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Abstract

Suppose we are given a theory of system behavior and a set of candidate hypotheses. Our
concern 1s with generating tests which will discriminate these hypotheses in some fashion. In
the AT literature on hypothetical reasoning and in particular diagnosis, there has been a great
deal of research on generating candidate hypotheses, but much less work on the generation
of tests to discriminate these hypotheses. This paper represents preliminary work on the
generation of tests for hypothetical reasoning.

We logically characterize test generation as abductive reasoning. Aside from providing a
formal specification of test generation, there is immediate practical benefit from our theoretical
characterization. We are able to bring to bear the abundant research on abduction to advance
research on the generation of tests. We show how several abductive reasoning frameworks may
be used to generate tests. Furthermore, we address the issue of computational complexity.
It has long been known that test generation is NP-complete [10]. This is consistent with
complexity results on the generation of abductive explanations. By syntactically restricting the
description of our theory of system behavior or by limiting the completeness of our abductive
reasoning, we are able to define notions of tractable test generation.

1 Introduction

Diagnostic reasoning is often viewed as an iterative generate-and-test process. Given a description
of a system together with observations of system behavior, a set of candidate diagnoses is produced
which account for the observed behavior. From the set of candidate diagnoses, one or more tests
is generated, executed and the observed behavior fed back into the diagnostic problem solver to
determine a new set of candidate diagnoses. In this paper we specifically examine the task of test
generation as it applies to hypothetical reasoning, and in particular to diagnosis.

Consider a set of hypotheses HY P which we entertain about some state of affairs represented
by a propositional sentence >. We are concerned with generating tests to discriminate these hy-
potheses relative to some hypothetical reasoning goal. In a diagnosis setting, the hypotheses could
represent potential diseases, the diagnostic goal, to eliminate a particular disease candidate from
consideration and the tests, observations of symptoms or medical test results. In an active vision
setting, the hypotheses could represent candidate interpretations for an object in a scene, the
goal, to uniquely identify the object by candidate elimination and the tests, observation of new
visual features resulting from a camera movement. Hypothetical reasoning covers a range of Al
applications, all characterized by the objective of generating hypotheses and then distinguishing
these hypotheses relative to some theory through the use of testing. Diagnosis, plan recogni-



tion, image understanding and aspects of natural language understanding are all instances of
hypothetical reasoning problems.

Hardware designers have examined the problem of test generation for years. It is acknowledged
to be computationally costly; even the problem of generating tests for simple combinational
Boolean circuits is NP-complete [10]. Much of what is found in the traditional design literature is
test generation algorithms for specific classes of digital circuits. These algorithms are not directly
applicable to the diversity of test generation problems in hypothetical reasoning domains. In
the Al test generation literature, the emphasis has also been on diagnosis of digital circuits.
DART [9] and GDE [7] for example, both provide mechanisms for rudimentary test generation
within their diagnostic frameworks. Much of the Al literature focuses on strategies to deal with
complexity, such as the use of hierarchical designs [24], [9], probabilities [5] and look-up tables [15].
Interestingly, there has been little to no formal analysis of the problem of test generation in the
Al literature. Our objective is to move beyond the specific problem of testing digital circuits and
to examine the general problem of test generation for hypothetical reasoning, including diagnosis.

In an earlier paper, Mcllraith and Reiter [14] provided a logical characterization of testing for
hypothetical reasoning. They characterized tests in terms of the prime implicates PI(¥) of ¥.
Since the ATMS computes (many) PI(X) in generating diagnoses, it was shown that tests could
simply be “read off” from PI(X) with no further computation necessary. Many tests are thus
generated for free. While a nice result for ATMS-based problem solvers, it is of limited use for
hypothetical reasoning problem solvers that do not compute the prime implicates of 3.

In this paper we take the logical characterization of tests introduced in [14] and use it as a
basis for examining the task of test generation. We characterize test generation as abduction.
In so doing, we are able to apply the abundant research on abduction to gain insight into the
generation of tests. Specifically, we demonstrate how tests may be generated using several different
abductive reasoning frameworks. Additionally, we examine the issue of complexity, gaining insight
into tractable and intractable test generation problems.

