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Abstract

We describe a model of iterated belief revision that extends the AGM theory of revision to

account for the effect of a revision on the conditional beliefs of an agent. In particular, this model

ensures that an agent makes as few changes as possible to the conditional component of its belief

set. Adopting the Ramsey test, minimal conditional revision provides acceptance conditions for

arbitrary right-nested conditionals. We show that problem of determining acceptance of any such

nested conditional can be reduced to acceptance tests for unnested conditionals. Thus, iterated

revision can be accomplished in a “virtual” manner, using uniterated revision.

1 Introduction

The acceptance conditions for subjunctive conditionals have been widely studied, but no criterion has

drawn more attention recently than the Ramsey test. Supposing an agent to possess some belief setK, it is instructed by Stalnaker to accept the conditionalA > B iff it satisfies the following test:

First add the antecedent (hypothetically) to your stock of beliefs; second make whatever

adjustments are required to maintain consistency (without modifying the hypothetical

belief in the antecedent); finally, consider whether or not the consequent is true. [32,

p.44]

The crucial step in the Ramsey test is the revision of the belief set. The notion of revision adopted

will determine which conditionals are accepted and rejected. Conversely, given a fixed (complete)

set of accepted conditionals, the revision function adopted by an agent will also be determined.

The AGM theory of revision due to Alchourrón, Gärdenfors and Makinson [2] provides guidelines

for the revision of objective belief sets (containing no conditional sentences). These are usually

presented as postulates that constrain the behavior of revision functions. We use K�A to denote the
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belief set resulting from the revision of K by A. Unfortunately, the theory does not address the

issue of revising conditional belief sets. Gärdenfors [14] proposes that belief sets be extended to

include conditional beliefs, requiring only that the following postulate, reflecting the Ramsey test, be

respected:1

(RT) A > B 2 K iff B 2 K�A.

This description of the revision of conditional belief sets says nothing about the preservation

of conditionals in a belief set during the course of revision. A hallmark of the AGM theory is its

commitment to the principle of informational economy: beliefs are only given up when there are

no less entrenched candidates. Yet this principle is ignored in this formulation of conditional belief

revision, as well as many related proposals. Given an ordering of entrenchment and belief set K,

the AGM theory will determine the form of K�A. The extended theory, in contrast, when applied

to a conditional belief set, imposes almost no constraints on the conditionals deemed acceptable in

the new belief set. This has a tremendous impact on the analysis of revision sequences. Should an

agent revise its belief set K by A, its conditionals A > B determine the form of K�A. However, if

a revision function imposes no constraints on subsequently accepted conditionals, there can be no

logical constraints on subsequent revision of K�A.2 The fact that K�A was reached by revision of K
becomes meaningless.

In this paper, we extend the AGM model of revision to account for such sequences of belief change.

We take the epistemic state of an agent to consist of both objective beliefs and (unnested) conditional

beliefs. These conditional beliefs can be viewed as capturing the relative degrees of entrenchment of

objective beliefs, or equivalently, as completely specifying the agent’s revision policies. Acceptance

of a new belief forces a change in the agent’s objective belief set in accordance with the AGM theory.

This necessarily requires some change in the agent’s revision policies, or conditional beliefs. We

describe how this change can be effected semantically by minimally changing the agent’s judgements

of the relative entrenchment of objective beliefs. This in turn has the effect of changing as few

conditional beliefs as possible consistent with the dictates of the AGM theory (when restricted to the

objective component of the belief set). Thus, the original conditional belief set uniquely determines

the revised conditional belief set. In particular, from a set of simple, unnested conditionals, the effects

1Of course, Gärdenfors points out that, given the other constraints of the AGM theory (even weakened somewhat), such
a condition is untenable. This celebrated triviality result has been devoted considerable attention. But very compelling
arguments (e.g., [23, 27]) have been put forth suggesting that the postulates of the AGM theory should not hold in the case
of nonobjective beliefs. This is the point of view adopted here, as we elaborate below.

2At least, there can be no constraints other than those imposed by the objective part of K�A.
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of arbitrary sequences of revisions can be computed. We will demonstrate an especially interesting

consequence of this result, namely, that any right-nested conditional arbitrary depth can be effectively

reduced to an unnested conditional with the same acceptance conditions.

2 A Semantic Model for AGM Revision

We assume an agent to have a deductively closed set of beliefs K taken from some underlying

language. For concreteness, we will assume this language to be that of classical propositional logicLCPL , generated by some set of variables P, and with an associated consequence operation Cn. The

identically true and false propositions are denoted > and ?, respectively. We say K is finitely

specifiable if K = Cn(S) for some finite set of premises S. The expansion of K by new informationA is the belief set K+A = Cn(K [ fAg). The revision of K by A is denoted K�A. The process

of revision requires some care, for A may contradict elements of K. Alchourrón, Gärdenfors and

Makinson [2] propose a method for logically delimiting the scope of acceptable revisions. To this

end, the AGM postulates below, are maintained to hold for any reasonable notion of revision [15].

(R1) K�A is a belief set (i.e. deductively closed).

(R2) A 2 K�A.

(R3) K�A � K+A .

(R4) If :A 62 K then K+A � K�A.

(R5) K�A = Cn(?) iff j= :A.

(R6) If j= A � B then K�A = K�B.

(R7) K�A^B � (K�A)+B .

(R8) If :B 62 K�A then (K�A)+B � K�A^B.

An alternative model of revision is based on the notion of epistemic entrenchment [15, 16]. Given

a belief set K, we can characterize the revision ofK by ordering beliefs according to our willingness

to give them up when some contradictory information requires such. If one of two beliefs must be

retracted in order to accommodate some new fact, the less entrenched belief will be relinquished,

while the more entrenched persists. Gärdenfors [15] presents five postulates for such an ordering

and shows that these orderings determine exactly the space of revision functions satisfying the AGM



To appear, Journal of Philosophical Logic, 1995

2 A SEMANTIC MODEL FOR AGM REVISION 4

postulates. We let B �E A denote the fact that A is at least as entrenched as B in theory K. A

complete set of sentences of this form is sufficient to specify a revision function. We note that the dual

of an entrenchment ordering is a plausibility ordering on sentences. A sentence A is more plausible

than B just when :A is less entrenched than :B, and means that A would be more readily accepted

than B if the opportunity arose. Grove [19] studied this relationship and its connection to the AGM

theory.

2.1 A Semantic Model

Our extension of the AGM theory will be based on a slightly different semantic representation

of revision functions. Grove [19] observed that an entrenchment relation over sentences can be

represented using a plausibility ordering over models. Our semantics captures this intuition, though it

is (cosmetically) distinguished by the use of an explicit ranking function rather than Grove’s system of

spheres. In what follows, we describe our basic semantic models and the truth conditions for a number

of connectives. While we do not give details here, we note that this system can be axiomatized in

using a simple modal logic CO*, and that each of the connectives and semantic restrictions described

below can be represented in this logic. We refer to [8, 9, 5] for details of this type.

We imagine an agent to have some objective belief set K � LCPL as well as a collection of

revision policies to guide changes of this belief set. A revision model is a triple M = hW;�; 'i
intended to capture both aspects of the agent’s epistemic state. W is a set of worlds and ' : P! 2W
is a valuation mapping, assigning atoms to the subsets of worlds at which they hold. The truth of an

arbitrary proposition at any world is defined in the usual way. We write M j=w A to indicate that A
holds at world w, and denote by kAk the set of such A-worlds (M is usually understood). We also

us this notation for sets of sentences S, kSk denoting those worlds satisfying each element of S, and

somewhat loosely refer to worlds falsifying some element of S as :S-worlds.

Finally, � is a binary relation over W . We insist that � be transitive and connected.3 The

interpretation of � is as follows: v � w iff v is as at least as plausible a state of affairs as w.

Plausibility is a pragmatic measure that reflects the degree to which one would accept w as a possible

state of affairs. If v is more plausible than w, loosely speaking v is “more consistent” with the agent’s

beliefs than w. Since � is a “total preorder,” W is partitioned into�-equivalence classes, or clusters

of equally plausible worlds. These cluster are themselves totally ordered by �. Thus, � can be

3� is (totally) connected if w � v or v � w for any v;w 2 W (this implies reflexivity). This restriction is relaxed in
[9], where we develop a weaker logic based on a reflexive, transitive accessibility relation.
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viewed as a qualitative ranking relation, assigning to each world a degree of plausibility. Figure 1

illustrates the structure of such an ordering.

We require that epistemically possible worlds be more plausible than epistemically impossible

worlds, and that all epistemically possible worlds are equally plausible. In other words, K-worlds

should be exactly those minimal in �:w � v for all v 2 W iff M j=w K
Such models are called K-revision models and have as their minimal cluster the set kKk (see

Figure 1).4 Although this is sufficient structure to define a reasonable revision function, we adopt two

more restrictions. First, we insist that K-revision models are “complete;”that is, every propositional

valuation is associated with some element of W . In other words, the valuations induced by ' and

associated with each w 2 W must cover the entire range of logical possibilities. This ensures that

an agent accords every possibility some degree of plausibility. Second, we assume that each model

satisfies the following (restricted) well-foundedness condition.

Definition 1 Let M = hW;�; 'i be a CO-model. For any A 2 LCPL we define

min(M;A) = fw 2 W : M j=w A; and M j=v A impliesw � v for all v 2 Wg
A model is well-founded iff, for all A, min(A;M) 6= ;.

We are now in a position to define a conditional connective and associated belief revision function

(suitable for K). When a new belief A is accepted, the agent should adopt the set of most plausibleA-worlds, min(M;A), as its set of newly epistemically possible situations. The conditional sentenceA > B asserts that “If the agent were to adopt belief in A, it would believe B.” The acceptance of

such a conditional relative to M is specified as follows:5M j= A > B iff min(M;A) � kBk
The Ramsey equivalence immediately provides us with the revision function induced by M (w.r.t.

4If K is finitely specifiable then this constraint can be expressed in language of CO. Intuitively, this corresponds to the
notion of “only knowing” K: all and only K-worlds are epistemically possible [22, 5].

