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Abstract

We present a logic for representing and reasoning with
qualitative statements of preference and normality and
describe how these may interact in decision making
under uncertainty. Our aim is to develop a logical
calculus that employs the basic elements of classical
decision theory, namely probabilities, utilities and ac-
tions, but exploits qualitative information about these
elements directly for the derivation of goals. Prefer-
ences and judgements of normality are captured in a
modal/conditional logic, and a simple model of action
is incorporated. Without quantitative information, de-
cision criteria other than maximum expected utility are
pursued. We describe how techniques for conditional
default reasoning can be used to complete information
about both preferences and normality judgements, and
we show how maximin and maximax strategies can be
expressed in our logic.

1 Introduction

We typically expect a rational agent to behave in a manner
that best furthers its own interests. However, an artificial
agent might be expected to act in the best interests of a
user (or designer) who has somehow communicated its
wishes to the agent. In the usual approaches to planning
in AI, a planning agent is provided with a description
of some state of affairs, a goal state, and charged with
the task of discovering (or performing) some sequence
of actions to achieve that goal. This notion of goal can
be found in the earliest work on planning and persists in
more recent work on intention and commitment [10]. In
most realistic settings, however, an agent will frequently
encounter goals that it cannot achieve. As pointed out
by Doyle and Wellman [12] an agent possessing only
simple goal descriptions has no guidance for choosing an
alternative goal state toward which it should strive.

Straightforwardgoal-driven behavior tends to be inflexible:
an agent told to ensure that part A and partB are at locationL by 5PM will be unable to do anything if it cannot
locate B or if something prevents it from reaching L by
5PM. One might suppose that the agent should at least

deliver A to L as close to 5PM as possible. While such
partial fulfillment of deadline goals [16] undoubtedlyarises
frequently is practice, more general mechanisms will often
be required. IfA andB can’t be delivered, perhaps alternate
parts C and D should be; or if the 5PM deadline can’t be
met, the agent should wait until next week. To this end,
a recent trend in planning has been the incorporation of
decision-theoretic methods for constructing optimal plans
[11]. Decision theory provides most of the basic concepts
we need for rational decision making, in particular, the
ability to specify arbitrary preferences over circumstances
or outcomes. This allows desired outcomes or goals (and
hence appropriate behaviors) to vary with context.

Most decision-theoretic analysis is set within the framework
of maximum expected utility (MEU). One impediment to
the general use of such decision-theoretic tools is the re-
quirement to have both numerical probabilities and utilities
associated with the possible outcomes of actions. It is quite
conceivable that such information is not readily available to
the agent. We can often expect users to present information
in a qualitative manner, including qualitative preferences
over outcomes (one outcome or proposition is preferred to
another) and qualitative probabilities (describing the rela-
tive likelihood of propositions or outcomes). The ability to
reason directly with such qualitative constraints is therefore
crucial. An appropriate knowledge representation scheme
will allow the expression of constraints of this form and
allow one to logically derive goals and reasonable courses
of action, to the extent the given information allows.1

1While the foundations of decision theory are, in fact, based
on such qualitative preferences [26, 29], the move to numerical
utilities (and probabilities) requires that a preferences and likeli-
hoods be calibrated by means of questions concerning acceptable
exchanges between outcomes and lotteries. For an agent behav-
ing according to the preferences of some user, this requires that
either a) the user’s preferences be so completely specified that
such calculations can be made; or b) the user (or the source of
preference information) be available to be queried about prefer-
ence information as the need arises. Furthermore, a complete
calibration of just the preference ranking, in the most fortunate
circumstances, requires a number of queries at least as large as
the number of possible worlds (exponential in the number of
propositional atoms). Such a mechanism is also often criticized



In this paper, we describe a logic and natural possible
worlds semantics for representing and reasoning with qual-
itative probabilities and preferences, and suggest several
reasoning strategies for qualitative decision making using
this logic. We can represent conditional preferences, al-
lowing (derived) goals to depend on context. Furthermore,
these conditional preferences are defeasible: I might have a
general preference for the propositionA (e.g., that parts be
delivered to customers on time) but have a more specific
‘‘defeating’’ preference for :A if a customer’s account is
past due. Semantically, preferences will be captured by an
ordering over possible worlds, corresponding to an ordinal
value function. The logic that captures such default pref-
erences will exactly match existing conditional logics for
default reasoning and belief revision [4, 7, 8]. Furthermore,
the component of the logic for capturing qualitative prob-
abilities will be isomorphic, with a (separate) normality
ordering on worlds representing their relative likelihood.

In order to strengthen possible conclusions, we will also
present reasoning strategies for completing information
about preferences and likelihoods, in essence, making as-
sumptions about unstated constraints. In addition, we
describe several ways of making decisions with such com-
pleted information. These decision making strategies are
motivated by the fact that the scales of normality and pref-
erence on which worlds are ranked are incomparable. This
reflects the fact that user specified constraints provide qual-
itative information about the structure of the two rankings,
not their relative magnitudes. We will discuss conditions
under which decisions are sound in this framework.

In Section 2, we present the basic logic of preferences
and its semantics, and show how existing techniques for
conditional default reasoning can be used to make various
assumptions about incomplete preference orderings. In
Section 3, we add normality orderings to our semantics
and describe a logic for dealing with both orderings. We
describe the derivation of ideal goal states, roughly, the
best situations an agent can hope for given certain fixed
circumstances. This generalizes the usual notion of a goal
in AI, for such goals are context-dependent and defeasible,
and can be derived from more basic information rather
than simply being asserted directly by a user. Such goals
do not take into account the ability of an agent to change
the fixed circumstances from which they are derived, nor
the potential inability of an agent to achieve a goal. In
Section 4, we explore a more realistic notion of goal that
accounts for a simple form of ability. In planning, as in the
decision theory, the ultimate aim is to derive appropriate
actions to be performed that will achieve derived goal
states. The ability of an agent to affect the world will
have a tremendous impact on the actual goal states it
attempts to achieve. One feature that becomes clear in
our model is that, given incomplete knowledge, various
behavioral strategies can emerge. We show how these can
be expressed in our logic. Finally, in Section 5, we point

because the queries require answers to which a user does not have
ready access or might be uncertain [13].

out some related work, and on-going investigations into
how the trade-offs between utility and probability can be
captured in a qualitative manner. We also point out some
interesting connections to deontic logic.

2 Conditional Preferences

A goal is typically taken to be some proposition that we
desire an agent to make true. Semantically, a goal can be
viewed as a set of possible worlds, those states of affairs
that satisfy the goal proposition [10]. Intuitively, if we
ignore considerations of ability, the set of goal worlds
should be those considered most desirable by an agent (or
its designer). To achieve all goals is to ensure that the
actual world lies within this desirable set.