2 Preliminaries

We follow the framework provided in [14], which is reviewed in this section. A fixed propositional
language is assumed throughout. > will be a fixed sentence of the language, and will serve as
the relevant background knowledge describing the system under analysis. For example, in the
case of circuits, ¥ might describe the individual circuit components, their normal input/output
behavior, their fault models, the topology of their interconnections, and the legal combinations of
circuit inputs (e.g. [7], [21]). We also assume a fixed set HY P of hypotheses. In the case where
3. describes a circuit, HY P might be the set of diagnoses which we currently hold for this device.
How we arrived at the set HY P will be largely irrelevant for our purposes. HY P could be a set
of abductive hypotheses [17], the result of a consistency-based diagnostic procedure [6], or any
other conceivable form of hypothesis generation. We make two assumptions about H € HY P.
The first assumption is that H be a conjunction of literals of the propositional language. The
second assumption is that for all H € HY P, ¥ £ H and ¥ [~ —H.

Informally, the notion of a test provides for certain initial conditions which may be established
by the tester, together with the specification of an observation whose outcome determines what
the test conclusions are to be. For example, in circuit diagnosis the initial conditions of a test
might be the provision of certain fixed circuit inputs, and the observation might be the resulting
value of a circuit output, or the value of an internal probe. In the medical setting, the initial
conditions might involve performing a laboratory procedure like a blood test, and the observation
might be the white cell count. In an active vision setting, the initial conditions might involve



changing the camera angle or moving objects in the scene, and the observation might be some
aspect of the corresponding image. We provide for a formal definition of a test by distinguishing
a subset of literals of our propositional language, called the achievable literals. These will specify
the initial conditions for a test. In addition, we require a distinguished subset of the propositional
symbols of our language called the observables. These will specify the observations to be made
as part of a test.

Definition 1 (Test) A test is a pair (A, o) where A is a conjunction of achievable literals and
o is an observable.

A test specifies some initial condition A which the tester establishes, and an observation o
whose truth value the tester is to determine.

Definition 2 (Outcome of a test) The outcome of a test (A, o) is one of o, —o.

In other words, as a result of performing the test (A, o) in the physical world, the truth value
of o is observed. If o is observed to be true, the outcome of the test is o, otherwise —o.

Definition 3 (Confirmation, Refutation) The outcome o of the test (A,o0) confirms H €
HYP iff AN AN H is satisfiable, and YN A= H D «. « refutes H iff X AN AN\ H is satisfiable,
and XN Al H D —a.

At first, the requirement in this definition that ¥ A A A H be satisfiable might seem odd.
However, not all conjunctions A of achievable literals will be legal initial conditions, for example
simultaneously making a digital circuit input 0 and 1. Since X will encode constraints determining
the legal initial conditions, we require that > A A be satisfiable. Moreover, hypothesis H could
conceivably further constrain the possible initial conditions A permitted in a test. For example,
the hypothesis that radioactivity has escaped within a reactor would prevent a test in which
humans enter the reactor chamber. In such a case, ¥ would include a formula of the form
radioactivity O —enter-chamber so that 3 A enter-chamber Aradioactivity would be unsatisfiable,
in which case the very idea of a confirming or refuting outcome of such a test would be meaningless.

Mcllraith and Reiter [14] show that a refuting test outcome allows us to reject H as a possible
hypothesis, regardless of how we arrived at our space of hypotheses, HY P. A confirming test
outcome is generally of no deterministic value except in the case where our space of hypotheses is
defined abductively and HY P is comprised of all and only the hypotheses being considered. In
such a case, it was shown [14] that there is a duality between confirming and refuting tests and
that a confirming test outcome has discriminatory power, eliminating hypotheses which do not
explain it, by virtue of the definition of abductive hypothesis.

Discriminating tests are characterized as those tests (A, 0) which are guaranteed to discrimi-
nate an hypothesis space HY P, i.e., which will refute at least one hypothesis in HY P.

Definition 4 (Discriminating Tests) A test (A, o) is a discriminating test for the hypothesis
space HY P iff ¥ N AN H is satisfiable for all H € HY P and there exrists H;, H; € HY P such
that the outcome « of test (A, o) refutes either H; or H;, no matter what that outcome might be.

