proof
may be longer than the shortest possible proof without MP.
This observation can be quantified most easily in the simple
case of only two partitions A4;, As. The set of messages
that need to be sent from A; to A, to prove @ is exactly
the interpolant « promised by Theorem 2.1 for o = Ay,
B = A2 = Q. The MP proof has to prove a - v and v
B. Carbone [9] showed that, if v is @ minimal interpolant,



then for many important cases the proof length of o F ~
together with the proof length of v F g3 is in O(k?) (for
sequent calculus with cuts), where k is the length of the
minimal proofofa - 3.

In general, the size of + itself may be large. In fact, in
the propositional case it is an open question whether or
not the size of the smallest interpolant can be polynomially
bounded by the size of the two formulae «, 3. A positive
answer to this question would imply an important conse-
quence in complexity theory, namely that NP N coNP C
P/poly [7]. Nevertheless, there is a good upper bound on
the length of the interpolation formula as a function of the
length of the minimal proof [32] : If «, 8 share [ symbols,
and the resolution proof of a - 3 is of length &, then there
is an interpolant ~ of length min (k191 24).

Thus, we can guarantee a small interpolant, if we make
sure the communication language is minimal. Unfortu-
nately, we do not always have control over the communi-
cation language, as in the case of multiple KBs that have
extensive overlap. In such cases, the communication lan-
guage between KBs may be large, possibly resulting in a
large interpolant. In Section 4 we provide an algorithm for
partitioning theories that attempts to minimize the commu-
nication language between partitions.

3 Propositional Satisfiability

In this section we propose an algorithm for partition-
based logical reasoning based on propositional satisfiability
(SAT) search. We show that the complexity of computation
is directly related to the size of the labels in the intersection
graph.

3.1 A Partition-Based SAT Procedure

The algorithm we propose uses a SAT procedure as a sub-
routine and is back-track free. We describe the algorithm
using database notation [51]. 7, ... T is the projection
operation on a relation T'. It produces a relation that in-
cludes all the rows of T', but only the columns named
p1,---, P (Suppressing duplicate rows). S X R is the
natural join operation on the relations S and R. It pro-
duces the cross product of S, R, selecting only those entries
that are equal between identically named fields (checking
S.A = R.A), and discarding those columns that are now
duplicated (e.g., R.A will be discarded).

The proposed algorithm shares some intuition with prime
implicate generation (e.g., [36, 30]). Briefly, we first com-
pute all the models of each of the partitions (akin to com-
puting the implicates of each partition). We then use X to
combine the partition models into models for .A. The algo-
rithm is presented in Figure 7.

PROCEDURE LINEAR-PART—SAT({.AZ-}iSn)
{Ai}i<n apartitioning of the theory A,

1. Go < the intersection graph of {A;}i<n. G
BREAK-CYCLES(Go).

2. Foreachs <mn, let L(1) = U; jyep (3, 5)-

3. For each 1+ < m, for every truth assignment A to L(z),
perform SAT-search on A; U A, storing the result in a table
T:(A).

4. Letdist(i,j) (i,7 € V') be the length of the shortest path
between 4, j in G. Leti < j iff dist(s,1) < dist(j,1) (<
is a strict partial order).

5. Iterate over i < n in reverse <-order (the last ¢ is 1). For
each j < n that satisfies (¢, j) € E and ¢ < j, perform:

o T; < T; X (mp)Ty) (Join T; with those columns
of T; that correspond to L(i)). If T; = @, return
FALSE.

6. Return TRUE.

Figure 7: An algorithm for SAT of a partitioned proposi-
tional theory.

The iterated join that we perform takes time proportional to
the size of the tables involved. We keep table sizes below
2/ L1 (L(i) computed in step 2), by projecting every table
before joining it with another. Soundness and completeness
follow by an argument similar to that given for MP.