5The acceptance condition can be specified in a way that does not presume the well-foundedness restriction, and the
equivalence to the AGM theory described below is unaffected. Thus, the logic CO* provides a mechanism for expressing
with unary modal connectives the truth conditions proposed by Lewis [24] to avoid the Limit Assumption [9]. However,
the representation result of Grove ensures that the class of well-founded models is sufficient to capture all AGM revision
functions.
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Figure 1: Truth conditions for the conditional A > BK). For any A 2 LCPL we defineK� MA = fB 2 LCPL : M j= A > Bg: (1)
We can show that � satisfies the AGM postulates for belief revision and any AGM revision operator

has an equivalent formulation as such a �.

Theorem 1 [9] Let M be a K-revision model and � M the revision function determined by M . Then� M satisfies postulates (R1) through (R8).

Theorem 2 [9] Let � be a revision function satisfying postulates (R1) through (R8). For any theoryK there exists a K-revision model M such that K�A = K� MA for all A.

We call A > B a simple conditional iff A;B 2 LCPL. Such unnested conditionals are especially

interesting since they alone determine the revision function � M.

In Figure 1, we have a typical K-revision model with each large circle representing a cluster of

mutually accessible (equally plausible) worlds, with arrows indicating accessibility between clusters.

The minimal cluster consists of allK-worlds, and we have thatK ` :A. The set of minimalA-worlds

is indicated by the shaded region, and this set forms the set of “newly possible” worlds when K is

revised by A. Thus A > B should hold just when B is true at each world in the shaded region.
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2.2 Extended Belief Sets

We will have occasion to use several other connectives whose semantics we introduce here. First, we

define a modality for belief, reading B� as “� is believed:”M j= B� iff min(M) � k�k iff M j= > > �
This holds just when � is true at each epistemically possible world, those minimal in the plausibility

ordering �. We note that B behaves according to the usual weak S5 interpretation of belief [5].

Statements regarding the relative entrenchment and plausibility of various propositions can also

be expressed. We write B �E A to denote that A is at least as entrenched as B, meaning that A is at

least as strongly held a belief as B. We haveM j= B �E A iff min(M;:B) � min(M;:A)
The dual notion of plausibility, where B �P A denotes the fact that A is at least as plausible as B, is

captured by M j= B �P A iff min(M;A) � min(M;B) iff M j= :A �E :B
For any revision model, we define the objective belief set associated with it to be those propositional

sentences that are “believed” in the model, namely.f� 2 LCPL : M j= B�g
We will sometimes refer to this as the propositional belief set or simply the belief set forM . Naturally,

the belief set for any K-revision model is just K. We will be more interested here in “subjective

beliefs” associated with a revision model, those sentences that are believed, but contain modal

operators. Of particular concern are those conditionals that are believed by an agent. We therefore

extend the notion of belief set to cover arbitrary sentences. We denote by L the full language that

includes the connectives>, B,�E , and any other connectives that we introduce.6 The extended belief

set associated with M is f� 2 L : M j= B�g
6Technically, we can take this to be the modal language of CO*, in which all such connectives are defined.
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We note the following properties of belief sets and extended belief sets. Clearly, for any K-

revision model we have K � E. Furthermore, extended sets are stable sets of beliefs in the sense of

Stalnaker [33]:

Proposition 3 Let E be the extended set determined by M . Then: a) A 2 E iff BA 2 E; b) A 62 E
iff :BA 2 E; and c) E is closed under tautological consequence.

This is a reasonable requirement on the belief set of any rational agent with full powers of introspection.

Given this introspective ability, we expect an agent to be able to completely determine the beliefs

contained in any revised belief setK�A. While the Ramsey test ensures that simple conditionalsA > B
will be in E if B 2 K�A, we have an even stronger property: if a conditional fails the Ramsey test its

negation is believed.

Proposition 4 Let E be the extended set determined by M . Then for any simple conditionalA > B,

either A > B 2 E or :(A > B) 2 E.

We refer to this property as the completeness of conditional beliefs.

We note that the connectives B and > have “global” truth conditions. By this we mean that if, say,A > B holds at some world in a model M , then it holds at all worlds in M . Its acceptance does not

depend on the world at which it is being evaluated, but rather on the global (rather than local) structure

of M . This has important consequences when we consider the meaningfulness of iterated belief and

conditional statements in extended sets. For instance, we immediately have that B(A > B) 2 E
iff A > B 2 E. Thus, extended sets provide a mechanism for incorporating both objective beliefs

and belief in simple conditionals into a single collection. However, the global nature of acceptance

conditions ensures that non-simple conditionals add nothing of interest to the language.

Let us dub any sentence such that all atomic variables lie within the scope of a modality B or a

conditional > a subjective sentence. We concentrate on the case of conditionals whose consequent

is subjective. It is easy to see that the truth conditions for any conditional A > �, for any purely

subjective sentence �, are uninteresting. As long as A is satisfiable, A > � holds iff � does. Thus,

this model of the AGM postulates is suitable only for objective belief sets. For example, we have thatM j= A > (B > C) iff min(M;A) � kB > Ck iff M j= B > C. This is certainly not a reasonable

property of extended belief sets or revision models. In particular, if the Ramsey test is taken seriously

this semantics is not suitable for iterated revision. However, it can be easily extended.
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3 Minimal Conditional Revision

3.1 The Problem of Iterated Revision

Suppose an agent possesses a belief set K. Its revision policies and judgements of entrenchment are

captured by the K-revision model M . If the agent is curious about the status of proposition B after

an arbitrary propositional revision A, it may simply consider whether B 2 K�A. In other words, for

objective formulae B simply asking whether B is true at each world in min(M;A) is appropriate,

and is sufficient (via the Ramsey test) to determine acceptance of the conditional A > B. While

this characterization of K�A is clear, it is less obvious just what form the revised extended belief set,E�A, should take. As made clear above, the new subjective beliefs of the agent cannot be captured by

the set of worlds min(M;A). If it were, an agent could drastically change its objective belief set K
without altering its conditional beliefs, its nested beliefs, or its judgements of entrenchment.

It should be clear why this difficulty arises. The model M is a K-revision model, suitable for

modeling the revision of belief set K, and for determining the truth of conditionals relative to K.

When the agent’s objective beliefs are revised, giving rise to belief set K�A, such a model is no longer

adequate as a representation of the agent’s epistemic state. It cannot retain the same conditionals

given a different belief set. Recall, the Ramsey test provides acceptance conditions for conditionals,

not truth conditions; and acceptance is relative to a given state of belief. Similarly, if the agent’s

beliefs change, so too must its “nested” beliefs and its judgements of entrenchment and plausibility.

Thus, the K-revision model must be given up. The agent must adopt a revised model of its epistemic

state, which we denote M�A. It is this model that determines the agent’s revised extended belief setE�A.7

What are the natural requirements on the new model M�A? Since K�A is uniquely determined byM we insist that K�A � E�A and that K�A form the entire objective component of E�A. That is, M�A
should be a K�A-revision model, or that K�A is only known in M�A. The minimal cluster of worlds inM�A should be exactly min(M;A). This is illustrated in Figure 2. Let us dub this constraint the Basic

Requirement on revision functions as applied to models.

The Basic Requirement: If M is a K-revision model determining revision function �, then the

revision model M�A must be such that min(M�A;>) = min(M;A).
In fact, from a purely logical perspective, this is probably all we want to say about M�A. If one

changes an objective belief, it is impossible in general to predict what becomes of one’s conditionals.

7Similar observations have been made by Levi [23], Rott [29] and Hansson [21].
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M M*A

?

(a) (b)

min(A)

Figure 2: General constraints on the mapping to a new revision model

This model of iterated revision is captured by Gärdenfors’s [15] belief revision systems, although not

in this semantic fashion. Such a system consists of a set K of belief sets and a revision function �
that maps hK;Ai, where K 2 K and A 2 LCPL, to K�A 2 K. The function � must satisfy the AGM

postulates, but the behavior of � on the extended belief set E associated (by the Ramsey test) with K
is left unspecified. Only postulates (R7) and (R8) constrain how revision of K�A should take place,

and these constraints are quite mild. This model provides no guidance as to what conditionals in E
should be accepted or rejected in E�A. Put another way, no hints are provided on how to revise K�A,

given its “origination” as a revision of K by A. The ordering of worlds in the nebulous region of

Figure 2 (b) is completely unspecified.

Belief revision systems of the Gärdenfors type possess two unattractive features, one logical and

one pragmatic. First, epistemic states are distinguished solely by their objective component. For anyK, the extended belief set E associated with K (via the Ramsey test) is fixed, since K�A is fixed.

There can be no two distinct extended belief sets that share the same objective part. In other words,

there can only be one way of revising a belief set. This is certainly an unnatural restriction, one that is

not imposed by our notion of K-revision models. There exists a multitude of K-revision models for

any fixed K, reflecting the view that conditionals and judgements of entrenchment form an integral

part of an agent’s epistemic state. An agent can be in two different belief states, but have the same

propositional beliefs in each and differ only on its accepted conditionals. This is a natural extension

of revision systems, but it is also quite straightforward. The semantic “characterization” of such a

system is completely captured by Figure 2. The general method of Rott [28] is based on the same

considerations. He identifies the epistemic state of an agent with an ordering of entrenchment over
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potentially distinct revision functions with equivalent belief sets.8

The second criticism is of a more pragmatic nature and is the point we address in the rest of the

paper. Everything above points to a mapping of M to M�A satisfying one condition, that the objective

belief set associated with M�A be precisely the set K�A determined by M . As Figure 2 illustrates,

just about all of the ordering information, capturing an agent’s conditional beliefs and judgements

of entrenchment, is (potentially) lost in this mapping. There is something unsatisfying about this

model. The ordering relation � is intended to reflect the informational content or importance of

beliefs. When certain beliefs must be given up, it seems reasonable to try to keep not only important

objective beliefs, but as much of the ordering a possible. Revision should not generally change one’s

opinion of the relative importance of most sentences.