By definition, a discriminating test must refute at least one hypothesis in the hypothesis space.

Definition 5 (Minimal Discriminating Tests) A discriminating test (A, o) for the hypothe-
sis space HY P is minimal iff for no proper subconjunct A" of A is (A’,0) a discriminating test

for HY P.



Minimal discriminating tests preclude unnecessary initial conditions, for example unnecessary
circuit inputs, laboratory tests, etc. Only those conditions necessary for producing the test
outcome are invoked.

In many instances our theory will not provide us with discriminating tests. Relevant tests
are those tests (A, o) which have the potential to discriminate an hypothesis space HY P, but
which cannot be guaranteed to do so. Given a particular outcome «, relevant tests will refute
a subset of the hypotheses in the hypothesis space HY P, but may not refute any hypotheses if
-« is observed. Since there is no guarantee a priori of the outcome of a test, these tests are not
guaranteed to discriminate an hypothesis space.

Definition 6 (Relevant Tests) A test (A,o0) is a relevant test for the hypothesis space HY P
iff XA AN H is satisfiable for all H € HY P and the outcome o of test (A, o) either confirms a
subset of the hypotheses in HY P or refutes a subset.

Definition 7 (Minimal Relevant Tests) A relevant test (A, o) for the hypothesis space HY P
is minimal iff for no proper subconjunct A" of A is (A’,0) a relevant test for HY P.

Again, minimal relevant tests preclude unnecessary initial conditions.

Example 1.

Consider a simple medical diagnosis problem where we suspect that a patient is suffering from
either mumps, measles, chicken pox or the flu.
HY P = {mumps, measles, chicken_poz, flu}
=

measles D red_spots

chicken_pox D red_spots

mumps D swollen_glands

flu D fever

Both the hypothesis that the patient has measles and the hypothesis that the patient has
chicken pox, infer the observation of red spots. However, neither the hypothesis that the patient
has mumps or the hypothesis that the patient has the flu infer anything about the existence or
lack of existence of red spots. As a result, the outcome of a test to observe red spots will only
provide discriminatory information if we observe red_spots to be false. In such a case we can
refute both chicken_pox and measles. However, if we observe red_spots to be true, we are unable
to reject any of the four hypotheses. Thus, the test ({},red_spots) is an example of a minimal
relevant test. No discriminating test exists for our theory ¥ and hypothesis space HY P.

Note, in [14] it was shown that if we assume HY P contains all and only the hypotheses to be
considered, and if the space of hypotheses is defined abductively, then every relevant test acts as
a discriminating test. In our example above, if these conditions are met, then red_spots would
eliminate flu and mumps since neither hypothesis abductively explains red_spots.

3 Characterizing Test Generation as Abduction

Suppose we are given a theory of system behavior, a set of hypotheses, a set of achievables
and a set of observables. The task is to generate a test, drawn from the set of achievables and
observables which will meet some hypothetical reasoning objective. The objective could be to
refute a particular hypothesis, to confirm a particular hypothesis, or simply to discriminate the
hypothesis space.



Intuitively, the generation of tests, particularly the generation of observable outcomes seems
to be deductive in nature. Given a theory X and achievable A, conjoin the hypothesis H and
predict observations. Test to see whether those observations are indeed true, and if they are false,
refute H.

There are several problems with using deduction to generate tests. Theorem provers generally
use resolution refutation to deduce whether or not a particular proposition is true, not to deduce
what is true (i.e., all logical consequences of a theory). Furthermore, deduction alone does not
resolve the problem of identifying both the achievables and the observables of a test.

A better formulation of test generation is as theory formation. Given X and the objective
of generating a test to attempt to eliminate H € HY P, what test could be conjoined to ¥ to
potentially refute H? (i.e., Find a test (A, 0) such that ¥ U (4, 0) = —-H.)

The pattern of inference is easily recognized as abduction. [2], [18].

In this section, we characterize test generation as abduction. The sections to follow examine
some practical benefits of these theoretical results.

