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Abstract

This paper reports on the findings of an on-going project
to investigate techniques to diagnose complex dynami-
cal systems that are modeled as hybrid systems. In par-
ticular, we examine continuous systems with embedded
supervisory controllers which experience abrupt, partial
or full failure of component devices. The problem we
address is: given a hybrid model of system behavior, a
history of executed controller actions, and a history of
observations, including an observation of behavior that
is aberrant relative to the model of expected behavior,
determine what fault occurred to have caused the aber-
rant behavior. Determining a diagnosis can be cast as
a search problem to find the most likely model for the
data. Unfortunately, the search space is extremely large.
To reduce search space size and to identify an initial set
of candidate diagnoses, we propose to exploit techniques
originally applied to qualitative diagnosis of continuous
systems. We refine these diagnoses using parameter es-
timation and model fitting techniques. As a motivating
case study, we have examined the problem of diagnos-
ing NASA’s Sprint AERCam, a small spherical robotic
camera unit with 12 thrusters that enable both linear and
rotational motion.

1 Introduction
The objective of our project has been to investigate
how to diagnose hybrid systems – complex dynamical
systems whose behavior is modeled as a hybrid sys-
tem. Hybrid models comprise both discrete and con-
tinuous behavior. They are typically represented as
a sequence of piecewise continuous behaviors inter-
leaved with discrete transitions (e.g., (Branicky 1995)).
Each period of continuous behavior represents a so-
called mode of the system. For example, in the case of
NASA’s Sprint AERCam, modes might include trans-
late X-axis, rotate X-axis, translate Y-axis, etc. (Ale-
nius & Gupta 1998). In the case of an Airbus fly-
by-wire system, modes might include take-off, landing,
climbing, and cruise. Mode transitions generally result
in changes to the model governing the continuous be-
havior of the system, as well as to the state vector that
initializes that behavior in the new mode. Discrete tran-
sitions that dictate mode switching are modeled by finite

state automata, temporal logics, switching functions, or
some other transition system, while continuous behav-
ior within a mode is modeled by, e.g., ordinary differen-
tial equations (ODEs) or differential and algebraic equa-
tions (DAEs).

The problem we address in this paper is how to di-
agnose such hybrid systems. For the purposes of this
paper, we consider the class of hybrid systems that
are continuous systems with an embedded supervisory
controller, but whose hybrid models contain no au-
tonomous jumps. I.e., all transitions between system
modes are induced by a controller action, none are in-
duced by the system state and model (Branicky 1995).
The class of systems we consider can be modeled as
a composition of a set of component subsystems, each
of which is itself a hybrid system. We assume that the
system operation is being tracked by a monitoring and
observer system (e.g., (Mosterman & Biswas 1999a))
that ensures that the system behavior predicted by the
model does not deviate significantly from the observed
behavior in normal system operation. When observa-
tions occur outside this range, the behavior is deemed
to be aberrant and diagnosis is initiated. In this paper,
we consider faults whose onset is abrupt, and which re-
sult in partial or complete degradation of component be-
havior. The general problem we wish to address can
be stated as follows: Given a hybrid model of system
behavior, a history of executed controller actions, a his-
tory of observations, including observations of aberrant
behavior relative to the model, isolate the fault that is
the cause for the aberrant behavior. Diagnosis is done
online in conjunction with the continued operation of
the system. Hence, we divide our diagnosis task into
two stages, initial conjecturing of candidate diagnosis
and subsequent refinement and tracking to select the
most likely diagnoses.

In this paper we conceive the diagnosis problem as a
model selection, fitting, and comparison problem. The
task is to find a mathematical model and associated pa-
rameter values that best fit the system data. These mod-
els further dictate the components of the system that
have malfunctioned, their mode of failure, the estimated
time of failure and any additional parameters that fur-



ther characterize the failure. To address this diagnosis
problem, we propose to exploit AI techniques for qual-
itative diagnosis of continuous systems to generate an
initial set of qualitative candidate diagnoses and asso-
ciated models, thus drastically reducing the size of the
model search space. This is followed by parameter es-
timation and model fitting techniques to select the most
likely mode and system parameters for candidate mod-
els of system behavior, given both past and subsequent
observations of system behavior and controller actions.
The main contributions of the paper are: 1) formulation
of the hybrid diagnosis problem; 2) the exploitation of
techniques for qualitative diagnosis of continuous sys-
tems to reduce the diagnosis search space; and 3) the
use of parameter estimation and data fitting techniques
for evaluation and comparison of candidate diagnoses.

In Section 2 we present a formal characterization of
the class of hybrid systems we study and the diagnosis
problem they present. This is followed in Section 3 by
a brief description of NASA’s Sprint AERCam, which
we have used as a motivating example and which we
will use to illustrate certain concepts in this paper. In
Section 4 we describe the algorithms we use to achieve
hybrid diagnosis. The generation of initial candidate
qualitative diagnoses is described in Section 4.1, and the
subsequent quantitative fitting and tracking of candidate
diagnoses and their models is described in Section 4.2.
Finally in Section 5, we summarize and discuss where
our investigation will go from here.

