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Abstract. This paper reports on an on-going project to investigate techniques to
diagnose complex dynamical systems that are modeled as hybrid systems. In par-
ticular, we examine continuous systems with embedded supervisory controllers
that experience abrupt, partial or full failure of component devices. We cast the
diagnosis problem as a model selection problem. To reduce the space of potential
models under consideration, we exploit techniques from qualitative reasoning to
conjecture an initial set of qualitative candidate diagnoses, which induce a smaller
set of models. We refine these diagnoses using parameter estimation and model
fitting techniques. As a motivating case study, we have examined the problem of
diagnosing NASA’s Sprint AERCam, a small spherical robotic camera unit with
12 thrusters that enable both linear and rotational motion.

1 Introduction

The objective of our project has been to investigate how to diagnose hybrid systems
– complex dynamical systems whose behavior is modeled as a hybrid system. Hybrid
models comprise both discrete and continuous behavior. They are typically represented
as a sequence of piecewise continuous behaviors interleaved with discrete transitions
(e.g., [7]). Each period of continuous behavior represents a so-called mode of the sys-
tem. For example, in the case of NASA’s Sprint AERCam, modes might include trans-
late X-axis, rotate X-axis, translate Y-axis, etc. [1]. In the case of an Airbus fly-by-wire
system, modes might include take-off, landing, climbing, and cruise. Mode transitions
generally result in changes to the set of equations governing the continuous behavior of
the system, as well as to the state vector that initializes that behavior in the new mode.
Discrete transitions that dictate mode switching are modeled by finite state automata,
temporal logics, switching functions, or some other transition system, while continuous
behavior within a mode is modeled by, e.g., ordinary differential equations (ODEs) or
differential and algebraic equations (DAEs).

The problem we address in this paper is how to diagnose such hybrid systems. For
the purposes of this paper, we consider the class of hybrid systems that are continuous
systems with an embedded supervisory controller, but whose hybrid models contain no
autonomous jumps. I.e., all nominal transitions between system modes are induced by
a controller action, none are induced by the system state and model [7]. The class of
systems we consider can be modeled as a composition of a set of component subsys-
tems, each of which is itself a hybrid system. We assume that the system operation is
being tracked by a monitoring and observer system (e.g., [19]) that ensures that the sys-
tem behavior predicted by the model does not deviate significantly from the observed



behavior in normal system operation. When observations occur outside this range, the
behavior is deemed to be aberrant and diagnosis is initiated. In this paper, we consider
faults whose onset is abrupt, and which result in partial or complete degradation of
component behavior. The general problem we wish to address can be stated as follows:
Given a hybrid model of system behavior, a history of executed controller actions, a his-
tory of observations, including observations of aberrant behavior relative to the model,
isolate the fault that is the cause for the aberrant behavior. Diagnosis is done online
in conjunction with the continued operation of the system. Hence, we divide our diag-
nosis task into two stages, initial conjecturing of candidate diagnosis and subsequent
refinement and tracking to select the most likely diagnoses.

In this paper we conceive the diagnosis problem as a model selection problem. The
task is to find a mathematical model and associated parameter values that best fit the sys-
tem data. These models dictate the components of the system that have malfunctioned,
their mode of failure, the estimated time of failure and any additional parameters that
further characterize the failure. To address this diagnosis problem, we propose to ex-
ploit AI techniques for qualitative diagnosis of continuous systems to generate an initial
set of qualitative candidate diagnoses and associated models, thus drastically reducing
the number of potential models for our system. This is followed by parameter estima-
tion and model fitting techniques to select the most likely mode and system parameters
for candidate models of system behavior, given both past and subsequent observations
of system behavior and controller actions. The main contributions of the paper are: 1)
formulation of the hybrid diagnosis problem; 2) the exploitation of techniques for qual-
itative diagnosis of continuous systems to reduce the diagnosis search space; and 3) the
use of parameter estimation and data fitting techniques for evaluation and comparison
of candidate diagnoses.

In Section 2 we provide a brief description of NASA’s Sprint AERCam, which we
have used as a motivating example and which we will use to illustrate certain concepts
in this paper. In Section 3 we present a formal characterization of the class of hybrid
systems we study and the diagnosis problem they present. In Section 4 we describe our
approach to hybrid diagnosis and the algorithms we use to achieve hybrid diagnosis.
The generation of initial candidate qualitative diagnoses is described in Section 4.1,
and the subsequent quantitative fitting and tracking of candidate diagnoses and their
models is described in Section 4.2. In the final two sections, we briefly discuss related
work and summarize our contributions.