Definition 8 (Abductive Explanation) Given a propositional theory ¥ and a propositional
formula O, E, a conjunction of literals is an abductive explanation for O iff ¥ AN E = O and
YA FE is satisfiable.

Definition 9 (Minimal Abductive Explanation) F is a minimal abductive explanation for
O iff no proper subconjunct of E is an abductive explanation for O.

Testing is performed to meet some hypothetical reasoning objective. Often the objective
is simply to perform tests which will eliminate the maximum number of hypotheses. In other
instances, it may be desirable to confirm a particular hypothesis, to refute a particular hypothesis
or to discriminate (and thus eliminate) some subset of hypotheses in the hypothesis space HY P.
We characterize the notion of confirmation and refutation in terms of abductive explanations.
Further, we demonstrate how discriminating tests and relevant tests may be characterized and
hence generated abductively.

Proposition 1 (Confirmation, Refutation) The outcome a of the test (A, o0) confirms H €
HY P iff ¥ N AN H is satisfiable, and A N\ -« is an abductive explanation for —H. « refutes H
iff XN AN H is satisfiable, and A N\ « is an abductive explanation for —H.

This follows directly from Definition 3.

Example 2.

Returning to the axioms provided in Example 1, the outcome red_spots of the test ({}, red_spots)
confirms measles and chicken_pozx since —red_spots is an abductive explanation for both —measles
and —chicken_pox. Similarly, the outcome —swollen_glands of the test ({}, swollen_glands)
would refute mumps since —swollen_glands is an abductive explanation for ~mumps.

If our objective is to eliminate hypotheses in HY P, we ideally want to generate minimal
discriminating tests. Whether the outcome of our test (A,o0) is o or —o, a discriminating test
guarantees that the outcome, when conjoined to ¥ will refute at least one hypothesis in HY P.



Theorem 1 (Discriminating Tests)
(A, 0) is a discriminating test for the hypothesis space HY P iff

1. X ANANAH is satisfiable VH € HY P,
2. A Ao is an abductive explanation for \/ . cpy p —H;

3. AN =o is an abductive explanation for \/ g cpy p —H;
4- L Vu,enyp Hi

We add the fourth condition to eliminate the null test. For example, if our theory states that
H; and H; are mutually exclusive (i.e., =(H; A H;)) then no test is needed to discriminate them.
A similar problem arises if the disjunction of hypotheses is a tautology (i.e., (H; V —H;)).

If condition 4 is violated, then a discriminating test must be designed using a subset of HY P
for which condition 4 holds. The point is to find a test (A,o0) such that for some H,, and

H, € HY P, A Ao is an abductive explanation for —-H,, and A A —o is an abductive explanation
for - H,,.

Corollary 1 (Minimal Discriminating Tests)
(A, 0) is a minimal discriminating test for the hypothesis space HY P iff

1. X ANAANH is satisfiable VH € HY P,

2. A" Ao is a minimal abductive explanation for Vu,enyp ~Hi
3. A" A—o is a minimal abductive explanation for Vu,enypHi
4. A=A A A"

5. Y Vyenyp ~Hi

All the minimal tests defined here preclude unnecessary initial conditions.

Example 3.
To illustrate the concepts in this section, we take liberties with our domain and extend the X
described in Example 1 with the the following three axioms.
hepatitis D pos_blood _test
—hepatitis D —pos_blood test
mumps D —red_spots
HY P = {mumps, measles, chicken_poz, flu, hepatitis}
To find a minimal discriminating test, we must find a test (A, o) such that:
A A ois a minimal abductive explanation for
—mumpsV —~measles V -chicken_pox V — flu V —hepatitis, and
A A —ois a minimal abductive explanation for
—mumps V —measles V —chicken_pox V = flu V —hepatitis
({}, red_spots) is such a test since red_spots explains =mumps and —red_spots explains =chicken_pox
and —measles.

If our objective is to establish the truth or falsity of a particular hypothesis in HY P, we
ideally want to generate minimal individual discriminating tests. As a result of this test, we will
know either H; or —H;.