2 Problem Formulation
In this section we provide a formal definition of the
class of hybrid systems we study in this paper, and de-
fine the hybrid diagnosis problem.

Definition 1 (Hybrid System) A hybrid system is a 5-
tuple ���������	�
���
����� , where
� � is a finite set of modes ��������������������� , representing

the possible modes of system behavior.
� �! #"%$ defines the continuous state variables. &'�)(��

describes the continuous behavior at time ( .
� � is a finite set of functions *,+�-/.,����������+0-�132 , such

that for each mode, ��4 , +0-056�)(���&'�)(����87�":9��<;=�
defines the continuous behavior of the system in � 4 .

� � is a finite set of discrete actions �)> � �������?�	>A@)� ,
which transition the system between modes.

� � is a transition function which maps an action, mode
and system state vector into a new mode and initial
state vector, i.e., �B7C�D9E� 9E�F;G� 9E� .

Definition 2 (System State) The state of a hybrid sys-
tem at time ( is defined by the discrete mode and the
continuous state at that time, as represented by the tu-
ple �)��H4 ��&���(���� .

To define the hybrid diagnosis problem, we augment
the description of our hybrid systems as follows.

Definition 3 (Hybrid System Diagnosis Terminology)
Consider a hybrid system �)�����B���E�I�
����� com-
prised of J potentially malfunctioning components
�)K��0���������	K6L%� , each of which is itself a hybrid system.
� �NMN O� is a distinguished subset of modes rep-

resenting fault modes of the hybrid system. There is
at least one fault mode ��P
QR�NM , for each compo-
nent K�4 . For notational convenience, we will use the
notation ��S to denote a fault mode ��PTQU�NM .� We assume that transitions to fault modes are
achieved by exogenous actions. Hence, � , the finite
set of discrete actions is divided into two subsets such
that �WVX�ZY'[\�Z] , and
– �ZY is a finite set of controller actions, and
– � ] is a finite set of exogenous actions.
A controller action history, ^ is a sequence of time-
indexed actions performed by the controller.� �`_�acbd e� , denotes the continuous state variables
that are observable. &�_	afb0�)(�� denotes the values of
observations at time ( . The observation history, O
is the set of values of & _�acb ��(�� at a sequence of sample
times, (g4 .� For each continuous behavior function of a fault
mode +0-�h!Qi� , we distinguish parameters j�S of
the function, which are to be estimated as part of
the diagnosis task. Allowable ranges may be asso-
ciated with some or all of the individual parameters.
These parameters will, e.g., characterize the degree
of degradation of some component behavior.� a Model, kml0n , for time-indexed mode sequenceo � � ���������	� Lqp is the corresponding time-indexed
piecewise continuous sequence of functionso + - .r����������+ -0s p .
In this paper we make several simplifying assump-

tions regarding our diagnosis task. In particular, we
make a single-time fault assumption. We assume
that our systems do not experience multiple sequential
faults. Further, we assume that faults are abrupt, result-
ing in partial or full degradation of component behav-
ior. We also assume that components fail independently.
This is of course, not always a reasonable assumption.

Intuitively, we can think of our hybrid diagnosis
task as a big model-finding, model-fitting and model-
comparison problem. The behavior of the system
as it transitions through controller-induced and fault-
induced modes �?4 can be modeled by the appropriate
sequence of functions, + - 5 . Hence, given infinite re-
sources, we could, in principle, build a sequence of
functions, corresponding to a model for every possible
sequences of modes, and estimate parameters to maxi-
mally fit the observed data to each model. The model
with the best fit would indicate the state and mode his-
tory of the system, including any fault modes that had
occurred. Clearly this is not a computationally feasible
approach, particularly since fault modes can occur at
potentially infinitely varying times and with many dif-
ferent parameter values.



Instead, we propose to monitor observed system be-
havior against one model, kml0n $ _�� L�� @ , the model for
the mode sequence

o ���0�����������?L p that corresponds to the
mode sequence dictated by the controller action history
^ , the initial state &'�)(��0� , and the transition function � .
We define the probability that the system is operating
according to the normal or expected model, given the
action and observation history,

� ��kml0n $ _�� L�� @	� ^ ��
 � ,
as the measure of fit of 
 with the model.

When aberrant behavior is detected, e.g., when obser-
vations fall outside what is predicted by kml0n $ _�� L�� @ ,
we assume that the normal model does not reflect the
evolution of system behavior, and the diagnosis task
commences. Given a hybrid system �)�����B���E�I�
����� ,
a controller action history, ^ and a history of obser-
vations, 
 which includes observations of aberrant be-
havior, the hybrid diagnosis task is to determine what
components are faulty, what fault mode caused the aber-
rant behavior, when it occurred, and what the values of
the parameters associated with the fault mode are. In
the AERCam system, a diagnosis might be that thruster� � experienced a blockage fault of 50%, at time (	4 .