3.2 The Semantics of Minimal Conditional Revision

Instead of arbitrary mappings fromM toM�A, we will propose a class of natural mappings that preserve

as much ordering information as can be expected. This determines the class of minimal conditional

revision functions, that tend to preserve the entrenchment information and conditional beliefs found

in an extended belief set. It is important to note that the model we propose is not completely general,

for it permits only a subset of those revision functions (on extended sets) allowed by the arbitrary

mappings described above. However, it is a very natural subset, for it extends the notion of minimal

change to subjective formulae. Furthermore, it is suitable for determining the result of propositional

revision sequences, or the acceptance of right-nested conditionals, when the general model has little

to offer.

The conditionals accepted by an agent are determined by its ordering of plausibility. If we insist that

revision preserve as much of this ordering as possible, then, for the most part, the relative entrenchment

and plausibility of sentences (hence conditional beliefs) will remain intact. Let M = hW;�; 'i be

the revision model reflecting some extended belief set E. Given a propositional revision A of E (or

the associated K), we must find a revision model M�A = hW;�0; 'i such that �0 reflects the minimal

mutilation of �.

If w 2 min(M;A), by the Basic Requirement w must be minimal in �0, and these must be the

only minimal worlds in �0. For any such w the relationships w �0 v and v �0 w are completely

determined by membership of v in min(M;A), independently of their relationship in �. Figure 2

8We discuss the relationship with these systems further in the concluding section.
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M*A

Figure 3: The minimal conditional revision of a model.

illustrates this. For w; v not in min(M;A), this picture leaves v � w completely unspecified. If � is

to be left intact to the largest possible extent then the most compelling specification is to insist thatw �0 v iff w � v. This has the effect of leaving � unaltered except as indisputably required by the

Basic Requirement. Such a move, applied to the original model in Figure 2, is illustrated in Figure 3.

We dub such a mapping on revision models the minimal conditional revision operator, and describe

the revision function it induces on the associated belief and extended belief sets.

Definition 2 Let M = hW;�; 'i be a revision model. The minimal conditional revision operator

(or MC-revision operator) � maps M into M�A, for any A 2 LCPL, where M�A = hW;�0; 'i,
and: a) if v 2 min(M;A) then v �0 w for all w 2 W and w �0 v iff w 2 min(M;A); and b) ifv; w 62 min(M;A) then w �0 v iff w � v.

Definition 3 Let E be the extended belief set associated with the revision model M . The minimal

conditional revision function associated with M is �, defined for all A 2 LCPL as follows:E�A = fB 2 L : M�A j= BBg
Let K � E be the objective component of E. The minimal conditional revision (or MC-

revision) of K, denoted K�A, is the restriction of E�A to LCPL; that isK�A = fB 2 LCPL : M�A j= BBg
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The MC-revision function is simply the AGM operator determined by M , when restricted to K.

Proposition 5 Let M be a revision model for K, � M be the AGM revision function determined by M
(as given by Definition 1), and � be the MC-revision function determined by M . For any A 2 LCPL ,

we have K� MA = K�A.

Notice that this enhances the AGM model of revision. The revised extended set E�A is defined using

the updated revision model M�A and incorporates subjective beliefs, such as conditionals, statements

of entrenchment and plausibility, and nested belief sentences.

If we are to extend the Ramsey test to include nested conditionals, the truth conditions for

statements A > � must be recast in this framework for subjective �. For M to satisfy A > �, we

must have � 2 E�A. If � 2 LCPL, given Proposition 5, these truth conditions will be identical to those

provided in Section 2. Thus, our new truth conditions for > based on the Ramsey test will form a

“conservative extension” of the old definition. However, for arbitrary � 2 LB, especially sentences

of the form � = (B > C), we must test B > C in M�A, not at min(M;A).
Definition 4 Let M = hW;�; 'i be a revision model, A 2 LCPL and B 2 L. M satisfies A > B

(written M j= A > B) iff M�A j= BB.

We now have a conditional connective whose truth conditions are specified directly by the Ramsey

test. In particular, conditionals with arbitrary consequents have meaningful acceptance conditions;

and right-nested conditionals impose constraints on the process of iterated revision. We will see,

however, that their acceptance can be verified using only conditions on the original revision model.

Notice that the truth of A > B is unspecified for A 62 LCPL . MC-revision functions are suitable

only for sequences of objective updates. The nesting of conditionals sanctioned in a meaningful way

in this framework is right-nesting, for instance, A > (B > C) where A;B;C 2 LCPL. A sentence(A > B) > C has an unspecified truth value for it asks if C is believed when a knowledge base is

revised to include A > B. This framework does not specify how to revise a knowledge base with

non-objective sentences, though we return to this problem in the concluding section.

3.3 Minimal Change of Conditional Beliefs

In this section, we investigate some of the properties of single changes to a revision model or belief

set using the MC-revision function �. We assume throughout some revision model M capturing the

extended belief setE and the belief setK � E. WhenM (orK orE) is revised byA the properties ofK�A are obvious: K�A = K� MA , where � M is the AGM operator determined by M . Of more interest is
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M*A
(b)(a)

M

K*A
K ~Amin(A)

Figure 4: MC-revision with a consistent revision.

the characterization of of the new extended set E�A. Since minimal mutilation of the ordering relation� is intended to preserve as many conditional beliefs as possible, we must determine precisely which

conditionals in E remain in E�A and which are sacrificed. Since we are interested in single revisions,

we restrict our attention (for the time being) to simple conditionals of the form A > B where both A
and B are objective. One important property to note is the following:

Proposition 6 Let M be a K-revision model where A 2 K. Then M�A =M .

Updating by a sentence already in a belief set not only causes no change in the belief setK, as required

by the AGM postulates, but also leaves the revision modelM intact. More generally, consider the two

scenarios, illustrated by Figures 4 and 5, that might arise when M is revised by A. Figure 4 shows

the situation where A is a consistent revision, K 6` :A, while Figure 5 demonstrates the behavior of

an inconsistent revision, K ` :A. We are interested in those simple conditionals B > C that are

true in the model M�A. In each of these two scenarios (in each figure) there are two cases to consider,:B 62 K�A and :B 2 K�A: either B is consistent with the new belief set K�A or it is not.

Consider the first situation where :B 62 K�A; that is, M j= :(A > :B). This means that there is

someB-world among the set min(M;A) of minimalA-worlds inM (the shaded region of the figures).

Clearly then we have that min(M�A; B) = min(M;A ^ B); so M�A j= B > C iff M j= A ^ B > C.

Therefore, whenever K�A 6` :B, a conditionalB > C is in E�A iffA^B > C is in E. Notice that the

status of B > C in E has no bearing on its acceptance or rejection in E�A. This behavior is exactly

in accordance with the AGM postulates (R7) and (R8). Any AGM revision function must ensure



To appear, Journal of Philosophical Logic, 1995

3 MINIMAL CONDITIONAL REVISION 15

M*A
(b)(a)

~A

M

~AK K*A

min(A)

Figure 5: MC-revision with an inconsistent revision.

that subsequent (iterated) consistent revisions are treated in the same manner as uniterated consistent

revisions.

The second situation arises when :B 2 K�A; that is,M j= A > :B. WhenK (orE) is revised byA, :B is in the resulting belief set. This is true exactly when no B-world is contained in min(M;A)
(again, the shaded region). Now, M�A j= B > C just in case the set min(M�A; B) contains onlyC-worlds. Since :B 2 K�A, the set min(M�A; B) is not contained in the minimal cluster of M�A.

However, all worlds outside the minimal cluster stand in exactly the same relation as they do inM . Therefore min(M�A; B) = min(M;B) and it follows that M�A j= B > C iff M j= B > C.

For conditionals B > C whose antecedents are not made plausible by the acceptance of A (i.e.,K�A 6` :B), B > C is in E�A iff B > C is in E. Since nothing forces the conditional to be abandoned

when A is accepted, it is retained.

We can summarize these considerations in the following theorem and equivalent corollaries.

Theorem 7 Let M be a revision model, let � be the MC-revision operator and let A;B;C 2 LCPL.

a) If M�A j= B:B then M�A j= B > C iff M j= B > C.

b) If M�A 6j= B:B then M�A j= B > C iff M j= A ^B > C.

Corollary 8 Let M be a K-revision model and let � be the MC-revision function.

a) If K�A ` :B then C 2 (K�A)�B iff C 2 K�B.

b) If K�A 6` :B then C 2 (K�A)�B iff C 2 K�A^B.
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Corollary 9 Let M be an E-revision model and let � be the MC-revision function.

a) If A > :B 2 E then B > C 2 E�A (i.e., A > (B > C) 2 E) iff B > C 2 E.

b) If A > :B 62 E then B > C 2 E�A (i.e., A > (B > C) 2 E) iff A ^ B > C 2 E.

These results precisely characterize the conditionals that will be preserved in a revised extended

belief set. Each shows that the sentences accepted in the new revision model or belief state can be

determined by appeal to the original model or belief state. Theorem 7 shows that the conditional belief

set captured by M�A can be determined by the conditional beliefs of M . Furthermore, it demonstrates

that MC-revision preserves as much conditional information in the revised belief set as is consistent

with the AGM postulates. The conditionals removed from E when constructing E�A are only those

compelled by postulates (R7) and (R8). These are just those conditionals B > C whose antecedentB is consistent with K�A. This is reflected in clause b) of the theorem. However, as indicated by

clause a), the remaining set of conditionals (or negated conditionals) in E�A coincides precisely with

the conditional information in the original extended set E. Thus, no AGM revision function could

preserve more conditional information than the MC-revision function.

Corollary 8 shows that the sequence of two revisions applied to K can be reduced to a single

revision, requiring no iterated revision, and that the test to establish which condition holds also requires

no iterated revision. Similarly, Corollary 9 shows that the revised extended belief set E�A and the

nested conditionals in E can be captured by the simple, unnested conditionals in E. These properties

will play a vital role in our characterization of revision sequences in terms of single updates.

3.4 Revision Sequences

The objective belief set K�A formed by revising K with A relies only on one application of � to K.