2 Motivating Example: The AERCam

We are using NASA’s Sprint AERCam and a simulation of system dynamics and the
controller written in Hybrid CC (HCC) as a testbed for this work. We describe the
dynamic model of the AERCam system briefly, a more detailed description of the model
and simulation appear in [1].

The AERCam is a small spherical robotic camera unit, with 12 thrusters that allow
both linear and rotational motion (Fig. 1). For the purposes of this model, we assume
the sphere is uniform, and the fuel that powers the movement is in the center of the
sphere. The fuel depletes as the thrusters fire.
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The Body frame of reference
and the directions of velocities
(u,v,w) are the components of
the translation velocity, while
(p,q,r) are components of the
angular velocity.

Three views of the AERCam, showing the thrusters,
and showing all the thrusters together in the cube
circumscribing the AERCam.

Fig. 1. The AERCam axes and thrusters

The dynamics of the AERCam are described in the AERCam body frame of refer-
ence. The translation velocity of this frame with respect to the shuttle inertial frame of
reference is 0. However, its orientation is the same as the orientation of the AERCam,
thus its orientation with respect to the shuttle reference frame changes as the AERCam
rotates (i.e., it is not an inertial frame). The twelve thrusters are aligned so that there
are four along each major axis in the AERCam body frame. For modeling purposes,
we assume the positions of the thrusters are on the centers of the edges of a cube cir-
cumscribing the AERCam. Thus, for example, thrusters

�
��� � ��� � ��� ��� are parallel to

the � -axis and are used for translation along the � -axis or rotation around the � -axis.
I.e., firing thrusters

�
� and

�
� results in translation along the positive � -axis, and firing

thrusters
�

� and
� �

results in a negative rotation around the � -axis. AERCam operations
are simplified by limiting them to either translation or rotation. Thrusters are either on
or off, therefore, the control actions are discrete. In a normal mode of operation, only
two thrusters are on at any time.

2.1 AERCam dynamics

A simplified model of the AERCam dynamics based on Newtonian laws is derived us-
ing an inertial frame of reference fixed to the space shuttle. The AERCam position in

this frame is defined as the triple �	� � � ��
� . Let �� be the velocity in the AERCam body
frame, with its vector components given by ��� ��������� . The frame rotates with respect
to the inertial reference frame with velocity ������� �������� , the angular velocity of the
AERCam. The rotating body frame implies an additional Coriolis force acting upon the
AERCam. We assume uniform rotational velocity since in the normal mode of opera-



tion, the AERCam does not translate and rotate at the same time [2, pg. 130]. Similar
equations can be derived for the rotational dynamics [1].��������	��
 �������������������� �� �

Newton’s Law�� ��� 
 ������ ��� �� ��
 ��!� � � ���"�#� �� � �� �
The resultant equation for each coordinate:��$ 
 ����&%(' 
 �)�#�*��+�,-�/.�0 � �1��$ 
 � �32 ��� 
 ��

��. 
 ����&%(4 
 �5���6��07$8�:9;, � �1��. 
 � �32 ��� 
 ��
��, 
 ����&%(< 
 �5���6�=9;.��#+�$ � �>��, 
 � �32 ��� 
 ��

2.2 Position Control Mode of the AERCam

In the position control mode, the AERCam is directed to go to a specified position and
point the camera in a particular direction. Assume the AERCam is at position A and
directed to go to position B. In the first phase, the AERCam rotates to get one set of
thrusters pointed towards B. These are then fired, and the AERCam cruises towards B.
Upon reaching a position close to B, it fires thrusters to converge to B, and then rotates
to point the camera in the desired direction.

To facilitate the illustration of the diagnosis problem, we use a simple trapezoidal
controller, which we explain in two dimensions. Suppose the task is to travel along
the � -axis for some distance, then along the � -axis. Such manoeuvres are needed for
navigating in the space shuttle. In order to do this, the AERCam fires its � thrusters
for some time. Upon reaching the desired velocity, these are switched off. When the
AERCam has reached a position close to the desired � position, the reverse thrusters are
switched on, and the AERCam is brought to a halt — the velocity graph is a trapezium.
The process is analogous for the � direction.