Theorem 2 (Individual Discriminating Tests)
(A, 0) is an individual discriminating test for H; € HY P iff

1. XANANAH is satisfiable VH € HY P,
2. ANo is an abductive explanation for - H;

3. AN -o is an abductive explanation for H;

Corollary 2 (Minimal Individual Discriminating Tests)
(A, 0) is a minimal individual discriminating test for H; € HY P iff

1. X ANAANH is satisfiable VH € HY P,
2. A" Ao is a minimal abductive explanation for —H;

3. A" A =0 is a minimal abductive explanation for H;

4. A=A AA"

To illustrate, if our hypothetical reasoning objective is to establish the truth or falsity of
hepatitis, then ({}, pos_blood_test) would be an individual discriminating test for hepatitis.

As noted previously, many domains do not provide discriminating tests. In such a case, we
must generate relevant tests in order to attempt to eliminate hypotheses in HY P. Relevant tests
are those tests which have the potential to discriminate an hypothesis space, but which cannot
be guaranteed to do so since they only discriminate if « is observed, but not if =« is observed.

Theorem 3 (Relevant Tests)
(A, 0) is a relevant test for the hypothesis space HY P iff

1. XANAANH is satisfiable VH € HY P,
2. A Ao is an abductive explanation for \/ . cpy p —H;

3. X ¥ Vay.enyp ~H,

4. AN o is not an abductive explanation for -H;,VH; € HY P

The fourth condition ensures that some discrimination occurs — that an outcome of a test
would not result in the refutation of all hypotheses. It may be the case in some applications that
it is desirable to eliminate all the hypotheses in HY P. In such a case, the fourth condition may
be ignored.

Corollary 3 (Minimal Relevant Tests)
(A, 0) is a minimal relevant test for the hypothesis space HY P iff

1. X ANANAH is satisfiable VH € HY P,
2. ANo is a minimal abductive explanation for \/ g ¢y p —Hi

3. X ¥ Vaenyp ~Hi

4. AN o is not a minimal abductive explanation for —H;,YH; € HY P



({}, 7swollen_glands) is an example of a minimal relevant test. If —swollen_glands is ob-
served, then mumps is refuted. Conversely, if swollen_glands is observed, then the test is of
no discriminatory value in the general case. Recall again that when the space of hypotheses
is defined abductively and when HY P represents all the hypotheses to be considered, then all
relevant tests act as discriminating tests [14] and the observation of swollen_glands from the test
({}, ~swollen_glands) would result in the elimination of all hypotheses in HY P except mumps.

The concept of a minimal individual relevant test follows trivially from the descriptions of
minimal individual discriminating tests and minimal relevant tests. It is not listed here.

4 Practical Benefits of our Characterization

There are many benefits to formal specification of a reasoning task. Primarily, it provides a non-
procedural specification of the task from which meta-theoretic properties may be proven. From
it, we are able to assess the impact of assumptions, of syntactic restrictions etc. Furthermore,
it enables us to realize the task relative to the specification and to establish correctness proofs
for our algorithms. In this particular instance, we are fortunate that we have characterized test
generation in terms of abduction, an inference procedure that boasts a large body of research. As
a result, we are able to immediately exploit research in abduction to gain valuable insight into
test generation.

In particular, we examine two issues: the mechanization of test generation and tractable
abductive test generation.

4.1 Mechanizing Test Generation

By characterizing test generation as abduction we may employ existing abductive reasoning mech-
anisms to generate tests. Most of the logical abductive reasoning frameworks are based on resolu-
tion theorem provers. In this section we demonstrate several different mechanisms for generating
tests abductively using resolution theorem provers.

The general problem is to find a test (A, o) satisfying a logical formula of the form XA AAO +
X, where O represents o or —o and X represents an individual hypothesis or disjunction of negated
hypotheses. O and X are determined by the type of test and are specified in Theorems 1-3 and
Corollaries 1-3 of the previous section. For example, when generating a relevant test, as specified
in Theorem 3, O would be 0 and X would be \/ g .y p —H;.