Somewhat surprisingly, the simple conditionals in E�A can also be discovered by referring only to

applications of � to K. As the results above indicate, to ask if B > C 2 E�A, one first asks if :B is

in K�A. If this is true, then asking if B > C 2 E�A is equivalent to asking if C 2 K�B. If this is false,

then asking if B > C 2 E�A is equivalent to asking if C 2 K�A^B. A “hypothetical” revision of K
by B or by A ^B is sufficient to determine the status of B > C in E�A (or equivalently, the status ofA > (B > C) in E).

Suppose we have a revision sequence, A1, : : :An, to be applied to E, where K � E. We can

clearly use a single revision to verify whether some simple conditional B > C is in E�A1
, or ifM�A1

j= B > C. However, if we replace B by A2 we see that these conditionals determine precisely
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Figure 6: The order dependence of MC-revision.

the beliefs obtained when E�A1
is revised by A2, that is, (E�A1

)�A2
. If single revisions applied to K can

establish the content of the belief set obtained by an iterated revision of two levels, there seems no

reason single (uniterated) revisions of K cannot be used to decide the outcome of arbitrary revision

sequences. We will examine the properties of such sequences and show how they may be reduced to

single uniterated revisions, or unnested conditionals. This has important computational implications,

for it means that queries regarding the beliefs of an agent after a sequence of revisions can be answered

using only “virtual” revision of its belief set. In particular, it is not necessary to construct a new belief

set and entrenchment ordering after each update. Information contained in the original ordering is

sufficient to determine the result of an arbitrary sequence of revisions.

3.4.1 Order Dependence

The simplest true “sequence” of revisions consists of two elements A and B. An important property

of the MC-revision function applied to revision sequences is its order dependence. In general, the sets(K�A)�B and (K�B)�A will differ. To see this, consider a revision model M such that M 6j= A > :B,

but M j= B > :A (see Figure 6). When M is revised by A, the dark shaded region of A-worlds

become most plausible, and when M�A is then revised withB, the subregion of min(M;A) containingB-worlds becomes most plausible. By the results above, since :B 62 K�A we have (K�A)�B = K�A^B.

In contrast, when M is revised with B initially, the light shaded region min(M;B) becomes

most plausible, and when M�B is revised with A, the dark region min(M;A) becomes most plausible,

“leaving behind” the set min(M;B). Again, this is supported by our results of the previous section:

since :A 2 K�B we have (K�B)�A = K�A. In this case, of course, K�A 6= K�A^B, so (K�B)�A 6= (K�A)�B.
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For this reason, it is important to keep in mind that we are dealing with revision sequences rather than

simple sets of updates. Revision of a belief or extended belief set by some set of new facts will not

be order insensitive. In the example above, applying A before B is the same as applying A ^ B (toK at least), while applying B before A is the same as simply revising by A.

This difference exists for two reasons: first, B is incompatible with A in the sense that B > :A
holds; second, A is less plausible than B. Because A is less plausible than B, revision by A causes

more damage to K than revision by B. A is less expected, or conflicts with K to a greater degree.

The belief set K�A can be thought of as a “radical shift” in belief from K (we draw a very loose

analogy to Kuhn’s notion of paradigm shift). When update B is encountered, it must reconciled with

the radically different set K�A. If it is consistent with K�A then (K�A)�B = K�A^B. In contrast, if K
is revised with B first the results can be thought of as arising from a “routine” revision (routine in

comparison to A) followed by the more “radical” revision A. Even though B has been incorporated

in K�B, the radical shift to (K�B)�A offers no protection forB. A radical shift has little respect for most

routine information in a belief set, and B is as vulnerable as any other fact in K�B.

Given this interpretation, it is easy to ascertain just when the order of two revisions is irrelevant,

that is, when (K�B)�A = (K�A)�B.9

Definition 5 Let M be a revision model for belief and extended belief sets K and E. Updates A andB are mutually compatible (with respect to M or E) iff M 6j= A > :B and M 6j= B > :A.

Two revisions are mutually compatible just when each is a “routine” revision, relative to the other.

This is equivalent to saying A and B are equally plausible: A �P B and B �P A.

Proposition 10 If A and B are mutually compatible with respect to K-revision model M , then(K�B)�A = (K�A)�B.

Now, if A and B are incompatible (if one is more plausible than the other) the order of revision is

critical. But there are circumstances where the order may still be reversed.

Proposition 11 Let M be a K-revision model such that M j= A > :B. Then (K�B)�A = (K�A)�B iffM j= B > A.

Since (K�A)�B = K�B whenever A > :B, it is easy to see that this holds. We simply observe that if

9The order of revision is “irrelevant” only with respect to the objective setK . Rarely will the revised models or extended
sets be order insensitive. While (K�B)�A = (K�A)�B may hold, it will not generally be the case that (M�B)�A = (M�A)�B . We
will discuss this below for arbitrary sequences.
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and B are “super-incompatible”. In no instance will the order be irreversible.

Proposition 12 Let M be a K-revision model such that M j= A > :B and M j= B > :A. Then(K�A)�B = K�B, and (K�B)�A = K�A, and K�A 6= K�B.

3.4.2 Reduction to Single Revisions

In this section, we examine the possibility of simplifying the revision process. Given a revision

sequence A1, : : :An, we would like to determine the resulting belief set ((K�A1
)�A2

� � �)�An without

having to perform each these n distinct revisions of different belief sets. In fact, we will show that

any sequence of revisions can be “reduced” to a single revision. To be more precise we define a

characteristic sentence for a revision sequence.

Definition 6 Let A1, : : :An be a revision sequence. We say this sequence is characterized by the

sentence � iff ((K�A1
)�A2

� � �)�An = K��.

Here we show that every revision sequence has such a characteristic sentence, and that this sentence

can itself be determined by the simple unnested conditionals contained in the belief set (or, using the

Ramsey test, by “hypothetical” unnested revisions of K).

While mutual compatibility is sufficient to ensure that revision ordering can be reversed, we are

typically more concerned with processing updates in the order they are received. WhenA is processed

before B, we have seen that (K�A)�B = K�A^B whenever A > :B is false. The mutual compatibility

of A and B is not important when revisions are processed in order. Rather the forward compatibility

of B with A determines the content of (K�A)�B, and how it may be achieved with a single revision.

If B is forward compatible with A, that is, if :B 62 K�A, then (K�A)�B reduces to K�A^B. If B is

incompatible, then (K�A)�B reduces to K�B. This can be extended in the obvious fashion to arbitrary

sequences of revisions.10

Definition 7 Let M be a K-revision model determining MC-revision function �. The revision

sequence A1, : : :An is forward compatible with respect to � (or model M ) iff :Ai+1 62((K�A1
)�A2

� � �)�Ai for each 1 � i < n.

10We concentrate on revision of models and belief sets, taking for granted the straightforward connections to extended
sets and nested conditionals.
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This can be restated as M 6j= A1 > (A2 > � � � (Ai > :Ai+1))
for each i < n. Loosely, we say that the sequence is forward compatible (or simply compatible) forK, when �, M or E is understood. Clearly, we have the following:

Proposition 13 If a revision sequence A1, : : :An is forward compatible, so is each subsequence A1,: : :Ai for i � n.

An obvious inductive argument, generalizing the case of the two-element sequence, gives us the

following:

Theorem 14 If A1, : : :An is forward compatible for K, then ((K�A1
)�A2

� � �)�An = K�A1^���An .

Corollary 15 A1, : : :An is forward compatible for K iff :Ai+1 62 K�A1^���Ai for each i < n.

Thus (by Corollary 15) testing for compatibility can be reduced to the application of single revisions

to the belief set K, or testing simple conditionals A1 ^ � � �Ai > Ai+1. Iterated revision or nested

conditionals are not required to test for compatibility, nor (by Theorem 14) are they needed to compute

the result of such a revision sequence applied to K. Computing compatible revision sequences is a

straightforward extension of the case of two compatible revisions, and is reducible to a single revision,

the conjunction of the elements.

In the incompatible instance, the two-element sequence was again reducible to a single revision:(K�A)�B = K�B when A > :B. Accounting for an incompatible revision after a longer sequence of

compatible revisions, however, is not so straightforward. Suppose we have a revision sequence, A1,: : :An+1, where A1, : : :An is compatible but the longer sequence is not. The analogy to the two-

element case breaks down here, for in general ((K�A1
)�A2

� � �)�An+1
6= K�An+1

. Unfortunately, earlier

revisions leave a residual trace on the structure M , as shown in Figure 7. While ((K�A1
)�A2

� � �)�An =K�A1^���An , most certainly ((M�A1
)�A2

� � �)�An is different from M�A1^���An . The history of the belief setK, the process by which it was formed, plays a vital role in future revisions.

In this model, the original structure of the K-revision model lies primarily above the dashed line.

Revision by A1 moved the minimal A1-worlds to the cluster just below the dashed line. Since A2

is compatible with A1, revision by A2 removed the A2-worlds from this new cluster (leaving behindA1 ^ :A2-worlds) and moved them to the second cluster below the line. This process was repeated

up to An, resulting in a final minimal cluster of A1 ^ � � �An-worlds (shaded in Figure 7). The same

minimal cluster would have been formed had K simply been revised byA1^� � �An, but the sequence
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Figure 7: A sequence of compatible revisions.

of revisions has a drastically different effect on the structure of M , leaving a number of intermediate

clusters in its wake. Simply revising by the conjunction A1 ^ � � �An would have caused only the

shaded cluster to form below the dashed line.

Referring still to Figure 7, if a subsequent revision An+1 is not compatible with the sequence A1,: : :An, then ((K�A1
)�A2

� � �)�An ` :An+1. That is, no An+1-worlds can be found in the shaded minimal

cluster. When ((M�A1
)�A2

� � �)�An is revised with An+1, it need not be the case that K�An+1
results. If

the minimal An+1-worlds are found in some cluster below the dashed line, that is, if K�A1
6` :An+1,

then ((K�A1
)�A2

� � �)�An+1
will not usually equal K�An+1

.