3 Problem Formulation

In this section we provide our formulation of the hybrid diagnosis problem.

Definition 1 (Hybrid System). A hybrid system is a 5-tuple ?A@ �CB �ED �GF �GH(I , where

– @ , finite set of system modes �KJ � ��L�L7L � J�M � .
– BON�PRQ , continuous state variables. � �KS � is the continuous behavior at time S .
– D , finite set of functions TUWV*X �7L�L7L � U�V6Y[Z , and associated parameter values \ such

that for each mode, J�] , U�V�^ �AS � \ � � �KS ���8_3Pa`1Pa`�BcbdB defines the continuous
behavior of the system in Je] .1

– F , finite set of actions �Af ���7L�L7L � f�g � , which transition the system between modes.
– H , transition function which maps an action, mode and system state vector into a

new mode and initial state vector, i.e., Hh_;Fi` @ `#Bjb @ `#B .

To define the hybrid diagnosis problem, we augment Definition 1 as follows.

1 Parameter value ranges may be associated with k .



Definition 2 (Diagnosable Hybrid System). A diagnosable hybrid system,
?A@ �EB �ED �GF � H � ��������� I is a hybrid system comprised of 	 potentially malfunc-
tioning components

��������� � ��
 � ��L�L7L � 
� � where
– For each J�� @ , J includes a designation of whether each 
 ] � ���������

is
operating normally, or abnormally, i.e., ��� ����� ��
 ] � .

– We assume that transitions to fault modes are achieved by exogenous actions.
Hence, F � F�����F�� , where� F�� is a finite set of controller actions, and� F � is a finite set of exogenous actions.

– � , the controller action history, the sequence of time-indexed controller actions
performed.

– B�� �"! N B , continuous state variables that are observable. � �#�"! �KS � is the observa-
tions at time S .

– $ , the observation history, the sequence of time-indexed observations.

For notational convenience, J�% denotes a faulty mode, i.e., a mode for which at least
one 
 ] � ���������

is ��� �&
 ] � in J % . \ % denotes the parameters associated with U V(' .
In the case of the AERCam example, the potentially malfunctioning components are

the 12 thrusters, and a mode J includes the behavior mode (e.g., translate-x, translate-
y, rotate-x, etc.) and �&� �)��� � � ] � � * �,+ ��L�L7L � +.- , for each thruster. The continuous state
vector includes the � , � , 
 position of the AERCam, velocity and acceleration. The
parameter values, \ associated with each U*V are the percentage degradation of each of
the thrusters.

Definition 3 (Model). A model,
��/10

of a diagnosable hybrid systems is a time-indexed
mode sequence and associated parameter values � 2 J � �7L�L7L � J3�54 � 2 \ � ��L�L7L � \1�54 �

Notice that each model of the system, �&6 �87 � induces a corresponding time-indexed
piecewise continuous sequence of functions 2 U V X ��L7L�L � U V19 4 dictating system behavior.

In this paper we make several simplifying assumptions regarding our diagnosis task.
In particular, we make a single-time fault assumption. We assume that our systems do
not experience multiple sequential faults. Further, we assume that faults are abrupt,
resulting in partial or full degradation of component behavior. We cast the hybrid diag-
nosis task as the problem of finding the most likely model for the observation history,� � ��/10;: $ � . I.e, the sequence of modes and parameter values �&6 �#7 � that best fit the
observations over time. Under normal operation, the model of the system

��/10 Q � < �>= g is
fully dictated by the sequence of controller actions � and the nominal parameter values,
\ . Once again, we assume that the system operation is being tracked by a monitoring and
observer system (e.g., [19]) that ensures that the system behavior predicted by the model
does not deviate significantly from the observed behavior in normal system operation.
When observations occur outside this range, the behavior is deemed to be aberrant and
diagnosis is initiated. Given a diagnosable hybrid system ?A@ �EB �ED �GF � H � ��������� I ,
a controller action history, � and a history of observations, $ which includes observa-
tions of aberrant behavior, the hybrid diagnosis task is to determine what components
are faulty, what fault mode caused the aberrant behavior, when it occurred, and what the
values of the parameters associated with the fault mode are. In the AERCam system, a
diagnosis might be that thruster

�
� experienced a blockage fault of 50%, at time SC] .