Unfortunately, goals are not always achievable. My robot’s
goal to bring me coffee may be thwarted by a broken
coffee maker. Robust behavior requires that the robot
be aware of desirable alternatives (‘‘If you can’t bring
me coffee, bring me tea’’). Furthermore, goals may be
defeated for reasons other than inability. It is often natural
to specify general goals, but list exceptional circumstances
that make the goal less desirable than the alternatives. For
instance, a general preference for delivering parts within
24 hours may be overridden when the account is past
due (which may in turn be overridden if the customer is
important enough). To capture these ideas, we propose a
generalization of standard goal semantics. Rather than a
categorical distinction between desirable and undesirable
situations, we will rank worlds according to their degree of
preference. The most preferred worlds correspond to goal
states in the classical sense. However, when such states are
unreachable, a ranking on alternatives becomes necessary.
Such a ranking can be viewed as an ordinal value function.

The basic concept of interest will be the notion of con-
ditional preference. We write I(BjA), read ‘‘ideally B
givenA,’’ to indicate that the truth of B is preferred, givenA. This holds exactly when B is true at each of the most
preferred of those worlds satisfying A. From a practical
point of view, I(BjA) means that if the agent (only) knowsA, and the truth of A is fixed (beyond its control), then the
agent ought to ensure B. Otherwise, should :B come to
pass, the agent will end up in a less than desirableA-world.
The statement can be roughly interpreted as ‘‘IfA, doB.’’
We propose a bimodal logic CO for conditional preferences
using only unary modal operators. The presentation is brief.
Further details can be found in [3, 7].

2.1 The Logic CO

We assume a propositional bimodal languageLB over a set
of atomic propositional variables P, with the usual classical
connectives and two modal operators2 and

 2. Our possible
worlds semantics for preference is based on the class of
CO-models, of the form M = hW;�; 'i, where W is a set
of possible worlds, ' is a valuation function, and � is a



A B

A B

A B A B

Preferred

Figure 1: A CO-model

transitive connected binary relation on W .2 Thus, � is a
total preorder over W . In other words, W consists of a set
of �-equivalence classes or clusters of equally preferred
worlds, with these clusters being totally ordered by �. We
take � to represent an ordering of preference: v � w just
in case v is at least as preferred as w. This ordering is taken
to reflect the desirability of situations, however this is to
be interpreted (e.g., personal utility, moral acceptability,
etc.).3 Figure 1 illustrates a typical CO-model. The truth
conditions for the modal connectives are

1. M j=w 2� iff for each v such that v � w, M j=v �.

2. M j=w  2� iff for each v such that w < v, M j=v �.2� is true at a world w just in case � is true at all worlds
at least as preferred as w, while

 2� holds just when �
holds at all less preferred worlds. The dual ‘‘possibility’’
connectives are defined as usual: 3� �df :2:� means� is true at some equally or more preferred world; and 3� �df : 2:� means � is true at some less preferred
world.

$2� �df 2� ^  2� and
$3� �df 3� _  3� mean �

is true at all worlds and at some world, respectively. The
logic CO is axiomatized in [3, 7] (see also Section 4).

2.2 Expressing Conditional Preferences

We now define a conditional connective I(�j�) to express
conditional preferences. I(BjA) can be read as ‘‘In the
most preferred situations where A holds,B holds as well,’’
or ‘‘If A then ideally B.’’ Intuitively, I(BjA) should hold
just whenB holds at the most ideal A-worlds.4 These truth
conditions can be expressed in LB (see [3, 7]):I(BjA) �df

$2:A _$3(A ^2(A � B)): (1)
This can be thought of, as a first approximation, as ex-
pressing ‘‘If A then an agent ought to ensure that B,’’
for making B true ensures an agent ends up in the best

2Relation � is connected iff w � v or v � w for all v;w.
3While w < v usually means v is a preferred outcome, the

usual convention in AI is to ‘‘prefer’’ minimal models, hence we
take w < v to meanw is preferred.

4Of course, nothing in our models forces the existence of such
minimal A-worlds, but our definition is adequate in this case as
well [7]. The conditional holds vacuously when A is false at all
worlds.

possible A-situation. We note that an absolute preferenceA, capturing the standard unconditional goal semantics,
can be expressed as I(Aj>), or equivalently,

$32A. We
abbreviate this as I(A) and read this as ‘‘ideallyA’’. This
can be read as expressing an unconditional desire for A
to be true. The model in Figure 1 satisfies I(BjA) andI(A � B).
The dual of preference gives a notion of toleration or
‘‘don’t care conditions.’’ If :I(:BjA) holds, then in the
most preferred A-situations it is not required that :B. This
means there are ideal A-worlds where B holds, or thatB is
‘‘tolerable’’ givenA. We abbreviate this sentence T (BjA).
Loosely, we can think of this as asserting that an agent is
permitted to doB ifA. Unconditional toleration is denotedT (A) and stands for :I(:A), or equivalently,

$23A.5 We
note that the relative preference of two propositions can be
expressed directly in CO. We write A �P B to mean A is
at least as preferred as B (intuitively, the best A-worlds are
at least as good as the best B-worlds), and define it as:A �P B �df

$2(B � 3A)
Another useful notion is that of strict preference. If some
proposition is more desirable than its negation no matter
what other circumstances hold (e.g., deliveries to customerC must be on time), we can assert$2(C � 2C)
which ensures that every C-world is preferred to any:C-world. Of course, we cannot a priori abolish such
situations, for they may occur due to events beyond an
agent’s control, and the relative preference of these strictly
dispreferred worlds is important. But in achieving stated
goals condition:C will be avoided if at all possible. These
strict preferences can also be combined and prioritized [8].

The properties of the connective I are identical to those of
the conditional connective ) defined in [2, 7] for default
reasoning (see also Section 4). They are distinguished sim-
ply by their reading and the interpretation of the underlying
ordering�. As one should expect, absolute preferences, as
well as preferences in any fixed context, must be consistent,
for the following is a theorem of CO (for any possibleA):I(BjA) � :I(:BjA)
However, an agent’s preferences needn’t be complete, forT (BjA) ^ T (:BjA) is generally consistent. The property
of preferential detachment holds in CO:I(BjA) ^ I(A) � I(B)
However, the principle of factual detachmentI(BjA) ^A � I(B)

5Ideality and toleration are dual in exactly the sense that
necessity and possibility are. In deontic contexts, the connectivesI and T can be profitably interpreted as expressing some form of
obligation and permission, respectively (see Section 5).
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Figure 2: Possible Interpretations of Preferences

is not valid. This has implications for the manner in which
an agent should derive its actual preferences in a given
situation, as we describe in the next section.

