Copyright © 1996

American Association for Artificial Intelligence. All rights reserved.

Embracing Causality in Specifying the
Indeterminate Effects of Actions

Fangzhen Lin
Department of Computer Science
University of Toronto
Toronto, Canada M5S 3H5
email: fl@ai.toronto.edu

Abstract

This paper makes the following two contributions to
formal theories of actions: Showing that a causal min-
imization framework can be used effectively to specify
the effects of indeterminate actions; and showing that
for certain classes of such actions, regression, an effec-
tive computational mechanism, can be used to reason
about them.

Introduction

Much recent work on theories of actions has concen-
trated on primitive, determinate actions. In this pa-
per, we pose ourselves the problem of specifying di-
rectly the effects of indeterminate actions,' like we do
for the primitive, determinate ones.

There are several reasons why we think this is an im-
portant problem. First of all, there are actions whose
effects, when described at a natural level, are inde-
terminate. Secondly, one can argue that there is no
absolute defining line between determinate and inde-
terminate actions. The differences have a lot to do with
the levels of descriptions. The effects of an action may
be determinate at one level of description, but inde-
terminate at another. So a theory that treats determi-
nate and indeterminate actions in fundamentally dif-
ferent ways will have difficulties coping with language
changes. Finally, even if all the primitive actions have
determinate effects, there are still needs for specifying
directly the effects of complex actions that are often
indeterminate. For instance, these specifications may
be part of the inputs to a program synthesizer.

Our contributions in this paper are two folds. We
first show that the causal minimization framework of
(Lin [5]) can be used effectively to specify the effects of
indeterminate actions. We then show that for certain
classes of such actions, regression, an effective compu-
tational mechanism, can be used to reason about them.

"For the purpose of this paper, the phrases “the effects
of indterminate actions” and “the indeterminate effects of
actions” are considered to be synonyms.

Logical Preliminaries

We shall investigate the problem in the framework of
the situation calculus [8]. Our version of it employs
a many sorted second-order language. We assume the
following sorts: situation for situations, action for ac-
tions, fluent for propositional fluents, truth-value for
truth values true and false, and object for everything
else.

We use the following domain independent predicates
and functions:

e The binary function do - for any action a and any
situation s, do(a, s) is the situation resulting from
performing a in s.

e The binary predicate H - for any propositional fluent
p and any situation s, H(p, s) is true if p holds in s.

e The binary predicate Poss - for any action a and
any situation s, Poss(a,s) is true if a is possible
(executable) in s.

e The ternary predicate C'aused - for any fluent p, any
truth value v, and any situation s, Caused(p, v, s)
is true if the fluent p is caused to have the
truth value v in the situation s. For instance,
Caused(loaded, true, do(load, s)) means that the ac-
tion load causes loaded to be true in the resulting
situation.

We shall make use some additional special predicates

and functions, and will introduce them when they are

needed.
We assume that all theories in this paper will include
the following basic axioms:

e For the predicate Caused, the following two basic
axioms:2

Caused(p,true,s) D H(p,s), (1)
Caused(p, false,s) D = H(p,s). (2)

e For the truth values, the following unique names and
domain closure axiom:

true # false A (Yv)(v = true Vv = false). (3)
2We use the convention that in displayed formulas,

free variables are implicitly universally quantified from the
outside.

e The unique names assumptions for fluent and action
names (we assume there are only finitely many of
them). Specifically, if {Fy,..., F,,} is the set of the
fluent names, then we have:

F; (%) # F;(¥), 1 and j are different,

Similarly for action names. In the following, we shall
denote this set of unique names axioms by Dyyq-

e The set ¥ of foundational azioms in [6] for the dis-
crete situation calculus. These axioms characterize
the structure of the space of situations. For the pur-
pose of this paper, it is enough to mention that they
include the following unique names axioms for situ-
ations:

s # do(a, s),
do(a,s) =do(a',s') D (a=a' ANs=¢).

In the rest of this paper, we shall frequently make
use of the following shorthand notation: If F'is a fluent
name of arity object” — fluent, then we define the
expression F'(t1,...,t,,ts) to be a shorthand for the
formula H(F (t1,...,tn),ts), where ty,--- 1, are terms
of sort object, and t; a term of sort situation. So
if white is a fluent, then white(s) is a shorthand for
H(white, s).