Again, we are faced with an enormous search prob-
lem to determine the time-indexed sequence of param-
eterized functions that best fits the observed data. To
overcome this challenge, this paper proposes the ex-
ploitation of qualitative reasoning techniques to prune
the search space. In particular, from the controller ac-
tion history ^ , we initially assume the system is oper-
ating normally, as dictated by the model kml0n $ _�� L�� @ ,
with associated mode history

o � �0���������	�?L p , temporally
indexed with the corresponding controller action times
from ^ . Exploiting previous research on temporal
causal graphs for qualitative diagnosis of continuous
systems (Mosterman & Biswas 1999b), we compute
a set of candidate qualitative diagnoses that are con-
sistent with the model and associated mode historyo �'�,�������?�	�?L p and the observed aberrant behavior. I.e.,

Definition 4 (D-tuple) A D-tuple is a 4-tuple
��
 �	� S ��( S �	j S � , where � S is a fault mode, ( S is
the time the fault mode commenced, j S is the parame-
ter values associated with the fault mode behavior, and
 is the set of failed components corresponding to �'S .

Definition 5 (Candidate Qualitative Diagnosis)
Given a hybrid system ���������	�
���
����� , an action
history ^ , a model and associated mode sequenceo �'�,�������?�	�?L p , and a history of observations, 
 which
includes observations of aberrant behavior, D-tuple
��
 �	�?S ��(gSZ�	j0S � is a candidate qualitative diagnosis iff
there exists a range of parameter values j/SDV o j,@ ��j�� p ,
and time range ( S V o ( @ �	( � p such that the occurrence of
fault mode ��S with parameter values j�S in time range
(gS is consistent with 
 , ^ and ���������	�
���
����� .

Hence, a candidate qualitative diagnosis stipulates a
fault mode, corresponding to one or more faulty com-
ponents. It also stipulates a lower and upper bound,o ( @g��(�� p , on the time the fault mode occurred. This range

generally corresponds to the start times of the controller
induced modes preceding and following the fault, or up
to the point the fault was detected. Computing candi-
date qualitative diagnoses is discussed in Section 4.1.

Each candidate qualitative diagnosis, also indirectly
dictates a new candidate mode sequence and a new can-
didate model –

o � � �������?�	�?4g�	�?SZ���?S/5��C.0�����������?S s p ando +0-/.,�������?��+�-05I��+0-�h �I+0-�h 5��C. ����������+0-�h s p , respectively.
The new candidate mode sequence corresponds to the
previous mode sequence

o � �,�������?�	�?L p with the fault
mode ��S interjected at (�S . Note that the occurrence
of fault mode ��S may affect subsequent modes in the
mode sequence, as dictated by transition function � .
Hence all modes in the new candidate mode sequence
that follow �?S reflect the modes obtained from the
controller actions of ^ transitioning from this faulty
mode and continuous state.

Since each candidate qualitative diagnosis only con-
jectured ranges for the time of the fault mode, ( S and
parameter values associated with the fault mode, j/S ,
the associated candidate models are underconstrained.
In Section 4.2, we discuss two methods for estimating
unique values for (�S and j0S and for estimating a poste-
rior probability for the associated model, kml0n�� .

Definition 6 (Candidate Diagnosis) Given a hybrid
system ���������	�
���
����� , a history of controller ac-
tions ^ , and a history of observations 
 , D-tuple
��
 ��� S ��( S ��j S � with associated model kml0n � is a can-
didate diagnosis for the hybrid system, iff kml0n � is con-
sistent with ^ and

� �ckml0n�� � 
 ����� , for defined
threshold value �dQ o � ��� p .
Bayes Theorem provides us with the mathematics to es-
timate both the posterior probability of the parameters,
given the observation history 
 and the model kml0n�� ,

� �"! #%$'&�(*)%+-,/.10 � �"!2#3(*)%+ , .4� �5$6#%!-&�(*)%+ , .� �5$6#3(7)�+ , . &
where the normalizing constant

� �8
 � kml0n � � is

� �5$6#3(7)�+-,1.90 :;� �5$'&�! #3(7)�+-,1.8+<!
0 :;� �5$6#3!<&�(7)�+-,1.4� �"! #3(*)�+-,=.8+<!<>

Bayes Theorem also provides us with the mathematics
to estimate the posterior probability of the model given
the observation history, i.e.,

� �5(*)%+ , #3$?.=0 � �5$6#%(*)%+-,1.4� �5(7)�+-,/.� �5$2. &
where

� �8
 � kml0n � � is the measure of fit of 
 to
kml0n@� ,

� �ckml0n@� � is the prior
� ���?S � , and

� �8
 � is a
normalizing constant.