Theorem 3.1 (Soundness and Completeness) Given a
sound and complete SAT-search procedure, LINEAR-
PART-SAT is sound and complete for SAT of partitioned
propositional theories.

PROOF  See Appendix A.3.

3.2 Analyzing Satisfiability in LINEAR-PART-SAT

Let A be a partitioned propositional theory with n par-
titions. Let m = |L£(A)|, L(i) the set of propositional
symbols calculated in step 2 of LINEAR-PART-SAT, and
m; = |L(A;) \ L(@)| (@ < n). Leta = |A| and k be the
length of each axiom.

Lemma 3.2 The time taken by LINEAR-PART-SAT to com-
pute SAT for A is

Time(n,m,my, ...,Mn, a, k, |L(1)|, ..., | L(n)]) =
Oa*k* + n*xm + 2?21(2”“("” * fsar(m;))),
where fgsar is the time to compute SAT. If the intersection

graph Gy is a tree, the second argument in the summation
can be reduced from n* x m to n * m.

PROOF  See Appendix A.4.



Corollary 3.3 Let .4 be a partitioned propositional theory
with n partitions, m propositional symbols, and intersec-
tion graph G = (V, E,l). Let d = mazycvd(v), where
d(v) is the degree of node v, and let I = max; j<n|l(¢, 7).
Assume P # NP. If intersection graph G of A is a tree
and all the partitions .4; have the same number of proposi-
tional symbols, then the time taken by the LINEAR-PART-
SAT procedure to compute SAT for A is

Time(m,n,1,d) = O(n  24* « fSAT(%)).

For example, if we partition a given theory 4 into only
two partitions (n = 2), sharing ! propositional symbols,
the algorithm will take time O(2' * fsar(Z)). Assuming
P # NP, this is a significant improvement over a simple
SAT procedure, for every [ that is small enough (I < 2%,
and o < 0.582 [42, 13]).

4 Decomposing a Logical Theory

The algorithms presented in previous sections assumed a
given partitioning. In this section we address the critical
problem of automatically decomposing a set of proposi-
tional or FOL clauses into a partitioned theory. Guided by
the results of previous sections, we propose guidelines for
achieving a good partitioning, and present a greedy algo-
rithm that decomposes a theory following these guidelines.

4.1 A Good Partitioning

Given a theory, we wish to find a partitioning that min-
imizes the formula derived in Lemma 3.2. To that end,
assuming P # NP, we want to minimize the following
parameters in roughly the following order. For all ¢ < n:

1. |L(3)] - the total number of symbols contained in all
links to/from node i. If G is already a tree, this is the
number of symbols shared between the partition A;
and the rest of the theory A \ A;.

2. my; - the number of symbols in a partition, less those in
the links, i.e., in A; \ L(¢). This number is mostly in-
fluenced by the size of the original partition A;, which
in turn is influenced by the number of partitions of A,
namely, n. Having more partitions will cause m; to
become smaller.

3. n - the number of partitions.

Also, a simple analysis shows that given fixed values for [, d
in Corollary 3.3, the maximal n that maintains /, d such that
alson < In2x*xa*m (o = 0.582 [42, 13]) yields an opti-
mal bound for LINEAR-PART-SAT. In Section 2.2 we saw

that the same parameters influence the number of deriva-
tions we can perform in MP: |L(:)| influences the inter-
polant size and thus the proof length, and m; influences the
number of deductions/resolutions we can perform. Thus,
we would like to minimize the number of symbols shared
between partitions and the number of symbols in each par-
tition less those in the links.

The question is, how often do we get large n. (many par-
titions), small m;’s (small partitions) and small |L(%)|’s
(weak interactions) in practice. We believe that in domains
that deal with engineered physical systems, many of the do-
main axiomatizations have these structural properties. In-
deed, design of engineering artifacts encourages modular-
ization, with minimal interconnectivity (see [2, 34, 12]).
More generally, we believe axiomatizers of large corpora
of real-world knowledge tend to try to provide structured
representations following some of these principles.

