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Abstract

Suppose that HY P is a set of hypotheses which we currently entertain about some state of
affairs represented by a propositional sentence X.. In a diagnostic setting, HY P might consist
of all the diagnoses of some device whose description is given by X, although our analysis is not
restricted to diagnosis. Our concern is with experiments — how they can be designed, and what
conclusions can be drawn about the hypotheses in HY P as a result of performing experiments.
Specifically, we define the concept of an experiment and the concept of the outcome of an
experiment. We characterize those experiments whose outcomes refute or confirm an hypothesis,
and discriminate between competing hypotheses. These characterizations are in terms of the
prime implicates of ¥, and hence are implementable using assumption-based truth maintenance
systems. Finally, we provide some results on differential diagnosis in the cases of consistency
and abductive-based diagnosis.

1 Introduction

In the AT literature on hypothetical reasoning there are relatively few results on the design of
experiments for discriminating between competing hypotheses, or on the conclusions one may draw
from the outcome of an experiment. There are exceptions, of course. Among these are de Kleer
and Williams [4] who provide a probabilistic analysis to decide what measurement to take next.
The DART system of Genesereth [5] was capable of proposing circuit inputs and observations to
be made in order to confirm or refute a possible diagnosis. TraumAID (Webber et al. [18]) is a
system for treating trauma patients which does sophisticated planning to design diagnostic tests
and treatment. But by and large, there has been no systematic study of the design and role of
experiments in hypothetical reasoning. This paper is a first step in this direction.

Our concern in this paper is how experiments provide information about the current space of
hypotheses. Specifically, we define the concept of an experiment and the concept of the outcome
of an experiment. We characterize those experiments whose outcomes refute or confirm an hy-
pothesis, and discriminate between competing hypotheses. These characterizations are in terms
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of prime implicates, and hence are implementable using assumption-based truth maintenance sys-
tems. Finally, we provide some results on differential diagnosis in the case of consistency and
abductive-based diagnosis.

2 Preliminaries

We assume a fixed propositional language throughout. ¥ will be a fixed sentence of the language,
and will serve as the relevant background knowledge describing the system under analysis. For
example, in the case of circuits, ¥ might describe the individual circuit components, their normal
input/output behaviour, their fault models, the topology of their interconnections, and the legal
combinations of circuit inputs (e.g. deKleer and Williams [4], Reiter [14]). We also assume a
fixed set HY P of hypotheses. In the case where X describes a circuit, HY P might be the set of
diagnoses which we currently hold for this device. How we arrived at the set HY P will be largely
irrelevant for our purposes. HY P could be a set of abductive hypotheses (Poole [12]), or the result
of a consistency-based diagnostic procedure (deKleer, Mackworth and Reiter [3]), or any other
conceivable form of hypothesis generation. Our one assumption about H € HY P is that H be a
conjunction of literals of the propositional language.

3 Experiments

Informally, the notion of an experiment provides for certain initial conditions which may be es-
tablished by the experimenter, together with the specification of an observation whose outcome
determines what the experimental conclusions are to be. For example, in circuit diagnosis the
initial conditions of an experiment might be the provision of certain fixed circuit inputs, and the
observation might be the resulting value of a circuit output, or the value of an internal probe. In
the medical setting, the initial conditions might involve performing a laboratory procedure like a
blood test, and the observation might be the white cell count. We provide for a formal definition
of experiment by distinguishing a subset of literals of our propositional language, called the achiev-
able literals. These will specify the initial conditions for an experiment. In addition, we require a
distinguished subset of the propositional symbols of our language called the observables. These will
specify the observations to be made as part of an experiment.

Definition 3.1 (Experiment) An ezperiment is a pair (A, o) where A is a conjunction of achiev-
able literals and o is an observable.

An experiment specifies some initial condition A which the experimenter establishes, and an
observation o whose truth value the experimenter is to determine.

Definition 3.2 (Outcome of an Experiment) 7The outcome of an experiment (A, o) is one of
0, —o.

In other words, as a result of performing the experiment (A, o) in the physical world, the truth
value of o is observed. If o is observed to be true, the outcome of the experiment is o, otherwise
-0.

Definition 3.3 (Confirmation, Refutation) The outcome a of the experiment (A, o) confirms
H e HYP iff EAANH is satisfiable, and XN A |E H D . « refutes H iff XN AN H is satisfiable,
and X AN A= H D —a.