The observation history 
 contains a history of time
indexed observations

o &�_�afb0� � ���������?�	& _�afb0��(=ACB�� p , which
we use to initially estimate parameters and to compute
the posterior for the candidate models. As the system



progresses, we obtain further observations, and we up-
date the probabilities of our candidate models, exploit-
ing a Markov assumption.� �5(*)%+-, # ������� �	��.�.10 � � ������� �	��. #3(*)%+-,1.4� �5(*)%+-,/.� � �����
� �	��.�. &
where

� ��&�_�afb0��(�� � kml0n@� � is the measure of fit of
& _�afb ��(�� to kml0n � ,

� �ckml0n � � is, by a Markov assump-
tion,

� �ckml0n�� � 
 � computed as the result of the
previous observations,

o &�_�acb�� � �6����������&�_	afb0�)( A B�� p , and� ��& _	afb �)(���� is again a normalizing constant.
To compare candidate diagnoses and their associ-

ated models, we use Bayesian model comparison as
described in (MacKay 1991). As noted by MacKay,
Bayesian model comparison captures the notion of Oc-
cam’s Razor, favoring simpler models over more com-
plex models, which may overfit. In terms of diagno-
sis, Bayesian model comparison captures the commonly
held bias in model-based diagnosis of preferring mini-
mal diagnoses, i.e., diagnoses with the minimal number
of failing components (e.g., single fault hypotheses).

3 Motivating Example: The AERCam
We are using NASA’s Sprint AERCam and a simulation
of system dynamics and the controller written in HCC
as a testbed for investigating monitoring and diagnosis
techniques in hybrid environments. We describe the dy-
namic model of the AERCam system briefly, a more
detailed description of the model and simulation appear
in (Alenius & Gupta 1998).

The AERCam is a small spherical robotic camera
unit, with 12 thrusters that allow both linear and rota-
tional motion. For the purposes of this model, we as-
sume the sphere is uniform, and the fuel that powers
the movement is in the center of the sphere. The fuel
depletes as the thrusters fire.

The dynamics of the AERCam are described in the
AERCam body frame of reference. The translation ve-
locity of this frame with respect to the shuttle inertial
frame of reference is 0. However, its orientation is
the same as the orientation of the AERCam, thus its
orientation with respect to the shuttle reference frame
changes as the AERCam rotates (i.e., it is not an inertial
frame). The twelve thrusters are aligned so that there
are four along each major axis in the AERCam body
frame. For modeling purposes, we assume the positions
of the thrusters are on the centers of the edges of a cube
circumscribing the AERCam. Thrusters

� � � ��� � ��
 � ���
are parallel to the X-axis and are used for translation
along the X-axis or rotation around the Y-axis. Fir-
ing thrusters

� � and
���

results in translation along the
positive X-axis, and firing thrusters

� � and
� �

to get a
negative rotation around the Y-axis. Similarly, thrusters��� � ��� � ��� � ��� are parallel to the Y-axis, and are used to
rotate around the Z-axis, and thrusters

��� � � � �/� � ��� � � � �
are parallel to the Z-axis, and are used for rotation
around the X-axis. AERCam operations are simplified
by making it either translate or rotate. Thrusters are ei-
ther on or off, therefore, the control actions are discrete.

In normal mode of operation, only two thrusters are on
at any time. For safety of the crew and the shuttle equip-
ment, the thruster velocities are not allowed to exceed
prespecified thresholds.

3.1 AERCam dynamics
A simplified model of the AERCam dynamics based on
Newtonian laws is derived using an inertial frame of ref-
erence fixed to the space shuttle. The AERCam position

in this frame is defined as the triple ��&��������3� . Let
��

be
the velocity in the AERCam body frame, with its vec-
tor components given by ������� ���
� . The frame rotates
with respect to the inertial reference frame with veloc-
ity �DV:�! ��#"3��$�� , the angular velocity of the AERCam.
The rotating Body frame implies an additional Coriolis
force acting upon the AERCam. We assume uniform
rotational velocity since in the normal model of opera-
tion, the AERCam does not translate and rotate at the
same time (Arnold 1978, pg. 130). Similar equations
can be derived for the rotational dynamics (Alenius &
Gupta 1998).

n ��J
�� ��%�n/( V � & A('0J � �� 9

� � � Newton’s Law�� n J)%0n (�*dJEn � �� �#%0n ( V � & A('0J � � � 9
�� �

The resultant equation for each coordinate:

n+�,%0n ( V.-0/�%,J A1' �
"2� A3�4$�� A ���,%,JU�,5 n/J)%0n (
n6�7%�n/( V8-:9+%,J A;'A��$2� A< =�
� A ���7%0J\��5 n J)%0n (
n6�>%�n/( V8-:?@%,J A1' �A =� A;"2��� A ���>%,JU��5 n JB%�n/(

3.2 Position Control Mode of the AERCam
In the position control mode, the AERCam is directed
to go to a specified position and point the camera in a
particular direction. Assume the AERCam is at position
A and directed to go to position B. In the first phase, the
AERCam rotates to get one set of thrusters pointed to-
wards B. These are then fired, and the AERCam cruises
towards B. Upon reaching close to B, it fires thrusters
to converge to B, and then rotates to point the camera in
the desired direction.