4.2 Vertex Min-Cut in the Graph of Symbols

To exploit the partitioning guidelines proposed in the pre-
vious subsection, we represent our theory .4 using a sym-
bols graph that captures the features we wish to minimize.
G = (V,E) is a symbols graph for theory A such that
each vertex v € V is a symbol in £(.A), and there is an
edge between two vertices if their associated symbols oc-
cur in the same axiom of A , ie., E = {(a,b) | Ja €
A st a,bappearin a}.

Figure 8: Decomposing .A’s symbols graph.

Figure 8 (top) illustrates the symbols graph of theory A
from Figure 1 and the connected symbols graphs (bot-
tom) of the individual partitions A;, 42, A3. The sym-
bols ok_p, on_p, m_f, w, ok_b, on_b, s, ¢, t, h_d are short
for ok_pump, on_pump, man_fill, water, ok_boiler,
on_boiler, steam, cof fee, teabag, hot_drink, respec-
tively. Notice that each axiom creates a clique among its
constituent symbols. To minimize the number of symbols
shared between partitions (i.e., | L(i)|), we must find parti-



tions whose symbols have minimal vertex separators in the
symbols graph.

We briefly describe the notion of a vertex separator. Let
G = (V, E) be an undirected graph. A set S of vertices
is called an (a, b) vertex separator if {a,b} C V' \ S and
every path connecting a and b in G passes through at least
one vertex contained in S. Thus, the vertices in S split the
path from a to b. Let N(a, b) be the least cardinality of an
(a, b) vertex separator. The connectivity of the graph G is
the minimal N (a, b) forany a, b € V that are not connected
by an edge.

Even [22] described algorithms for finding minimum ver-
tex separators, building on work of Dantzig and Fulkerson.
We briefly review one of these algorithms before we use it
to decompose our theories. It is shown in Figure 9. The al-
gorithm is given two vertices, a, b, and an undirected graph,
G. Inthis algorithm, we transform G into G and run a max-
flow algorithm on it (lines 1-3). The produced flow, f, has
a throughput of N (a, b). To extract a minimal separator, we
produce a layered network (see [22] p.97) from G, f in line
5. The layered network includes a subset of the vertices of
G. The set of edges between this set of vertices and the rest
of G corresponds to the separator.

PROCEDURE MIN-V-SEP-A-B(G = (V, E), a, b)

1. Construct a digraph G(V, E) as follows. Forevery v € V'
put two vertices v, v” in V with an edge e, = (v’,v”;
(internal edge). For every edge e = (u,v) in G, put two
edges e’ = (u”,v'; and &’ = (u',v") in G (external
edges).

2. Define a network, with digraph G, source a”, sink &' and
unit capacities for all the edges.

3. Compute the maximum flow f in the network. N(a,b) is
the throughput of f.

4. Set the capacities of all the external edges in G to infinity.

5. Construct the layered network {V;};<; from G using f.
LetS =, Vi.

6. LetR={veV|v €S8 v ¢S} Risaminimum
(a, b) vertex-separator in G.

Figure 9: An algorithm for finding a minimal separator be-
tween a and b in G.

Algorithms for finding maximal flow are abundant in the
graph algorithms literature. Prominent algorithms for max-
flow include the Simplex method, Ford and Fulkerson’s
[31], the push-relabel method of Goldberg and Tarjan [27]
(time bound of O(|V | *|E)| *lg%) and several implemen-
tations [11]), and Dinitz’s algorithm [21]. When Dinitz’s
algorithm is used to solve the network problem, algorithm
MIN-V-SEP-A-B is of time complexity O(|V' |2 x| E|) [22].