So exactly where will minimal An+1-worlds be found in ((M�A1
)�A2

� � �)�An and what sentences

will be in ((K�A1
)�A2

� � �)�An+1
? Suppose the sequence A1,: : :Ak, An+1 is incompatible. This means

there can be no An+1-worlds in the cluster formed when ((K�A1
)�A2

� � �)�Ak�1
is revised by Ak, that is,

the cluster of A1 ^ � � �Ak-worlds. Of course, this implies that there can be no An+1-worlds is any

lower clusters formed by the subsequent revisionsAk�1 throughAn, since each of these is compatible

and will only “select” worlds from this set of :An+1-worlds. Conversely, if A1,: : :Ak, An+1 is a

compatible sequence, there must be some An+1-worlds among the the cluster of A1 ^ � � �Ak-worlds

representing ((K�A1
)�A2

� � �)�Ak .

It now becomes clear that the minimal set ofAn+1-worlds must be located in the cluster of worlds

“labeled”A1^� � �Ak ^:Ak+1, where k � n is maximal among the set of i such thatA1,: : :Ai,An+1
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is a compatible sequence of revisions. Since A1,: : :Ak is compatible, ((K�A1
)�A2

� � �)�Ak = K�A1^���Ak ,

and the minimalAn+1-worlds in this set are captured by (((K�A1
)�A2

� � �)�Ak)�An+1
. But this is equivalent

to K�A1^���Ak^An+1
since An+1 is compatible with the rest of the sequence.

Definition 8 Let A1,: : :An be a revision sequence. Update Ak (k > 1) is incompatible in this

sequence iff :Ak 2 ((K�A1
)�A2

� � �)�Ak�1
. A sequence is incompatible iff it contains at least one

incompatible member.

Proposition 16 Sequence A1,: : :An is incompatible iff it is not forward compatible.

If the belief set ((K�A1
)�A2

� � �)�An is characterized by a single revision � butAn+1 is incompatible,

then the sentence representing ((K�A1
)�A2

� � �)�An+1
is clearly not equivalent to �^An+1. The situation

we have have described above, where only the last revision in a sequence is incompatible, is easily

characterized.

Theorem 17 Let A1,: : :An+1 be an incompatible sequence such that A1,: : :An is compatible. Let k
be the maximal element of fi � n : :An+1 62 ((K�A1

)�A2
� � �)�Aig

Then ((K�A1
)�A2

� � �)�An+1
= K�A1^���Ak^An+1

.

Thus a sequence with one incompatible revision as its last element is reducible to a single revision.

Notice that when the set of revisions compatible with An+1 is empty, when this maximal element k
does not exist, we have ((K�A1

)�A2
� � �)�An+1

= K�An+1
. This is directly analogous to the two-element

case, since there is no subsequence compatible withAn+1. In Figure 7 this occurs exactly when there

are no An+1-worlds below the dashed line; that is, when :An+1 2 K�A1
.

It should be quite clear that subsequent compatible revisions, An+2 and so on, should be treated

as previously and simply “conjoined” to ((K�A1
)�A2

� � �)�An+1
.

Proposition 18 Let A1,: : :An be a revision sequence with one incompatible element Ak , and letj < k be the maximal compatible revision for Ak (as in Theorem 17). Then ((K�A1
)�A2

� � �)�An =K�A1^���Aj^Ak^���An .

The final piece in the puzzle is the process by which subsequent incompatible revisions are

achieved. Consider a revision sequenceA1,: : :An whereAk is incompatible and has as its most recent

compatible revision Aj (the element defined in Theorem 17). This situation is illustrated in Figure 8.

Now suppose update An+1 is incompatible, so that no An+1-worlds are located in the minimal



To appear, Journal of Philosophical Logic, 1995

3 MINIMAL CONDITIONAL REVISION 23

A1 A2

A1 Aj

Aj+1 Ak

Ak

Aj

Aj+1 Ak

Ak+1

AnAk

AjA1

A1

A1 Aj Ak
. . .K*

. . .

. . .

. . .

. . .

Figure 8: A sequence with an incompatible revision.

cluster. This occurs when K�A1^���Aj^Ak^���An ` :An+1. Again, to find the minimal An+1-worlds

in this structure we must look for the most recent compatible revision in the sequence A1,: : :An.

If Ai is this update then ((K�A1
)�A2

� � �)�An+1
is identical to (((K�A1

)�A2
� � �)�Ai)�An+1

. Furthermore,

since A1,: : :An has only one incompatible revision, by Theorem 14 and Proposition 18, we have((K�A1
)�A2

� � �)�Ai = K�� for some sentence �. Thus ((K�A1
)�A2

� � �)�An+1
= K��^Ai. It is interesting,

however, to examine the various situations that arise with respect to the occurrence of this most recent

compatible revision Ai.
First, consider i � k. In this case,An+1 is compatible with the previous incompatible revisionAk .

The set of minimal An+1-worlds lies below the third dashed line, among those worlds representingK�A1^���Aj^Ak . In this circumstance we have ((K�A1
)�A2

� � �)�An+1
= K�A1^���Aj^Ak^���Ai^An+1

.

Second, consider j < i < k. Clearly, An+1 is incompatible with the incompatible revisionAk , but is compatible with the sequence A1,: : :Aj . This case is rather interesting for we cannot

simply “backtrack” within our representative revision for A1,: : :An. Because ((K�A1
)�A2

� � �)�An =K�A1^���Aj^Ak^���An , one might think we could simply “back up” to the most recent compatible revisionAj in this representation and arrive at K�A1^���Aj . However, this ignores the consistent revisions

between Aj and Ak (between the second and third dashed lines) that were “left behind” when the

incompatible revision Ak was incorporated. The minimal An+1-worlds lie in this region and this
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must be taken into account. Indeed, since A1,: : :Ai is compatible we have ((K�A1
)�A2

� � �)�An+1
=K�A1^���Ai^An+1

.

Finally, consider i � j. Since ((K�A1
)�A2

� � �)�An+1
= K�A1^���Ai , this case is much like the one just

mentioned. It is distinguished by the fact that the single revision A1 ^ � � �Ai that represents it is a

proper subsequence of the update A1 ^ � � �Aj ^ Ak ^ � � �An representing ((K�A1
)�A2

� � �)�An .

These considerations can be generalized to accommodate any number of incompatible revisions.

Furthermore, they provide a constructive means (described inductively) of reducing any sequence of

revisions of belief set K to a single revision of K, and demonstrate (through compatibility testing)

how that revision can itself be determined using only single (non-iterated) revisions of K. Finally

we shall see that, although the inductive description indicates a dependence of the characterization of((K�A1
)�A2

� � �)�An on the characterization of ((K�A1
)�A2

� � �)�Ai , for each i < n, it is only necessary to

keep track of those sentences that characterize incompatible revisions.

Definition 9 Let A1,: : :An be a revision sequence with c incompatible updates. We use the strictly

increasing function � : f1; � � � ; cg 7! f1; � � � ; ng to denote these incompatible elements: A�(1),: : :A�(c). For each 1 < j � n, the maximal consistent incompatible revision for Aj is Ak ,

where k = maxf�(i) : �(i) < j and :Aj 62 ((K�A1
)�A2

� � �)�A�(i)g
For each 1 < j � n, the most recent compatible revision for Aj is Ak, wherek = maxfi : i < j and :Aj 62 ((K�A1

)�A2
� � �)�Aig

If either of these sets is empty, we take the most recent or maximal incompatible revision forAj to be >.

Lemma 19 Let A1,: : :An be a revision sequence such that each proper subsequence A1,: : :Ai is

characterized by some sentence s(Ai). Then A1,: : :An is characterized by s(Ak) ^An, where Ak is

the most recent compatible revision for An. In other words, ((K�A1
)�A2

� � �)�An = K�s(Ak)^An .

This leads to the main result of this section.

Theorem 20 For any revision sequence A1,: : :An, there is some subset of these updates S �fA1; � � � ; Ang such that ((K�A1
)�A2

� � �)�An = K�A and A = ^S.

Corollary 21 For any revision sequence A1,: : :An, there is some subset of these updates S �fA1; � � � ; Ang such that ((E�A1
)�A2

� � �)�An�1
j= An > B iff E j= A > B, and A = ^S.
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This result is given its constructive character by Theorem 14, but it seems to suggest that one

must keep track of a characteristic sentence s(Ai) for each revision Ai. In fact, the critical sentences

are only those corresponding to incompatible revisions, s(A�(i)). Every other characteristic sentences(Ai) is simply the conjunction of subsequent revisions to the most recent incompatible revision.

Theorem 22 Let A1,: : :An be a revision sequence with c incompatible updates represented by �.

For each 1 � k � n, if Ak is a compatible revision, then ((K�A1
)�A2

� � �)�Ak = K�s(Ak), where: a)s(Ak) = s(A�(i)) ^A�(i)+1 ^ � � �Ak; b) �(i) < k < �(i+ 1), or �(i) < k if i = c; and c) s(A�(i))
characterizes subsequence A1,: : :A�(i).

We can provide a similar characterization of incompatible revisions, but these must be in terms

of the maximal consistent incompatible revision rather than the most recent incompatible revision.

Proposition 23 Let A1,: : :An be a revision sequence with c incompatible updates represented by �.

Let A�(i) be the maximal consistent incompatible revision for Ak. If Aj is the most recent compatible

revision for Ak, then �(i) � j < �(i+ 1).
Theorem 24 Let A1,: : :An be a revision sequence with c incompatible updates represented by �.

For each 1 � k � n, if Ak is an incompatible revision, then ((K�A1
)�A2

� � �)�Ak = K�s(Ak), where:

a) s(Ak) = s(A�(i)) ^ A�(i)+1 ^ � � �Aj ^ Ak; b) A�(i) is the maximal incompatible revision forAk; c) Aj is the most recent compatible revision for Ak; and d) s(A�(i)) characterizes subsequenceA1,: : :A�(i).
Taken together, these theorems show that one may implement a procedure that tests for membership

of B in a multiply-revised belief set ((K�A1
)�A2

� � �)�An using only an “oracle” that answers requests of

the form “Is � 2 K��?” for �; � 2 LCPL. Furthermore, the characteristic sentences s(Aj) that need to

be recorded are only those of the form s(A�(i)) where A�(i) is some incompatible revision. The core

of this algorithm is provided in Figure 9. It takes as input a revision sequenceA1,: : :An and computes

the characteristic sentence A such that K�A = ((K�A1
)�A2

� � �)�An . The algorithm is incremental in the

sense that a subsequent revision An+1 requires only one further execution of the main “for loop”. To

ask whether B 2 ((K�A1
)�A2

� � �)�An , one simply computes the required characteristic sentence A and

asks if B 2 K�A.