YANAANOF X is equivalent to X A AAOA-X F L. As such, the problem of generating
an abductive explanation for X may be recast as finding a refutation proof for X which employs
literals drawn from a distinguished set of achievables and observables. Currently the most popu-
lar mechanism for computing abductive explanations (e.g., [20], [2], [3], [16] [19]), this technique
is often referred to as proof-tree completion. To generate tests, > and =X may be conjoined and
converted to clausal form. Linear resolution may be used to attempt to derive L. The proof
will fail, but will result in so-called dead ends. If these dead ends can resolve with achievables
and observables to derive L then the minimal achievables and observables required for the proof
constitute an abductive explanation for X and may constitute a test if they adhere to the specific
test criteria defined in Theorems 1-3 or Corollaries 1-3.

Example 4.
Returning to Example 3, in order to find a minimal discriminating test for HY P given X, we
must convert ¥ to clausal form and conjoin =\ cgyp ~H;. Thus, we conjoin —=(—~mumps Vv



—measles V —chicken_pox V = flu V —hepatitis) (which is equivalent to mumps A measles A
chicken_pox A flu A hepatitis) to ¥. The proof will terminate at several dead ends includ-
ing red_spots, —red_spots, swollen_glands etc. The addition of any of these observables would
complete the proof, but only the observable red_spots will fulfill the criteria for a minimal dis-
criminating test defined in Corollary 1. Thus, ({}, red_spots) is a minimal discriminating test for
> and HY P.

There are several proof-tree-style abductive inference engines (e.g., [20], [2], [3], [16] [19]). The
Theorist framework [17] is one such engine, but the implementation differs slightly in that the
distinguished literals (achievables and observables, in our case) are added to X a priori and rather
than deriving dead ends, Theorist merely notes the distinguished literals which were employed
in the refutation proof. The available implementation of Theorist provides a more sophisticated
development environment for users to perform both abductive explanation and prediction. The
prediction facilities, like our deductive theorem provers tell us whether or not a particular formula
is true, not what formulas are true. Theorist classifies user-provided formulas as Facts, Defaults,
Conjectures and Observations. Both Defaults and Conjectures are used to generate abductive
FEzxplanations for Observations. Defaults are also used for prediction. There are several ways in
which the Theorist development environment may be employed to generate tests. The simplest
way is to define achievables and observables as Conjectures and to use them to generate abductive
explanations for X as per Theorems 1-3 and Corollaries 1-3. Theorist could also be modified
by the addition of another set of user-provided formulas called Conjecturable-tests which would
contain either achievables and observables, or predefined tests. Theorist could be further modified
to take the set of Fzplanations (equivalent to HY P) and to generate abductive explanations drawn
from Conjecturable-tests as per Theorems 1-3 and Corollaries 1-3.

Of related interest, Sattar and Goebel [22] provided a mechanism within the Theorist system
for recognizing so-called crucial literals which provides a basis for identifying discriminating tests
of the form ({},0). They compute the crucial literals using consistency trees.

Aside from proof-tree completion, there are several ways of generating tests using a direct proof
method. The term direct proof method is often used to refer to the task of consequence finding —
finding the consequences of a theory. ¥ A A A O F X may be recast as both X - AAO D X and
YA=-XF -AV -0 (assuming ¥ A =X is consistent). In both cases, tests may be found from
the logical consequences of ¥ and ¥ A =X, respectively. There are several well-known resolution-
based algorithms for consequence finding. In particular, the ATMS [4] calculates certain prime
implicates (minimal logical consequences) of 3. ATMS-like algorithms have been used extensively
for generating consistency-based diagnoses, but they are also documented abduction engines.
The ATMS identifies a distinguished set of literals called assumptions which act as the primitive
literals for production of abductive explanations. [14] identified one way of acquiring certain
tests from the side effects of the ATMS’s computations for generating diagnoses. In order to
actually generate tests using the ATMS, we make the achievables and observables assumptions.
This is almost like operating the ATMS backwards. Rather than diagnostic candidates being the
abductive explanations, the tests are. Tests are those (A,0) for which AAO D X is a prime
implicate of ¥ and (A, o) satisfies all other criteria specified for the test.