Minimizing Causation
The approach of (Lin [5]) to specifying the effects of
actions can be summarized as follows:

1. Formalize the causal laws and constraints of the do-
main by a set 7' of axioms.

2. Circumscribe (minimize) Caused in T UX U Dypq U
{1,2,3} with all other predicates fixed.

3. The resulting theory, 7", together with the follow-
ing generic frame axiom: Unless caused otherwise, a
fluent’s truth value will persist:

Poss(a, s) D {—(Fw)Caused(p,v,do(a,s)) D
[H (p, do(a, s)) = H(p, s)]}, (4)

will generate the appropriate frame axioms.

Lin [5] also discusses how the action preconditions can
be generated. However, in this paper we shall not con-
cern us with this problem, but assume, following (Re-
iter [10]), that for each action A(Z¥), we are given an
action precondition axiom of the form:

Poss(A(Z), s) = Wa (&, s),

where ¥, is a formula that does not quantify over
situation variables, and does not mention any situation
dependent atomic formulas except those of the form
H(t,s), where t is a propositional fluent term.

We shall be using the following lemma for computing
the circumscription of C'aused:

Lemmal Let W = T U X U Dyna U {1,2,3}.
Then Circum(W, Caused), the result of circumscrib-
ing Caused in W with all other predicates fized, is
equivalent to

{Circum(T,Caused)} UX U Dyna U {1,2,3}.
Proof: This is because the predicate C'aused occurs
only negatively in ¥ U Dyn, U{1,2,3}. 0

To illustrate how to use this approach to specify the
effects of indeterminate actions, consider Reiter’s ex-
ample of dropping a pin on a checkerboard: The pin
may land inside a white square, inside a black square,
or touching both.

We introduce three fluents: white (all or part of the
pin is in a white square), black (all or part of the pin
is in a black square), and holding (the agent is holding
the pin); and two actions: drop (the agent drops the
pin on the checkerboard), and pickup (the agent picks
up the pin). We have the following action precondition
axioms:?

Poss(drop, s) = holding(s) A —white(s) A =black(s),
Poss(pickup, s) = —holding(s) A (white(s) V black(s)).

We have the following effect axioms:

Poss(pickup, s) D

Caused(holding, true, do(pickup, s)), (5)
Poss(pickup, s) D

Caused(white, false, do(pickup, s)), (6)
Poss(pickup, s) D

Caused(black, false, do(pickup, s)), (7)

Poss(drop, s) D
Caused(holding, false, do(drop, s)), (8)
Poss(drop, s) D
[Caused(white, true, do(drop, s)) A
Caused(black, false, do(drop, s))] V
[Caused(white, false, do(drop, s)) A
Caused(black, true,do(drop, s))] V (9)
[Caused(white, true, do(drop, s)) A
Caused(black,true, do(drop, s))].

Suppose these are the only effect axioms, and there are
no causal rules and state constraints.* By Lemma 1,
it 1s easy to see that circumscribing C'aused in

{(5) - (9)} UXUDuypa U {1, 2; 3}
yields:
Poss(a, s) A Caused(p,v,do(a,s)) D
*Recall that as we have defined in Section , holding(s),
for instance, is a shorthand for H(holding, s).
“Notice that the state constraint (Vs)~[holding(s) A

(white(s) V black(s))] has been built into the action effect
and precondition axioms.

a = pickup A [(p = holding A v = true) V
(p = white ANv = false) V
(p = black A v = false)] V
a = drop A [(p = holding A v = false) V
p = white V p = black].

From this and the generic frame axiom (4), we can
deduce the following successor state aziom (Reiter [10])
for holding:

Poss(a, s) D holding(do(a, s)) =
a = pickup V (holding(s) A a # drop).

We don’t get successor state axioms for white and
black. But we have the following explanation closure
axioms:

Poss(a, s) A =[white(s) = white(do(a, s))] D
(a = pickup V a = drop),
Poss(a,s) A [black(s) = black(do(a, s))] D
(a = pickup V a = drop).
These axioms, together with the effect axioms, yield
the following disjunction of successor state axioms:
Poss(a, s) D
{{white(do(a, s)) =
(a = drop V (white(s) A a # pickup))] A
[black(do(a, s)) =
(black(s) A a # pickup A a # drop))|} vV
{[white(do(a, s)) =
(white(s) A a # pickup A a # drop))] A
[black(do(a, s)) =
(a = drop V (black(s)
{[white(do(a, s)) =
(a = drop V (white(s) A a # pickup))] A
[black(do(a, s)) =
(a = dropV (black(s) A a # pickup))]}.