The most important feature is that preferences are condi-
tional and can vary with context. I can consistently assertI(U jR) and I(U jR), that my agent should take an umbrella
if it’s raining, and leave it home if not. The potential goals
or subgoals U or :U depend on context and need not be
asserted categorically. Furthermore, these conditionals are
defeasible: I can consistently assert that I(U ) without fear
of contradicting I(U jR). Notice that these two statements
allow the conclusion I(R) to be drawn --- the agent can
derive its (or my) preference for sunny weather.

This defeasibilityalso allows one to assert, together with the
previous conditionals, I(U jR^D), that an umbrella is not
desired if I drive a car to work (D) instead of walking (:D).
Such a theory induces a partial structure like that illustrated
in Figure 2(a). As above, this entails I(:DjR). However,
is this conclusion truly intended? On the surface, it seems
reasonable to accept all three preference statements, but
allow the assertion that I prefer to drive when it’s raining.
Yet I(DjR) contradicts these other premises.

The (intuitive) source of the inconsistency is the statementI(U jR). If I prefer to drive when it’s raining, and prefer
not to have an umbrella when I drive, then I should not
assert that at the most ideal R-worlds, U holds. At the
most ideal R-worlds, D (hence :U ) holds. Intuitively,
the preference for U given R only holds when I do not
drive; thus, I(U jR ^ :D) holds but I(U jR) does not (see
Figure 2(b)). Figure 2(a), which validates I(U jR), seems
appropriate when I prefer walking to driving, even when
it’s raining.

We notice, however, that the assertion I(U jR), I prefer an
umbrella when it’s raining, seems (potentially) appropriate
even when Figure 2(b) is the intended model. This might
be the case if I am usually unable to drive to work. Even if
I prefer to drive, I probably won’t be able to, so my stated
preference for U given R might reflect this fact. In this
case, the typical R-world is one in which :D holds, and
hence one in which U should hold: my robot should bring
an umbrella along. Very often stated preferences do not
express ideal preferences. Rather, they may incorporate

into the stated context (here, R) certain assumptions or
default conclusions (such as :D), and thus express a
preference conditioned on this extended context (R^:D).
The intended assertion I(U jR^:D) is perfectly consistent
with Figure 2(b), but it may be abbreviated as I(U jR) if the
default conclusion :D is understood. It is therefore crucial
to realize that linguistically stated preferences can be come
in different varieties. A statement I(U jR) expresses an
ideal preference: in the best possible R-worlds U is true.
Other varieties, such as those where the user has considered
the default consequences of a propositionbefore expressing
conditional preference, require the additional machinery we
introduce in Sections 3 and 4.6

2.3 Defeasible Reasoning with Preferences

The conditional logic of preferences we have proposed
above is similar to the (purely semantic) proposal put forth
by Hansson [17] for deontic reasoning (reasoning about
obligation and permission). In our logic, one may simply
think of I(BjA) as expressing a conditional obligation to
see to it that B holds if A does. Loewer and Belzer [22]
have criticized this semantics ‘‘since it does not contain
the resources to express actual obligations and no way
of inferring actual obligations from conditional ones.’’
In particular, they argue that any deontic logic should
validate something like factual detachment, not just deontic
detachment (the deontic analog of preferential detachment).
The criticism applies equally well to our preference logic ---
one cannot logically derive actual preferences --- because
the principle of factual detachment does not hold. Factual
detachment expresses the idea that if there is a conditional
preference for B given A, and A is actually the case, then
there is an actual preference forB. While the inference is a
reasonable one, we do not expect, nor do we want it to hold
logically because it threatens the natural defeasibility of
our conditionals. For instance, ifR and I(U jR) entailedU ,
so too would R, D, I(U jR) and I(U jR ^D). Defeasible
conditional preferences could not be expressed.

Various logics have been proposed to capture factual de-
tachment in the deontic setting, and recently several com-
plex default reasoning schemes have been applied to this
problem [18, 20]. We propose a simple solution based
on the following observation: to determine preferences
based on certain actual facts, we consider only the most
ideal worlds satisfying those facts, rather than all worlds
satisfying those facts. Let KB be a knowledge base contain-
ing statements of conditional preference and actual facts.
Given that such facts actually obtain, the ideal situations
are those most preferred worlds satisfying KB. This sug-
gests a straightforward mechanism for determining actual
preferences. We simply ask for those propositions � such

6Similarly, one can impose this alternate interpretation on
direct statements of preferenceA <P B, as Jeffrey [19] does. On
our definition, A <P B means the best A-worlds are preferred,
whereas Jeffrey defines such a statement to mean the expected
utility of all A-worlds is greater than that for B.



that `CO I(�jKB)
This is precisely the preliminary scheme for conditional
default reasoning suggested in [3]. This mechanism un-
fortunately has a serious drawback: seemingly irrelevant
factual information, or information about the consequences
of actions, can paralyze the derivation of actual preferences.

Example Let P denote that a certain part is painted,B that
it’s blemished, and S that it’s destined for shipment to
a specific warehouse. Let D, E and F denote possible
locations for a certain piece of equipment. If

KB = fI(P jB); Bg
then the actual preference P is derivable using the
scheme suggested above. However, it is not deriv-
able from KB0 = KB [ fSg. Because conditionals
are defeasible, it is consistent (with KB0) to assertI(P jB^S), although intuitivelyS is irrelevant to this
preference.
Again consider KB with actual preference P . Suppose
a painting action that achieves P requires the equip-
ment in question to be moved, making either D, E orF true. Even though not stated, one can consistently
assert I(P ^DjB), I(P ^EjB) or I(P ^F jB). Thus
the agent cannot show that any of the moves D, E orF is tolerated --- it cannot decide what to do.

In this example, the fact that I(P jB) is the only stated
preference suggests that other factors are irrelevant to the
relative preference of situations. Intuitively, these factors
should be discounted. Unless stated otherwise, the part
should be painted regardless of its destination and the
manner in which P is achieved (D, E or F ) is not of
concern.

One possible way to deal with this difficulty is to make
certain assumptions about the preference ordering. In
particular, it is possible to adopt the default reasoning
scheme System Z [23] in this context. Given a set of
conditional constraints, System Z enforces the assumption
that worlds are assumed to be as preferred as possible
consistent with these constraints. In other words, worlds
are pushed down as far as possible in the preference
ordering, ‘‘gravitating’’ toward absolute preference. In our
example, the model induced by this assumption is shown
in Figure 3. (For convenience we assume that I(P jB) and
that D, E and F are mutually exclusive.) Any :B-world
that satisfiesP is deemed acceptable, regardless of the truth
of the irrelevant factors. The technical details of System
Z may be found in [23], and in [3] we describe how the
Z-model for any conditional theory can be axiomatized
in CO. The important features of this model are: a) the
assumption induces a unique, ‘‘most compact’’ preference
ordering; and b) the consequences associated with these
assumptions can sometimes be efficiently computed.