3.5 Information Preservation

One desideratum of any model of the revision process is the minimization of information loss. In the

AGM framework for single revisions, postulate (R4) ensures that no beliefs from set K are retracted
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Input: revision sequenceA1,: : :An; revision function � applicable to belief set K
Output: characteristic update A — K�A = ((K�A1

)�A2
� � �)�An

Variables: L — list of updatesIL — list of incompatible revisions: elements have formhind; Si, where Aind is incompatible and subsequenceA1,: : : Aind is characterized by sentence SS — characteristic sentenceA built up here

Initialize A >;L >; IL h0;>i
for i = 1 to n ;;; one loop for each update AiL L+ Ai

if :Ai 62 K�A then ;;; Ai is compatibleA A ^Ai
else ;;; Ai is incompatible

for j = length(IL) to 1 ;;; find maximal incompatible revision consistent with AiS  IL(j):Sidx IL(j):ind
if :Ai 62 K�S then ;;; found maximal incompatible revision

if x = length(IL) then ;;; top is max location of most recent compatible revisiontop i� 1
else top IL(j):ind
end if
break

end if
end for
for k = idx+ 1 to top� 1 ;;; find most recent compatible revision

if :Ai 2 K�S^L(k) then
break

else S  S ^ L(k)
end if

end forA SIL IL+ hi; Si
end if ;;; end of incompatible revision

end for

Figure 9: Algorithm to compute characteristic update A for revision sequence A1,: : :An.
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if none need to be. An arbitrarily long sequence of consistent revisions will simply make a belief set

larger, resulting (in the limit) in a complete belief set. Eventually, we will believe either A or :A for

each objective sentence A. Once an inconsistent revision is processed, the AGM model asserts that,

among those beliefs that could be given up to accommodate A, only those that are least entrenched

are retracted. Unfortunately, no constraints are levied on the relative degrees of entrenchment of the

members of the new belief set K�A. Much of the information associated with K, including relative

degrees of entrenchment, is lost.

The MC-revision model is unique in the sense that this type of information is preserved. When a

consistent revision A is processed, the minimal cluster of a revision model M is divided, resulting in

two smaller clusters. A subsequent consistent revision breaks the minimal cluster of M�A, and so on.

Eventually (supposing some finite language) after a suitable sequence of consistent revisions, we end

up with a minimal cluster containing one possible world, representing a complete belief set.

The process is not altogether different for inconsistent revisions. Rather than dividing the minimal

cluster ofK-worlds, the cluster containing min(M;A) is divided. However, any information implicit

in previous revisions that caused the formation of various clusters inM is preserved. All other clusters

remain undisturbed. In no case will a revision cause any cluster to “grow” or “lose information.”

Typically, a revision will cause the number of clusters to increase by one by splitting min(M;A) from

a cluster, thus “shrinking” a cluster and ensuring information gain. Only in certain cases will no new

clusters be formed, for example, when we revise K by A where A 2 K. Thus, we have a continual

“thinning” of our revision models.

Proposition 25 Let revision model M�A = hW;�; 'i be the MC-revision of M by A. If C � W is

a cluster in M�A, then C � C 0 for some cluster C 0 in M . Furthermore, if min(M;A) � C 0 for some

cluster C 0 in M , then the set of clusters in M�A consists of the set of clusters in M distinct from C 0
together with min(M;A) and C 0 � min(M;A). If min(M;A) = C 0 for some cluster C 0 in M , the the

set of clusters in M�A is identical to that in M .

Thus, a revision sequenceA1,: : :An causes a non-decreasing change in “information” in a belief state.

No belief set farther along in the revision sequence can be smaller than an earlier belief set.

Corollary 26 Let M be a K-revision model and A1,: : :An a revision sequence. If i � j then((K�A1
)�A2

� � �)�Aj 6� ((K�A1
)�A2

� � �)�Ai .
This suggests that, as we process a revision sequence, our revision model becomes more and more

informationally complete in the following sense.
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Definition 10 A revision model M is informationally complete iff each cluster in M is a singleton

set.

Proposition 27 Let M be an informationally complete K-revision model. Then K�A is a complete

theory for any A 2 LCPL . Furthermore, M�A is informationally complete.

Corollary 28 If M is an informationally complete K-revision model then K is a complete theory.

Proposition 25 ensures furthermore that M�A will be informationally complete whenever M is. It also

shows that if we restrict our attention to languages with a finite number of propositional variables, we

can eventually attain informational completeness.11

Proposition 29 Let M be a revision model and A1,: : :An a revision sequence such that every satis-

fiable sentence � is represented in this sequence; that is, Ai ` � for some Ai. Then ((M�A1
)�A2

� � �)�An
is informationally complete.

An example of such a revision sequence, for a language with p propositional variables, would be the

set of the 2p complete (truth-functionally distinct) conjunctions of literals, each capturing a possible

world or valuation, and each causing the corresponding world to be broken off into its own cluster.

From that point on all revisions will result in complete belief sets since the set of most plausibleA-worlds will have one element for each revision A.

4 Reasoning with Revision Sequences

The algorithm for reducing nested conditionals requires some method of establishing the truth ofB 2 K�A for A;B 2 LCPL . Typically, as is the case in most reasoning tasks, our premises do not

provide us with complete knowledge, and we can only hope to derive as much as possible, leaving

certain gaps in our knowledge. It is not reasonable to expect a completely specified revision function�, or equivalently, a complete set of conditionals containing one of A > B or :(A > B), among

our set of premises. Naturally, the algorithm can then easily be modified to ask whether A > B or:(A > B) is provable from a given premise set.12 If either is the case, the algorithm can proceed,

having an answer to the query B 2 K�A. If neither is derivable from the premises, then the algorithm

11We assume that models contain no “duplicate” worlds having the same associated valuation. If so, our informational
completeness in the following result is the type that ensures that K�A is complete for all A.

12This requires a logic in which conditionals can be expressed and reasoned with, e.g., [9].
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must halt unsuccessfully, or proceed as if either could be the case.13 As should be expected when

reasoning with incomplete information, the answer “unknown” must be returned for certain queries.

While the revision function � is usually specified only partially by means of conditional premises

(as well as direct statements of plausibility and entrenchment), there may be circumstances when the

revision function is completely known. The problem changes from that of reasoning with incomplete

information to that of specifying complete information in a reasonable manner. We cannot expect

one to specify a complete conditional theory explicitly containing A > B or :(A > B) for each

objective A and B, for we do not want to be forced to reason with infinite sets of premises. Even

for finite languages with p atomic variables, where we require only a conditional or its negation for

semantically distinct A and B, we are forced to reason with 2p+1 premises.14

There are cases, though, where a revision function can be captured finitely, and often with a

manageable number of sentences. Often when a set of conditional premises is given, we have in

mind a certain intended model (e.g., preferred entrenchment orderings are described in [26, 4, 28]),

and these can often be represented finitely [4]. In general, a revision function can be compactly

represented if there is a corresponding revision model that is “well-behaved” in the following sense.

Definition 11 A revision model M = hW;�; 'i is finitely specifiable iff W = [i�nCi, where eachCi is a cluster in M and Ci = kSik for some sentence Si 2 LCPL .

In other words, M is well-behaved if it consists of a finite number of clusters, each corresponding to

some finite classical theory or sentence. It is easy to verify that if M is finitely specified by sentencesS1, : : :Sn in the definition above, then these sentences are “mutually exclusive” and “exhaustive”;

that is, ` Si � :Sj if i 6= j, and ` S1 _ � � �Sn. We assume that S1 characterizes the minimal (most

plausible) cluster of M , S2 the next most plausible and so on. We denote the model described above

by FSM(S1; � � �Sn).15

Definition 12 A revision function � is finitely specifiable (for belief set K) iff there is some finitely

specifiable K-revision model M = FSM(S1; � � �Sn) such that � M = �.

Given a finitely specifiable revision function for belief set K (in which case K is also finitely

13It often makes sense to continue, for a subsequent revision may be incompatible with previous revisions, and failing to
reduce an earlier revision may have no effect on the effort to reduce an entire sequence.

14Alternatively, one could provide a complete set of entrenchment sentences, specifying the relative degrees of entrench-
ment of each pair of sentences: A �E B and/or B �E A for each A;B 2 LCPL. This would allow the derivation of
every simple conditional or its negation, and seems to be what Gärdenfors and Makinson [17, 25] have in mind in their
presentation of expectation inference (see also [16]).

15Such a model can be described compactly in the logic CO* as a function of the sentencesS1; � � �Sn [6].
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specified by S1), we can use the sequence of sentences S1; � � �Sn to represent the model M , as well

as determine the truth of every simple conditional sentence.

Theorem 30 Let S1; � � �Sn 2 LCPL be such that ` Si � :Sj if i 6= j, and ` S1 _ � � �Sn. For allA;B 2 LCPL either FSM(S1; � � �Sn) j= A > B; orFSM(S1; � � �Sn) j= :(A > B)
Fortunately, the ability to finitely specify a revision model is not disturbed by MC-revision. IfFSM(S1; � � �Sn) characterizes a revision model M , then M�A is formed by simply “dividing” the

minimal cluster consistent with A in two clusters: Si ^ A becomes most plausible; and Si ^ :A
replaces cluster Si.
Theorem 31 Let revision model M = FSM(S1; � � �Sn) and let Sk be the minimal sentence in this

set consistent with A; that is, Sk 6` :A and Si ` :A if i < k. Then M�A is characterized byFSM(Sk ^A; S1; � � �Sk�1; Sk ^ :A; Sk+1; � � �Sn) if Sk 6` AFSM(Sk; S1; � � �Sk�1; Sk+1; � � �Sn) if Sk ` A
Thus we can completely specify a revision function with a compact set of premises and use this

premise set to reduce nested conditional queries to simple conditionals and then establish the truth

of these simple conditionals. Furthermore, we can explicitly revise a model and retain a compact

representation. It also becomes clear that testing for the truth of a simple conditional in such a revision

model is reducible to a simple propositional reasoning task.

