Forget It!

Fangzhen Lin and Ray Reiter*
Department of Computer Science
University of Toronto
Toronto, Canada M5S 1A4

email: fl@ai.toronto.edu reiter@ai.toronto.edu

1 Introduction

We encountered the need for a theory of forgetting in our
work on Cognitive Robotics.> In our effort to control an
autonomous robot, we imagine the robot has a knowledge
base representing the initial world state. As the robot
performs actions, she needs to bring the knowledge base
up to date. To do so, she needs to forget about all the
facts that are no longer true, and in such a way that this
will not affect any of her possible future actions (Lin and
Reiter [2; 3]).

This paper describes in general terms the particular
forms of forgetting used in (Lin and Reiter [2; 3]). Specifi-
cally, we propose a logical theory to account for: forgetting
about a fact (forget that John is a student), and forgetting
about a relation (forget the student relation). We then
apply our notion of forgetting in defining various notion of
relevance.

2 Forgetting - Basic Concepts

We assume a first-order language £ with equality.

2.1 Forgetting About a Fact

Given a theory T and a ground atom p, we want to define
what it means to forget about p in 7. Intuitively, the
resulting theory should be weaker than the original one,
but entail the same set of sentences that are “irrelevant”
to p.

We shall give a semantic definition of this particular form
of forgetting. To that end, we define an equivalence rela-
tion over structures of £. Let P(Z) be a ground atom of £,
and M; and M, two first-order structures of £. We define
M, ~p) My iff My and M» agree on everything except
possibly on the truth value of P(t_j:

1. My and M5 have the same domain, and interpret every

function the same.

2. For every predicate symbol @ distinct from P,

My [Q] = M;[Q).
3. Let ¥ = M, [t_], then for any tuple d of the elements
in the domain that is distinct from @, d € M,[P] iff
d € M,[P].
Definition 1 Let T be a theory, and p a ground atom. A
theory 71" is a result of forgetting about p in T iff for any

structure M, M is model of T' iff there is a model M’ of
T such that M ~, M.

*Fellow of the Canadian Institute for Advanced Research
1Joint project with Yves Lespérance, Hector Levesque,

Daniel Marcu, and Rich Scherl.

It is clear that if both 77 and T" are results of forgetting
pin T, then they are logically equivalent. In the following,
we shall denote by forget(T;p) the result of forgetting
p in T. We shall show below that forget(T;p) always
exists. But first, we show that forget(T;p) has the right
properties.

Intuitively, forgetting leaves a weaker theory. Formally,
we have:

Proposition 2 T = forget(T;p).

Intuitively, forgetting about p should not affect other
things. To formulate precisely this property, for any
ground atom P(ﬂ, and any formula ¢, we denote by

vl P(ﬂ the result of replacing every occurrence of the
form P(t') in ¢ by

Pty At £ 12

Informally, we can say that P(t_) is irrelevant to a sentence

¢ iff ¢ it is equivalent to a sentence of the form ¢ | P(ﬂ
In particular, if P is a 0-ary predicate, then P is irrelevant
to ¢ iff it is equivalent to a sentence that does not mention

P.

Proposition 3 For any sentence ¢, T = ¢ | p iff
forget(T;p) = wlp.

One of the main technical results of this paper is that
for any finite theory 7" and atom p, forget(T'; p) exists and
can be obtained from 7" and p by simple syntactic manip-
ulations. To formulate this result, we need to introduce
some notation.

Let ¢ be a formula, and P(t_) a ground atom. We denote
by @[P(%)] the result of replacing every occurrence of the

form P(t7) in ¢ by

=1 AP VI#T AP
It is clear that ¢ and @[P(f)] are equivalent. We denote
by 50;({) the result of replacing P(f) by true in @[P({)],
and symmetrically by 30;({) the result of replacing P(f) by
false in @[P(1)].

For instance, if ¢ is
student(John) V student(Joe) V teacher(John),

and p is student(John), then ¢[p] is

—

2f'={ is a shorthand for t; = t{ A ---At, =¢,. lf n =0,
then ¥ = # is true.