Is the assumption that worlds are preferred unless stated
otherwise reasonable? For instance, Tan and Pearl [28]

B P D S /S B P D S /S

B P E S /S

B P F S /S B P F S /S

B P E S /S

B P D S /SB P D S /S

B P F S /S

B P E S /S

B P F S /S

B P E S /S

Figure 3: The Compact Preference Ordering

argue that worlds should gravitate toward ‘‘indifference’’
rather than preference. We cannot, of course, make sense of
such a suggestion in our framework, since we do not have a
bipolar scale (where outcomes can be good, bad or neutral).7

However, even if an ‘‘assumption of indifference’’ were
technically feasible, we claim that the ‘‘assumption of
preference’’ is the the right one in our setting.

Recall that we wish to use preferences to determine the
set of goal states for a given context C. These are simply
the most preferred C-worlds according to our ranking; call
this set Pref(C). If the agent brings about any of these
situations, it will have behaved correctly. A conditional
preference I(AjC) constrains the set Pref(C) to contain
only A-worlds. Thus an agent will attempt to bring about
some A^C-world when C holds. But which A^C-world
is the right one? With no further information, System
Z will set Pref(C) = kA ^ Ck; all A ^ C-worlds will
be assumed to be equally acceptable. This seems to be
appropriate: with no further information, any course of
action that makes A true should be judged to be as good
as any other. Any other assumption, such as gravitation
of worlds toward indifference, must make the set Pref(C)
smaller than kA ^Ck. For example, if we rule out worlds
satisfying� from Pref(C), then Pref(C) = kA^C ^:�k.
This requires that an agent striving for Pref(C) make :�
true as well asA. This imposes unnecessary and unjustified
restrictions on the agent’s goals, or on the manner in which
it decides to achieve them.

Notice that when worlds gravitate toward preference, our
agent becomes indifferent toward most propositions. By
maximizing the size of Pref(C) (subject to the constraint
that A be true), we minimize the number of propositions
an agent will care about or attempt to make true in contextC. In our example, if A ^C 6` � and A ^ C 6` :�, thenT (�jC) and T (:�jC) will both be true in the Z-model.
Such indifference toward propositions in a given context
seems to be the most appropriate assumption.

7Note that in classical decision theory, such distinctions do
not exist. An outcome cannot be good or bad, nor can an agent be
indifferent toward an outcome, in isolation; it can only be judged
relative to other outcomes. An agent can adopt an attitude of
indifference toward a proposition, as we explain below.



In [3, 4] we characterize System Z, in a default reasoning
context, as embodying the principle of conditional only
knowing. When certain beliefs are stated, either actual
or conditional, System Z ensures that only propositions
that can be shown to be believed (in a given context) are
actually believed. We show this to be a generalization of
the notion of only knowing often adopted in belief logics
[21] that accounts for defeasible beliefs. In the preference
setting, System Z captures the analogous assumption of
‘‘only preferring.’’ Those preferences that can be derived
in a given contextC are assumed to be the only propositions
the agent prefers or cares about in that context.

Certain problems with System Z have been shown to arise
in default reasoning. These problems occur when reasoning
about preferences as well. For example, if we have two
independent (absolute) preferences I(A) and I(B), System
Z will sanction both T (Aj:B) and T (:Aj:B); once the
preference for B has been violated, one cannot ensure thatA is still preferred. Various modifications to System Z have
been proposed to deal with such problems, for instance, the
‘‘rule counting’’ systems of [15, 5]. Such solutions can be
applied in this setting as well, but the assumption of ‘‘only
preferring’’ lies at the heart of these solutions as well.

We should point out that,while our presentation will assume
a unique preference ordering, the definitions to follow do
not require this assumption. We are typically given a set
of conditional premises of the form I(BjA), plus other
modal sentences constraining the ordering. Unless these
premises form a ‘‘complete’’ theory, there will be a space of
permissible orderings. A defeasible reasoning scheme such
as System Z can be used to complete this ordering, but we
do not require the use of a single ordering --- the definitions
presented below can be re-interpreted to capture truth in all
permissible orderings (i.e., consequence in QDT).

3 Default Knowledge

We should not require that goals be based only on ‘‘certain’’
beliefs in KB, but on reasonable default conclusions as well.
Consider the followingpreference orderingwith atomsR (it
will rain),U (have umbrella) andC (it’s cloudy). AssumingC ^R is impossible, we have:fCRU;CRUg < CRU < fCRU;CRUg < CRU
Suppose, furthermore, that it usually rains when its cloudy.
If KB = fCg, according to our notion of actual preference
in the last section, the agent prefers R and U --- in the
best KB-world it doesn’t rain despite the clouds. However,
we cannot use factual preferences (given KB) directly to
determine goals. Ideally, the agent would like to ensure
that it doesn’t rain and that it doesn’t bring its umbrella.
However, clearly the agent can do nothing to make sure R
holds (we return to this in the next section). Given this, the
‘‘goal’’ U seems to be wrong. Once C is known, the agent
should expect R and act accordingly.

As in decision theory, actions should be based not just on
preferences (utilities), but also on the likelihood (proba-

bility) of outcomes. In order to capture this intuition in a
qualitative setting, we propose a logic that has two order-
ings, one for preferences and one representing the degree
of normality or expectation associated with a world.

The logic QDT, a step toward a qualitative decision theory,
is characterized by the class of QDT-models, of the formM = hW;�P ;�N ; 'i
where W is a set of worlds (with valuation function '),�P is a transitive, connected preference ordering on W ,
and �N is a transitive, connected normality ordering onW . We interpret w �P v as above, and take w �N v
to mean w is at least as normal a situation as v (or is at
least as expected). The submodels formed by restricting
attention to either relation are clearly CO-models. The
language of QDT contains four modal operators: 2P ,

 2P
are given the usual truth conditions over �P ; and 2N , 2N are interpreted using �N . The conditional I(BjA) is
defined as previously, using 2P ,

 2P . A new normative
conditional connective ) is defined in exactly the same
fashion using2N ,

 2N :A) B �df
$2N:A _$3N (A ^2N (A � B)) (2)

The sentenceA) B meansB is true at the most normalA-
worlds, and can be viewed as a default rule. This conditional
is exactly that defined in [3, 7], and the associated logic is
equivalent to a number of other systems (e.g., the qualitative
probabilistic logic of [14]). QDT can be axiomatized using
the following axioms and inference rules for both the
preference operators 2P ,

 2P and the normality operators2N ,
 2N :

K 2(A � B) � (2A � 2B)
K0  2(A � B) � ( 2A �  2B)
T 2A � A
4 2A � 22A
S A �  23A
H
$3(2A ^ 2B) � $2(A _B)

Nec From A infer
$2A.