To facilitate the illustration of the diagnosis problem,
we use a simple trapezoidal controller, which we ex-
plain in two dimensions. Suppose the task is to travel
along the & -axis for some distance, then along the � -
axis. Such a manoeuvre could be needed in the space
shuttle, to avoid hitting some objects. In order to do
this, the AERCam fires its & thrusters for some time.
Upon reaching the desired velocity, these are switched
off. When the AERCam has reached close tox the de-
sired point, the reverse thrusters are switched on, and it
is brought to a halt — the velocity graph is a trapezium.
The process is analogous for the � direction.

4 Diagnosing Hybrid Systems
In Section 2 we defined the restricted class of hybrid
systems we wish to diagnose, and the hybrid diagno-
sis problem. In this section we discuss one method
for computing hybrid diagnoses. In particular, in this



paper we propose to exploit previous work on qualita-
tive diagnosis of continuous systems to help diagnose
hybrid systems. The benefit of qualitative techniques
in this context is that they use qualitative representa-
tions of the domain knowledge to drastically reduce the
search space for candidate diagnoses and hence candi-
date models. In Section 4.1 we discuss a technique for
generating candidate qualitative diagnoses, and their as-
sociated candidate models of system behavior, first pro-
posed for qualitative diagnosis of continuous systems
(Mosterman & Biswas 1999b). In Section 4.2 we dis-
cuss techniques for model fitting and for model (and
hence diagnosis) comparison. In particular we discuss
techniques for estimating the parameters of the candi-
date models, and the likelihood of the models, and for
continued monitoring and refinement of the candidate
models as the system continues to operate and observa-
tions continue to be made.

We illustrate these techniques with the following sim-
ple AERCam example. Consider the scenario depicted
in Figure 1. In the first acceleration phase, the AER-
Cam is being powered by thrusters

� � and
� ' . Assume

that at some point in this phase, a sudden leak in the
� '

thruster causes an abrupt change in its output. As a con-
sequence, the AERCam starts veering to the right of the
desired trajectory, as illustrated by the left-most dotted
lines in Figure 1. (The other dotted lines represent other
potential candidate diagnoses consistent with the point
of detection of the failure.) Soon after this occurs, the
supervisory controller commands the AERCam to turn
off Thrusters

� � and
� ' with the objective of getting

the AERCam to cruise in a straight line. In the faulty
situation, the AERCam has some residual angular ve-
locity about the z-axis, so it continues to rotate in the
cruise mode. Then the controller turns on thrusters

���
and

���
, to decelerate the AERCam with the objective of

bringing it to a halt. Again, this objective is not entirely
achieved in the the faulty situation. Next, thrusters

���
and

���
are switched on, to move the AERCam in the� direction. However, since the AERCam is not in the

desired orientation after the failure, the position error
due to faulty thruster

� ' accumulates causing a greater
and greater deviation from the desired trajectory of the
system. The position of the AERCam is being continu-
ously sensed, filtered for noise and monitored. At some
point within the � translation the trajectory crosses a
predefined error bound and is flagged by the monitor-
ing system as aberrant relative to kml0n $ _�� L�� @ . At this
point, the diagnosis task begins.

4.1 Qualitative Candidate Generation
Given the normal system model kml0n $ _�� L�� @ , a history
of controller actions ^ and associated mode sequenceo � � �������?�	� Lqp , and a history of observations 
 includ-
ing one or more observations of aberrant behavior, we
wish to generate a set of consistent candidate qualita-
tive diagnoses �8
 ����S �	(gSZ��j0S � , and associated models
as described in Definition 5. To do so, we extend tech-

Accelerate Cruise Decel.

Error Bounds

Desired
Trajectory

y-axis

x-axis

Possible
Fault

Trajectories

Fault
detected

Figure 1: Trajectories of AERCam under various possi-
ble faults. The fault trajectories are simplified for illus-
tration purposes.

niques for generating qualitative diagnoses of continu-
ous dynamic systems to deal with hybrid systems with
multiple modes. A full description of the model rep-
resentation and propagation mechanism applied to con-
tinuous systems diagnosis can be found in (Mosterman
& Biswas 1999b).

In the case of our AERCam example, the ac-
tion history ^ is

o � on � � �r��� on � � ' ���6� � off � � �r�6�
off � � '/�	���N� on � ��� �6� on � ��� ��� , � off � ��� ��� off � ��� �6�
on � ��� ��� on � ��� ��� , � off � ��� ��� off � ��� ��� p ; the mode
sequence is

o � K6K
	��
	 $ � (�	 &��%K $2������	 &��%n�	,K
	���	 $ � (�	 &'�� K�K
	���	 $ � (�	 ��� K $2������	 � p . kml0n $ _�� L � @ is the time-
indexed sequence of functions

o +@� Y Y ]f@ ]�� � H ] / � + Y4� �,4 b�] / �+�� ]gY ]f@ ]�� � H ] / � +<� Y Y ]f@ ]�� � H ] 93� + Y4���,4 bg] 9 p derived from
the system dynamics overviewed in Section 3. The
time indexing corresponds to the times of the con-
trol actions. Finally, the observation history 
 is
sequence of �)&'��(��6������(��6��� ��(��	� and computed velocity
and acceleration at the sample times ( .