At first, the requirement in this definition that YA AA H be satisfiable might seem odd. However, not
all conjunctions A of achievable literals will be legal initial conditions, for example simultaneously
making a digital circuit input 0 and 1. Since ¥ will encode constraints determining the legal initial
conditions, we require that 3 A A be satisfiable. Moreover, hypothesis H could conceivably further
constrain the possible initial conditions A permitted in an experiment. For example, the hypothesis
that radioactivity has escaped within a reactor would prevent an experiment in which humans
enter the reactor chamber. In such a case, ¥ would include a formula of the form radioactivity O
—enter-chamber so that X A radioactivity A enter-chamber would be unsatisfiable, in which case the
very idea of a confirming or refuting outcome of such an experiment would be meaningless.

In general, a confirming outcome for H provides no deterministic information about H; we can
neither accept nor reject H on the strength of the experimental outcome.! A refuting outcome for
H, however, allows us to reject H as a possible hypothesis.

Definition 3.4 A prime implicate of a propositional formula Y. is a clause C' such that
1. ¥ =C, and
2. For no proper subclause C" of C' does ¥ |= C'

Theorem 3.1 The outcome o of experiment (A, o) confirms (refutes) H € HY P iff

1. There is a prime implicate of ¥ of the form A’V -H'V o (wA'V ~H'V —a) where A’ is a
subconjunct of A and H' is a subconjunct of H, and

2. No prime implicate of X subsumes ~AV —H.

Proof: Suppose a confirms H. Then by definition, YAA = H D a. Hence there is a prime implicate
of ¥ of the form —A’ vV -H'V (a) where A" and H' are subconjuncts of A and H respectively, and
where the notation (o) indicates that the literal a may or may not be present in the clause. We
prove that « is indeed present in the clause, in which case the desired result will be established. If
in fact a is not present, then =A’V —H' is a prime implicate of ¥, ie. ¥ A A’ A H' is unsatisfiable, in
which case sois X A A A H, contradicting the assumption that a confirms H. To see that 2. must
be true, assume on the contrary that some prime implicate of 3 subsumes =A V = H. This means
that X A A A H is unsatisfiable, which is impossible since a confirms H.

To prove the converse, suppose A’V =H'V «a is a prime implicate of . Then XA A" E H' D a,
whence ¥ A A = H D a. Since condition 2. means that ¥ A A A H is satisfiable, it follows that «
confirms H.

A similar argument establishes the theorem in the case of refutations.

3.1 Discriminating Experiments

Our concern here is characterizing those experiments (A, o) which, no matter what their outcome,
are guaranteed to refute one of two competing hypotheses Hy, H, € HY P.

Definition 3.5 (Discriminating Experiments) An experiment (A,o) is a discriminaling ex-
periment for (Hy, Hy) iff its outcome refutes exactly one of Hy, Hy, no matter what that outcome
might be.

1Of course, H’s probability may well increase as a result of a confirming outcome.



Definition 3.6 (Minimal Discriminating Experiments) A discriminating experiment (A, o)
for (Hy, Hy) is minimal iff for no proper subconjunct A" of A is (A’,0) a discriminating ezperiment

fOT (Hl,HQ).

Minimal discriminating experiments preclude unnecessary initial conditions, for example unneces-
sary circuit inputs, laboratory tests, etc. Only those initial conditions necessary for discriminating
H; and Hy are invoked.

Theorem 3.2

1. Suppose ¥ has two prime implicates of the form —A'V -H'V o and =A" YV ~H" V -0 where

(a) H' and H" are subconjuncts of Hy and Hy respectively, and
(b) No prime implicate of & subsumes ~A'V = A"V —Hy or A’V =A" vV - H;.

Then (A" AN A", 0) is a discriminating experiment for (Hy, Hy).

2. Moreover, every minimal discriminating experiment can be obtained this way, i.e. if (A,o0)
is @ minimal discriminating experiment for (Hy, Hy), then ¥ has two prime implicates of the
form —A'V —H'V +o0 and A"V -H" V Fo where

(a) A= A"NA",
(b) H' and H" are subconjuncts of Hy and Hj respectively, and
(c) No prime implicate of ¥ subsumes =AYV -~ Hy or ~AV - H,.

Proof:

1. We prove the result in the case that o is the outcome of (A,0). A symmetrical proof applies
when the outcome is —o. Since =A’V-H'Vois a prime implicate of ¥, we have YAA" = H' D o.
Thus X A A" AN A" |= Hy D o. Similarly, ¥ A A’ A A” = Hy D —o. Finally, since no prime
implicate of ¥ subsumes = A’V A"V ~H; or A"V =A"V ~Hy, both ¥ A A’ AN A" A Hy and
Y ANA"NA"N Hy are satisfiable. Hence o confirms H; and refutes Hy, so that (A’ A A" 0) is
a discriminating experiment for (Hq, Hj).