Once
��/10 Q �)< �>= g has been rejected, we must find a new most likely model from

among the potentially exponential (in
���������

) number of mode sequences, occurring
within a large but bounded time range. We propose to exploit previous research on
temporal causal graphs for qualitative diagnosis of continuous systems [18], to compute
a set of candidate qualitative diagnoses that are consistent with our system, in order to
identify a preliminary subset of candidate models, whose likelihood can be estimated.

Definition 4 (D-tuple). A D-tuple is a 4-tuple ? � � J�% � S�% � \1% I , where J3% is a fault
mode, S)% is the time the fault mode commenced, \ % is the parameter values associated
with the fault mode behavior, and

�
is the set of failed (abnormal) components in J % .

Definition 5 (Candidate Qualitative Diagnosis). Given a diagnosable hybrid system
with model

��/10 � ��6 �87�� an action history � , and a history of observations, $ which
includes observations of aberrant behavior, D-tuple ? � � J % � S % � \ % I is a candidate qual-
itative diagnosis iff there exists a range of parameter values \ % � 2 \g � \ � 4 , and time
range S % � 2 S�g � S � 4 such that the occurrence of fault mode J % with parameter values \ %
in time range S % is consistent with $ , � and

��/10
.

Hence, a candidate qualitative diagnosis stipulates a fault mode, including one or
more faulty components. It also stipulates a lower and upper bound, 2 SCg � S � 4 , on the time
the fault mode occurred. This range generally corresponds to the start times of the con-
troller induced modes preceding and following the fault, or up to the point the fault was
detected. This candidate diagnosis induces an associated candidate model,

��/10�� �
�)2 J � �7L�L�L � J!] � J3% � J �]�� � �7L�L7L � J �� 4 � 2 \ � ��L7L�L � \] � \1% � \ �]�� � ��L7L�L � \ �� 4 � corresponding to

��/10
with the fault mode J�% and \1% inserted at S�% . Every subsequent mode, J�]�� � ��L�L7L � J3� ,
has ��� �&
"] � � 
�] � �

enforced, and every subsequent set of parameters has the param-
eters associated with faulty components

�
enforced. Computing candidate qualitative

diagnoses is discussed in Section 4.1.
Since each candidate qualitative diagnosis only conjectured ranges for the time of

the fault mode, S)% and parameter values associated with the fault mode, \ % , the asso-
ciated candidate models are underconstrained. In Section 4.2, we discuss methods for
estimating unique values for S % and \1% and for estimating a posterior probability for
each of the candidate models,

��/10��
, given $ .

Definition 6 (Candidate Diagnosis). Given a diagnosable hybrid system, a history of
controller actions � , and a history of observations $ , D-tuple ? � � J % � S % � \ % I with
associated model

��/10 �
is a candidate diagnosis for the hybrid system, iff

� � ��/10 � :
$ �	��
 , for defined threshold value 
 � 2 � � +4 .

4 Diagnosing Hybrid Systems

In this section we discuss one method for computing hybrid diagnoses. In Section 4.1
we discuss a technique for generating candidate qualitative diagnoses, and their associ-
ated candidate models. In Section 4.2 we discuss techniques for model fitting and for
model (and hence diagnosis) comparison. In particular we discuss techniques for esti-
mating the parameters of the candidate models, and the likelihood of the models, and for



continued monitoring and refinement of the candidate models as the system continues
to operate and observations continue to be made.

We illustrate these techniques with the following simple AERCam example. Con-
sider the scenario depicted in Fig. 2. In the first accelerate phase, the AERCam is being
powered by thrusters

� + and
� - . Assume that at some point in this phase, a sudden leak

in the
� - thruster causes an abrupt change in its output. As a consequence, the AER-

Cam starts veering to the right of the desired trajectory, as illustrated by the left-most
dotted lines in Fig. 2. (The other dotted lines represent other potential candidate diag-
noses consistent with the point of detection of the failure.) Soon after this occurs, the
supervisory controller commands the AERCam to turn off Thrusters

� + and
� - with

the objective of getting the AERCam to cruise in a straight line. In the faulty situation,
the AERCam has some residual angular velocity about the z-axis, so it continues to
rotate in the cruise mode. Then the controller turns on thrusters