Notice the correspondences between the three cases
and those in drop’s effect axiom for white and black.

a # pickup))]} v

Classes of Indeterminate Actions
The indeterminate effects of drop are inclusive in that
the pin may land on a white square, a black square, or
both. To see how such inclusive indeterminate effects
can be represented succinctly, notice first that under
the two general axioms (1) and (2) about Caused, the
effect axiom (9) is equivalent to the following three
axioms:

Poss(drop, s) D {Caused(white, true, do(drop,s)) Vv

Caused(black, true, do(drop, s))},

Poss(drop, s) D {Caused(white,true, do(drop, s)) Vv

Caused(white, false, do(drop, s))},

Poss(drop, s) D {Caused(black, true, do(drop, s)) V

Caused(black, false, do(drop, s))}.

Notice that under the domain closure and unique
names axiom (3) for truth values, the last axiom is
equivalent to

Poss(drop, s) D (Fv)Caused(black, v, do(drop, s)).

This axiom is like the releases propositions in the ac-
tion description language of [3]. Notice here the ne-
cessity of something like the predicate Caused. The
corresponding sentence in terms of H:

Poss(drop, s) D {H (black, do(drop, s)) V
—H (black, do(drop, s))}

is just a tautology.

In general, 1f the action « has inclusive indetermi-
nate effects on the fluent terms Py, ..., P,, i.e. causes at
least one of them to be true and the rest of them to be
false, under the context v, then we have the following
causal laws:

Poss(a,s) Ay D {Caused(Py,true,do(a,s)) V-V
Caused(P,,true,do(a, s))},

Poss(a,s) Ay D {Caused(P;, true,do(a, s)) V
Caused(P;, false, do(a, s))},

where 1 <i < n.

The number of indeterminate effects need not be fi-
nite. If, under the context =, the action a has the in-
clusive indeterminate effects on F(z) for those z that
satisfies ¢, then we have the following causal laws:

Poss(a,s) Ay A (Fz)e(z) D
(Fz)[p(z) A caused(F (z),true, do(a, s))],
Poss(a,s) Ay D (Vx){e(x) D
[Caused(F(z),true,do(a,s)) V
Caused(F(z), false, do(a, s))]}.

For instance, playing loud rock and roll music will make
some of the nearby people (including the person who
plays it) happy, and the rest of them unhappy: let v
be true, () be nearby(x, s), and F(x) be happy(z).
Contrast to the inclusive indeterminate effects, we
have the exclusive ones. For instance, flipping a coin
causes exactly one of {head, tail} to be true. Generally,
if the action a has ezclusive indeterminate effects on
the fluent terms Py, ..., P,, i.e. causes exactly one of
them to be true and the rest of them to be false, under
the context ~, then we have the following causal laws:

Poss(a, s) Ay D {Caused(Py,true,do(a,s))V -+ V
Caused(P,,true,do(a, s))},

Poss(a, s) Ay D {Caused(P;, true,do(a, s)) V
Caused(P;, false, do(a, s))},

where 1 <i<n,and V is the exclusive or operator:

PV Ver= (Ve Ver) A\ (e Agg).

1<izj<k

Again, the number of indeterminate effects need not
be finite. TIf, under the context =, the action a has
the exclusive indeterminate effects on F(z) for those
z that satisfies ¢, then we have the following causal
laws:

Poss(a,s) Ay A (z)e(z) D
(A'z)[¢(z) A caused(F(z),true, do(a, s))],
Poss(a,s) Ay D
(Ve){e(z) D [Caused(F(z),true,do(a,s))V
Caused(F (), false,do(a, 5))]},

where (3'z) means there is a unique z. For instance,
picking a ball from a bag causes one to hold one and
only one of the balls in the bag: let v be true, p(x) be
in-bag(x, s), and F(x) be holding(x).