John = John A student(.John) V
John # John A student(.John) V
John = Joe A student(John) V
John # Joe A student(Joe) V
teacher(John).
So 50; is

John = John AtrueV

John # John AtrueV

John = Joe Atrue V

John # Joe A student(Joe) V

teacher(John),

which is equivalent to true. It can be similarly shown that
¢, is equivalent to

(John # Joe A student(Joe)) V teacher(John).

We are now ready to state the theorem. Without loss
of generality, we consider only singleton theories. It is
easy to see that if T = {p1,...,n}, then for any atom
p, forget(T;p) is equivalent to forget(T’;p), where T" =
{er A At
Theorem 4 Let T = {p} be a theory, and p a ground
atom. Then

forget(T,p) = {goz')" Ve, }

Proof: Suppose that ¢ is a formula. By induction on the
syntactic form of ¢, we can show that for any structure M,
and any variable assignment o

1. Mo |£ ¢f iff M',0 |= ¢, where M’ is the unique
structure satisfying the properties M’ ~, M and
M E=p.
2. M,o = ¢, iff M',0 = ¢, where M’ is the unique
structure satisfying the properties M’ ~, M and
M' = —p.
From these results, it is straightforward to obtain the the-
orem. W

Example 5 Let
T, = {student(John) V student(Joe) V teacher(John)}.

Then
forget(T; student(John)) = {true}.
Let To = {¢}, where ¢ = (Ju)student(z).
p[student(John)] is

Since

(Fz).(x = JohnAstudent(John))V(z # JohnAstudent(x)).

At
Thus Sostudenl(Johnj)

forget(Ty; student(John)) = {true}.

Let T3 = {¢}, where ¢ = (Va)student(z).
p[student(John)] is

is equivalent to true. Therefore

Since

(Vz).(x = JohnAstudent(John))V(z # JohnAstudent(x)).

At
Thus sOstudent(]ohn)

(Vz).x # John D student(z),

is equivalent to

and Ptudent(John) is equivalent to
(Vz).x # John A student(z).
Therefore forget(Ts; student(John)) is
{(V&).x # John D student(z)}.

|

Notice that 75 and T3 in the example show the necessity
of transforming a formula ¢ into ¢[p] before substituting
p by true and false.

So far we have defined forgetting only for a single atom.
Let p1,...,pn be a sequence of ground atoms, we de-

fine the result of forgetting about p1,...,p, in T, written
forget(T;p1, ..., pn), to be, inductively,

forget(forget(T;p1, ..., Pn-1); Pn).-
Semantically,
a structure M is a model of forget(T;pi,...,pn) iff it it
agrees with a model of T" on everything except the truth
values of p1, ..., pn. This means that the order of the atoms
does not matter. Indeed, forget commutes:
Proposition 6 For any theory 7" and any ground atoms

p1 and pa, forget(forget(T;p1);p2) and
forget(forget(T;ps);p1) are logically equivalent.

2.2 Forgetting About a Relation

Sometimes it may be necessary for an agent to forget an
entire relation instead of an instance of it. As we shall see,
forgetting about a relation is a second-order notion. In the
following, all theories and formulas are assumed to be in
L?, the second-order extension of L.

Let P be a predicate, we can similarly define the relation
~p as: for any structures My and M5, My ~p My iff M,
and Ms agree on everything except possibly on P.

Definition 7 Let T be a theory, and P a predicate. A
theory 7" is a result of forgetting P in T iff for any struc-
ture M, M | T iff there is a model M’ of T" such that
M ~p M.

Again, if both 77 and 7" are results of forgetting P in T
then 7" and T" are logically equivalent. We’ll also denote
by forget(T; P) the result of forgetting P in T.