2. Suppose (A,0) is a minimal discriminating experiment for (Hy, H;). Without loss of gener-
ality, assume that o is the outcome of (A,0), and that o confirms H; and refutes H,. Then
by Theorem 3.1, ¥ has two prime implicates of the form —A’V —-H’V o and ~A" Vv -H" V —o,
where A’ and A” are subconjuncts of A, and H' and H" are subconjuncts of H; and H,
respectively; moreover, no prime implicate of 3 subsumes -A vV = H; or =A V —~H;. Hence,
by part 1. of this theorem, (A" A A”,0) is a discriminating experiment for (Hy, Hy). Since
A" A A" is a subconjunct of A, and since (A4,0) is a minimal discriminating experiment for

(Hy, Hy), A= A" A A",

An interesting special case of Theorem 3.2 arises when there are no initial conditions, i.e. when a
simple system observation is to be made, without establishing initial conditions for the experiment.
This is the case A = true.



Corollary 3.1 Suppose Hy, Hy € HY P, and that SAHy and A H; are salisfiable.> Then (irue, o)
is a discriminating experiment (and hence a minimal discriminating experiment) for (Hy, Hy) iff
has two prime implicates of the form —H'V o and ~H" V Fo where H' and H" are subconjuncts
of Hi and H, respectively.

In [16], Sattar and Goebel provide a mechanism within the Theorist system (Poole [13]) for
recognizing so-called crucial literals which provide a basis for performing discriminating experiments
without initial conditions. The above corollary is an abstract characterization of their method, with
o playing the role of their crucial literal.

The only other work of which we are aware which is similar in spirit to our results on experiments
is that of Genesereth for the DART system [5]. DART was capable of designing experiments by a
process (called residue resolution) very like the generation of prime implicates. The above results
can be viewed as a systematic exploration of some of the ideas embodied in the DART program.

4 Why Prime Implicates?

The characterizing theorems of the previous section are in terms of the prime implicates PI(X) of
Y. Thus Theorem 3.1 informs us how to “read off”, from PI(Y), all hypotheses confirmed or refuted
by the outcome of a given experiment. Alternatively, Theorem 3.1 informs us how to determine
all experiments whose outcomes can confirm or refute a given hypothesis. Similarly, Theorem 3.2
can be used to determine all pairs (Hq, Hy) of hypotheses for which a given experiment (A, o) is
guaranteed to be a discriminating experiment. Theorem 3.2 can also be used to determine all
minimal discriminating experiments for a given pair (H;, H3) of hypotheses. Provided PI(X) has
already been computed, all these tasks are straightforward and computationally attractive. Alas, as
is well known, computing PI(X) is computationally intractable (Bylander, Allemang, Tanner and
Josephson [1], Selman and Levesque [17]), and not only because there may be exponentially many
prime implicates. As it happens, the principal task of an assumption-based truth maintenance
system is the computation of all the prime implicates of a background theory X (Reiter and de
Kleer [15]). Despite the high complexity associated with the computation of prime implicates,
ATMSs are very frequently used as implementation tools in abductive and diagnostic reasoning
systems. Therefore, in those cases where an ATMS is providing the underlying reasoning service,
the results on the design of experiments of the previous section are especially relevant. In effect,
the ATMS will have already performed all of the preliminary work — namely the calculation of the
prime implicates — necessary for applying the results of the previous section. We obtain the benefits
of this analysis of experiments as a free side effect of the ATMS calculations.

ATMS assumplions encode the distinguished literals from which hypotheses are generated.
Achievable literals may be encoded as additional assumptions. An observable o is a datum of an
ATMS node. The label of the node representing o contains the set of environments in which o is
true. Thus (A, o) is an experiment for H if one of the environments in the label of o contains
the set of literals from which A’, H' (subconjuncts of A and H) are generated. An experiment
(A, 0) discriminates two hypotheses Hy and Hj if nodes for o and —o exist such that (A, o) is an
experiment for H; and (A, —0) is an experiment for Hy. Experiments may be selected by inspecting
the labels of the nodes of observable data.

2Notice that this will be the normal case. No one would entertain an hypothesis which is inconsistent with the
background theory .



5 Differential Diagnosis

The intuitive notion of differential diagnosis as described by Ledley and Lusted [7] is this: Given
a set of potential diagnoses, a sequence of experiments may be performed to iteratively reject
diagnoses without the need for subsequent diagnosis generalion steps. Following each experiment,
the resulting set of hypotheses contains all and only the hypotheses to be entertained in further
hypothetical reasoning.