There are, of course, actions with indeterminate ef-
fects that are neither inclusive or exclusive. In general,
if the number of the indeterminate effects of an action
A(Z) is finite, then its effect axioms can be written of
the following forms:

Poss(A(Z),s) D
(Vp, 5)[e(Z,p,v, s) D Caused(p, v, do(A(%), 5))],
(10)
Poss(A(Z),s) D
{(Vp,v)[p1(Z,p, v, s) D Caused(p, v, do(A(ZF), 5))]
VeV
(Vp,v)[en(Z,p,v,s) D Caused(p, v, do(A(Z), s))]},
(11)
where ¢ and ¢;’s are formulas that do not quantify
over situation variables, and do not mention any other
situation dependent atomic formulas except those of
the form H(t,s).
For instance, the two effect axioms about drop can
be rewritten as:
Poss(drop, s) D (Vp, s){p = holding A v = false D
Caused(p,v,do(drop, s))}, (12)
Poss(drop, s) D
(Vp,v){[p = white A v = trueV
p = black ANv = false] D
Caused(p,v,do(drop, s))} vV
(Vp,v){[p = white Av = false V
p = black ANv = true] D
Caused(p,v,do(drop,s))} V
(Vp,v){[p = white AN v = trueV
p = black Nv =true] D
Caused(p,v,do(drop, s)). (13)

Notice that (10) and (11) can be combined into a
single axiom of the latter form. But as we shall see
later, it is beneficial to have a separate axiom for de-
terminate effects.

Computing Successor State Axioms

We now consider how to reason with the theories of
the actions whose effects are specified by axioms of the
forms (10) and (11).

Let T., be a given set of the effect axioms of
the forms (10) and (11). Then the conjunction of
the sentences in T,, 1s separable (Lifschtz [4]) w.r.t.
Caused. Therefore, according to a result in [4],
Circum(T,q, Caused), the circumscription of Caused
in T4, 18 computable by a first-order sentence. In gen-
eral, this sentence, together with Dy,,, will yield a
disjunction of successor state axioms, which is often
large and cumbersome to reason with. In particular,
it is not clear how to compute regression, a computa-
tionally effective mechanism for tasks such as planning
and temporal projection [11, 9, 10], w.r.t. such dis-
Junctions.

A Transformation

To overcome this, we introduce a new ternary predi-
cate Case of the arity object x action x situation, and
a distinguished constant 0 and a unary function suce
over sort object. We use the convention that if a nat-
ural number n occurs as an object term in a formula,
then it is considered to be a shorthand for the term ob-
tained from 0 by applying n times the function succ.
For instance, in Clase(2, a, s), the number 2 is a short-
hand for suce(suce(0)).

For now we shall consider C'ase to be an auxil-
iary predicate introduced for computational purposes.
Later, we shall consider some possible interpretations
of this predicate.

Using C'ase, we transform the indeterminate effect
axiom (11) into the following sentences that have the
form of a determinate effect axiom:

Poss(A(Z), s) A Case(1, A(¥),s) D
(Vp,v)[p1(Z, p, v, s) D Caused(p, v,do(A(Z), s))], (14)

Poss(A(¥),s) A Case(n, A(Z),s) D
(Vp,v)[en(Z,p,v,s) D Caused(p,v,do(A(X), s))], (15)
together with the following constraints on Clase:
Case(1, A(F),s) V -+ V Case(n, A(Z), s), (16)
{(Vp,v)[@i(#,p,v,5) D (p(Z,p,v,5)V @;(Z,p,v,s))]

A
~(Vp, v)lp; (&, p, v, 8) D (¢(Z,p,v,5) V @i(Z,p,v,5))]}
D ~Case(i, A(%), s), (17)

forany 1 <i#j<n.

Notice the exclusive or in (16). This is because when
Casued is circumscribed, the logical or in (11) will be-
come exclusive. The intuitive meaning of (17) is that
if the extension of (Ap,v)e; V ¢ strictly contains that
of (Ap,v)p; V @, then the conjunct corresponding to
Case(i, A(Z), s) cannot be minimal, so Case(i, A(Z), s)
must not hold. These constraints are best understood

in lights of the following Theorem 1 which will estab-
lish the correctness of the above transformation.

Notice also that this transformation applies only to
the indeterminate effect axiom (11). This is why it is
beneficial to put as much information as possible into

10).

(121 the following, we shall denote by T7, the set of
axioms obtained from T, by replacing every indeter-
minate effect axiom in it of the form (11) by the ax-
ioms (14) - (15). We shall denote by Decqse the set of
constraints (16) and (17). Notice that this set is also
depended on T,.