To generate candidate qualitative diagnoses we
construct an abstract model of the dynamic system
behavior, kml0n $ _�� L � @ as a temporal causal graph. A
part of the temporal causal graph for the AERCam
dynamics is shown in Figure 2. The graph expresses
directed cause-effect relations between component pa-
rameters and the system state variables. Links between
variables are labeled as: (i) * � , implying direct propor-
tionality, (ii) A � , implying inverse proportionality, and
(iii) � , implying an integrating relation. An integrating
relation introduces a temporal delay in that a change
on the cause side of the relation affects the derivative
of the variable on the effect side. This adds temporal
characteristics to the relations between variables. Some
edges are labeled by variables, implying the sign of the
variable in the particular situation defines the nature of
the relationship. The candidate generation algorithm
is invoked for every initial instance of an aberrant ob-
servation. The aberrant observation plus the controller
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Figure 2: A subset of the temporal causal graph show-
ing the relations between Thrusters

� � A ��� and the x
and y positions of the AERCam.

action history ^ are input to a backward propagation
algorithm that operates on the temporal causal graph.
The algorithm operates backward in time from � L ,
the last mode in the given mode sequence

o � � ���������	� Lqp :

Step 1 For the current mode, extract the corresponding
temporal causal graph model, and apply the Identify
Possible Faults algorithm. Details of this algorithm
are presented in (Mosterman & Biswas 1999b), but
the key aspect of this algorithm is to propagate the
aberrant observation expressed as a � value, backward
depth-first through the graph. For example, given
that the � A position of the AERCam has deviated A
(i.e., below normal), backward propagation implies
n ��� ��%�n/( is A , and so on, till we get

����
and

����
,

implying thrusters
���

and
���

are possible faulty with
decreased thrust performance. Propagation along a
path can terminate if conflicting assignments are made
to a node. The goal is to systematically propagate
observed discrepancies backward to identify all possi-
ble candidate hypotheses that are consistent with the
observations. In our example, the component param-
eters,

� � A � � ' form the space of candidate hypotheses.

Step 2 Repeat Step 1 for every mode in the mode se-
quence, to � � . The system model needs to be sub-
stituted as the algorithm traverses the mode sequence
backwards, therefore, back propagation will be per-
formed on a different temporal causal graph for each
mode in the controller history1

The output of this step is a set of qualitative di-
agnoses �8
 ����S ��(gSZ�	j,S � , each with an associated
candidate mode sequence and candidate model, as

1We may cut off back-propagation along the mode se-
quence beyond a time limit.

described in Section 2. Returning to our AERCam
example, three qualitative candidate diagnoses are
generated. The first candidate diagnosis is that

� '
failed in the & acceleration phase, and that there was
a jump to a new mode called � � n � ' � K�K
	���	 $ � (�	 & .
The time of the fault mode transition is

o ( � �	( � p , and
the parameters associated with the failure – the per-
centage degradation of the component is in the rangeo � ��� �@� p . So the first candidate qualitative diagno-
sis is � � ' ��� � n � ' � K6K 	��
	 $ � (�	 &�� o ( � ��( � p � o � ��� �@� p � .
The candidate mode sequence is

o � K6K
	���	 $ � (�	 &'�
� � n � ' � K6K 	��
	 $ � (�	 &�� K $ � ����	 &'� n 	,K
	���	 $ � (�	 &��� K�K
	���	 $ � (�	 ��� K $ � ����	 � p , and the associated can-
didate model is defined accordingly. The second
candidate qualitative diagnosis is that

���
failed

in the deceleration phase of & translation, i.e.,
� ��� ��� � n ��� n 	,K
	���	 $ � (�	 &'� o ( 
 �	( � p � o � ��� �-� p � . The third
candidate is that

���
failed during � acceleration, i.e.,

� ��� ��� � n ��� � K6K 	��
	 $ � (�	 ��� o ( � ��(
	 p � o � �%� �@� p � , where
( 	 is the time of detection of the aberrant behavior.

4.2 Model Fitting and Comparison
The candidate qualitative diagnoses and the associated
candidate mode sequences and candidate models pro-
vide a qualitative characterization of the hypothesized
faults, obtained through a qualitative analysis of the
model of normal behavior, kml0n $ _�� L�� @ , and the obser-
vations. Given this information, the next phase of the
diagnosis process is quantitative refinement of the qual-
itative candidate diagnoses and their associated models
through parameter estimation and data fitting, followed
by tracking of the fit of subsequent observations to the
candidate models. The goal is to identify a unique diag-
nosis, or barring that, to provide a probabilistic ranking
of the plausible candidates, so that the supervisory con-
troller can use this information in making decisions on
future action selection.