Theorem 8 Suppose T' = {¢}, and P is an n-ary predi-
cate. Then

forget(T; P) = {(3R)¢(P/R)},
where R is an n-ary second-order predicate variable, and
©(P/Q) is the result of replacing every occurrence of P in

¢ by Q.
Example 9 Consider the theory
T, = {student(John) V student(Joe) V teacher(John)}.
By Theorem 8, forget(T; student) is
{(3R).R(John) V R(Joe) V teacher(John)},

which is equivalent to true because (IR)R(John) is valid
in second-order logic.
Consider the theory

To = {(student(John) V student(Joe)) A teacher(John)}.
By Theorem 8, forget(T; student) is

{(3R).(R(John) V R(Joe)) A teacher(John)},
which is equivalent to teacher(John). R

For the two theories in the example, forgetting happens
to be first-order definable. However, this is not true in
general. For instance, a result from (Lin and Reiter [2])
implies that there is a finite first-order theory 7', and a
predicate P such that forget(T; P) is not first-order ex-
pressible.

Many properties of “forgetting about a fact” hold as well
here:

Proposition 10 Let T be a theory, and P and P’ two
predicates.

1. T |= forget(T; P).

2. For any formula ¢ that does not mention P, T |= ¢
iff forget(T; P) = .

3. forget(forget(T; P); P") and
forget(forget(T; P'); P) are equivalent.

We can also extend forget to a sequence of
predicates: for a sequence of predicates Py, ..., Py,
forget(T; Py, ..., P,) is defined, inductively, to be
forget(forget(T; Py, ..., Po_1); Py). Again, this definition
is independent of the order of the predicates.

The dual of forgetting is remembering. Let T" be a the-
ory, and P, ..., P; a sequence of predicates mentioned in
T. Let Pry1,..., Py, be the remaining predicates mentioned
in T. We define the result of remembering only Py, ..., Py
in T, written remember(T; Py, ..., Py), to be the result of
forgetting the remaining predicates Py41,..., P, In T, i.e.,

remember(T; Py, ..., Py) = forget(T; Pyg1, ..., Py).

The following result relates “remember only” to prime
implicates (Reiter and de Kleer [4]) for propositional the-
ories. Notice that for any propositional theory 7', and any
primitive proposition p, forget(T; p) can be understood in
two ways: as “forgetting about a fact” with p as a ground
atom, and as “forgetting about a relation” with p as a 0-ary
predicate. Fortunately, these two readings are equivalent.

Theorem 11 Suppose that T is a finite set of proposi-
tional clauses. Then for any sequence of primitive proposi-
tions p1, ..., pr, remember(T;p1, ..., px) is equivalent to the
set of prime implicates of T' that mention only primitive

propositions in {p1, ..., px}-

Proof: Let 7" be the set of prime implicates of 7' that men-
tion only primitive propositions in {pi,...,pr}. By Theo-
rem 8, remember(T; p1, ..., pr) is equivalent to a sentence
that mentions only primitive propositions in {p1, ..., px}-
Thus by the definition of prime implicates, it is easy to see
that 7' entails remember(T;p1, ..., pr).

Conversely, by Proposition 10, for any sentence ¢ that
mentions only primitive propositions in {p1,...,pr}, we
have that T = ¢ iff remember(T;p1,...,px) E ¢. But
by the definition of prime implicates, T' |= T”, therefore
remember(T; p1, ..., pi) entails 7" as well. B

3 Relevance and Irrelevance

What we have defined is a notion of forgetting. What we
haven’t addressed so far are strategies as what to forget.
Given a theory and a class of queries, a natural strategy is
to forget everything in the theory that is irrelevant for an-
swering the queries. There are three key notions involved

in this strategy: a notion of forgetting; a notion of irrel-
evance; and a notion of equivalence between two theories
w.r.t. a given class of queries. These three notions are re-
lated. In fact, any one can be defined in terms of the other
two. For instance, if we had a definition of irrelevance, we
could then define that two theories are equivalent w.r.t. to
a class of queries iff they are logically equivalent to a theory
that is obtained from them by forgetting some irrelevant
facts. In the following, however, we shall define some no-
tion of irrelevance in terms of various notion of equivalence
w.r.t. a class of queries. For simplicity, we consider only
single query.