MP From A � B and A infer B
We require the followingaxiom to capture their interaction:

PN
$2NA � $2PA

Theorem 1 The logic QDT is sound and complete with
respect to the class of QDT-models.

Given a QDT-model and a (finite) set of facts KB, we
define the default closure of KB to be (where LCPL is our
propositional sublanguage)

Cl(KB) = f� 2 LCPL : KB ) �g
That is, those propositions � that are normally true given
KB form the agent’s set of default conclusions. As with



preferences, we base our presentation on a unique model
determining a unique set of default conclusions. For
instance, System Z is one mechanism for defining a unique
normality ordering. However, as with preferences, this
assumption is not necessary. We assume (for simplicity of
presentation) that Cl(KB) is finitely specifiable and take it
to be a single propositional sentence.8

An agent ought to act not as if only KB were true, but also
as if its default beliefs Cl(KB) were true. Given a modelM ,
as a first approximation of a definition of goal, we define
an ideal goal (w.r.t. KB) to be any � 2 LCPL such thatM j= I(�jCl(KB))
The ideal goal set is the set of all such �. Intuitively,
the ideal goals are those sentences that must be true if the
agent is to find itself in a best possible situation satisfying
Cl(KB). In our previous example, where KB = fCg, we
have that Cl(KB) � C ^R and the agent’s goals are those
sentences entailed by C ^ R ^ U . It should be clear that
ideal goals are conditional and defeasible; for instance,
given C ^R, the agent has the ideal goal U .

This formulation does not provide any indication as to what
an agent should do in order to achieve these ideal goals.
This will require the introduction of actions and ability (see
the next section). For instance, notice that the ideal goal set
is deductively closed, and we should not expect an agent to
have to consider each member of this set individually. The
notion of a sufficient condition for achieving all ideal goals
can be defined in QDT and will prove useful later.

Definition Let X be some proposition. C is a sufficient
condition given X iff C ^X is satisfiable and M j=$2P (X �  2P (X � :C)).

Intuitively,a sufficient conditionC guarantees that an agent
is in some best possibleX-world. Thus, ifX is some fixed,
unchangeable context, ensuring proposition C means the
agent has done the best it could.

Proposition 2 Let C be a sufficient condition givenX and
let w j= C ^X. Then v <P w only if v 6j= X.

With respect to Cl(KB), ideal goals are necessary conditions
for ensuring the best situation. A sufficient conditionC for
Cl(KB) guarantees the entire ideal goal set is satisfied.9

Proposition 3 If C is a sufficient condition for Cl(KB),
then M j= C ^ Cl(KB) � � for all ideal goals �.

We will explore a detailed example in the next section. We
also examine the ‘‘priority’’ given to defaults over prefer-
ences implicit in this scheme, where Cl(KB) is constructed
before the preference ranking is consulted.

8A sufficient condition for this property is that each ‘‘clus-
ter’’ of equally normal worlds in �N corresponds to a finitely
specifiable theory. This is the case in, e.g., System Z [3].

9Hector Levesque (personal communication) has suggested
that sufficiency is the crucial ‘‘operator.’’

4 Ability and Incomplete Knowledge

The definition of an ideal goal given KB embodies the idea
that an agent should attempt to achieve the best possible
situation consistent with what it knows (as well as what it
conjectures by default). However, as we have emphasized,
this is suitable only when KB is fixed. If the agent can
change the truth of certain elements in KB, ideal goals may
be too restrictive. Thus, some notion of action and ability
must come into play in goal derivation. Actions must also
play a role if we are to derive what an agent should do, rather
than simply what it should achieve. Indeed, the term ‘‘goal’’
is often interpreted in this way. This is especially important
when we notice that the set of propositions an agent should
achieve will always be deductively closed. Finally, actions
must play a role in factoring out unachievable desires. For
instance, an agent might prefer that it not rain; but this is
something over which it has no control. Though it is an
ideal outcome, to call this a goal is unreasonable.

4.1 Controllable Propositions

To capture distinctions of this sort, we introduce a simple
model of action and ability and demonstrate its influence
on conditional goals. We ignore the complexities required
to deal with effects, preconditions and such, in order to
focus attention on the structure and interaction of ability
and goal determination.

We partition our atomic propositions into two classes:P = C [ C. Those atoms A 2 C are controllable, atoms
over which the agent has direct influence. The only actions
available to the agent are do(A) and do(A), which makeA true or false, for every A 2 C. To keep the treatment
simple, we assume actions have no effects other than to
change the truth value of A. The atom U (have umbrella)
is an example of a controllable atom. Atoms in C are
uncontrollable, for example, R (it will rain).

Definition For any set of atomic variables P, let V (P) be
the set of truth assignments to this set. If v 2 V (P)
and w 2 V (Q) for disjoint sets P, Q, then v;w 2V (P [Q) denotes the obvious extended assignment.

We can now distinguish three types of propositions:

Definition A proposition � is controllable iff, for everyu 2 V (C), there is some v 2 V (C) and w 2 V (C)
such that v; u j= � and w; u j= :�.
A proposition � is influenceable iff, for some u 2V (C), there is some v 2 V (C) and w 2 V (C) such
that v; u j= � and w; u j= :�.� is uninfluenceable iff it is not influenceable.

Intuitively, since atoms in C are within complete control
of the agent, it can ensure the truth or the falsity of any
controllable proposition �, according to its desirability,
simply by bringing about an appropriate truth assignment.
If A;B 2 C then A _ B and A ^ B are controllable. If �
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Figure 4: User Preferences

is influenceable, we call the assignment u to C a context
for �; intuitively, should such a context hold, � can be
controlled by the agent. If A 2 C, X 2 C then A _ X
is influenceable but not controllable: in context X the
agent cannot do anything about the truth of A _ X, but
in context X the agent can make A _ X true or false
through do(A) or do(A). Note that all controllables are
influenceable. In this example, X is uninfluenceable. The
category of controllability into which a proposition falls is
easily determined by writing it in minimal DNF. Let PI(�)
denote the set of prime implicants of �.