As observed in the previous section, the model asso-
ciated with the qualitative candidate diagnosis, kml0n �
is underconstrained. Both the time of the fault mode
occurrence, (gS and the parameters associated with
the faulty behavior j�S are represented as ranges and
must be estimated. Further, the candidate qualitative
diagnoses were generated from initial observations of
aberrant behavior, and their consistency can be further
evaluated by monitoring the qualitative transients
associated with each candidate. The refinement process
is performed by a set of trackers (Rinner & Kuipers
1999), one for each candidate diagnosis and associated
model. Each tracker comprises both a qualitative
transient analysis component and a quantitative model
estimation, component. The two components operate
in parallel as described below.

Qualitative Transient Analysis
The qualitative transient analysis component performs
a further qualitative analysis of the consistency of
candidate qualitative diagnoses based on monitoring



of higher-order transients whose manifestation is
seen over a longer period of time. If the transients
of a candidate qualitative diagnosis do not remain
consistent with subsequent observations, the candidate
diagnosis will be eliminated and the model estimation
component informed. The technique we employ is
derived from techniques for qualitative monitoring of
continuous systems. Details of the algorithm appear in
(Mosterman & Biswas 1999b), and an example appears
in the long version of this paper (McIlraith et al. 1999).

Model Estimation
The purpose of the model estimation component is to
perform quantitative model fitting, i.e., to provide a
quantitative estimate of the parameters of the models
and to assign a probability to each of the candidate
models (and hence candidate diagnoses), given the
noisy observed data. In particular, given a candidate
model, kml0n�� the model estimation component uses
parameter estimation techniques to estimate both the
time at which the failure occurred, ( S , and the value
for the parameters, j0S , associated with the conjectured
failure mode. In this paper we discuss two alternate
approaches to our time and parameter estimation
problem. The first approach is based on Expectation
Maximization (EM) (e.g., (Dempster, Laird, & Rubin
1977)), an iterative technique that converges to an op-
timal value for ( S and j S simultaneously. The second
approach we consider employs General Likelihood
Ratio (GLR) techniques (e.g., (Basseville & Nikiforov
1993)) to estimate the time of failure (�S , and then uses
the observations obtained after the failure to estimate
the fault parameters, j0S , by a least squares method. As
described in Section 2, the outcome of both approaches
is a unique value for (�S and j0S and a measure of
the likelihood of kml0n � given the observations. The
proposed approaches to model fitting have trade-offs
and we are currently assessing the efficacy of these and
other alternative approaches through experimentation.

EM-Based Approach The Expectation Maximization
(EM) algorithm (e.g., (Dempster, Laird, & Rubin
1977)) provides a technique for finding the maximum-
likelihood estimate of the parameters of an underlying
distribution from a given set of data, when that data is
incomplete or has missing values. The parameter esti-
mation problem we address in this paper is a variant of
the motion segmentation problem described in (Weiss
1997). Here, we define the basic algorithm and the in-
tuition behind our approach. See (Dempster, Laird, &
Rubin 1977) for a more rigorous account of EM.

The time of failure, ( S V o ( @ �	( � p of our candi-
date qualitative diagnosis, �8
 ����Sq��(gSZ��j0S � , dictates the
mode in which the failure is conjectured to have oc-
curred. Let us call this mode � 4 . The behavior of our
hybrid system in mode � 4 is described by the continu-
ous function +�-05 , with known parameters j�4 . At some
(to be estimated) time point (�S within the predicted

time period of ��4 , we have conjectured that the system
experienced a fault which transitions it into mode �'S .
The behavior of our hybrid system in mode � S is de-
scribed by the continuous function + - h , with unknown
parameters, j S . We also have a set of data points 
 �

V o &�_	afb0� � ���������?��&�_	afb,��(�� p  6
 , which either reflect the
behavior of the system under +�-05 or under +�-�h .

Given all this information, our task is to find 1) val-
ues for parameters j�S , and 2) an assignment of the data
points 
 �

V o &�_	afb0� � ���������?��&�_	afb,��(�� p to either +0-05 or +�-�h
so that we maximize the fit of the data to the two func-
tions. The assignment of data points will in turn tell us
the value of (�S . Clearly each assignment is easy given
the other. EM provides an iterative algorithm which
converges to provide a maximum-likelihood estimate
for j0S given 
 �

, i.e., roughly we are calculating the
likelihood of j , � �)j � V � �8
 � � j,SZ�Ikml0nC� , where kml0n ,
the model, is the sequence of functions

o + - 5I�I+ - h p .
The basic EM algorithm comprises two steps: an Ex-

pectation Step (E Step), and a Maximization Step (M
Step). The following is a sketch of the algorithm for
our task (Weiss 1997):� Select an initial (random) value for j/S .� Iterate until convergence:

- E Step: assign data points to either +/-05���j04f� or
+0-�h ��j0S � , which ever fits it best.