Finally, to compute the vertex connectivity of a graph and
a minimum separator, without being given a pair (a, b),
we check the connectivity of any ¢ vertices (¢ being the
connectivity of the graph) to all other vertices. When
Dinitz’s algorithm is used as above, this procedure takes
time O(c * |V|% % |E|), where ¢ > 1 is the connectivity of
G. For the cases of ¢ = 0,1 there are well known linear
time algorithms.

Figure 10 presents a greedy recursive algorithm that uses
Even’s algorithm to find sets of vertices that together sep-
arate a graph into partitions. The algorithm returns a
set of symbols sets that determine the separate subgraphs.
Different variants of the algorithm yield different structures

PROCEDURE SPLIT(G, M, 1, a, b)

G = (V, E) is an undirected graph. M is the limit on the num-
ber of symbols in a partition. [ is the limit on the size of links
between partitions. a, b are in V' or are nil.

1. If [V| < M then return the graph with the single symbol
set V.

2. () If a and b are both nil, find a minimum vertex separator
R in G. (b) Otherwise, if b is nil, find a minimum vertex
separator R in G that does not include a. (c) Otherwise,
find a minimum vertex separator R in G that separates a
and b.

If R > [ then return the graph with the single symbol set
V.

3. Let G1, G2 be the two subgraphs of G separated by R,
with R included in both subgraphs.

4. Create G, G5 from G1, G2, respectively, by aggregating
the vertices in R into a single vertex r, removing all self
edges and connecting r with edges to all the vertices con-
nected by edges to some vertices in R.

5.Set V! = SPLIT(G\,M,l,r,a) and V* =
SPLIT(GY, M,1,r,b).

6. Replace = in V', V? by the members of R. Return
ViV,

Figure 10: An algorithm for generating symbol sets that
define partitions.

for the intersection graph of the resulting partitioning. As
is, SPLIT returns sets of symbols that result in a chain of
partitions. We obtain arbitrary trees, if we change step 2(c)
to find a minimum separator that does not include a, b (not
required to separate a, b). We obtain arbitrary graphs, if in
addition we do not aggregate R into r in step 4.

Proposition 4.1
Procedure SPLIT takes time O(|[V|> * |E|).

PROOF  See Appendix A.5.

Finally, to partition a theory A, create its symbols graph G



and run SPLIT(G, M, I, nil, nil). For each set of symbols
returned, define a partition 4; that includes all the axioms
of A in the language defined by the returned set of symbols.

We know of no easy way to find an optimal selection of
[ (the limit on the size of the links) and M (the limit on
the number of symbols in a partition) without having prior
knowledge of the dependency between the number (and
size) of partitions and I. However, we can find out when
a partitioning no longer helps computation (compared to
the best time bound known for SAT procedures [42, 13]).
Our time bound for the procedure is lower than ©(22™)
when | < em—ami—lgn (; — argmax;m;). In particular,
if I > %, astandard deterministic SAT procedure will be
better. Hence, [ and M are perhaps best determined exper-
imentally.

In contrast to the SPLIT procedure, there are other ap-
proaches that can be taken. One approach that we have
also implemented is a normalized cut algorithm [44], us-
ing the dual graph of the theory. The dual graph repre-
sents each axiom, rather than each symbol, as a node in
the graph to be split. The advantage of this approach is
that it preserves the distinction of an axiom. Also, since
the min-cut algorithm is normalized, it helps preclude the
creation of small isolated partitions by both maximize the
similarity within partitions and minimizing the similarity
between partitions. Finally, our reasoning algorithms and
our computational analysis suggested a syntactic approach
to decomposition. Semantic approaches are also possible
along lines similar to [10] (Ch. on semantic resolution) or
[48]. Such decomposition approaches may require differ-
ent reasoning algorithms to be useful.

5 Related Work

There has been little work on the specific problem of ex-
ploiting structure in theorem proving and SAT search in
the manner we propose, and little work on automatically
partitioning logical theories for this purpose. Nevertheless,
there are many areas of related work.