Depending upon the application, there may be many achievables and observables and this may
not be the most efficient mode of test generation. On a positive note, tests are generally composed
of one observable and a minimal number of achievables, so the potential for an exponential number
of environments is limited. This, along with probabilistic focusing of the ATMS may make the
ATMS a viable option.

Finger’s RESIDUE system [8] is another example of a first-order consequence finding proce-



dure that may be used to generate tests. It was employed in the DART system [9] to generate
potential diagnosis candidates by direct proof. By conjoining =X to ¥, RESIDUE will entail
so-called residues of the proof procedure — clauses which cannot be further resolved. The residues
are comparable to the dead ends of the proof-tree completion technique. More recent work on the
computation of logical consequences [11] has enabled better focussing of the consequence finding
algorithm on clauses containing distinguished literals.

Finally, for propositional causal horn clause theories, tests of the form ({}, 0) may be generated
by deduction on the Clark completion of the causal theory. The relationship between abduction,
closure and deduction has been outlined by Console et al [1] among others.

4.2 Tractable Abductive Test Generation

From the computer hardware literature, we know that the general problem of test generation, even
for simple combinational Boolean circuits is NP-complete [10]. Similarly, we know that finding an
abductive explanation in the general case is NP-hard [23]. The challenge with computationally
hard problems is either to attempt to deal with the worst-case complexity by employing problem-
specific strategies such as probabilistic focusing of algorithms or alternatively to define tractable
classes of the problem. Tractable classes may often be achieved by limiting the expressive power
of a theory, or by limiting the completeness of reasoning. In the abduction research, there are a
few simple classes of tractable abduction problems. In this section, we examine the complexity
results on abduction to attempt to define classes of tractable tests generation problems.

In defining tractable abductive test generation problems, we may avail ourselves of certain
properties of test generation that occur generally or in certain hypothetical reasoning domains.
They are as follows:

1. There is no need to generate all tests
In generating tests, there is always a trade-off between the cost of computing tests and the
cost of performing tests. In many instances, the cost of performing a test is cheap while the
generation of tests is expensive. Consequently, we need not calculate all tests or even the
best test. Computing any relevant test is generally of value.

2. For some applications, tests are of the form ({},0)

There are many application domains for which tests require no achievable literals. This
issue was discussed in [14]. For example, some applications have a great deal of sensor
data available. It is the job of test generation to select which sensor data to “observe”; no
achievable preconditions are required. In other domains, tests of the form ({},0) may be
performed by simply querying the user as to the truth value of the test proposition o. This
may be the case for certain medical diagnosis problems or when performing certain natural
language understanding tasks.

3. An exponential number of tests is unlikely
Many tests are composed of one observable literal and few if any achievable literals. As
such, the number of minimal tests generated as abductive explanations are unlikely to be
exponential in the number of observables and achievables.

Selman [23], Levesque [12] and Bylander et al. [25] have all defined classes of tractable
abductive reasoning problems. There are some gaps in the complexity results that need to be
filled in to deal fully with test generation, however from the existing results we can gain some
insight into what makes test generation problems tractable, or for that matter, intractable.



Complexity results for abduction are often based on the ATMS. Consequently, the term
assumption refers to the distinguished set of literals from which explanations are composed. It
is equivalent to our set of observable and achievable literals when abduction is applied to test
generation.

It has long been known that there may be exponentially many abductive explanations for a
given literal [13], [4] and so listing them all would take exponential time. For test generation, we
are often uninterested in listing all tests as explained by property 1 above. Even if we were, by
property 3, we would be unlikely to have an exponential number of tests.

Selman [23] states that the problem of generating abductive explanations for theories com-
posed of arbitrary clauses is NP-hard, because of the consistency check on 3. Consequently it
follows directly from [23] that:

Proposition 2 If Y is a conjunction of arbitrary clauses, the problem of generating a test which
will potentially refute an hypothesis is NP-hard.

We would hope that the story would be better for Horn clause theories. Selman further shows
that even when 3 is composed of Horn clauses, that finding an abductive explanation for a letter
g, where the explanation must be derived from a set of assumptions, is NP-hard. This seems
discouraging, but upon analysis of the complexity proof, we see some hope. The proof is based
upon a reduction from the NP-complete decision problem “path with forbidden pairs”. In this
instance, the forbidden pairs are mutually incompatible assumptions drawn from our assumption
set. It would appear that if we got rid of the problem of forbidden pairs, that the complexity
problem would be resolved. This indeed appears to be the case.