- M Step: re-estimate j S using the data points
assigned to +�-�h �)j0S � . j,S may be estimated using
e.g., regression.

We are currently considering several implemen-
tations for this algorithm that will exploit problem-
specific qualities to help improve convergence of this
algorithm. In particular, we may exploit the fact that
data points at the end of the 
 �

sequence must belong
to + - h ��j S � , rather than + - 5���j 4 � . Hence we may use
these data points to get a better initial estimate of j/S .
Also, we may exploit spatial continuity in the E Step to
assign data points to functions.

GLR + Least Squares Approach An alternative to the
EM-based approach divides the parameter estimation
problem into two parts: (i) estimate the time of fail-
ure, (gS , using the Generalized Likelihood Ratio (GLR)
method, and (ii) apply a standard least squares method
for parameter estimation. The intuition is that solv-
ing the problem in two parts simplifies the estimation
process, and very likely mitigates the numerical con-
vergence problems that arise in dealing with complex
higher-order models.

The GLR method for detecting abrupt changes in
continuous signals is described in (Basseville & Niki-
forov 1993). We have applied it to fault transients
analysis in complex fluid thermal systems (Manders,
Mosterman, & Biswas 1999). Here we provide an
overview of the method for the single parameter case.
Assume that the signal under scrutiny is a time-indexed
sequence of random variables ����� � , with probability



density function,  ���5I��� � in desired mode ��4 , and  ��	h ��� �
in fault mode �?S . � is either contained in &�_�afb or com-
puted from & _�afb . We assume that a fault causes an
abrupt change in ��� � � . In the case of the AERCam,� captures the difference between the observed and ex-
pected values of the, e.g., acceleration, as predicted by
the model.

The central quantity in the change detection algo-
rithm is the cumulative sum of the log-likelihood ratio
for a window of observations between times J and � ,� $L ��j S � V $�

���?L ���  ���h ������� ��� ��g5I������� ��� �
Again, this ratio is a function of two unknowns: ( S and
j S . The common statistical solution is to use maximum
likelihood estimates for these two parameters, resulting
in a double maximization:�

$ V 	�

�����L�� $�������	h � $L ��j0S � .
If we assume that probability density functions, � 5���� � and  � h ��� � are Gaussian, then � $ reduces to:

�
$ V

�
'/>
�
4 	�

�����L�� $ �� A J * �

� $�
���?L ����� �A� A � 4����

�
�

where � 4 and >
�
4 are the mean and variance for  � 5I��� � ,

respectively.
When processing a sequence of samples, the point of

abrupt change, (�S , is computed from J ��� *��B7 � $���� 2 ,
where � is an appropriately defined threshold. Hence,
the smaller the value of � , the more sensitive the func-
tion to change, and unfortunately to false alarms, so �
must be set carefully.

Once ( S is estimated, data points observed after ( S ,
are used to estimate the parameter, j S for a hypothe-
sized fault using regression techniques. In the case of
the AERCam, the position vector of the AERCam is
modeled as a set of quadratic functions in terms of the
thruster force. These functions contain one unknown,
j0S , the parameter that corresponds to the degree of
degradation in the faulty thruster. The least squares
estimate for j S is computed, and the the measure of
fit of the candidate model to the observed data used to
estimated the probability of the candidate diagnosis.

Model Comparison
From the model estimation component, each tracker
computes the likelihood of its model kml0n�� , and hence
of the associated candidate diagnosis �8
 ���'S �	(gSZ��j0S � ,
as a measure of fit of the observations to the model.
As new data & _	afb ��(�� are observed, j S and ( S � are ad-
justed and

� ��kml0n�� � & _�acb���(���� computed as outlined in
Section 2. Different models are compared according to
Bayesian model comparison, as described in (MacKay
1991). If the likelihood of kml0n � falls below a prede-
fined acceptable likelihood threshold, � , then its tracker
is terminated, and the associated candidate diagnosis

��
 ���?Sq��(gSZ��j0S � removed from the list of candidate di-
agnoses. Tracking terminates when a unique diagnosis
is obtained, or when the diagnoses are sufficiently dis-
criminated to determine suitable controller actions.

5 Discussion and Summary
In this paper we addressed the problem of diagnosing
a restricted class of hybrid systems. The main contri-
butions of the paper are 1) formulation of the hybrid
diagnosis problem; 2) the exploitation of techniques for
qualitative diagnosis of continuous systems to qualita-
tively reduce the diagnosis search space; and 3) the use
of parameter estimation and data fitting techniques for
evaluation and comparison of candidate diagnoses.

Future work includes further experimental analysis of
the trade-offs between the proposed quantitative tech-
niques, and their interplay with monitoring. For a de-
tailed discussion of this paper, and future work, see the
long version of this paper (McIlraith et al. 1999).
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