Work on formalizing and reasoning with context (e.g.,
[37, 1]) can be related to partition-based logical reason-
ing by viewing the contextual theories as interacting sets
of theories. Unfortunately, to introduce explicit contexts, a
language that is more expressive than FOL is needed. Con-
sequently, a number of researchers have focused on context
for propositional logic, while much of the reasoning work
has focused on proof checking (e.g., GETFOL [26]), There
have been few reported successes with automated reason-
ing; [6] presents one example.

Many Al researchers have exploited some type of structure
to improve the efficiency of reasoning (e.g., Bayes Nets
[40], Markov decision processes [8], CSPs [19, 18], and

model-based diagnosis [17]). There is also a vast literature
in both clustering and decomposition techniques. Most rel-
evant to our work, are CSP decomposition techniques that
look for a separation vertex [18]. Also related is cutset con-
ditioning [40]. In contrast, our work focuses on the possi-
bility of using vertex separator sets as a generalization of
the separation-vertex concept. Partly due to this general-
ity, our work is the first to address the problem of defining
guidelines and parameters for good decompositions of sets
of axioms for the purpose of logical reasoning.

Decomposition has not been exploited in theorem proving
until recently (see [4, 5]). We believe that part of the rea-
son for this lack of interest has been that theorem proving
has focused on mathematical domains that do not neces-
sarily have structure that supports decomposition. Work on
theorem proving has focused on decomposition for parallel
implementations [5, 14, 50] and has followed decomposi-
tion methods guided by lookahead and subgoals, neglecting
the types of structural properties we used here. Another re-
lated line of work focuses on combining logical systems
(e.g., [38, 45, 3]). Contrasted with this work, we focus on
interactions between theories with overlapping signatures,
the efficiency of reasoning, and automatic decomposition.

Decomposition for propositional SAT has followed differ-
ent tracks. Some work focused on heuristics for clause
weighting or symbol ordering (e.g., [43, 20]). [39] sug-
gested a decomposition procedure that represents the the-
ory as a hypergraph of clauses and divides the proposi-
tional theory into two partitions (heuristically minimizing
the number of hyperedges) modifying ideas described in
[25]. [14] developed an algorithm that partitions a propo-
sitional theory into connected components. Both [14, 39]
performed experiments that demonstrated a decrease in the
time required to prove test sets of axioms unsatisfiable.

6 Conclusions

We have shown that decomposing theories into partitions
and reasoning over those partitions has computational ad-
vantages for theorem provers and SAT solvers. Theorem
proving strategies, such as resolution, can use such decom-
positions to constrain search. Partition-based reasoning
will improve the efficiency of propositional SAT solvers if
the theory is decomposable into partitions that share only
small numbers of symbols. We have provided sound and
complete algorithms for reasoning with partitions of related
logical axioms, both in propositional and FOL. Further,
we analyzed the effect of partition-based logical reasoning
on resolution-based inference, both with respect to proof
search space size, and with respect to the length of a proof.
We also analyzed the performance of our SAT algorithm
and showed that it takes time proportional to SAT solutions
on individual partitions and an exponent in the size of the



links between partitions. Both algorithms can gain further
time efficiency through parallel processing.

Guided by the analysis of our SAT algorithm, we suggested
guidelines for achieving a good partitioning and proposed
an algorithm for the automatic decomposition of theories
that tries to minimize identified parameters. This algorithm
generalizes previous algorithms used to decompose CSPs
by finding single-vertex separators.

Our work was motivated in part by the problem of reason-
ing with large multiple KBs that have overlap in content.
The results in this paper address some of the theoretical
principles that underly such partition-based reasoning. In
future work, we plan an experimental analysis of Stanford
KSL’s and SRI’s KBs to analyze structure in these KBs,
to test the effectiveness of our automatic partitioning al-
gorithms, and to investigate the effectiveness of proposed
partition-based reasoning algorithms. We are also involved
in further theoretical investigation.