Given two theories 7Ty and T4 such that Ti’s lan-
guage 1s Ty’s augmented by a new predicate P, we say
that these two theories are equivalent with respect to
Ty’s language if T} is a conservative extension of Ty: a
structure is a model of T5 iff it can be extended into a
model of T7. As it turns out, this is the same as saying
that 75 is the result of forgetting P in Ty according to
(Lin and Reiter [7]), and according to a result there,
when 77 is finite, this is the same as saying that 75 is
logically equivalent to the sentence (3P). A Ty, where
A T1 is the conjunction of the sentences in T\5.

We have:

Theorem 1 Under the unique names axioms Dypng,
the result of circumscribing Caused in T! U D¢qse 15 @
conservatwe extension of the result of circumscribing
Caused in Tpy:

Duna = Circum(T.,, Caused) =
(3Case)Circum(T., U Deyse, Caused).

Corollary 1.1 Under the wunique names assump-
tions, for any formula ¢ that does not mention
Case, Circum(T,,,Caused) |= ¢ iff Circum(T!, U
Dease, Caused) = ¢.

Computing Successor State Axioms

Having established the correctness of the above trans-
formation, we now proceed to show how to generate
successor state axioms from the resulting axioms.

Notice first that the sentence (10) can be rewritten
into an axiom of the following form:

Poss(A(Z), s)ANe(Z,p,v,s) D Caused(p, v, do(A(X), s)).

Similarly, we can do the same for axioms of the form
(14) - (15). Now from these axioms in 77,, we can
generate, for each fluent F', two axioms of the following

forms:

Poss(a,s) Av# (%, a,s) D

Caused(F (%), true, do(a, s)), (18)
Poss(a,s) Nvp (¥,a,s) D
Caused(F(Z), false,do(a, s)), (19)

Since P is a predicate constant, strictly speaking, we
cannot quantify over it in a formula. However, we can
consider (IP)p as a shorthand for (Ip)y’, where p is a
predicate variable of the same arity as P, and ¢’ is the
result of substituting P in ¢ by p.

where 73 and 45 do not quantify over situation vari-
ables, and the only situation dependent atomic formu-
las in them are either of the form H (¢, s) or of the form
Case(t1,tq,s).

Given these two effect axioms, we generate the fol-
lowing successor state axiom for F':

Poss(a,s) D F(Z,do(a,s)) =
vH(Z,a,s) V (F(Z,5) A=y (F,a,5)). (20)
Now let D, be the set of successor state axioms, one
for each fluent, so generated. Our claim is that, un-
der some reasonable conditions, Dy, captures all the
information about the truth values of the fluents in

Cirum(T!,, Caused) U {1,2,4}. More precisely, we
have:

Theorem 2 Under the assumption that the following
consistency condition [10] is satisfied for each fluent
F:

Duna UDap UDease =
(VZ,a, s).Poss(a, s) D =(v} (%, a,s) Avn (7, a, s)),
the theory
YU Duna UDqyp U {Circum(T,,, Casued)} U
Dease U{1,2,3,4}
s a conservative extension of the theory
Y UDuna UDgp UDss UDegse U{3}.

Corollary 2.1 Under the assumptions in the theorem,
for any formula ¢ that does not mention Caused,

Y UDupa UDgp U
{Circum(T.,, Casued)} U Dease U {1,2,3,4} = ¢
uff
Y UDyna UDap UDss UDease U{3} = .

Corollary 2.2 Under the assumptions in the theorem,
for any formula ¢ that does not mention C'aused and

Clase,
EUDynaUDgpU{Circum(T.,, Caused) }U{1,2,3,4} = ¢
iff
2 U Duna UDap UDyss UDease U {3} = .
Proof: Apply Theorem 1 and Theorem 2. B

Theorem 2 informs us that if we are only concerned
with the truth values of fluents, then the original effect
axioms as well as the basic axioms about C'aused can
all be discarded. In particular, this is the case with the
projection problem.

Technically, the consistency conditions are needed
because without these conditions, the successor state
axiom (20) may not entail the formula

Poss(a,s) D vp(£,a,s) D ~F(Z do(a,s)),

which is a consequence of the effect axiom (19) and the
two basic axioms (1) and (2) about causality.