Proposition 4 a)� is controllable iff each clause inPI(�)
contains some literal from C and some clause contains only
literals from C. b) � is influenceable iff some literal fromC appears in PI(�). c) � is uninfluenceable iff no literal
from C appears in PI(�).
4.2 Complete Knowledge

Given the distinction between controllable and uncontrol-
lable propositions, we want to define goals so that an agent
is required to do only those things within its control. A
first attempt might simply be to restrict the ideal goal set as
defined above to controllable propositions. The following
example shows this to be inadequate.

Example Consider five atoms: O, it is overcast; R,
it will rain; C, I have coffee; T , I have tea;
and H, my office thermostat is set high. My
robot has the default information O ) R. The
robot knows KB = fO;H;C; Tg: it is overcast
and the thermostat is turned down. Its closure is
Cl(KB) = fO;R;H;C; Tg. It can control the three
atoms C, T and H. Its preference ordering is de-
signed to respect my preferences: when it’s raining I
prefer tea when I arrive and the thermostat set high,
otherwise I prefer coffee and the thermostat set low.
Thus, we have the preference ordering illustrated in
Figure 4. (We assume O, R do not contribute directly
to preference, and that priority has been given to C
and T over H. We also allow the possibility that bothC and T together satisfy a preference for either.) The
robot has to decide what to do before I arrive at the
office.

It should be clear that the robot should not determine its
goals by considering the ideal situations satisfying Cl(KB).
In such situations, since H is known,H is true and indeed,
it is a simple theorem of QDT that I(�j�). Thus, the
robot concludes that H should be true. This is clearly
mistaken, for considering only the best situations in which
one’s knowledge of controllables is true prevents one from
determining whether changing those controllables could
lead to a better situation. Since any controllable proposition
can be changed if required, we do not require an agent to
restrict attention to those situations where KB or Cl(KB) is
true. The fact that H is known should not unduly influence
what are considered to be the best alternatives ---H can be
made true if that is what’s best.

Of course, the goals of an agent must still be constrained by
known uninfluenceable propositions. The agent should not
reject all of its knowledge. For example, if the preference
ordering above were modified to reflect my preference forR, the agent should not base its goals on this preference
if it knows R. Making R false is beyond its control, and
it goals should determined by restricting attention to R-
worlds. Thus we insist that the best situations satisfying
known uninfluenceable propositions be considered.

Notice that we should not ignore the truth of controllables
when making default predictions. The prior truth value
of a controllable might provide some indication of the
truth of an uncontrollable; and we must take into account
these uncontrollables when deciding which alternatives are
possible, before deciding which are best. In this example,
we might imagine that the defaultO) R doesn’t hold, but
that O ^H ) R does: if it is overcast, then the thermostat
is set high because I anticipated rain before I left last night.
Our agent must use the truth of this controllable atom H
to determine the truth of the uncontrollable R, which in
turn will influence its decisions.10 Once accounted for in
forming Cl(KB), H can safely be ignored.

This leads to the following formulation of goals that account
for ability. We again assume a QDT-model M and sets C,C. The uninfluenceable belief set of an agent is

UI(KB) = f� 2 Cl(KB) : � is uninfluenceableg
For the time being, we assume that UI(KB) is complete:
the truth value of all uncontrollable atoms is known. This
set of beliefs determines an agent’s goals.

Definition Proposition � is a complete knowledge (CK)
goal iff M j= I(�jUI(KB)) and � is controllable.

10If a controllable provides some indication of the truth of an
uncontrollable or another controllable, (e.g., H ) R) we should
think of this as an evidential rule rather than a causal rule. Given
our assumption about the independence of atoms in C, we must
take all such rules to be evidential (e.g., changing the thermostat
will not alter the chance of rain). This can be generalized using a
more reasonable conditional representation, and ultimately should
incorporate causal structure. Note the implicit temporal aspect
here; propositions should be thought of as fluents. We can avoid
an explicit temporal representation by assuming that preference is
solely a function of the truth values of fluents.



As with ideal goals, the set of CK-goals is deductively
closed and should be viewed as a set of necessary conditions
in any rational course of action. Of course, goals can only be
affected by atomic actions, so we will typicallybe interested
in a set of actions that is guaranteed to achieve each CK-
goal. An (atomic) action set is any set of controllable
literals. If A is such a set we use it also to denote the
conjunction of its elements. An atomic goal set is any
action set A that guarantees each CK-goal; that isM j= UI(KB) ^A � �
for each CK-goal �. Clearly, such any atomic goal set
determines a reasonable course of action. Of course, such
action sets can be determined by appeal to sufficiency.

Theorem 5 Let A be some atomic action set. Then A is a
goal set iff A is a sufficient condition for UI(KB).
In our example above, where the robot knows O, possible
atomic goal sets are fT;Hg and fC; T;Hg. Typically, we
will be interested in minimal goals sets, since these require
the fewest actions to achieve ideality. We may impose
other metrics and preferences on goals sets as well (e.g.,
associating costs with various actions). Notice that the
preference for tea does not prevent the robot from bringing
coffee. However, such constraints can easily be imposed
on the preference ordering. Furthermore, disjunctive goals
and ‘‘integrity constraints’’ pose no difficulty. If I have
no preference for coffee or tea, but prefer exactly one of
the two, the generated atomic goal sets will be fC; Tg andfC; Tg. The set fC; Tg is not a goal set in this case.

With default information and controllability in place, we
can briefly return to the alternative interpretation of pref-
erence statements suggested in Section 2. The assertion
‘‘I prefer an umbrella when it’s raining’’ can now be in-
terpreted as I(U jUI(fRg)). Together with the ‘‘pure’’
preferences I(DjR) and I(U jD) (and other background
information as before), one can conclude R) :D.

In our goal derivation scheme, a certain priority is given
to defaults over preferences. Goals are determined by
first constructing the default consequences of KB, and then
deciding what to do based on this knowledge as if it were
certain. In a truly decision-theoretic setting acting on the
basis of uncertain information is a function not only of its
likelihood, but also the consequences of being incorrect.
For instance, in our framework we might have the default
rule R ) S, if I run across the freeway I will cross
safely. If this allows me to arrive at my destination five
minutes sooner than had I crossed at a crosswalk, the default
assumption S will ensure that I run across the freeway: I
won’t (by default) get hit by a car and I will arrive sooner.
In general, the (drastic) consequences of being wrong in
this regard must be traded off against the probability of
being right. If the five minutes saved is not worth the risk,
then I decide to go to the crosswalk.

To express this tradeoff we must assume that the qualitative
scales of preference and normality are calibrated somehow,

and nothing in the constraints expressed by the user in
our setting allows such an assumption. In the concluding
section we discuss ‘‘qualitative’’ways around this problem.
However, the scheme presented here has a certain naive
appeal, which may be partly due to the observation that
defaults are usually expressed with such considerations in
mind [27, 25]. Furthermore, the scheme is conceptually
simple in that it embodies a principle analogous to the
separability of state estimation and control [11]. An agent
can calculate what is (probably) true of the world and
subsequently and independently base its decisions upon
these beliefs. Finally, our scheme is applicable when
likelihood and preference information is truly qualitative
and explicit calibration of the orderings is not feasible. We
can describe some conditions under which the assumption
of separability is appropriate.