A Proofs

A.1 Proof of Theorem 2.2

First, notice that soundness is immediate because the only
rules used in deriving consequences are those used in our
chosen consequence-finding procedure (of which rules are
sound). In all that follows, we assume A is finite. The
infinite case follows by the compactness of FOL.

LemmaA.l Let A = A; UA, be a partitioned theory. Let
p € L(Az). If AF ¢, then As | ¢ or there is a sentence
¥ € L(A1) N L(Az) suchthat A; 4 and Az -9 = .

Proof of Lemma A.1. We use Craig’s interpolation theo-
rem (Theorem 2.1), taking @ = A; and 8 = Ay = .
Since a F g (by the deduction theorem for FOL), there is a
formulavy € L(a) N L(B) such that« F ¢ and ¢ + 8. By
the deduction theorem for FOL, we get that A; + 4 and
Y A Az b . Sincep € L(A1) N L(A3) by the way we
constructed a, 3, we are done. H

Definition A.2 For a partitioning A = J,,, A;, we say
that a tree G = (V, E,l) is properly labeled, if for all
(i,j) € E and By, B, the two subtheories of A on the two
sides of the edge (4,j) in G, it is true that £(I(4,5)) D
L(B1) N L(By).

We will show that all intersection graphs are properly la-
beled. First, the following lemma provides the main argu-
ment behind all of the completeness proofs in this paper.

LemmaA3 Let A = |J,.,,Ai be a partitioned theory
and assume that the graph G is a tree that is properly la-
beled for the partitioning {A;}i<n. Let & < n and let

Q € L(Ar U ep Uk, 1)) be asentence. If A = Q,
then MP will output YES.

Proof of Lemma A.3. We prove the lemma by induction on
the number of partitions in the logical theory. For [V| =1
(a single partition), 4 = A; and the proof is immediate.
Assume that we proved the lemma for |V| <n — 1 and we
prove the lemma for |V | = n.

In G, k has ¢ neighbors, iy, ...,i.. (k,i1) separates two
parts of the tree G: G, (includes i1) and G2 (includes
k). Let By, B2 be the subtheories of A that correspond to
G1, G2, respectively.

Notice that Q € £(B>). By Lemmma A.1, either B2 F @
or there is ¢ € £(B1) N L(B>) such that By 1) and By +
¥ = Q. If Bo F @, then we are done, by the induction
hypothesis applied to the partitioning {A; | i € V2} (V2
includes the vertices of G2) and G2 (notice that <’ used for
G2, () agrees with < used for G).

Otherwise, let ¢ be a sentence as above.
Ucir.gye B ik 101, 5) 2 L(B2UA;, )NL(B1\ Ay, ) because
the set of edges (i1, j) separates two subgraphs correspond-
ing to the theories By \ A;, and B, U A;,, and G is properly
labeled for our partitioning. Thus since ¢ € £(B1) we get
that ) € L(Ai, UUy, jyer,jzr L1, 5)). By the induction
hypothesis for Gl,él, at some point ¢ will be proved in
A; (after some formulae were sent to it from the other
partitions in G, B1).

At this point, our algorithm will send 4 to A, because ¢ €
L(I(k,i1)) because G is properly labeled for A, G. Since
By F 3¢ = @, then by the induction hypothesis applied
to G2, B2 (¥ = Q € L(Ar U i)cg (K, 1)) at some point
1 = @ will be proved in Ay, (after some message passing).
Thus, at some point A will prove Q. &

Proof of Theorem 2.2. All we are left to prove is that
the intersection graph G is properly labeled. But if G
is the intersection graph of the partitioning {A;}i<, then
1i,5) = L(Ai) N L(A;). Iffor (i,5) € E L((i,5)) 2
L(B1) N L(Bz), with By, By the theories on the two sides
of (4, §) in the tree G, then there are A,, A, in By, By, re-
spectively, such that (z,y) € E and x # i or y # j. Since
G is connected (it is a single tree), this means there is a cy-
cle in G, contradicting G being a tree. Thus £(I(i, j)) 2
L(B1) N L(B2) and G is properly labeled. The proof fol-
lows fromLemma A3. ®

A.2  Proof of Theorem 2.3
Soundness is immediate, using the same argument as for

Theorem 2.2. For completeness, first notice that the graph
output by BREAK-CYCLES is always a tree, because



BREAK-CYCLES will not terminate if there is still a cycle
in G. Now, we need the following lemma.