The Differential Diagnosis Principle (DDP)

Given HY P, %, (A,0) and a as above, the differential diagnosis principle is that the set of hy-
potheses for X A A A a is a subset of HY P.

Notice that the new background theory is ¥ A A A a, reflecting the new background knowledge
resulting from the performance of the experiment.

The correctness of DDP, and further, the criteria by which a rejects hypotheses depend crucially
on the nature of the initial hypothesis set HY P. For example, DDP does not apply when HY P is
taken to be the set of minimal or kernel diagnoses as defined in (deKleer, Mackworth and Reiter
[3]). In both these cases, experiment outcomes do not simply result in the pruning of the hypothesis
space, but may require the generation of new hypotheses.

In what follows, we characterize differential diagnosis for consistency-based hypotheses (deKleer,
Mackworth and Reiter [3]) and for abductive hypotheses (Poole [12]). In keeping with intuition
and with Popper’s notion of falsifiability [10], we show that consistency-based hypotheses may be
rejected by modus tollens when an experiment outcome refutes an hypothesis. More surprising
are the results for abductive hypotheses. By exploiting the fact that abductive hypotheses must
explain observations rather than just be consistent with those observations, we are able to prune
the abductive hypothesis space with non-confirming experiment outcomes as well as with refuting
experiment outcomes. Furthermore, we show that this result also holds for the space of consistency-
based hypotheses when we restrict ¥ to a closed simple causal theory.

To this end, we must assume a distinguished finite subset H = {hq,...,h,} of propositional
symbols which will function as the primitive hypotheses. Let conj(H) be the set of all conjunctions
of the form Iy A --- A l, where [; is a literal and h; is the propositional symbol mentioned by ;.

5.1 Consistency-Based Differential Diagnosis

Definition 5.1 (Consistency-Based Hypotheses) A consistency-based hypothesis for Y. and
outcome o of the experiment (true,o) is any H € conj(H) such that ¥ N H A a is satisfiable.

Theorem 5.1 (Consistency-Based Differential Diagnosis) Suppose HY P is the set of all
consistency-based hypotheses for ¥, and let a be the outcome of the experiment (true,o0). Then

NEWHYP ={H € HY P | a does not refute H}
is the set of consistency-based hypotheses for ¥ A a.?

Proof: Let H € conj(H). We must prove that H € NEWHY P iff “Aa A H is satisfiable. Suppose
H € NEWHYP. Then a does not refute H, which is to say, ¥ £ H D —a,ie. YAa A H is
satisfiable, so that H is a consistency-based hypothesis for 3 A a. Conversely, suppose X A a A H

®Notice that the theorem is stated only for simple experiments of the form (true, o), not for (A, o) for arbitrary
initial conditions A. The general case is somewhat problematic; we shall discuss it in the full paper.



is satisfiable. Then ¥ [£ H D —a, i.e. a does not refute H. Moreover, ¥ A H is satisfiable, so that
H e HYP. Hence H e NEWHYP.

5.2 Abductive Differential Diagnosis

Contrary to intuition, the criterion for rejecting abductive hypotheses is not simply refutation as
demonstrated in the following example.

Example

Recall the definition of an abductive hypothesis: H (a conjunction of literals drawn from some
distinguished vocabulary) is an abductive hypothesis for the observation o iff YA H =0 and YA H
is satisfiable. Let X be the sentence hy D o, and suppose that the hypotheses are drawn from
the vocabulary {hy,hy}. Finally, suppose the initial set of hypotheses — say as a result of the
observation true — is

{hl A ho,hy A —hg,mhy A ho,—hy A —|h2}.

After explaining the outcome o of the experiment ({rue, o), the set of abductive hypotheses is
{hl Ahg,hy A —|h2}.

But the outcome o refutes none of the original abductive hypotheses.

Abduction demands that 3 A H E o. Hence, by definition, hypotheses that confirm o are
abductive hypotheses. However, all other hypotheses that are consistent with X but for which
XA H F o, are not abductive hypotheses. Thus, an experiment outcome that does not confirm an
hypothesis, whether it explicitly refutes it or not, causes that hypothesis to be rejected. This is
stated formally in the following theorem.

Definition 5.2 (Abductive Hypotheses) An abductive hypothesis for X and outcome a of the
experiment (true,o) is any H € conj(H) such that ¥ A H |= a and ¥ A H is satisfiable.

Theorem 5.2 (Abductive Differential Diagnosis) Suppose HY P is the set of all abductive
hypotheses for ¥, and let o be the outcome of the experiment (true,0). Then

NEWHYP ={H € HYP | a confirms H}
s the set of abductive hypotheses for 3 A a.