For any first-order theory, and any query which we as-
sume to be a first-order sentence, there are three possible
cases: the theory may entail the query or its negation or
neither of them. It is then natural to define that two the-
ories T1 and T5 are equivalent w.r.t. the query q iff

Tl':qlﬁT2'ZQ;

and
T1 I: —q iff T2 ': —q.
So we define:

Definition 12 Let T be a theory, ¢ a query, and p a
ground atom. We say that p in T is irrelevant for an-
swering ¢ iff T and forget(T;p) are equivalent w.r.t. ¢.

Consider the theory
T = {student(John), student(John) D young(John)},

and the query young(John). We see that for this
query the fact student(John) is irrelevant, because
T and forget(T;student(John)) are equivalent w.r.t.
young(John). This may seem rather counter-intuitive.
However, notice that theory T is logically equivalent to
the theory

{student(John), young(John)}.

More generally, by Proposition 3, we see that if the pred-
icate in atom p does not appear in the query, then p will
be irrelevant for answering gq.

One can imagine many objections to the above notion
of irrelevance. For example, consider the theory

{student(John) D young(John)}.

According to our definition, student(John) is irrelevant
for answering the query young(John). One may object to
this assertion on the ground that it is too strong, and that
in general one should allow conditional relevance. For in-
stance, if it is later learned that student(.John) holds, we
would be able to answer the desired query positively. How-
ever, without any restriction on what can be learned in the
future, the notion of relevance becomes trivial, for any ir-
relevant information can always become relevant once cer-
tain other relevant information is learned. Still, it seems
intuitive to say that what counts as relevant now partly
depends on what information may possibly be learned in
the future. The following is a simple minded formalization
of this intuition. Again, we define it through a suitable
notion of equivalence.

Let ¢ be a query, and P a set of learnable sentences.
We say that two theories 71 and 75 are equivalent w.r.t. g

and P iff for any subset P’ of P, Ty UP’ and Ty UP’ are
equivalent w.r.t. ¢ whenever both 79 UP’ and T, U P’ are
logically consistent. In other words, 77 and 75 are equiv-
alent for answering ¢ regardless of what may be learned
later.

Definition 13 Let 7" be a theory, P a set of learnable
sentences, ¢ a query, and p a ground atom. We say that
p in T is irrelevant for answering ¢ iff T and forget(T;p)
are equivalent w.r.t. ¢ and P.

Consider the theory

T = {student(John) D young(John),
immortal(John) D young(John)}.

Suppose the query is young(John), and the set of learnable
sentences is

{student(John), ~student(John)}.

Then student(John) is relevant, but immortal(John) is
not. Notice that forget(T;immortal(John)) is

{student(John) D young(John)}.

In general, if a predicate does not appear in the query,
nor in the learnable sentences, then any ground atom con-
structed from the predicate will be irrelevant for answering
the query. However, the converse is in general not true.
Consider the theory

{student(John) D young(John),
student(.John) D people(.John)}.

Suppose the set of learnable sentences is

{student(John), ~student(John), young(John),
—young(John), people(John), ~people(John)}.

Then for query young(John), student(.John) is relevant,
but people(John) is not. This implies that the agent in this
case should actively seek the truth value of student(John),
but not that of people(.John).

As an extended example, consider again our motivating
problem of progressing a database (Lin and Reiter [2]).
Suppose D is a situation calculus theory of actions, and
Ds, an initial database. To compute the new database af-
ter action « has been performed, compute first the projec-
tion of D onto the states Sy (the initial state) and do(«, Sp)
(the state resulting from performing « in Sp), then forget
all sentences mentioning the initial state Sy in the union of
the projection and Dg,. This strategy of forgetting about
Sp is justified because we can show that for all future
queries, the initial state is irrelevant regardless of what
new knowledge the robot may obtain through her sensors.
For sensor readings are always about the current state. In
particular, knowledge about the past can never be directly
obtained from perception.