Lemma A4 Let G' = (V, E',l") be a tree resulting from
applying BREAK-CYCLES to G = (V, E, 1) and {A; }i<n.
Then G' is properly labeled for this partitioning.

Proof of Lemma A.4. Assume there is a symbol p in
L(B1) N L(B) thatis notin (3, j), and let A, A, be par-
titions on the two sides of (4, ) that include sentences with
the symbol p. We will prove that throughout the run of the
BREAK-CYCLES algorithm there is always a path in G’
(we start with G’ = G) between A,, A, that has p show-
ing on all the edge labels. Call such a path a good path.

Obviously we have a good path in G, because we have
(z,y) € Eand p € I(z,y) (because G is the intersection
graph of A4, ..., A,,). Let us stop the algorithm at the first
step in which G’ does not have a good path (assuming there
is no such path, or otherwise we are done). In the last step
we must have removed an arc (a, b) (which was on a good
path) to cause G’ to not have a good path. Since p € I(a, b)
and (a, b) is in a cycle ((b,a1), (a1, a2), ..., (ac,a), (a, b))
(this is the only reason we removed (a, b)), we added I (a, b)
to the labels of the rest of this cycle. In particular, now the
labels of (b,a;), (a1, as), ---, (ac,a) include p. Replacing
(a, b) in the previous good path by this sequence, we find a
path in the new G’ that satisfies our required property. This
is a contradiction to having assumed that there is no such
path at this step. Thus, there is no such p as mentioned
aboveand £(1(¢,7)) D L(B1)NL(Bz). W

Proof of Theorem 2.3. The proof of Theorem 2.3 follows
immediately from Lemma A.3and LemmaA4. ®

A.3 Proof of Theorem 3.1

Proof of Theorem 3.1. For each partition A;,i < n,
lines 1 — 3 perform the equivalent of finding all the mod-
els of 4; and storing their truth assignments to the symbols
of L(L(¢)) in T;. (L(¢) specifies the columns, thus each
row corresponds to a truth assignment.) This is equivalent
to finding the implicates of the theory A; in the sublan-
guage L£(L(7)). Thus, if A; is the DNF of the set of im-
plicates (a1 (pjy s - Pjs,) V oo V @Qa; (Pjy 5 -, Psir, ), then T
initially includes the set of models of A; in the sublanguage
L(L(i)), namely, [A;] c(z))-

The natural join operation (X) then creates all the con-
sistent combinations of models from [A;]. ;) and
[Aj]zczy). This set of consistent combinations is the
set of models of 4; U 4;. Thus, T; X T; = [(4; U
Aplew@urey-

Finally, the projection operation restricts the models to the

sublanguage £(L(4)), getting rid of duplicates in the sub-
language. This is equivalent to finding all the implicates
of A; A A; in the sublanguage £(L(i)). Thus, ¢ (T M

Tj) = [[{<p€E( (D) [ A UA; = o ey

To see that the algorithm is sound and complete, notice
that the it does the analogous operations to our forward
message-passing algorithm MP (Figure 3). We break the
cycles in Gy (creating ) and perform forward reasoning
as in MP, using the set of implicates instead of online rea-
soning in each partition: instruction 3 in MP is our pro-
jection (“A; E ¢ and ¢ € L(I(¢,7))”) and then join
(*add ¢ to the set of axioms of A;”). Since T; X T; =
[(A: U Aj)]zyur ). joining corresponds to sending all
the messages together. Since mp;)(T; X T;) = [{¢ €
L(L(3)) | AiUA; = ¢} (L)), projection corresponds to
sending only those sentences that are allowed by the labels.