The logic of conditional normality statements can be given a
probabilistic interpretationas described in [7]. In particular,
the purely conditional fragment is equivalent to Adam’s
system of "-semantics, which has also been applied to the
representation of defaults [14]. This means that there is a
probability assignment that ensures that every default ruleA ) B corresponds to an assertion of high conditional
probability P (BjA) > 1 � ", for any " > 0. Thus,
we may assume that a user chooses default rules with
such a parameter in mind, and that P (Cl(KB)jKB) >
1 � ". We can also assume that the preference ordering
is ‘‘constructed’’ by clustering together worlds that have
actual utility within some reasonably small range, and
treating distinct clusters as separated by a reasonably large
gap in utility. Thus, the user can treat certain outcomes as
having (more or less) indistinguishable utility. Outcomes
in different clusters have sufficiently different utilities. To
analyze the appropriateness of our goal derivation scheme,
we make this assumption precise by assigning a point utility�i to each cluster in the preference ordering. Let � denote
the smallest gap �i � �i+1 between any two adjacent point
utilities (the ‘‘smallest perceptible change’’ in utility) and
let = �0 � �n denote the magnitude of the possible range
in utility.

Goals (or decisions) are determined with respect to a given
KB, which induces a decision problem in the obvious
fashion: given UI(KB) what is an optimal action set?
Let U� denote the expected utility of an optimal action
under the assumptions above, and let EU (A) denote the
expected utility of arbitrary action set A. For any goal setA, we want to compare EU (A) to U�. We consider a
special case first. A degenerate KB is one for which every
action set applied to UI(KB) leads to an equally desirable
outcome --- UI(KB) allows no decisions to be distinguished.
Since only unlikely circumstances (that contradict default
conclusions) can influence the choice of action, our scheme
cannot generally be optimal in this case, but the error is
bounded by the probability of default violation:

Proposition 6 If KB induces a degenerate decision prob-
lem, then U� �EU (A) � " for any goal set A.



Degenerate problems will be rare: we imagine some differ-
entiation among decisions is possible most of the time. If
this is the case, then we have U��EU (A) � "� (1� ")�.

Proposition 7 If KB is nondegenerate, any goal set A is
an optimal decision if �(1� ") � ".
This gives some idea of the circumstances under which
the assumption of separability is sound. Of course, it is
unreasonable to only reason with qualitative constraints
that meet these stringent requirements. But they do suggest
useful abstractions for ordinary goal derivation, and the
degree to which these conditions are approximated gives
reasonable assurance of good decisions. Thus, the separa-
bility assumption provides a computationally manageable
procedure for finding ‘‘satisficing’’ solutions.

4.3 Incomplete Knowledge

The goals described above seem reasonable, in accord with
the general maxim ‘‘do the best thing possible consistent
with your knowledge.’’ We dubbed such goals ‘‘CK-goals’’
because they seem correct when an agent has complete
knowledge of the world (or at least of uncontrollable
atoms). But CK-goals do not always determine the best
course of action if an agent’s knowledge is incomplete.
Consider the preferences in the umbrella example and an
agent with an empty knowledge base. For all the agent
knows it could rain or not (it has no indication either
way). Using CK-goals, the agent ought to do(U ), for the
best situation consistent with KB = ; is RU . Leaving its
umbrella is the best choice should it turn out not to rain;
but should it rain, the agent has ensured the worst possible
outcome. It is not clear that U should be a goal. Indeed,
one might expect U to be a goal, for no matter howR turns
out, the agent has avoided the worst outcome.

In the MEU framework, once can deal with such uncer-
tainty easily; but qualitatively, when trying to do as much
as possible with strictly ordinal value information, a dif-
ferent approach is required. The scales of preference and
normality are unknown and incomparable. It is clear, in the
presence of incomplete knowledge, that there are various
strategies for determining goals. CK-goals form merely
one alternative. Such a strategy is opportunistic, or opti-
mistic. Clearly it maximizes potential gain, for it allows
the possibility of the agent ending up with the best possible
outcome. In certain domains this might be a prudent choice
(for example, where a cooperative agent determines the
outcome of uncontrollables). Of course, another strategy
might be the cautious strategy that minimizes potential
loss.11 This too can be captured in our logic.

Let a complete action set be any complete truth assignment
to the atoms in C. These are the alternative courses of action
available. To minimize potential loss, we must consider the

11These alternatives are analogs of the maximax and maximin
decision criteria for decision making without outcome probabili-
ties (under strict uncertainty [13]).

worst possible outcome for each alternative, and pick those
with the ‘‘best’’ worst outcomes. If A1, A2 are complete
action sets, A1 is as good as A2 (A1 � A2) iffM j= $3P (A2 ^UI(KB) ^ : 3P (A1 ^UI(KB)))
Intuitively, if A1 � A2 then the worst worlds satisfyingA1 are at least as preferred as those satisfying A2 (in
the context UI(KB)). It is not hard to see that � forms
a transitive, connected preference relation on action sets.
The best actions sets are those minimal in this ordering�.
To determine the best action sets, however, we do not need
to compare all action sets in a pairwise fashion:

Theorem 8 Ai is a best action set iff M j= Ai � :Ai.
This holds because the negation of a complete action set
(a complete conjunction of literals) is consistent with any
other complete action set. If an agent chooses other than a
best action set, it opens the possibility for a worse outcome:

Theorem 9 Let Ai be a best action set for KB and Aj be
any complete action set. For any w j= UI(KB) ^Ai, there
is some v j= UI(KB) ^Aj such that w �P v.

Now, we say � is a cautious goal iff_fAi : Ai is a best action set g j= �
In this way, if (say) A ^ B and A ^ :B are best action
sets, then A is a goal but B is not. Simply doing A (and
letting B run its natural course) is sufficient. This notion
of goal has controllabilitybuilt in (ignoring tautologies). In
our example above, U is a cautious goal.

We cannot expect best action sets, in general, to be sufficient
in the same sense that CK-goal sets are. The potential for
desirable and undesirable outcomes makes it impossible to
ensure best outcomes consistent with UI(KB). However,
we can show that if there is some action set that is sufficient
for KB then all best action sets will be sufficient.

Proposition 10 If some action setA for KBis CK-sufficient
for KB, then every best action set is CK-sufficient.