Relative to propositional satisfiability tests, this “algorithm” is relatively efficient, for the minimalA-consistent cluster or sentence can be found using a linear search technique. Thus we need only

perform O(n) satisfiability tests to determine the truth of A > B. The complexity of these tests will

depend on the size of the theories Si and their structure. For instance, if the Si are Horn theories, this

test will be linear in the size of the theory.

5 Concluding Remarks

We have presented a model for iterated revision that captures sequences of objective revisions. The

hallmark of MC-revision is the preservation of subjective information, such as conditional beliefs and

entrenchment, throughout such a sequence. Because this information is retained across belief sets,

simply knowing how a revision function behaves on single revisions is sufficient to characterize the
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results of any sequence of revisions. If we adopt the Ramsey test for acceptance of conditionals, this

demonstrates that right-nested conditionals are equivalent to simple unnested conditionals, and that

this reduction can be performed using only knowledge of unnested conditionals.

The MC-revision model has other compelling properties as well. Because it preserves conditional

information, the sequence of belief sets corresponding to a revision sequence can never decrease in

propositional information content. It preserves nice properties of the revision models and functions

being revised as well, for example, informational completeness and finite specifiability. In cases where

a revision function is described simply (e.g., by a set of propositional sentences), the characterization

of MC-revision is also easily computed.

5.1 Fixed Sentence Orderings

Several other proposals have been put forth that extend the AGM theory (or variants of it) to deal

with iterated revision, but these all have a somewhat different nature. In particular, the question

of minimizing the change in the conditional beliefs of an agent appears to have been unaddressed.

Safe contraction [3], generalized epistemic entrenchment [29] and the probabilistically motivated

system of Schlechta [30] each take a similar approach to the problem: each assumes the existence

of a “global” ordering of entrenchment over all sentences in the language. For any belief set K
the appropriate revision function is immediately available, and iteration of the process requires no

additional apparatus. These models have the rather severe drawback that any objective belief setK is associated with a unique revision function. In particular, K uniquely determines the set of

conditional beliefs. So while the ordering of entrenchment can change as K evolves, these changes

are predetermined by the global ordering; the entrenchment ordering associated withK cannot depend

on how K evolved. This stands in contrast with our model, where the ordering itself can be revised.

Hansson [21] makes a similar observation, that many systems of iterated change fix the connection

between objective and extended sets. Hansson proposes that instead a revision method be associated

with belief bases rather belief sets. Thus, the same belief set may be revised in different ways if it is

generated by different bases in each instance. While clearly the issue of base revision is crucial, it is

not a problem we address here. In particular, the revision of conditional beliefs depends on existing

conditional beliefs and, as in the AGM theory, there need not be strong ties to the underlying belief

base.16

16Of course, such ties can be added. Work on base contraction [20, 21, 13] can be viewed in this light.
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5.2 Nonminimal Change of Conditionals

The proposal most similar in structure and spirit to ours is that of Spohn [31], and indeed inspired

this investigation of MC-revision. Spohn’s use of ordinal conditional functions to represent belief

states is much like the possible worlds model we have used, except that “clusters” are given explicit

ordinal rankings. Spohn’s notion of conditionalization on such models assigns to a proposition A a

new “degree of belief” or ordinal ranking (which should be thought of as the degree of entrenchment).

This is analogous to revising by A, and is achieved by “shifting” the rank of all A-worlds so that

the minimal A-worlds have an ordinal ranking that is lower (or more plausible) than that of any:A-world by the specified degree of belief. The key distinction between Spohn’s approach and ours

is that MC-revision by A requires the shift of only the minimal A-worlds. Spohn’s approach is more

reminiscent of probabilistic conditionalization, and if we applied our truth conditions for conditionals

to OCF update, we would see a much larger change in conditional beliefs in general.

Spohn’s approach is certainly more sophisticated, and in many ways is more compelling than

MC-revision. In particular, when evidence A is brought to light all A-worlds become somewhat

more plausible. However, this �-conditionalization cannot be applied in our setting, for it requires

that degrees of entrenchment be given an explicit quantitative interpretation and that the strength of

the evidence be quantified on the same scale.17 MC-revision is an applicable in settings where only

qualitative entrenchment information is available. Indeed, it is hard to imagine what possible shifts of

nonminimalA-worlds are justifiable if only the relative plausibility of worlds is known. Furthermore,

the MC-model requires the simple shifting of one partial cluster, a more computationally feasible

mechanism for revising a ranking than shifting all A-worlds. Thus, MC-revision may prove to be a

useful approximation method in quantitative settings as well. The utility of MC-revision is especially

noticeable if new evidence tends not to contradict earlier evidence.

Darwiche and Pearl [12] propose two postulates extending the eight AGM postulates that gov-

ern iterated revision. These impose rather mild constraints on the conditionals (or ordering) that

results from a revision; indeed, both Spohn’s OCF model (or more accurately a suitable qualitative

abstraction thereof) and MC-revision satisfy these postulates. Hence, their proposal cannot be used

to fix a particular revision method (as the AGM postulates cannot). What is missing, and what

will allow the exploration and specification of iterated revision methods, is a means to express the

relative entrenchment of conditional sentences. This has received little attention in the literature, but

several possibilities exist (e.g., using nested conditional sentences as in Section 4 without the specific

17Spohn’s use of OCFs requires that the magnitudes of the rankings are meaningful.



To appear, Journal of Philosophical Logic, 1995

5 CONCLUDING REMARKS 33

constraints of MC-revision; see also [10, 11]). With this in place, a general theory such as that of

Darwiche and Pearl can be used to construct revision functions.

Darwiche and Pearl also suggest that the constraints of MC-revision are too strong, for they give

little “priority” to incoming evidence. An example of this is the following: we believe that Mary won’t

come to the party, M , and that Ted won’t either, T . We necessarily believe the rule M ) T . But Ted

may or may not come should Mary decide to. We are first told that M (and now are uncommitted toT or T ) and then that T . Some time later we are informed that we were correct initially and Mary

isn’t coming M after all. Should we still believe that Ted is coming? This depends on the relative

importance or weight of rules versus plain beliefs. If we accept the rule M ) T more strongly than

the evidence T , then we should return to our original state of belief (M ,T ) as MC-revision suggests.

This is certainly plausible given this scenario. However, if priority is to be given to the evidential

report, then perhaps we should abandon our rule. One way MC-revision can be interpreted is as a

system in which ultimate priority is given to existing rules. Darwiche and Pearl seem to come down

on the side of evidential superiority (and argue that one should keep believing T ) — a view that is

just as extreme. Again, a general theory for specifying the relative importance of conditionals and

propositional beliefs will allow one to adopt less extreme revision methods. With such a theory in

place, MC-revision can still be viewed as a computationally attractive approximation method for such

“ideal” revision.18

5.3 Nested Conditionals

It is also interesting to note that a nested conditionalA > (B > C) is often equivalent to A^B > C
(whenever A and B are compatible). It has been suggested by a number of people that nested

conditionals should be reduced to unnested conditionals with all antecedents conjoined to form a

single antecedent, Adams [1] and Levi [23] among them. This reduction is sanctioned by the MC-

revision model for nested conditionals with compatible antecedents. But as described in Section 4,

this is not the case when incompatible antecedents are present. For instance, A > (B > C) reduces

simply to B > C when A and B are incompatible. As suggested by Levi, this reduction may seem

inappropriate in normal linguistic usage, for the nested conditional seems to imply that A should

continue to hold when B > C is evaluated with the Ramsey test, thus suggesting the reduction toA^B > C. Indeed, the MC-revision model cannot account for this circumstance when incompatible

18The party example is a rewording of the example in [12] of observing a red bird. That example is somewhat misleading
for it describes an instance of adding new beliefs (about new domain objects) rather than revising old beliefs.



To appear, Journal of Philosophical Logic, 1995

5 CONCLUDING REMARKS 34

antecedents are involved. In contrast, our model provides non-trivial acceptance conditions for nested

conditionals such as A > (:A > B).
Levi [23] is rather critical of the enterprise of determining truth or acceptance conditions for

nested conditionals, or even allowing conditionals to be part of a belief set. He offers the opinion that

an element of a belief set or corpus ought to be practicable as a standard of serious possibility. Since

conditionals do not perform this function, they are not accorded the status of beliefs. While certainly

their role differs from that of garden-variety propositional beliefs, they perform an indispensable

function in the process of deliberation. Conditionals suggest hypothetical possibilities to an agent and

aid an agent in changing its mind. If conditionals are not “beliefs,” they at least must be representations

of an agent’s revision policies; and such policies themselves must be the objects of revision from time

to time. Whether or not such policies are called beliefs, a model of conditional revision is crucial.

A few words on triviality are in order, as well. The Gärdenfors triviality result ensures that

no meaningful notion of belief revision can be applied to belief sets that contain conditionals in

accordance with the Ramsey test and satisfy all eight AGM postulates.19 It is clear that MC-revision

is a revision function that can be applied to conditional belief sets in a nontrivial fashion, giving rise

to new conditional belief sets.20 Furthermore, by Proposition 5, MC-revision applied to K satisfies

all AGM postulates. Notice, however, that triviality is avoided because the MC-revision function

satisfies the postulates when restricted to K. Thus, the postulates do hold when we consider the

“objective component” of the revision, but not when considered with respect to an extended set E.

Upon reflection, however, it becomes clear that the postulates, in particular postulates pertaining to

consistent revisions such as (R4), lose much of their appeal when applied to conditional belief sets.

As argued convincingly by Levi [23] and Rott [27], among others, the proper escape from “triviality”

requires relaxing the requirements of the AGM theory when discussing non-objective belief sets.

5.4 Extensions

There are a number of interesting avenues that remain to be explored. This model is restricted to right-

nested conditionals, or propositional revisions. In general, we want to allow revision of a knowledge

base with conditional information, or statements of entrenchment as well. A fully general model of

this type is currently under investigation. Some preliminary results may be found in [10, 11]. Other

models that allow arbitrary nesting include Hansson’s [21] base-set model.