4 Related Work

In the propositional case, Weber [7] has proposed 50; Ve,
as a form of forgetting, and used it to formalize database
updates. In the first-order case, Vladimir Lifschitz® has

3 . .
Personal communication.

proposed (3Q)p(P/Q) as a formalization of forgetting
about P in ¢. Independently, Gabbay and Ohlbach
[1] have implemented a resolution algorithm for elimi-
nating second-order quantifiers in formulas of the form
(3P1, ..., Py)p. However, they were not interested in the
notion of forgetting per se, rather they applied their al-
gorithm to compute circumscription, modal correspon-
dence theory, and others that involve second-order univer-
sal quantifications. We consider our main contributions to
be in proposing a coherent semantics, and showing that it
has the desired properties.

A radically different approach is taken by Subrama-
nian [6]. A fundamental difference between our definition
and Subramanian’s is that hers does not in general pre-
serve logical equivalence. It is to a large degree syntax
oriented in the sense that the result of forgetting depends
on the syntactic forms of theories. It will be interesting to
see the tradeoff between syntax oriented approaches and
semantics oriented ones.

5 Conclusions

We have defined a notion of forgetting, and showed that it
can be used to define various notion of irrelevance.

As for future research, we are particularly interested in
identifying some special classes of theories for which our
notion of forgetting can be efficiently computed. In gen-
eral, computing forget(T;p1, ..., pn) requires doing expo-
nential number (in the size of n) of substitutions. Tt’s even
worse for forget(T; Py, ..., P,): it may not even be first-
order definable. In the framework of the situation cal-
culus, we have found some useful special cases for which
progression (thus forgetting) can be done efficiently. We
are currently investigating if there are similar special cases
in the more general context. It is particularly interesting
to look for such cases in the context of logic programming.
For instance, forgetting about a fact in a logic program is
like partially evaluating the involving predicate.

We are also investigating some promising applications of
our notion of forgetting. In model-based diagnosis, given
a system description 7' and a set O of observations, it
turns out that remembering only the abnormality predi-
cate ab in T'U O is precisely the mazimally abstract diag-
nosis (Saraswat and de Kleer and Raiman [5]) of T and
0. Our notion of forgetting is also closely related to so-
called hidden or intermediate states: T' can be considered
to compute forget(T; P) by using P as an intermediate
predicate.

Acknowledgements

We have benefited much during the course of this work
from discussions with and comments by Russ Greiner,
Vladimir Lifschitz, and the other members of the Uni-
versity of Toronto Cognitive Robotics Group: Yves
Lespérance, Hector Levesque, Bill Millar, Daniel Marcu,
and Richard Scherl. This research was funded by the Gov-
ernment of Canada National Sciences and Engineering Re-
search Council, and the Institute for Robotics and Intelli-
gent Systems.

References

(1]

D. M. Gabbay and H. J. Ohlbach. Quantifier elimination
in second-order predicate logic. In Proceedings of the Third
International Conference on Principles of Knowledge Rep-
resentation and Reasoning (KR’92), pages 425-436, 1992.

F. Lin and R. Reiter. How to progress a database (and
why) I. Logical foundations. In Proceedings of the Fourth
International Conference on Principles of Knowledge Rep-
resentation and Reasoning (KR’94), 1994.

F. Lin and R. Reiter. How to progress a database II: The
STRIPS connection. 1994. Submitted.

R. Reiter and J. de Kleer. Foundations of ATMS. In Pro-
ceedings of the Sizth National Conference on Artificial In-
telligence (AAAI-87), 1987.

V. A. Saraswat, J. de Kleer, and O. Raiman. Contributions
to a theory of diagnosis. In Working Notes of First Interna-
tional Workshop on Principles of Diagnosis, pages 33-38,
Stanford University, Stanford, CA, 1990.

D. Subramanian. A Theory of Justified Reformulations.
PhD thesis, Department of Computer Science, Stanford
University, Stanford, CA, 1989.

A. Weber. Updating propositional formulas. In Proceedings
First Conference on Fxpert Database Systems, pages 487—
500, 1986.