Example 1 Consider again our checkerboard exam-
ple. We shall consider only the successor state axioms
for white and black. The indeterminate effect axiom
(13) of drop is translated into:

Poss(drop, s) A Case(1,drop, s) D
[Caused(white, true, do(drop, s)) A
Caused(black, false, do(drop, s))],
Poss(drop, s) A Case(2,drop, s) D
[Caused(white, false, do(drop, s)) A
Caused(black, true, do(drop, s))],

Poss(drop, s) A Case(3,drop, s) D
[Caused(white, true, do(drop, s)) A

Caused(black,true, do(drop, s))].

Together with the original determinate effect axioms,
we have:

Poss(a,s) D
[a = drop A (Case(1,drop, s) V Case(3,drop, s))] D
Caused(white, true,do(a, s)),
Poss(a,s) D
[a = pickup V (a = drop A Case(2,drop, s))] D
Caused(white, false, do(a, s)).

Thus we have the following successor state axiom for
white:
Poss(a,s) D {white(do(a,s)) =
[a = drop A (Case(1,drop, s) V Case(3, drop, s))] V
white(s) A
—la = pickup V (a = drop A Case(2,drop, s))]}.

A similar successor axiom can be obtained for black. Tt
can be seen that the consistency conditions are satisfied
for both white and black.

We shall not get into details regarding the accom-
panied constraints about C'ase, but note that for this
example, all constraints of the form (17) are logical
consequence of the unique names assumptions. So the
following is the only nontrivial constraint about Case:

Case(1,drop, s) V Case(2,drop,2) V Case(3,drop, 3).

Regression and Some of Its Properties

Once we have a successor state axiom for each fluent,
regression becomes syntactic substitutions [10]: for any
formula ¢(s) that does not quantify over situation, and
action «, the regression of a formula ¢(s) over a, writ-
ten R(¢p(s), @), is the result of replacing in p(s) every
atomic formula of the form H(F(t),s) by ®r(f, a,s),
where

Poss(a, s) D [F(Z do(a,s)) = Pr(Z,a,s))

1s the successor state axiom for F.
The following result is immediate:

Lemma 2 Let Dy, be a set of successor state axioms,
one for each fluent. We have:

Dss | (Vs).Poss(a, s) D [¢(s) = R(p,).

In the rest of this section, we assume that we’re given
an action theory of the form:

D = YU Dupa UDap UD,, UDegse UDs,,

where D.qse 1s a set of C'ase constraints of the form
(16) or of the form (17), and Dg, is a set of sentences
that do not mention any other situation term except
So, and do not mention Poss, Caused, and C'ase. The
other components of D have the usual meaning.

Our main concern is the soundness and complete-
ness of regression for doing temporal projection with
respect to the initial database. Our first positive result
is about Clase independent temporal projections:

Theorem 3 Let p(s) be a formula that does not quan-
tify over situation variable, does not mention any other
situation term except s, and does not mention Poss,
Caused, and Case. Let a be an action term. If, under
Duna, R(p,a) is equivalent to a formula that does not
mention Case, then

D = p(do(a, So))
iff
Ds, UDuna = \I’(SO) /\R(%a)(SO)a
where Dqp | Poss(a,So) = ¥(Su), Rie,a)(So)
is obtained from R(p,a) by replacing s by Sy, and

¢(do(a, Sp)) is obtained from ¢(s) by replacing s by
do(a, Sp).

Notice that this theorem depends on the particular
form the constraints in D,z have: they are about
Clase only, that is, the result of forgetting it will yield
a tautology: (3Case)Dease = true.

One of the conditions in Theorem 3 is that under
the unique names assumptions, R(y, @) be equivalent
to a formula that does not mention C'ase. This condi-
tion holds if the action a’s effects on the fluents in ¢
are definite. Thus Theorem 3 informs us for reasoning
about the determinate effects of actions, the auxiliary
predicate C'ase can be rightly ignored.

When either ¢(s) or its regression mentions C'ase,
we need to include constraints on Case:

Theorem 4 Let o(s) be a formula that does not quan-
tify over situation wvariables, and does not mention
Poss and Caused. Let a be an action term. If Degse
does not mention H, then

D | ¢(do(a, Sn))

uf
DSU U Duna U Dcase |: \II(SO) A ’R,(QD, O!)(S())

Given the forms (16) and (17) the constraints in
Dease must take, D.gse does not mention H if all the
indeterminate effects of actions are context free. This

condition is needed because although Degs. itself con-
tains no information about H, it can when used to-
gether with some assumptions about C'ase that can be
easily incorporated into the query ¢(s).