Hence, CK-sufficiency can be applied even in the case
of incomplete knowledge. Its applicability implies that
possible outcomes of unknown uncontrollables have no
influence on preference: all relevant factors are known.

The cautious strategy seems applicable in a situation where
one expects the worst possible outcome, for example, in a
game against an adversary. Once the agent has performed
its action, it expects the worst possible outcome, so there
is no advantage to discriminating among the candidate
(best) action sets: all have equally good worst outcomes.
However, it’s not clear that this is the best strategy if the
outcome of uncontrollables is essentially ‘‘random.’’ If
outcomes are simply determined by the natural progression
of events, then one should be more selective. We think
of nature as neither benevolent (a cooperative agent) or
malevolent (an adversary). Therefore, even if we decide to



be cautious (choosing among best action sets), we should
account for the fact that a worst outcome might not occur:
we should choose the action sets that take advantage of this
fact.

Observations

It should be clear that if an agent can observe the truth
values of certain unknown propositions before it acts, it can
improve its decisions. In many cases, it will make the worst
outcomes better and change the actions chosen. To continue
the ‘‘umbrella’’ example, suppose R and C are unknown.
The agent’s cautious goal is thenU . If it were in the agent’s
power to determine C or C before acting, its actions could
change. Observing C indicates the impossibility of R, and
the agent could then decide to do(U ).
Space limitations preclude a deep discussion, but briefly,
we can distinguish two types of uncontrollable atoms:
observables and unobservables. Suppose KB determines a
best action set AB . Intuitively, the observation of some
unknown uncontrollable atom O is worthwhile if it can
potentially change the agent’s goal set. Cautious and
optimistic goals must be treated differently. Assume first
a cautious strategy. Note that a goal set accounts for
some worst outcome which must include either O or O.
Thus, an observation can never be guaranteed to change the
agent’s decision: it may ‘‘validate’’ its cautious approach.
In our example, observing C will not change the agent’s
decision, but observing C will. We say atom O has value
if AB is not a best action set for one of KB [ fOg or
KB [ fOg. In this case, observing O is worthwhile since
it might (depending on its actual truth value) change the
agent’s goal set. This is a qualitative analog of value of
information. Of course, we cannot quantify the potential
value of making an observation; but we may compare the
relative values of two pieces of information O and P . For
simplicity, assume that positive observations O and P are
the ‘‘improving’’ outcomes. Let AO andAP be best action
sets for O and P . The value of O is as great as that of P
just whenM j= $3P (AP^UI(KB[fPg)^: 3P (AO^UI(KB[fOg)))
A similar treatment of optimistic goals can be given, where
the valuable observations are undesired outcomes that
change appropriate action. Observation O has value iff:I(AB jUI(KB [ fOg) or :I(AB jUI(KB [ fOg) hold.

5 Concluding Remarks

Related Work

Other attempts to define goals using preferences bear some
relationship to our system. Doyle and Wellman [12] define
goals that exhibit a conditional aspect like ours. Roughly,B is a goal given A just when A ^ B is preferred toA ^ :B for any fixed circumstance. For instance, if such
a relationship holds A ^ B should be preferred given C,
given :C, and so on. Such goals incorporate a ceteris
paribus assumption:B is preferred to :B givenA, all else

being equal. This guarantees that doing B will lead to a
better situation whenever A holds. Our conditional goals
are much weaker. No such assurances can be provided.
Intuitively, if B is a goal given A, then doing B will lead
to a better situation, all else being normal. However, this
permits defeasible goals, affording greater flexibility and
naturalness of expression. Only factors directly relevant
to utility need be stated, and others are assumed to be
irrelevant. In addition, our goals incorporate elements of
controllability.

Pearl [24] has proposed a system using much the same
underlying logical apparatus as ours. However, condi-
tional statements are taken to impose specific constraints
on utility and probability distributions, allowing expected
utility calculations (with ‘‘order of magnitude’’ values) to
be performed. While this allows stronger conclusions to
be reached in general, it makes stronger demands on the
input information as well. Thus, the system cannot be
construed as truly qualitative, so in a sense the aim here
is different. Tan and Pearl [28] introduce a somewhat
more qualitative system. It handles quantified conditional
desires (adopting the machinery of qualitative probability
[14]). To account for likelihood, they adopt our model
of closing under default consequence before consulting
preferences. Incompletely specified preferences induce a
‘‘compact’’ model where worlds gravitate toward neutral-
ity, but as noted earlier, this is not an obviously useful
strategy. Furthermore, conditional preferences are given
a ceteris paribus interpretation along the lines of Doyle
and Wellman. Aside from the unknown impact on the
computation of compact rankings, their particular seman-
tics is of questionable value for representing conditional
preferences. For example, a preference for A given A _B
requires that :A ^:B be dispreferred. In our semantics, a
conditional preference given any � imposes no constraints
on the degree of preference of :�-worlds.

Our representation of preferences draws much from work
on deontic logic, where preference may be determined
by some legal or moral code. Indeed, our logic can be
applied to such problems [6]. However, the slogan that
characterizes ideal goals, ‘‘do the best given what you
know,’’ is accepted in much work on the derivation of
obligations. Just as in the derivation of goals, such a
mechanism is not generally appropriate. Some work in
deontic logic has recently begun to incorporate, as we do
here, default information [20, 1].

Summary

We have presented a logic QDT for representing qualitative
preference and likelihood information. We have shown how
defeasible conditional preferences can be expressed, and
described several methods for goal derivation based on the
assumption that priority be given to defaults. There are
a number of ways in which this work can be extended.
Clearly, the account of action and ability is naive. An
object-level characterization of actions with true causal
structure can be added to the conditional framework [24]



to make goal derivation more realistic.

The assumption of separability and priority of default
information must be relaxed in many circumstances. In
order to allow reasonable decisions to be made, a logic
that allows tradeoffs of likelihood and preference to be
expressed in a qualitative fashion is desirable. For instance,
if I instruct my robot that it should run across the street
(instead of crossing at the crosswalk) to save three minutes
while fetching my coffee, it can safely deduce that running
across the street is worth the risk if a courier deadline is
involved. I have implicitly calibrated part of its preference
and normality rankings with each other. We are currently
exploring how such mechanisms to reason directly with
such qualitative tradeoff information [9]. This can be
viewed as a mechanism to deal with imperatives, and
propagate the implicit knowledge in such commands to
other contexts.

Related to this is a fuller investigation of the different forms
preference information might take in such a setting. As
mentioned earlier, user preferences might be stated inde-
pendently of typicality information, or might incorporate
expected circumstances and controllability information. A
well-developed logic for these and other ‘‘entangled’’ con-
straints is certainly worth pursuing.
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