Bylander et al. [25] defines the class of independent abduction problems. This class of problems
has a polynomial time algorithm for finding an explanation, if one exists. The trick is to get rid
of Selman’s forbidden pairs — to ensure that no assumptions are mutually incompatible in the
one instance and to then additionally ensure that there are no cancellation interactions among
the assumptions in the other case.

If our tests are composed of single literals, then we don’t have to concern ourselves with the
compatibility of assumptions. Property 2 shows that this is a reasonable assumption for tests in
certain application domains.

Proposition 3 If ¥ is a conjunction of Horn clauses and tests are of the form ({},0), then a
test to potentially refute an hypothesis may be generated in polynomial time, if such a test exists

This follows directly from the results in [25].
For the general case, the question remains as to whether it seems reasonable to assume that
no assumptions are mutually incompatible.

Definition 10 Assumptions Sy and Sy are mutually incompatible iff ¥ = —(S1 A Sz).

In the case of test generation, the assumptions are the set of achievables and observables. To
be able to assume no mutually incompatible assumptions, we would have to assume that for every
achievable A; and observable o; that ¥ [£ = (A1A A3), ¥ £ - (01A 02) and ¥ = = (A1A 01).
While it may be possible to make this assumption in specific instances, it is unlikely to be true in
the general case. In circuit diagnosis for example, let A; = input = 1, Ay = input = 0, obviously
Y E (A1 A Az). Similarly, since observations can generally be positive and negative literals,
if we let 0; = —03 then ¥ = —(01 A 02). We state the following proposition for those perhaps
unlikely situations where there are no mutually incompatible achievables and observables.



Proposition 4 If ¥ is a conjunction of Horn clauses and no two literals drawn from the set
of achievable and observable literals are mutually incompatible with respect to X, then a test to
potentially refute an hypothesis may be generated in polynomial time, if such a test exists.

Finally, Levesque [12] and Selman [23] define a linear time algorithm for finding certain ex-
planations of a literal from Horn clause theories. Although motivated by different concerns,
their algorithm and results are virtually the same. The explanations produced are those that
are explicitly represented [12] in X. Further, it is not required that they be drawn from a set of
distinguished literals.

The algorithm searches through the clauses of ¥ to find clauses containing the literal ¢, the
literal to be explained. The negation of the other literals in the clause form the explanations. For
example, if =H is to be explained and zVyV —H is a clause in Y, then the abductive explanation
-z A —~y would be found in linear time. Levesque proposes using this algorithm to define a form
of limited abductive reasoning in which explicit explanations are determined first, followed by a
chaining process to find implicit explanations.

These results tell us that if we have tests (A, o) explicitly represented in ¥ as AV —oV = H;,
then they can be found in linear time, (along with other extraneous explanations that do not
contain the desired distinguished literals and thus are not tests per se). Simple causal theories
where clauses in X are of the form hypothesis O observable (e.g., disease D symptom) would
contain such explicit tests. This is an argument in favor of encoding or even caching tests explicitly
in a theory to make them computationally easy to generate. This would be akin to the look-up
tables employed in [15].

Definition 11 (Explicit test) (A, o) is an explicit test to potentially refute H € HY P if ~AV
=0V —H is a clause in 3.

Proposition 5 If Y is a conjunction of Horn clauses, an explicit test may be generated in linear
time, if such a test exists.

This follows from results in [12] and [23].

5 Summary

We provide three main contributions towards research in test generation. First, we characterize
test generation as abductive reasoning. As a consequence, we are able to define the notions of
discriminating tests, individual discriminating tests and relevant tests in terms of abductive expla-
nations and hence compute them abductively. We briefly discuss several abductive mechanisms
which may be used to generate tests. Finally, we examine the research on tractable abductive
reasoning to gain insight into tractable and intractable test generation. The latter will be clarified
and formalized in the final version of this paper.
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