Finally, notice that Theorem 3 and Theorem 4 can
be generalized to temporal projections with sequences
of actions.

The Ramification Problem

Although the framework of [5] was introduced for han-
dling the ramification problem, we have so far ignore
this problem in this paper. We now show how the in-
direct effects of actions can be represented.

Consider again our checkerboard example. Suppose
that for whatever reasons, whenever the pin is touching
both a white and a black square, our friend Fred will
be happy. This constraint can be represented as:

white(s) A black(s) D Caused(happy,true,s). (21)

Notice that this causal law is different from the effect
axioms in that the situation in both the antecedent
and the consequent is the same. Thus 1t plays the role
of a traditional domain constraint. With this causal
rule, under the unique names assumptions about flu-
ents, circumscribing C'aused will yield:

Caused(happy, v, s) = (v = true Awhite(s) Ablack(s)).
And we have:
Poss(a,s) D
{[white(do(a, s))
(a = drop V (white(s)
[black(do(a, s))
(a = drop V (black(s) A a # pickup))] A
)
)
(w

a # pickup))] A

I

[happy(do(a, s)) = (a = dropV happy(s))]} V
{[white(do(a, s)
(a = drop V (white(s) A a # pickup))] A
[black(do(a, s)) =
(black(s) A a # pickup A a # drop))] A
[happy(do(a, s)) = happy(s)]} V
{[white(do(a, s)) =
(white(s) A a # pickup A a # drop))] A
[black(do(a, s)) =
(a = drop V (black(s) A a # pickup))]
[happy(do(a, s)) = happy(s)]}.
Notice that two of the three cases include the frame ax-
iom happy(do(a, s)) = happy(s). This can be avoided
if we use the predicate Case.

The constraint (21) and the original effect axioms of
drop yields the following new effect axioms:

Poss(drop,s) D (Vp,v){(p = holding Av = false) D
Caused(p, v, do(drop, s))},

-

Poss(drop,s) D
(Vp, v){[p = white A v = true Vv
p = black AN v = false] D
Caused(p,v,do(drop, s))} V
(Vp, v){[p = white A v = black vV
p = black Nv =true] D
Caused(p,v,do(drop, s))} V
(Vp, v){[p = white A v = true vV
p = black ANv = trueV
p = happy Av = true] D
Caused(p,v,do(drop, s))}.

Apply the transformation of Section to this set of effect
axioms will yield the same successor state axioms in
Example 1 for white and black, and the following one
for happy:

Poss(a, s) D happy(do(a, s)) =
(a = drop A Case(drop, 3,s)) V happy(s).

This example shows the flexibility of the C'ase predi-
cate when there are state constraints.

Constraints can also yield implicit indeterminate ef-
fects. For instance, if there are k black squares, then
we’ll have:

Caused(black, true,s) =
Caused(blacky,true,s)V ---V
Caused(blacky,true, s),

Caused(black, false, s) =
Caused(blacky, false,s) A--- A
Caused(blacky, false, s),

(Fv)Caused(black, v, s) = (Fv)Caused(black;, v, s),

for any 1 < i < k. Notice that the last axiom schema
postulates that whenever an action affects the truth
values of black;, then it also affects the truth values of
black;, for any 1 <1i,j < k.

Related Work and Discussions

Epistemologically, we have shown how the causal min-
imization framework of [5] can be used to specify the
indeterminate effects of actions. Computationally, we
have shown how goal regression can be used to reason
about them.

There have been other proposals in the literature
(e.g. [1, 2, 3, 12]) for specifying the effects of inde-
terminate actlons To the best of our knowledge the
computational contribution of this work is novel.

Among the extant approaches, the ones in [3] and
[1] seem closest to ours. As we mentioned in Section |
the releases propositions of [3]: A releases F' corre-
sponds to the following axiom in our language:

Poss(A,s) D Caused(F,true,do(A,s))V
Caused(F, false,do(A, s)).

Regarding the work of [1], the In(F) and Out(F) pred-
icates there correspond to Caused(F,true,do(a,s))
and Caused(F, false,do(a, s)), respectively, in our lan-
guage. However, the formalism of [3] is limited because
no complex releases propositions are allowed. For in-
stance, one cannot write expressions like

(Va).a releases F' < a releases F'.