���
and

���
, to decel-

erate the AERCam with the objective of bringing it to a halt. Again, this objective is
not entirely achieved in the the faulty situation. Next, thrusters

���
and

���
are switched

on, to move the AERCam in the � direction. However, since the AERCam is not in the
desired orientation after the failure, the position error due to faulty thruster

� - accumu-
lates causing a greater and greater deviation from the desired trajectory of the system.
The position of the AERCam is being continuously sensed, filtered for noise and mon-
itored. At some point within the � translation the trajectory exceeds the error bound,
i.e.,

� � ��/10 Q � < �>= g�� 
 � and is flagged by the monitoring system as aberrant relative
to

��/10 Q � < � = g . At this point, the diagnosis task begins.

Accelerate Cruise Decel.

Error Bounds

Desired
Trajectory

y-axis

x-axis

Possible
Fault

Trajectories

Fault
detected

Fig. 2. Possible fault trajectories of AERCam ( simplified for illustration purposes).

4.1 Qualitative Candidate Generation

Given the current system model
��/10 � �&6 �#7 � (commonly

��/10 Q �)< �>= g ), a history of
controller actions � , and a history of observations $ including one or more observa-



tions of aberrant behavior, we wish to generate a set of candidate qualitative diagnoses
? � � J3% � S�% � \1% I , and associated candidate models as described in Definition 5. To do
so, we extend techniques for generating qualitative diagnoses of continuous dynamic
systems to deal with hybrid systems with multiple modes. The model and propagation
mechanism, as applied to continuous systems diagnosis, is described in [18].

In the case of our AERCam example, the action history � is 2 � on � � + � � on � � - ��� �
� off � � + � � off � � - ��� � � on � ��� � � on � ��� ��� , � off � ��� � � off � ��� � � on � ��� � � on � ��� ��� , � off � ��� � �
off � ��� ��� 4 ; the model,

��/10 Q �)< �>= g is the time-indexed sequence 2 � � 

�� � � �1� S�� � � � ��� � � +��� + - � � \ � , ��
 � � *�� � � � � ��� � � +�� � +.- � � \ � , � 0 � 
�� � � �.� S�� � � � ��� � � +�� � +.- � � \ � , � � 

�� � � �1� S�� � ,
� � � � � +	� � + - � � \ � , ��
 � � *�� � � � � ��� � � +
� � + - � � \ � 4 , where \ is a vector of length 12 all
of whose entries are 0 (percent degradation in thrusters).

To generate candidate qualitative diagnoses we construct an abstract model of the
dynamic system behavior,

��/10 Q � < �>= g as a temporal causal graph. A part of the tem-
poral causal graph for the AERCam dynamics is shown in Fig. 3. The graph expresses
directed cause-effect relations between component parameters and the system state vari-
ables. Links between variables are labeled as: (i) � + , implying direct proportionality,
(ii) ��+ , implying inverse proportionality, and (iii) � , implying an integrating relation.
An integrating relation introduces a temporal delay in that a change on the cause side of
the relation affects the derivative of the variable on the effect side. This adds temporal
characteristics to the relations between variables. Some edges are labeled by variables,
implying the sign of the variable in the particular situation defines the nature of the rela-
tionship. The candidate generation algorithm is invoked for every initial instance of an
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Fig. 3. A subset of the temporal causal graph showing the relations between Thrusters �� � ��
and the x and y positions of the AERCam.

aberrant observation. The aberrant observation plus the controller action history � are
input to a backward propagation algorithm that operates on the temporal causal graph.



The algorithm operates backwards from the last mode in the mode sequence of
��/10

:

Step 1 For the current mode, extract the corresponding temporal causal graph model,
and apply the Identify Possible Faults algorithm. Details of this algorithm are presented
in [18], but the key aspect of this algorithm is to propagate the aberrant observation ex-
pressed as a � value, backward depth-first through the graph. For example, given that
the � � position of the AERCam has deviated � (i.e., below normal), backward prop-
agation implies

0 �	� ��� 0 S is � , and so on, till we get
���� and

���� , implying thrusters���
and

���
are possibly faulty with decreased thrust performance. Propagation along a

path can terminate if conflicting assignments are made to a node. The goal is to system-
atically propagate observed discrepancies backward to identify all possible candidate
hypotheses that are consistent with the observations. In our example, the component
parameters,

��������� � T � + �7L�L7L�� � + -�Z form the space of candidate faults.

Step 2 Repeat Step 1 for every mode in the mode sequence, to J � . The system model
needs to be substituted as the algorithm traverses the mode sequence backwards. There-
fore, back propagation will be performed on a different temporal causal graph for each
mode in the controller history2.

The output of this step is a set of qualitative diagnoses ? � � J % � S�% � \.% I , each with
an associated candidate model, as described in Section 3. Returning to our AERCam
example, three qualitative candidate diagnoses are generated. The first candidate diag-
nosis is that

� - failed in the � acceleration phase. The time of the fault mode transition
is 2 S � � S � 4 , and the parameters associated with the failure – the percentage degradation
of the component is in the range 2 � � + � �14 . So the first candidate qualitative diagnosis
is ? � - � � � 

�� � � �1� S�� � �#��� � � - � � � � � � � + � ��� � � + - � � \1% � � 2 S � � S � 4 � 2 � � + � �(4 I . The candi-
date model simply has � � 
 
�� � � �1� S�� � � ��� � � - � � � ��� � � + � � � � � � ��� � � + - ��� inserted after
the mode � � 
 
�� � � �1� S�� � � � ��� � � + � � + - ��� , and ��� � � - � enforced in every subsequent
mode. The second candidate qualitative diagnosis is that

���
failed in the deceleration

phase of � translation, i.e., ? ��� � � 0 �.
�� � � �1� S�� � � ��� � ��� � � � ��� � � + � ��� � ��� � � +.- � � \ % � �
2 S � � S � 4 � 2 � � + � �14 I . The third candidate is that

���
failed during � acceleration, i.e., ? ��� �

� � 
 
�� � � �1� S�� � �#� � � ��� � � � ��� � � + � ��� � �	� � � + - � � \ % � � 2 S � � S�
 4 � 2 � � + � �14 I , where S�
 is
the time of detection of the aberrant behavior. In each case \ % is a vector of length 12
with every entry equal to � (percentage degradation), except the entries corresponding
to the faulty thrusters,

�
which will have the range 2 � � + � �14 .

4.2 Model Fitting and Comparison

Given the candidate qualitative diagnoses and their associated candidate models, the
next phase of the diagnosis process is quantitative refinement of the qualitative can-
didate diagnoses and their associated models through parameter estimation and data
fitting, followed by tracking of the fit of subsequent observations to the candidate mod-
els. The goal is to at least provide a probabilistic ranking of the plausible candidates, if
not a unique model (and hence diagnosis).

2 We may cut off back-propagation along the mode sequence beyond a time limit.



As observed in the previous section, the model associated with the candidate qualita-
tive diagnosis,

��/10��
is underconstrained. Both the time of the fault mode occurrence,

S�% and the parameters associated with the faulty behavior \ % are represented as ranges
and must be estimated. Further, the candidate qualitative diagnoses were generated from
initial observations of aberrant behavior, and their consistency can be further evaluated
by monitoring the qualitative transients associated with each candidate. The refinement
process is performed by a set of trackers [21], one for each candidate diagnosis and
associated model. Each tracker comprises both a qualitative transient analysis compo-
nent and a quantitative model estimation, component. The two components operate in
parallel as described below.

Qualitative Transient Analysis
The qualitative transient analysis component performs a further qualitative analysis of
the consistency of candidate qualitative diagnoses based on monitoring of higher-order
transients whose manifestation is seen over a longer period of time. If the transients
of a candidate qualitative diagnosis do not remain consistent with subsequent observa-
tions, the candidate diagnosis will be eliminated and the model estimation component
informed. The technique we employ is derived from techniques for qualitative monitor-
ing of continuous systems. Details of the algorithm appear in [18].

Model Estimation
The purpose of the model estimation component is to perform quantitative model fit-
ting, i.e., to provide a quantitative estimate of the parameters of the models and to assign
a probability to each of the candidate models (and hence candidate diagnoses), given
the noisy observed data. In particular, given a candidate model,
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the model es-

timation component uses parameter estimation techniques to estimate both the time at
which the failure occurred, S % , and the value for the parameters, \ % , associated with the
conjectured failure mode. In this paper we discuss two alternate approaches to our time
and parameter estimation problem. The first approach is based on Expectation Maxi-
mization (EM) (e.g., [8]), an iterative technique that converges to an optimal value for
S�% and \1% simultaneously. The second approach we consider employs General Likeli-
hood Ratio (GLR) techniques (e.g., [5]) to estimate the time of failure S#% , and then uses
the observations obtained after the failure to estimate the fault parameters, \ % , by a least
squares method. As described in Section 3, the outcome of both approaches is a unique
value for S % and \ % and a measure of the likelihood of
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given the observations.

The proposed approaches to model fitting have trade-offs and we are currently assess-
ing the efficacy of these and other alternative approaches through experimentation.

EM-Based Approach The Expectation Maximization (EM) algorithm (e.g., [8]) pro-
vides a technique for finding the maximum-likelihood estimate of the parameters of an
underlying distribution from a given set of data, when that data is incomplete or has
missing values. The parameter estimation problem we address in this paper is a vari-
ant of the motion segmentation problem described in [24]. Here, we define the basic
algorithm and the intuition behind our approach. (See [8] for more details.)

The time of failure, S)% � 2 S g � S � 4 of our candidate qualitative diagnosisdictates the
mode in which the failure is conjectured to have occurred. Let us call this mode J ] .
The behavior of our hybrid system in mode Je] is described by the continuous function



U�V�^ , with known parameters \6] . At some (to be estimated) time point S % within the
predicted time period of Je] , we have conjectured that the system experienced a fault
which transitions it into mode J % . The behavior of our hybrid system in mode J % is
described by the continuous function U V(' , with unknown parameters, \ % . We also have
a set of data points $ � � 2 � �#�"! �KS�g � ��L�L7L � � � �"! �AS � � 4 N $ , which either reflect the behavior
of the system under U V ^ or under U V(' .

Given all this information, our task is to find 1) values for parameters \ % , and 2) an
assignment of the data points $ � to either J ] or J % so that we maximize the fit of the
data to the two functions. The assignment of data points will in turn tell us the value
of S % . EM provides an iterative algorithm which converges to provide a maximum-
likelihood estimate for \ % given $ � , i.e., roughly we are calculating the likelihood of \ ,� �K\ � � � �"$ � : \1% � ��/10 � � .

The basic EM algorithm comprises two steps: an Expectation Step (E Step), and a
Maximization Step (M Step) [24]:� Select an initial (random) value for \ % .� Iterate until convergence:

- E Step: assign data points to either U*V�^ �A\] � or U6V ' �K\1% � , which ever fits it best.
- M Step: re-estimate \(% using the data points assigned to U*V ' �K\1% � .

The assignment of data points to Je] and J3% provides an estimate for S)% . We may
exploit the fact that the assignment of data points is temporally correlated with all points
before S�� belonging to J!] , and all points after S�� belonging to J�� . We may also exploit
the fact that data points at the beginning of the interval will belong to J ] , while those
at the end will belong to J % . These task-specific qualities help our algorithm converge
more quickly.

EM provides a rich algorithm for maximum-likelihood parameter estimation when
we don’t know the value of S % . In some hybrid diagnosis applications, depending upon
the sensors in our system, and the level of noise in the sensors, we may be able to de-
velop monitoring techniques that will help isolate a reasonable value for S % , minimizing
the need for iteration in EM. In such cases, an alternative to the EM-based approach is
to first estimate S % using the Generalized Likelihood Ratio (GLR) method [5], followed
by parameter estimation of \(% .

GLR + Least Squares Approach Here, we divide the parameter estimation problem
into two parts: (i) estimate the time of failure, S % , using the Generalized Likelihood
Ratio (GLR) method, and (ii) apply a standard least squares method for parameter esti-
mation. The intuition is that solving the problem in two parts simplifies the estimation
process, and very likely mitigates the numerical convergence problems that arise in
dealing with complex higher-order models.

The GLR method for detecting abrupt changes in continuous signals is described
in [5]. We have applied it to fault transients analysis in complex fluid thermal systems
[16]. Here we provide an overview of the method for the single parameter case. Assume
that the signal under scrutiny is a time-indexed sequence of random variables � ��� � , with
probability density function, ���E^ �	� � in desired mode J�] , and �	� ' �	� � in fault mode J�% .
� is either contained in � � �"! or computed from � �#�"! . We assume that a fault causes an
abrupt change in � �
� � . In the case of the AERCam, � captures the difference between
the observed and expected values of the, e.g., acceleration, as predicted by the model.



The central quantity in the change detection algorithm is the cumulative sum of the
log-likelihood ratio for a window of observations between times 	 and � ,

� Q� �K\ % � �
Q�
M��3�

� � �	� ' ��� �
� ����	��^ �	� �
� ��� L

Again, this ratio is a function of two unknowns: S % and \1% . The common statistical
solution is to use maximum likelihood estimates for these two parameters, resulting in
a double maximization: � Q � ���	���
 � 
 Q������ ' � Q� �A\1% � L

If we assume that probability density functions, � � ^ �	� � and � � ' �	� � are Gaussian,
then � Q reduces to:

� Q � +
-*f �] ���	���
 � 
 Q +� �;	 � +

� Q�
M��3�

�	� ��� � � � ] ��� �

�

where � ] and f �] are the mean and variance for � � ^ �	� � , respectively.
When processing a sequence of samples, the point of abrupt change, S8% , is computed

from 	 * � T�� _ � Q���� Z , where � is an appropriately defined threshold. Hence, the
smaller the value of � , the more sensitive the function to change, and unfortunately to
false alarms, so � must be set carefully.

Once S�% is estimated, data points observed after S % , are used to estimate the parame-
ter, \1% for a hypothesized fault using regression techniques. In the case of the AERCam,
the position vector of the AERCam is modeled as a set of quadratic functions in terms
of the thruster force. These functions contain one unknown, \ % , the parameter that cor-
responds to the degree of degradation in the faulty thruster. The least squares estimate
for \ % is computed, and the the measure of fit of the candidate model to the observed
data used to estimated the probability of the candidate model (and hence, diagnosis).

Model Comparison
From the model estimation component, each tracker computes the likelihood of its
model

��/10 �
, and hence of the associated candidate diagnosis ? � � J % � S�% � \1% I , as a

measure of fit of the observations to the model. As new data � �#��! �KS � are observed, \(%
and S�% � are adjusted and

� � ��/10�� : � �#�"! �KS ��� computed. If the likelihood of
��/10��

falls below a predefined acceptable likelihood threshold, 
 , then its tracker is termi-
nated, and the associated candidate diagnosis ? � � J % � S�% � \1% I removed from the list of
candidate diagnoses. Tracking terminates when a unique diagnosis is obtained, or when
the diagnoses are sufficiently discriminated to determine suitable controller actions.

5 Related Work

The specific problem of diagnosing hybrid systems has received little attention to date,
although there is much related work. Within the AI community, there has been a great



deal of research on diagnosing static systems (e.g., [14]), while much less on diag-
nosing discrete dynamical systems (e.g., [17, 25]), and qualitative representations of
continuous systems (e.g.,. [18]). Within the FDI community, the largest proportion of
research has focused on diagnosing continuous systems (e.g., [13, 11]). The most com-
mon model-based approaches use observer schemes(e.g., [12, 20]), where the goal is to
design residual generators based on observed discrepancies, such that individual resid-
uals are sensitive to a particular subset of faults. There is also complementary work by
Basseville [4], using model-based statistical processing techniques for early fault de-
tection and residual identification. [18] perform residual generation and analysis task in
a qualitative framework to address some of the computational issues that arise in han-
dling the complex dynamics that occur in fault transients, with some preliminary work
on building multiple observers for hybrid systems [19]. Diagnosis of discrete-event sys-
tems has also been studied within the FDI community (e.g, [22, 15]). Fabre et al. [10]
have employed stochastic Petri nets based on a Hidden Markov Model probabilistic
scheme for alarm analysis. Unfortunately, it is not clear how to systematically derive
such representations from the physical system models that we work with.

6 Summary

In this paper we addressed the problem of diagnosing hybrid systems. The main con-
tributions of the paper are 1) formulation of the hybrid diagnosis problem as model
selection; 2) the exploitation of techniques for qualitative diagnosis of continuous sys-
tems to reduce the diagnosis search space; and 3) the use of parameter estimation and
data fitting techniques for evaluation and comparison of candidate diagnoses. This work
continues with experimental analysis of the proposed techniques, and a more formal
characterization of our approach in terms of Bayesian model selection.
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