Proof: Let H € conj(H). We must prove that # € NEWHY P iff ¥ A H is satisfiable and
YA H [ a Suppose H € NEWHYP. Then a confirms H, which is to say, ¥ = H D «, i.e.
Y. A H is satisfiable and ¥ A H |= «, so that H is an abductive hypothesis for ¥ A a. Conversely,
suppose X A H is satisfiable and ¥ A H = a. Then ¥ = H D a, i.e. «a confirms H. Moreover,
¥ A H is satisfiable, so that H € HY P. Hence H e NEWHY P.

In the following section we see that by restricting the form of ¥, we can acquire the same results
for consistency-based hypotheses.



5.3 Consistency-based Differential Diagnosis of Causal Theories

Poole [11] and Konolige [6] have studied consistency-based and abductive diagnosis for what Kono-
lige refers to as simple causal theories. They have shown that the minimal abductive diagnoses
for a simple causal theory are identical to the minimal consistency-based diagnoses for the Clark
completion [2] of a simple causal theory. In keeping with the spirit of that work, we characterize
differential diagnosis for closed simple causal theories, which we show to be equivalent to abductive
differential diagnosis.

Definition 5.3 (Simple Causal Theory [6]) Let L be a propositional language. A simple causal
theory is a tuple (C, E, %) where

o (', a sel of atomic sentences of L, is the set of causes.

o I, a sel of atomic sentences of L, is the sel of effects we might observe and whose causes we
seek.

e Y a sel of sentlences of L, is the domain theory, containing information aboul the relation
between causes and effects. The sentences of ¥ have the form C D e where e € E and C is a
conjunction of literals whose propositional symbols are causes.

Definition 5.4 (Closed Simple Causal Theory) Let (C, E,X) be a simple causal theory over
a propositional language with X a set of nonatomic definite clauses whose directed graph is acyclic.

Then we define ¥*, the closed simple causal theory, to be ¥ augmented by the Clark completion [2]
of X.

The above definition follows from Theorem 1 in [6].

Theorem 5.3 (Consistency-based Differential Diagnosis of ¥*) Suppose that (H, E,Y) is a
stmple causal theory, that HY P is the set of all consistency-based hypotheses for ¥.*, and thal « is
the outcome of the experiment (true, o), where o € E . Then

NEWHYP ={H € HY P | a confirms H}
s the set of consistency-based hypotheses for X* A a.

Proof: Let H € conj(H). We must prove that H € NEWHY P iff ¥* A a A H is satisfiable.
Suppose H € NEWHY P. Then «a confirms H, so ¥* A H is satisfiable and ¥* A H = a. Hence
Y* A H Ao is satisfiable, so that H is a consistency-based hypothesis for 3* Aa. Conversely, suppose
Y* A H A a is satisfiable. Then ¥* £ H O —a. We prove that ¥* = H D aor ¥* = H D -a,
from which the result will follow. To that end, notice that in view of the fact that X* is the Clark
completion of ¥, ¥* = @ = B where B is a sentence, all of whose propositional atoms are in
H. Since H € conj(H), every atom mentioned by B is mentioned by H, so that = H D B or
= H D -B. Hence ¥* = H Daor ¥ H D -a.

The restriction to a closed simple causal theory is limiting. Konolige [6] discusses the conditions
under which closure axioms may be consistently added to a theory. A significant benefit of closure
axioms is that they enable explanations of experiment outcomes to be generated deductively.



6 Future Work

This paper is a small step towards a theory of experiments for hypothetical reasoning. A variety
of approaches and problems remain to be addressed, among which are the following:

1. Probabilistic information (de Kleer and Williams [4]) or other utility measures such as cost or
speed of an experiment should be taken into account when developing strategies for ordering
experiments. Probabilistic information may also be used as a measure of belief.

2. Extending the results of section 5 to the case A # true.

3. One issue which seems barely to have been explored is the role of planning in experimental
design (Webber et al. [18]). There are at least two distinct objectives of planning in the
diagnostic setting. One is to achieve some state of the world, as for example planning a
suitable sequence of steps in order to insert a measuring probe in some device. The other
is to achieve a suitable state of knowledge on the part of the experimenter, for example by
taking a person’s temperature in order to know whether she has a fever. These are quite
different. Both may be modeled in the situation calculus (McCarthy and Hayes [8]), but the
latter requires formalization in an epistemic logic, along the lines of (Moore [9]). We are
currently investigating the use of situation calculus planning formalisms for these and other
related problem in hypothetical reasoning.

4. The role of experiments in diagnostic problem-solving other than differential diagnosis.
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