The formalism of [1] is also limited because the action
parameters of its n and OQut predicates are not made
explicit, thus cannot be quantified over.

Finally, we want to remark on the auxiliary pred-
icate Clase. In this paper, we have used it entirely
for computational purposes. However, there are some
interesting possible interpretations of this predicate.

There is a sense that Case can be interpreted in
probabilistic terms. For instance, if

Poss(drop, s) A Case(1,drop, s) D
Caused(white, true,do(drop, s)) A
Caused(black, false,do(drop, s)),

then Case(1, drop, s) may stand for the probability of
the pin lying entirely within a white square after it
has been dropped. Under this interpretation, the first
constraint (16) on Case, in this example the following
one:

Case(1,drop, s) V Case(2, drop, s) V Case(3,drop, s),

says that the explicitly enumerated possible outcomes
are both exclusive and exhaustive, and the constraints
(17) simply eliminate redundant outcomes. In this re-
gard, it would be interesting to formally connect our
approach to probabilistic ones. This is a future re-
search that we’re pursuing.

Another possible interpretation of Clase is based on
the view that in principle, it 1s always possible to re-
duce indeterminate actions to determinate ones, and
one way of doing this is to introduce new fluents to
name those low level contexts under which the effects
of actions will be determinate. According to this view,
Case can be seen as playing the role of such new flu-
ents. For instance, Case(1, drop, s) may name the con-
text under which drop has the effect of causing the pin
lying entirely within a white square. We are currently
exploring the possible impact of this interpretation as
well.

Acknowledgements

Thanks to the other members of the University of
Toronto Cognitive Robotics group (Yves Lesperance, Hec-
tor Levesque, Daniel Marcu, and Ray Reiter), to Vladimir
Lifschitz, and to Yan Zhang for helpful discussions and
comments. This research was supported by grants from
the Government of Canada Institute for Robotics and In-
telligent Systems, and from the National Science and En-
gineering Research Council of Canada.

[1]

(2]

[10]

[11]

[12]

References

C. Barel. Reasoning about actions: nondeterminis-
tic effects, constraints, and qualification. In Proc. of

IJCAI'95, pp. 2017-2023.

C. Boutilier and N. Friedman. Nondeterministic ac-
tions and the frame problem. In Workign Notes of
the AAAT Spring Symposium on Fxtending Theories
of Action, pages 39—-44, 1995.

G. N. Kartha and V. Lifschitz. Action with indirect
effects (preliminary report). In Proc. of KR’94, pp.
341-350.

V. Lifschitz. Computing circumscription. In Proc. of
1JCAI'85, pp. 121-127.

F. Lin. Embracing causality in specifying the indirect
effects of actions. In Proc. of IJCAI’95, pp. 1985-1993.

F. Lin and R. Reiter. State constraints revisited. J.
of Logic and Computation, 4(5):655-678, 1994.

F. Lin and R. Reiter. Forget it! In R. Greiner and
D. Subramanian, editors, Working Notes of AAAI Fall
Symposium on Relevance, pp. 154-159, 1994.

J. McCarthy and P. Hayes. Some philosophical prob-
lems from the standpoint of artificial intelligence. In
B. Meltzer and D. Michie, editors, Machine Intelli-
gence 4, pages 463-502. Edinburgh University Press,
Edinburgh, 1969.

E. P. Pednault. Synthesizing plans that contain ac-
tions with context-dependent effects. Computational
Intelligence, 4:356-372, 1988.

R. Reiter. The frame problem in the situation calcu-
lus: a simple solution (sometimes) and a completeness
result for goal regression. In V. Lifschitz, editor, Ar-
tificial Intelligence and Mathematical Theory of Com-
putation: Papers in Honor of John McCarthy, pages
418-420. Academic Press, San Diego, CA, 1991.

R. Waldinger. Achieving several goals simultaneously.
In E. Elcock and D. Michie, editors, Machine Intelli-
gence, pages 94-136. Ellis Horwood, Edinburgh, Scot-
land, 1977.

Y. Zhang. Reasoning About Persistence: A Unified
Principle for State Change. PhD thesis, Department
of Computer Science, Sydney University, Sydney, Aus-
tralia, 1994.