By Theorem 2.3, LINEAR-PART-SAT is sound and com-
plete for satisfiability of 4. ®

A.4  Proof of Lemma 3.2

Proof of Lemma 3.2. Let A be a partitioned proposi-
tional theory with n partitions. Let m be the total num-
ber of propositional symbols in 4, L(i) the set of proposi-
tional symbols calculated in step 2 of LINEAR-PART-SAT,
and m; the number of propositional symbols mentioned in
A; \ L(i) (¢ < n). Let us examine procedure LINEAR-
PART-SAT (Figure 7) step by step, computing the time
needed for computation.

Computing the intersection graph takes O(a * k2) time,
where & is the number of propositional symbol in each ax-
iom (for 3SAT, that is 3), because we check and add %2
edges to G for each axiom.

BREAK-CYCLES’ loop starts by finding a minimal-length
cycle, which takes time O(n) (BFS traversal of n vertices).
Finding the optimal a in line 2 takes time O((c * m) x* ¢),
where ¢ is the length of the cycle found (union of two la-
bels takes at most O(m) time). Finally, since a tree always

satisfies |E| = |V| — 1, breaking all the cycles will require
us to remove |E| — (|[V| — 1) edges. Thus, the loop will
run |E| — (|[V| — 1) times (assuming the graph G| is con-

nected). An upper bound on this algorithm’s performance
is then O(n? * (n? xm)) = O(n* *m) (because ¢ < n and
and |E| < |V|> = n?).

Step 2 of LINEAR-PART-SAT takes time O(n * m), since
there are a total of n — 1 edges in the graph G (G is a tree
with n vertices) and every label is of length at most m.

Checking the truth assignments in step 3 takes time
S, 2L per satisfiability check of A; U A, because
there are 2L truth assignments for each i < n. Since



A; U A has only m; free propositional variables, (A4 is
an assignment of truth values to |L(%)| variables), 4; U A
is reducible (in time O(|A|)) to a theory of smaller size
with only m; propositional variables. If the time needed
for a satisfiability check of a theory with m variables is
O(fsar(m)), then the time for step 3 is

n

0 "9« fsar(ms)))

i=1

Finding the relation < takes O(n) as it is easily generated
by a BFS through the tree.

Instruction 5 performs a projection and join, which takes
time O(2/£(®1) (the maximal size of the table). Since the
number of iterations over i < n and j being a child of 7 is
n —1 (there are only n — 1 edges), we get that the total time
for this step is O(31, 2/F@1).

Summing up, the worst-case time used by the algorithm is

Time(n, m,my, ... My, a, k, L(1), ..., L(n)) =
Olaxk? + n*sm + nxm+
Yy @O % foar(mi)) + n + YL, 2P0 =
O(axk? + n*xm + 30 (2FO « fgur(my))).

We can reduce the second argument (in the last formula)
from n* +m to nxm, if the intersection graph Gy is already
atree. W

A.5 Proof of Proposition 4.1

Proof of Proposition 4.1. Finding a minimum vertex sep-
arator R in G takes time O(c  |V|2 * |E|). Finding a
minimum separator that does not include s is equivalent to
having s be the only source with which we check connec-
tivity (in Even’s algorithm). Thus, this can be done in time
O(|V|? * |E|). Finding a minimum separator that sepa-
rates s from ¢ takes time O(|V |2 | E]). In the worst case,
each time we look for a minimum s-separator (t = nil),
we get a very small partition, and a very large one. Thus,
we can apply this procedure O(|V]) times. Summing up
the time taken for each application of the procedure yields
O(VI*|V| *|E|+cx V|3 +|E) = O([V|3 +[E]).
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