19Indeed, only a few of the properties of AGM operators are required for this result.
20One need only construct a K-revision model for a suitably rich K to show that MC-revision is nontrivial.
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We are currently developing a model of revision and conditionalization for single revisions that

adds to the basic revision model probabilistic degrees of belief [7]. If this model can be grafted

onto the MC-revision model, “conditional objects” that make statements of conditional probability

can be nested in a meaningful way, and given a natural semantics. We are also exploring the

application of these ideas to the processes of J-conditionalization and L-conditionalization. These

models were proposed by Goldszmidt and Pearl [18] to capture changes in belief that have degrees of

certainty attached, these degrees corresponding to Spohn’s OCFs. Both extensions of MC-revision

(either probabilistic or possibilistic) offer ways of attaching quantitative strength measurements to our

conditionals and revising these conditionals.

Finally, this model reflects the bias of the AGM model to accepting without question the most

recent update. The primacy of the most recent information is clearly not a principle that should be

accepted in all circumstances. Sometimes things we learn are so radically incompatible with our

knowledge that we reject them out of hand, and do not attempt to reconcile them with our current

beliefs. Generalizing the AGM and MC-revision models in this way is a difficult task, but one that

certainly deserves inquiry.
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A Proofs of Main Results

The truth of many of the propositions in the paper is rather obvious and their proofs are excluded.

Certain results are described in the body of the paper and have their proofs sketched there. These

proofs are also excluded.

Theorem 7 Let M be a revision model, let � be the MC-revision operator and let A;B;C 2 LCPL.

a) If M�A j= B:B then M�A j= B > C iff M j= B > C.

b) If M�A 6j= B:B then M�A j= B > C iff M j= A ^B > C.

Proof The proof of this theorem is sketched, for the most part, in the text preceding its statement in

the body of the paper. �
Theorem 17 Let A1,: : :An+1 be an incompatible sequence such that A1,: : :An is compatible. Let k
be the maximal element of fi � n : :An+1 62 ((K�A1

)�A2
� � �)�Aig

Then ((K�A1
)�A2

� � �)�An+1
= K�A1^���Ak^An+1

.

Proof Let M be the revision model forK and � the MC-revision function. Let Ak be the last element

of A1,: : :An+1 such that :An+1 62 ((K�A1
)�A2

� � �)�Ak .
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a) If there is no such element then K�A1
` :An+1. The minimal cluster of M�A1

is formed

by the set min(M;A1). Since the relative ordering of all other worlds is unaffected by this

revision, min(M�A1
; An+1) = min(M;An+1). Now, each subsequent revision is compatible, so

min(((M�A1
)�A2

� � �)�Ai�1
; Ai) is contained in the minimal cluster of ((M�A1

)�A2
� � �)�Ai�1

for eachi � n. An obvious inductive argument shows that (since no An+1-worlds are contained in the

first minimal cluster)

min(((M�A1
)�A2

� � �)�An ; An+1) = min(M;An+1)
Hence ((K�A1

)�A2
� � �)�An+1

= K�An+1
.

b) If such a k exists the, by Proposition 13 and Theorem 14,((K�A1
)�A2

� � �)�Ak = K�A1^���Ak
Furthermore, since ((K�A1

)�A2
� � �)�Ak 6` :An+1, the set min(((M�A1

)�A2
� � �)�Ak ; An+1) lies within

the minimal cluster of ((M�A1
)�A2

� � �)�Ak . Since sequenceA1,: : :An is compatible, min(((M�A1
)�A2

� � �)�Ak ; Ak+1)
must also lie within the minimal cluster of ((M�A1

)�A2
� � �)�Ak . However, by the maximality ofk, this set must be disjoint from the set min(((M�A1

)�A2
� � �)�Ak ; An+1). Thus,

min(((M�A1
)�A2

� � �)�Ak+1
; An+1) = min(((M�A1

)�A2
� � �)�Ak ; An+1)

Since all subsequent revisions up to An+1 are compatible, as in case a) above,

min(((M�A1
)�A2

� � �)�An ; An+1) = min(((M�A1
)�A2

� � �)�Ak ; An+1)
But An+1 is compatible with A1,: : :Ak , so((K�A1

)�A2
� � �)�An+1

= K�A1^���Ak^An+1�
Lemma 19 Let A1,: : :An be a revision sequence such that each proper subsequence A1,: : :Ai is

characterized by some sentence s(Ai). Then A1,: : :An is characterized by s(Ak) ^An, where Ak is

the most recent compatible revision for An. In other words, ((K�A1
)�A2

� � �)�An = K�s(Ak)^An .



To appear, Journal of Philosophical Logic, 1995

A PROOFS OF MAIN RESULTS 39

Proof Let Ak be the most recent compatible revision for An. Since An is compatible with the

subsequenceA1,: : :Ak, we have that min(((M�A1
)�A2

� � �)�Ak ; An) lies within the minimal cluster

of ((M�A1
)�A2

� � �)�Ak . However, each subsequent revision Ak+1, : : :An�1 is incompatible

with An so there can be no An-worlds in the set min(((M�A1
)�A2

� � �)�Ai�1
; Ai) for k < i <n. Since only the relative status of these worlds is changed by these subsequent revisions,

an obvious inductive argument (on the number n � k of subsequent revisions) shows that

min(((M�A1
)�A2

� � �)�An�1
; An) = min(((M�A1

)�A2
� � �)�Ak ; An). Since A1,: : :Ak is characterized

by s(Ak), the minimal cluster of ((M�A1
)�A2

� � �)�Ak is min(M; s(Ak)). Clearly then the minimal

cluster of ((M�A1
)�A2

� � �)�An is simply min(M; s(Ak^An)). ThereforeA1,: : :An is characterized

by s(Ak)^ An. �
Theorem 20 For any revision sequence A1,: : :An, there is some subset of these updates S �fA1; � � � ; Ang such that ((K�A1

)�A2
� � �)�An = K�A and A = ^S.

Proof This result can be shown using a simple inductive argument on n, the number of updates in

the sequence. If n = 1 then the theorem obviously is true, for A1 characterizes itself. Now

suppose each subsequence A1,: : :Ai, i < n, is characterized by some sentence s(Ai) = ^S,

where S � fA1; � � � ; Aig. By Lemma 19, the sequence A1,: : :An is characterized by the

sentence s(Ak) ^An for some k < n, where Ak is the most recent compatible revision for An
(or it is characterized by An if no such k exists). By the inductive hypothesis, s(An) = ^S
where S � fA1; � � � ; Akg [ fAng � fA1; � � � ; Ang. (If k = 0 we simple observe thatS = fAng � fA1; � � � ; Ang.) �

Theorem 22 Let A1,: : :An be a revision sequence with c incompatible updates represented by �.

For each 1 � k � n, if Ak is a compatible revision, then ((K�A1
)�A2

� � �)�Ak = K�s(Ak), where: a)s(Ak) = s(A�(i)) ^A�(i)+1 ^ � � �Ak; b) �(i) < k < �(i+ 1), or �(i) < k if i = c; and c) s(A�(i))
characterizes subsequence A1,: : :A�(i).
Proof LetAk be a compatible revision in the sequenceA1,: : :An. If no incompatible revision followsAk , then k > �(i), where i = c. Otherwise �(i) < k < �(i + 1) for some i < c. In either

case A�(i) is the maximal incompatible revision in the subsequence A1,: : :Ak. Let s(A�(i))
characterize A1,: : :A�(i). Since each revision A�(i)+1, : : :Ak is compatible, Ak�1 is the most

recent compatible revision for Ak, and by k � �(i) applications of Lemma 19, we have thatA1,: : :Ak is characterized by s(Ak) = s(A�(i)) ^A�(i)+1 ^ � � �Ak . �
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Theorem 24 Let A1,: : :An be a revision sequence with c incompatible updates represented by �.

For each 1 � k � n, if Ak is an incompatible revision, then ((K�A1
)�A2

� � �)�Ak = K�s(Ak), where:

a) s(Ak) = s(A�(i)) ^ A�(i)+1 ^ � � �Aj ^ Ak; b) A�(i) is the maximal incompatible revision forAk; c) Aj is the most recent compatible revision for Ak; and d) s(A�(i)) characterizes subsequenceA1,: : :A�(i).
Proof Let Aj be the most recent compatible revision for Ak. By Theorem 22 and Proposition 23,A1, : : :Aj is characterized by s(Aj) = s(A�(i)) ^A�(i)+1 ^ � � �Aj . By Lemma 19, A1,: : :Ak

is characterized by s(Aj) ^Ak . �
Theorem 30 Let S1; � � �Sn 2 LCPL be such that ` Si � :Sj if i 6= j, and ` S1 _ � � �Sn. For allA;B 2 LCPL either FSM(S1; � � �Sn) `CO� A > B; orFSM(S1; � � �Sn) `CO� :(A > B)
Proof This follows immediately since the theory FSM(S1; � � �Sn) is “categorical” in the sense that

their is only one CO*-structure satisfying it (modulo “duplicate worlds”, which can have no

influence on the truth of any sentence in the model). �
Theorem 31 Let revision model M be characterized by FSM(S1; � � �Sn) and let Sk be the minimal

sentence in this set consistent with A; that is, Sk 6` :A and Si ` :A if i < k. Then M�A is

characterized by FSM(Sk ^A; S1; � � �Sk�1; Sk ^ :A; Sk+1; � � �Sn) if Sk 6` AFSM(Sk; S1; � � �Sk�1; Sk+1; � � �Sn) if Sk ` A
Proof Clearly the minimal cluster in M containing A-worlds is that cluster specified by the sentenceSk. Thus the set min(M;A) consists exactly of those worlds inM satisfyingSk^A. InM�A, this

set forms the minimal cluster and all other clusters remain in the same relative order. However,

the cluster that was specified by Sk is now reduced to those worlds satisfying Sk ^ :A. IfSk ` A, this is still true; but the sentence Sk ^ A is equivalent to Sk , and the cluster in M�A
satisfying Sk ^ :A is empty. �


