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Abstract

We present alogic for representing and reasoning with
qualitative statements of preference and normality and
describe how these may interact in decision making
under uncertainty. Our aim is to develop a logical
calculus that employs the basic elements of classical
decision theory, namely probabilities, utilities and ac-
tions, but exploits qualitative information about these
elements directly for the derivation of goals. Prefer-
ences and judgements of normality are captured in a
modal/conditional logic, and a simple model of action
is incorporated. Without quantitative information, de-
cision criteria other than maximum expected utility are
pursued. We describe how techniquesfor conditional
default reasoning can be used to complete information
about both preferences and normality judgements, and
we show how maximin and maximax strategies can be
expressed in our logic.

1 Introduction

We typically expect arationa agent to behave in a manner
that best furthers its own interests. However, an artificia
agent might be expected to act in the best interests of a
user (or designer) who has somehow communicated its
wishes to the agent. In the usua approaches to planning
in Al, a planning agent is provided with a description
of some state of affairs, a goal state, and charged with
the task of discovering (or performing) some seguence
of actions to achieve that goal. This notion of goa can
be found in the earliest work on planning and persists in
more recent work on intention and commitment [10]. In
most realistic settings, however, an agent will frequently
encounter goals that it cannot achieve. As pointed out
by Doyle and Wellman [12] an agent possessing only
simple goa descriptions has no guidance for choosing an
alternative goa state toward which it should strive.

Straightforward goal -driven behavior tendsto beinflexible:
an agent told to ensurethat part A and part B are at location
L by 5PM will be unable to do anything if it cannot
locate B or if something prevents it from reaching . by
5PM. One might suppose that the agent should at lesst

deliver A to L as close to 5PM as possible. While such
partial fulfillment of deadline goals[16] undoubtedly arises
frequently is practice, more general mechanisms will often
berequired. If A and B can’t bedelivered, perhapsalternate
parts C' and D should be; or if the 5PM deadline can't be
met, the agent should wait until next week. To this end,
a recent trend in planning has been the incorporation of
decision-theoretic methods for constructing optimal plans
[11]. Decision theory provides most of the basic concepts
we need for rational decision making, in particular, the
ability to specify arbitrary preferences over circumstances
or outcomes. This alows desired outcomes or goals (and
hence appropriate behaviors) to vary with context.

M ost decision-theoretic anaysisisset within theframework
of maximum expected utility (MEU). One impediment to
the genera use of such decision-theoretic tools is the re-
quirement to have both numerical probabilitiesand utilities
associated with the possible outcomes of actions. It isquite
conceivablethat such informationisnot readily availableto
the agent. We can often expect usersto present information
in a qualitative manner, including qualitative preferences
over outcomes (one outcome or proposition is preferred to
another) and qualitative probabilities (describing the rela
tive likelihood of propositionsor outcomes). The ability to
reason directly with such qualitativeconstraintsistherefore
crucia. An appropriate knowledge representation scheme
will allow the expression of constraints of this form and
allow oneto logically derive goals and reasonable courses
of action, to the extent the given information allows.!

While the foundations of decision theory are, in fact, based
on such qualitative preferences [26, 29], the move to numerical
utilities (and probabilities) requires that a preferences and likeli-
hoods be calibrated by means of questions concerning acceptable
exchanges between outcomes and lotteries. For an agent behav-
ing according to the preferences of some user, this requires that
either @) the user's preferences be so completely specified that
such calculations can be made; or b) the user (or the source of
preference information) be available to be queried about prefer-
ence information as the need arises. Furthermore, a complete
calibration of just the preference ranking, in the most fortunate
circumstances, requires a number of queries at least as large as
the number of possible worlds (exponential in the number of
propositional atoms). Such a mechanismis also often criticized



In this paper, we describe a logic and natural possible
worlds semantics for representing and reasoning with qual -
itative probabilities and preferences, and suggest severa
reasoning strategies for qualitative decision making using
this logic. We can represent conditional preferences, al-
lowing (derived) goasto depend on context. Furthermore,
these conditional preferences are defeasible: | might have a
genera preference for the proposition A (e.g., that parts be
delivered to customers on time) but have a more specific
‘“‘defeating’’ preference for — A if a customer’s account is
past due. Semantically, preferences will be captured by an
ordering over possibleworlds, corresponding to an ordina
value function. The logic that captures such default pref-
erences will exactly match existing conditional logics for
default reasoning and belief revision [4, 7, 8]. Furthermore,
the component of the logic for capturing qualitative prob-
abilities will be isomorphic, with a (separate) normality
ordering on worldsrepresenting their relative likelihood.

In order to strengthen possible conclusions, we will also
present reasoning strategies for completing information
about preferences and likelihoods, in essence, making as-
sumptions about unstated constraints. In addition, we
describe severa ways of making decisions with such com-
pleted information. These decision making strategies are
motivated by the fact that the scales of normality and pref-
erence on which worlds are ranked are incomparable. This
reflectsthefact that user specified constraints providequal -
itative information about the structure of the two rankings,
not their relative magnitudes. We will discuss conditions
under which decisions are sound in this framework.

In Section 2, we present the basic logic of preferences
and its semantics, and show how existing techniques for
conditiona default reasoning can be used to make various
assumptions about incomplete preference orderings. In
Section 3, we add normality orderings to our semantics
and describe a logic for dealing with both orderings. We
describe the derivation of ideal goal states, roughly, the
best situations an agent can hope for given certain fixed
circumstances. This generalizes the usual notion of a goa
in Al, for such goal's are context-dependent and defeasible,
and can be derived from more basic information rather
than simply being asserted directly by a user. Such goals
do not take into account the ability of an agent to change
the fixed circumstances from which they are derived, nor
the potential inability of an agent to achieve a god. In
Section 4, we explore a more redistic notion of goal that
accounts for asimple form of ability. In planning, asin the
decision theory, the ultimate am is to derive appropriate
actions to be performed that will achieve derived goa
states. The ability of an agent to affect the world will
have a tremendous impact on the actual goal states it
attempts to achieve. One feature that becomes clear in
our moddl is that, given incomplete knowledge, various
behavioral strategies can emerge. We show how these can
be expressed in our logic. Findly, in Section 5, we point

becausethe queries require answersto which auser doesnot have
ready accessor might be uncertain [13].

out some related work, and on-going investigations into
how the trade-offs between utility and probability can be
captured in a qualitative manner. We also point out some
interesting connectionsto deontic logic.

2 Conditional Preferences

A goal istypicaly taken to be some proposition that we
desire an agent to make true. Semantically, a goa can be
viewed as a set of possible worlds, those states of affairs
that satisfy the goal proposition [10]. Intuitively, if we
ignore considerations of ability, the set of goa worlds
should be those considered most desirable by an agent (or
its designer). To achieve dl goals is to ensure that the
actual world lieswithin this desirable set.

Unfortunately, goa s are not aways achievable. My robot’ s
goa to bring me coffee may be thwarted by a broken
coffee maker. Robust behavior requires that the robot
be aware of desirable aternatives (‘‘If you can’'t bring
me coffee, bring me tea’’). Furthermore, goals may be
defeated for reasons other than inahility. It is often natural
to specify general goals, but list exceptional circumstances
that make the goal less desirable than the alternatives. For
instance, a genera preference for delivering parts within
24 hours may be overridden when the account is past
due (which may in turn be overridden if the customer is
important enough). To capture these ideas, we propose a
generalization of standard goal semantics. Rather than a
categorical distinction between desirable and undesirable
situations, we will rank worlds according to their degree of
preference. The most preferred worlds correspond to goal
statesin the classical sense. However, when such states are
unreachable, aranking on aternatives becomes necessary.
Such aranking can be viewed as an ordinal val ue function.

The basic concept of interest will be the notion of con-
ditional preference. We write 7(B|A), read ‘‘idedly B
given A’ toindicatethat thetruth of B ispreferred, given
A. This holds exactly when B istrue at each of the most
preferred of those worlds satisfying A. From a practical
point of view, I(B|A) meansthat if the agent (only) knows
A, and thetruth of A isfixed (beyond its control), then the
agent ought to ensure B. Otherwise, should =B come to
pass, the agent will end up in alessthan desirable A-world.
The statement can beroughly interpreted as*‘If A, do B.”
We proposeabimodal logic COfor conditional preferences
using only unary modal operators. The presentationisbrief.
Further detailscan be foundin [3, 7].

21 ThelogicCO

We assume a propositional bimodal language Lg over a set
of atomic propositional variables P, with the usua classical
connectivesand two modal operatorsO and 8. our possible
worlds semantics for preference is based on the class of
CO-modds, of theform M = (W, <, ), where W isaset
of possible worlds, ¢ is a vauation function, and < is a
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Figure1: A CO-mode

transitive connected binary relation on W.2 Thus, < isa
total preorder over W. In other words, W consists of a set
of <-equivaence classes or clusters of equally preferred
worlds, with these clusters being totally ordered by <. We
take < to represent an ordering of preference: v < w just
incase v isat least as preferred as w. Thisordering istaken
to reflect the desirability of situations, however thisis to
be interpreted (e.g., persona utility, moral acceptability,
etc.).® Figure 1 illustrates a typical CO-model. The truth
conditionsfor the modal connectives are

1. M E, O«iff foreach v suchthat v < w, M =, «.
2. M =, Daiff for each v suchthat w < v, M =, o

O« istrueat aworld w just in case « istrueat al worlds

a least as preferred as w, while Ga holds just when «
holds at all less preferred worlds. The dua ‘*possibility’”
connectives are defined as usud: Ca =g —~O-a means
o is true a some equaly or more preferred world; and

< .
Oa =g —~8-a means « is true a some less preferred

world. Ha =q¢ Oa A o and Ba =g CaV Sa mean o
istrue at all worlds and at some world, respectively. The
logic CO isaxiomatized in [3, 7] (see also Section 4).

2.2 Expressing Conditional Preferences

We now defineaconditional connective 7(—|—) to express
conditional preferences. 7(B|A) can be read as ‘‘In the
most preferred situationswhere A holds, B holdsaswell,”’
or “‘If Athenidedly B.” Intuitively, I(B|A) should hold
just when B holds at the most ideal A-worlds.* These truth
conditionscan be expressed in Lg (see [3, 7]):

I(B|A) =4 O-Av8AADA>B). (1)

This can be thought of, as a first approximation, as ex-
pressing ‘‘If A then an agent ought to ensure that B,”’
for making B true ensures an agent ends up in the best

2Relation < is connectediff w < v or v < w for al v, w.

SWhile w < v usually means v is a preferred outcome, the
usual conventionin Al isto ‘‘prefer’” minimal models, hencewe
take w < v to mean w is preferred.

4Of course, nothing in our models forces the existence of such
minimal A-worlds, but our definition is adequate in this case as
well [7]. The conditional holds vacuously when A is false at all
worlds.

possible A-situation. We note that an absolute preference
A, capturing the standard unconditiona goal semantics,
can be expressed as 7(A|T), or equivaently, B0A. We
abbreviate thisas 7(A) and read thisas *‘idedly A’’. This
can be read as expressing an unconditional desire for A
to be true. The model in Figure 1 satisfies 7(B|A) and
I(A = B).

The dua of preference gives a notion of toleration or
“‘don’t care conditions.” If —=I(—B|A) holds, then in the
most preferred A-situationsit isnot required that —B. This
meansthere areideal A-worldswhere B holds, or that B is
“‘tolerable’’ given A. We abbreviatethissentence 7'( B| A).
Loosely, we can think of this as asserting that an agent is
permitted todo B if A. Unconditional tolerationis denoted
T(A) and standsfor —1(—A), or equivalently, Hoa5we
note that the rel ative preference of two propositions can be
expressed directly in CO. Wewrite A <p Btomean A is
at least aspreferred as B (intuitively, thebest A-worldsare
at least as good as the best B-worlds), and defineit as:

A<p B=g 8(B > OA)

Another useful notion isthat of strict preference. If some
proposition is more desirable than its negation no matter
what other circumstances hold (e.g., deliveriesto customer
C must be on time), we can assert

t(c > o)

which ensures that every C-world is preferred to any
—C'-world. Of course, we cannot a priori abolish such
situations, for they may occur due to events beyond an
agent’ s control, and the relative preference of these strictly
dispreferred worlds is important. But in achieving stated
goals condition—C' will be avoided if at all possible. These
strict preferences can also be combined and prioritized [8].

The properties of the connective I are identical to those of
the conditional connective = defined in [2, 7] for default
reasoning (see also Section 4). They are distinguished sm-
ply by their reading and theinterpretation of the underlying
ordering <. Asone should expect, absolute preferences, as
well as preferencesin any fixed context, must be consi stent,
for the following isatheorem of CO (for any possible A):

[(B|A) D =I(=B|A)

However, an agent’s preferences needn’t be complete, for
T(B|A) ANT(—B|A) isgeneraly consistent. The property
of preferential detachment holdsin CO:

I(B|A) AI(A) D I(B)
However, the principle of factual detachment
I(B|A)AA D I(B)

SIdeality and toleration are dual in exactly the sense that
necessity and possibility are. In deontic contexts, the connectives
I and T' can be profitably interpreted as expressing some form of
obligation and permission, respectively (see Section 5).
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Figure 2: Possible Interpretations of Preferences

isnot valid. This has implicationsfor the manner in which
an agent should derive its actua preferences in a given
situation, as we describe in the next section.

The most important feature is that preferences are condi-
tional and can vary with context. | can consistently assert
I(U|R) and I(U | R), that my agent should take an umbrella
if it'sraining, and leave it home if not. The potentia goals
or subgoals I/ or =/ depend on context and need not be
asserted categorically. Furthermore, these conditionalsare
defeasible: | can consistently assert that 7(U7) without fear
of contradicting 7(U|R). Notice that these two statements
alow the conclusion I(R) to be drawn --- the agent can
deriveits (or my) preference for sunny weather.

Thisdefeasibility also allowsoneto assert, together withthe
previous conditionals, /(U | R A D), that an umbrellais not
desiredif | driveacar towork (D) instead of waking (— D).
Such atheory induces apartial structurelikethat illustrated
in Figure 2(a). As above, thisentails 7(—~D|R). However,
is this conclusion truly intended? On the surface, it seems
reasonable to accept al three preference statements, but
allow the assertion that | prefer to drive when it’sraining.
Yet I(D|R) contradicts these other premises.

The (intuitive) source of the inconsistency isthe statement
I(U|R). If | prefer to drive when it's raining, and prefer
not to have an umbrella when | drive, then | should not
assert that at the most ideal R-worlds, U holds. At the
most ideal R-worlds, D (hence —U) holds. Intuitively,
the preference for U/ given R only holds when | do not
drive; thus, I(U|R A —D) holdsbut I(U| R) does not (see
Figure 2(b)). Figure 2(a), which validates I(U|R), seems
appropriate when | prefer walking to driving, even when
it'sraining.

We notice, however, that the assertion 7 (U |R), | prefer an
umbrellawhen it’ sraining, seems (potentially) appropriate
even when Figure 2(b) is the intended model. This might
be the case if | am usually unableto driveto work. Even if
| prefer to drive, | probably won't be able to, so my stated
preference for U given R might reflect this fact. In this
case, the typical R-world is one in which = holds, and
hence one in which U/ should hold: my robot should bring
an umbrella dong. Very often stated preferences do not
express ideal preferences. Rather, they may incorporate

into the stated context (here, R) certain assumptions or
default conclusions (such as —D), and thus express a
preference conditioned on thisextended context (R A — D).
Theintended assertion I(U| R A—D) isperfectly consistent
with Figure 2(b), but it may beabbreviated as I (U| R) if the
default conclusion — 1 isunderstood. It istherefore crucial
to realize that linguitically stated preferences can be come
in different varieties. A statement I(U|R) expresses an
ideal preference: in the best possible R-worlds U is true.
Other varieties, such asthosewherethe user has considered
the default consequences of a proposition beforeexpressing
conditional preference, requiretheadditional machinery we
introducein Sections 3 and 4.°

2.3 Defeasible Reasoning with Preferences

The conditiona logic of preferences we have proposed
aboveissimilar to the (purely semantic) proposal put forth
by Hansson [17] for deontic reasoning (reasoning about
obligation and permission). In our logic, one may simply
think of 7(B|A) as expressing a conditional obligation to
see to it that B holdsif A does. Loewer and Belzer [22]
have criticized this semantics *‘since it does not contain
the resources to express actual obligations and no way
of inferring actua aobligations from conditional ones.’”’
In particular, they argue that any deontic logic should
validate something likefactual detachment, not just deontic
detachment (the deonticanal og of preferentia detachment).
Thecriticismappliesequally well to our preferencelogic---
one cannot logically derive actual preferences --- because
the principle of factual detachment does not hold. Factua
detachment expresses the idea that if there is a conditional
preference for B given A, and A isactually the case, then
thereisan actua preference for B. Whiletheinferenceisa
reasonabl e one, we do not expect, nor do we want it to hold
logically because it threatens the natural defeasibility of
our conditionals. For instance, if R and I(U|R) entailed U,
sotoowould R, D, I(U|R) and I(U|R A D). Defeasible
conditional preferences could not be expressed.

Various logics have been proposed to capture factua de-
tachment in the deontic setting, and recently several com-
plex default reasoning schemes have been applied to this
problem [18, 20]. We propose a simple solution based
on the following observation: to determine preferences
based on certain actud facts, we consider only the most
ideal worlds satisfying those facts, rather than all worlds
satisfying thosefacts. Let KB be aknowledge base contain-
ing statements of conditiona preference and actual facts.
Given that such facts actually obtain, the idea situations
are those most preferred worlds satisfying KB. This sug-
gests a straightforward mechanism for determining actual
preferences. We simply ask for those propositions « such

SSimilarly, one can impose this alternate interpretation on
direct statementsof preference A < p B, as Jeffrey [19] does. On
our definition, A <p B means the best A-worlds are preferred,
whereas Jeffrey defines such a statement to mean the expected
utility of all A-worldsis greater than that for B.
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This is precisdly the preliminary scheme for conditional
default reasoning suggested in [3]. This mechanism un-
fortunately has a serious drawback: seemingly irrelevant
factual information, or informati on about the consequences
of actions, can paralyzethederivation of actua preferences.

Example Let P denotethat acertain part ispainted, B that
it’sblemished, and S that it’ sdestined for shipment to
aspecificwarehouse. Let D, £ and F' denote possible
locations for a certain piece of equipment. If

KB = {I(P|B), B}

then the actual preference P is derivable using the
scheme suggested above. However, it is not deriv-
able from KB' = KB U {S}. Because conditionas
are defeasible, it is consistent (with KB') to assert
I(P|BAS), dthoughintuitively S isirrelevant to this
preference.

Again consider KB with actua preference P. Suppose
a painting action that achieves P requires the equip-
ment in question to be moved, making either D, F or
F true. Even though not stated, one can consistently
assert I(PAD|B),I(PAE|B)orI(PAF|B). Thus
the agent cannot show that any of the moves D, E or
F'istolerated --- it cannot decide what to do.

In this example, the fact that I(P|B) is the only stated
preference suggests that other factors are irrelevant to the
relative preference of situations. Intuitively, these factors
should be discounted. Unless stated otherwise, the part
should be painted regardless of its destination and the
manner in which P is achieved (D, £ or F) is not of
concern.

One possible way to dea with this difficulty is to make
certain assumptions about the preference ordering. In
particular, it is possible to adopt the default reasoning
scheme System Z [23] in this context. Given a set of
conditiona constraints, System Z enforces the assumption
that worlds are assumed to be as preferred as possible
consistent with these constraints. In other words, worlds
are pushed down as far as possible in the preference
ordering, ‘‘ gravitating’’ toward absol ute preference. In our
example, the modd induced by this assumption is shown
in Figure 3. (For convenience we assume that /(P|B) and
that D, E and F' are mutually exclusive.) Any —B-world
that satisfies P isdeemed acceptable, regardless of thetruth
of the irrdlevant factors. The technical details of System
Z may be found in [23], and in [3] we describe how the
Z-model for any conditional theory can be axiomatized
in CO. The important features of this model are: a) the
assumption induces a unique, ‘' most compact’’ preference
ordering; and b) the consequences associated with these
assumptions can sometimes be efficiently computed.

Is the assumption that worlds are preferred unless stated
otherwise reasonable? For instance, Tan and Pearl [28]
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Figure 3: The Compact Preference Ordering

argue that worlds should gravitate toward ‘‘indifference’’
rather than preference. We cannot, of course, make sense of
such asuggestion in our framework, since we do not have a
bi pol ar scal e (where outcomescan begood, bad or neutral).”
However, even if an ‘*assumption of indifference’’ were
technically feasible, we claim that the ‘‘assumption of
preference’’ isthethe right one in our setting.

Recall that we wish to use preferences to determine the
set of goal states for a given context C'. These are simply
the most preferred C'-worlds according to our ranking; call
this set Pref(C). If the agent brings about any of these
situations, it will have behaved correctly. A conditional
preference I(A|C) constrains the set Pref(C') to contain
only A-worlds. Thus an agent will attempt to bring about
some A A C'-world when €' holds. But which A A C'-world
is the right one? With no further information, System
Z will set Pref(C) = [|JA A C||; dl A A C-worlds will
be assumed to be equally acceptable. This seems to be
appropriate. with no further information, any course of
action that makes A true should be judged to be as good
as any other. Any other assumption, such as gravitation
of worlds toward indifference, must make the set Pref(C)
smaller than ||A A C||. For example, if we rule out worlds
satisfying o from Pref(C), then Pref(C') = [|AA C A —e].
This requires that an agent striving for Pref(C') make -«
trueaswell as A. Thisimposes unnecessary and unjustified
restrictionson the agent’ s goa's, or on the manner in which
it decidesto achieve them.

Notice that when worlds gravitate toward preference, our
agent becomes indifferent toward most propositions. By
maximizing the size of Pref(C') (subject to the constraint
that A be true), we minimize the number of propositions
an agent will care about or attempt to make true in context
C. Inour example, if ANC  aand A A C I/ —a, then
T(«|C) and T(—«|C) will both be true in the Z-moddl.
Such indifference toward propositions in a given context
seems to be the most appropriate assumption.

"Note that in classical decision theory, such distinctions do
not exist. An outcome cannot be good or bad, nor can an agent be
indifferent toward an outcome, in isolation; it can only be judged
relative to other outcomes. An agent can adopt an attitude of
indifference toward a proposition, aswe explain below.



In [3, 4] we characterize System Z, in a default reasoning
context, as embodying the principle of conditional only
knowing. When certain beliefs are stated, either actual
or conditional, System Z ensures that only propositions
that can be shown to be believed (in a given context) are
actualy believed. We show this to be a generdization of
the notion of only knowing often adopted in belief logics
[21] that accounts for defeasible beliefs. In the preference
setting, System Z captures the analogous assumption of
“‘only preferring.”” Those preferences that can be derived
inagiven context C' are assumed to bethe only propositions
the agent prefers or cares about in that context.

Certain problems with System Z have been shown to arise
in default reasoning. These problemsoccur when reasoning
about preferences as well. For example, if we have two
independent (absol ute) preferences 7(A) and I(B), System
Z will sanction both 7'(A|-B) and T'(—A|-B); once the
preference for B has been violated, one cannot ensure that
Aisdill preferred. Various modificationsto System Z have
been proposed to deal with such prablems, for instance, the
“‘rule counting’’ systems of [15, 5]. Such solutions can be
applied in this setting as well, but the assumption of *‘only
preferring’’ lies at the heart of these solutions as well.

Weshould point out that, whileour presentationwill assume
a unique preference ordering, the definitions to follow do
not require this assumption. We are typically given a set
of conditiona premises of the form I(B|A), plus other
modal sentences constraining the ordering. Unless these
premisesforma'‘ complete’’ theory, therewill beaspace of
permissible orderings. A defeasible reasoning scheme such
as System Z can be used to complete this ordering, but we
do not requirethe use of asingleordering --- the definitions
presented bel ow can be re-interpreted to capture truthin all
permissible orderings (i.e., consequence in QDT).

3 Default Knowledge

Weshould not requirethat goalsbebased only on*‘ certain’’
beliefsin KB, but on reasonabl e default conclusionsaswell.
Consider thefollowing preference orderingwith atoms R (it
will rain), U (haveumbrella) and C' (it’ scloudy). Assuming
C' A Risimpossible, we have:

{CRU,CRU} < CRU < {CRU,CRU} < CRU

Suppose, furthermore, that it usually rainswhen its cloudy.
If KB = {C'}, according to our notion of actua preference
in the last section, the agent prefers R and U --- in the
best KB-world it doesn't rain despite the clouds. However,
we cannot use factual preferences (given KB) directly to
determine goas. ldedly, the agent would like to ensure
that it doesn’t rain and that it doesn’t bring its umbrella
However, clearly the agent can do nothing to make sure R
holds (we return to thisin the next section). Given this, the
“‘goal’’ U seemsto be wrong. Once C' is known, the agent
should expect R and act accordingly.

As in decision theory, actions should be based not just on
preferences (utilities), but also on the likelihood (proba

bility) of outcomes. In order to capture this intuition in a
gualitative setting, we propose a logic that has two order-
ings, one for preferences and one representing the degree
of normality or expectation associated with aworld.

Thelogic QDT, astep toward aqualitativedecision theory,
is characterized by the class of QDT-models, of the form
M= <Wa§Pa§Nag0>

where W is a set of worlds (with valuation function ¢),
<p isatransitive, connected preference ordering on W,
and < is a transitive, connected normality ordering on
W. We interpret w <p v as above, and take w <y v
to mean w is a least as normal a situation as v (or is at
least as expected). The submodels formed by restricting
attention to either relation are clearly CO-models. The

language of QDT contains four moda operators: Op, ] P
are given the usua truth conditions over <p; and Oy,

SN are interpreted using <p . The conditiona 7(B|A) is

defined as previously, using Op, Op. A new normative
conditional connective =- is defined in exactly the same

fashionusingDN,(ﬁN:
A= B =¢ Ox-AV3N(AADON(ADB)) (2)

Thesentence A = B means B istrueat themost normal A-
worlds, and can beviewed asadefault rule. Thisconditional
is exactly that defined in [3, 7], and the associated logicis
equivalent toanumber of other systems(e.g., thequalitative
probabilisticlogic of [14]). QDT can be axiomatized using
the following axioms and inference rules for both the

preference operators Op, 8 p and the normality operators
On,Op:

K 0(4>B)D>(0ADOB)

K 8(4>B)>(H4>E6B)

TOADA

4 0OADHOOA

s 4ob0a

H 8@AAbB) > HB(AvB)

Nec From A infer A,

MP From A D B and A infer B

Werequirethefollowingaxiom to capturetheir interaction:
PN Bya=8p4

Theorem 1 The logic QDT is sound and complete with
respect to the class of QDT-models.

Given a QDT-model and a (finite) set of facts KB, we
define the default closure of KB to be (where Lcp is our
propositional sublanguage)

CI(KB) = {«w € LcpL : KB= a}
That is, those propositions o that are normally true given
KB form the agent’s set of default conclusions. As with



preferences, we base our presentation on a unique model
determining a unique set of default conclusions. For
instance, System Z is one mechanism for defining aunique
normality ordering. However, as with preferences, this
assumption is not necessary. We assume (for simplicity of
presentation) that Cl(KB) isfinitely specifiable and take it
to be asingle propositional sentence.®

An agent ought to act not as if only KB were true, but also
asif itsdefault beliefs Cl(KB) weretrue. Givenamodel M,
as afirst approximation of a definition of goal, we define
an ideal goal (w.r.t. KB) to beany « € Lcp. such that

M & I(a|CI(KB))

The ideal goal set is the set of al such «. Intuitively,
the ideal gods are those sentences that must be true if the
agent isto find itself in a best possible situation satisfying
CI(KB). In our previous example, where KB = {C'}, we
have that CI(KB) = C' A R and the agent’s goals are those
sentences entailed by C' A R A U. It should be clear that
ideal goals are conditional and defeasible; for instance,
given C' A R, the agent has theideal goa U.

Thisformulation does not provide any indication asto what
an agent should do in order to achieve these ideal goals.
Thiswill require theintroduction of actionsand ahility (see
the next section). For instance, noticethat theideal goal set
isdeductively closed, and we should not expect an agent to
have to consider each member of this set individualy. The
notion of a sufficient condition for achieving al ideal goals
can be defined in QDT and will prove useful later.

Definition Let X be some proposition. C' is a sufficient
condition given X iff C' A X issdatisfisbleand M |=

Hp(x > 8p(X 2 -0)).

Intuitively, asufficient condition C' guaranteesthat an agent
isin somebest possible X -world. Thus, if X issomefixed,
unchangeable context, ensuring proposition C' means the
agent has done the best it could.

Proposition 2 Let C' be a sufficient condition given X and
letw = CAX.Thenv <p wonlyifv [£ X.

With respect to CI(KB), ideal goalsare necessary conditions
for ensuring the best situation. A sufficient condition C for
CI(KB) guarantees the entireideal goal set is satified.®

Proposition 3 If C' is a sufficient condition for CI(KB),
then M = C' A CI(KB) D o for all ideal goalsa.

Wewill explore adetailed example in the next section. We
also examine the *‘priority’’ given to defaults over prefer-
encesimplicit in this scheme, where CI(KB) is constructed
before the preference ranking is consulted.

8A sufficient condition for this property is that each ‘*‘clus-
ter’” of equally normal worlds in <p corresponds to a finitely
specifiable theory. Thisisthe casein, e.g., System Z [3].

®Hector Levesque (personal communication) has suggested
that sufficiency is the crucial *‘ operator.”

4 Ability and Incomplete Knowledge

The definition of an ideal goa given KB embodies theidea
that an agent should attempt to achieve the best possible
situation consistent with what it knows (as well as what it
conjectures by default). However, as we have emphasized,
this is suitable only when KB is fixed. If the agent can
change the truth of certain elementsin KB, ideal goals may
be too restrictive. Thus, some notion of action and ability
must come into play in goal derivation. Actions must also
play aroleif wearetoderivewhat an agent should do, rather
than simply what it should achieve. Indeed, theterm‘‘goa’’
isofteninterpreted in thisway. Thisis especially important
when we noticethat the set of propositionsan agent should
achieve will always be deductively closed. Finally, actions
must play arolein factoring out unachievable desires. For
instance, an agent might prefer that it not rain; but thisis
something over which it has no control. Though it is an
ideal outcome, to call thisa goa isunreasonable.

4.1 ControllablePropositions

To capture distinctions of this sort, we introduce a smple
model of action and ability and demonstrate its influence
on conditional goals. We ignore the complexities required
to deal with effects, preconditions and such, in order to
focus attention on the structure and interaction of ability
and goa determination.

We partition our atomic propositions into two classes:
P = CUC. Those atoms A € C are controllable, atoms
over which the agent has direct influence. The only actions
available to the agent are do(A) and do(A), which make
A true or false, for every A € C. To keep the trestment
simple, we assume actions have no effects other than to
change the truth value of A. The atom U (have umbrella)
is an example of a controllable atom. Atoms in C are
uncontrollable, for example, R (it will rain).

Definition For any set of atomic variables P, let VV (P) be
the set of truth assignments to this set. If v € V(P)
and w € V(Q) for digoint sets P, Q, then v;w €
V(P U Q) denotes the obvious extended assignment.

We can now distinguish three types of propositions:

Definition A proposition « is controllable iff, for every

u e V(C), thereissome v € V(C) and w € V(C)
such that v; u = « and w; u | —a.

A proposition « is influenceable iff, for some u €
V(C), thereissome v € V(C) and w € V(C) such
that v; u = o and w; u | —a.

o isuninfluenceableiff it is not influenceable.

Intuitively, since atoms in C are within complete control
of the agent, it can ensure the truth or the falsity of any
controllable proposition «, according to its desirability,
simply by bringing about an appropriate truth assignment.
If A/B e Cthen Av Band AA B arecontrollable. If «
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is influenceable, we call the assignment u to C a context
for «; intuitively, should such a context hold, o can be
controlled by the agent. If A € ¢, X € C then AV X
is influenceable but not controllable: in context X the
agent cannot do anything about the truth of A v X, but
in context X the agent can make A v X true or false
through do(A) or do(A). Note that al controllables are
influenceable. In thisexample, X is uninfluenceable. The
category of controllability into which a proposition falsis
easily determined by writingitinminimal DNF. Let P7(«)
denote the set of prime implicants of «.

Proposition 4 a) o iscontrollableiff each clausein P7(«)
containssome literal fromC and some clause containsonly
literalsfrom C. b) « is influenceable iff some literal from
C appearsin PI(«). ¢) « isuninfluenceableiff no literal
fromC appearsin PI(«).

4.2 Complete Knowledge

Given the distinction between controllable and uncontrol-
lable propositions, we want to define goal s so that an agent
is required to do only those things within its control. A
first attempt might simply beto restrict theideal goal set as
defined above to controllable propositions. The following
example shows thisto be inadeguate.

Example Consider five atoms. O, it is overcast; R,
it will rain; C, | have coffeg; 7, | have teg
and H, my office thermostat is set high. My
robot has the default information O = R. The
robot knows KB = {0, H,C,T}: it is overcast
and the thermostat is turned down. Its closure is
CI(KB) = {O, R, H,C,T}. It can control the three
atoms C, 1" and H. Its preference ordering is de-
signed to respect my preferences: when it'sraining |
prefer tea when | arrive and the thermostat set high,
otherwise | prefer coffee and the thermostat set 1ow.
Thus, we have the preference ordering illustrated in
Figure 4. (Weassume O, R do not contribute directly
to preference, and that priority has been given to ¢
and 7" over H.We also allow the possibility that both
C and 1" together satisfy a preference for either.) The
robot has to decide what to do before | arrive at the
office.

It should be clear that the robot should not determine its
goals by considering theideal situationssatisfying Cl(KB).
In such situations, since i isknown, H istrueand indeed,
it is a smple theorem of QDT tha 7(«|a). Thus, the
robot concludes that [/ should be true. This is clearly
mistaken, for considering only the best situationsin which
one' s knowledge of controllablesistrue prevents one from
determining whether changing those controllables could
lead to a better situation. Since any controllableproposition
can be changed if required, we do not require an agent to
restrict attention to those situations where KB or Cl(KB) is
true. The fact that I is known should not unduly influence
what are considered to be the best aternatives--- H can be
made trueif that iswhat’ s best.

Of course, thegoals of an agent must still be constrained by
known uninfluenceable propositions. The agent should not
reject al of its knowledge. For example, if the preference
ordering above were modified to reflect my preference for
R, the agent should not base its goals on this preference
if it knows R. Making R fase is beyond its control, and
it goals should determined by restricting attention to R-
worlds. Thus we insist that the best situations satisfying
known uninfluenceable propositions be considered.

Notice that we should not ignore the truth of controllables
when making default predictions. The prior truth value
of a controllable might provide some indication of the
truth of an uncontrollable; and we must take into account
these uncontrollableswhen deciding which alternatives are
possible, before deciding which are best. In this example,
we might imaginethat the default O = R doesn’t hold, but
that O A H = R does: if itisovercast, then the thermostat
isset high because | anticipated rain before | left last night.
Our agent must use the truth of this controllable atom H
to determine the truth of the uncontrollable R, which in
turn will influence its decisions.® Once accounted for in
forming CI(KB), H can safely be ignored.

Thisleadsto thefollowing formulation of goal sthat account
for ability. We again assume a QDT-model A/ and setsC,
C. The uninfluenceable belief set of an agent is

UI(KB) = {a € CI(KB) : « isuninfluencesble}

For the time being, we assume that UI(KB) is complete:
the truth value of all uncontrollable atoms is known. This
set of beliefs determines an agent’ s goals.

Definition Proposition « is a complete knowledge (CK)
goal iff M = I(a|UI(KB)) and « is controllable.

10/t a controllable provides some indication of the truth of an
uncontrollable or another controllable, (e.g., H = R) we should
think of this as an evidential rule rather than a causal rule. Given
our assumption about the independence of atomsin C, we must
take al such rules to be evidential (e.g., changing the thermostat
will not alter the chance of rain). This can be generalized using a
more reasonableconditional representation, and ultimately should
incorporate causal structure. Note the implicit temporal aspect
here; propositions should be thought of as fluents. We can avoid
an explicit temporal representation by assuming that preferenceis
solely afunction of the truth values of fluents.



As with ideal goals, the set of CK-goals is deductively
closed and should beviewed as aset of necessary conditions
inany rational course of action. Of course, goalscan only be
affected by atomic actions, sowewill typically beinterested
in a set of actions that is guaranteed to achieve each CK-
goa. An (atomic) action set is any set of controllable
literdls. If A issuch a set we use it also to denote the
conjunction of its elements. An atomic goal set is any
action set A that guarantees each CK-godl; that is

M E UI(KB)AA D a

for each CK-goal «. Clearly, such any atomic goa set
determines a reasonable course of action. Of course, such
action sets can be determined by appeal to sufficiency.

Theorem 5 Let .4 be some atomic action set. Then A isa
goal set iff A isa sufficient condition for UI(KB).

In our example above, where the robot knows O, possible
atomic goa setsare {7, H} and {C, T, H }. Typicaly, we
will beinterested in minimal goals sets, since these require
the fewest actions to achieve ideality. We may impose
other metrics and preferences on goals sets as well (e.g.,
associating costs with various actions). Notice that the
preference for tea does not prevent the robot from bringing
coffee. However, such constraints can easily be imposed
on the preference ordering. Furthermore, digunctive goals
and ‘‘integrity constraints’ pose no difficulty. If | have
no preference for coffee or tea, but prefer exactly one of
the two, the generated atomic goal setswill be {C, T’} and

{C,T}. Theset {C, T} isnot agoal setin thiscase.

With default information and controllability in place, we
can briefly return to the alternative interpretation of pref-
erence statements suggested in Section 2. The assertion
‘1 prefer an umbrella when it's raining’’ can now be in-
terpreted as I(U|UI({R})). Together with the *‘pure’”
preferences I(D|R) and I(U]D) (and other background
information as before), one can conclude R = —D.

In our goa derivation scheme, a certain priority is given
to defaults over preferences. Goas are determined by
first constructing the default consequences of KB, and then
deciding what to do based on this knowledge as if it were
certain. In atruly decision-theoretic setting acting on the
basis of uncertain information is a function not only of its
likelihood, but also the consequences of being incorrect.
For instance, in our framework we might have the default
rule R = S, if | run across the freeway | will cross
safely. If this alows me to arrive at my destination five
minutes sooner than had | crossed at acrosswalk, thedefault
assumption .S will ensure that | run across the freeway: |
won't (by default) get hit by acar and | will arrive sooner.
In general, the (drastic) consequences of being wrong in
this regard must be traded off against the probability of
being right. If the five minutes saved is not worth the risk,
then | decideto go to the crosswalk.

To express thistradeoff we must assumethat the quaitative
scales of preference and normality are calibrated somehow,

and nothing in the constraints expressed by the user in
our setting allows such an assumption. In the concluding
sectionwediscuss'‘ qualitative' ' waysaround thisproblem.
However, the scheme presented here has a certain naive
appeal, which may be partly due to the observation that
defaults are usualy expressed with such considerationsin
mind [27, 25]. Furthermore, the scheme is conceptually
simple in that it embodies a principle anaogous to the
separability of state estimation and control [11]. An agent
can caculate what is (probably) true of the world and
subsequently and independently base its decisions upon
these beliefs. Finaly, our scheme is applicable when
likelihood and preference information is truly quaitative
and explicit calibration of the orderingsis not feasible. We
can describe some conditions under which the assumption
of separability is appropriate.

Thelogicof conditional normality statementscan begivena
probabilisticinterpretationas described in[7]. In particular,
the purely conditional fragment is equivalent to Adam’s
system of e-semantics, which has also been applied to the
representation of defaults [14]. This means that thereis a
probability assignment that ensures that every default rule
A = B corresponds to an assertion of high conditional
probability P(B|A) > 1— ¢, for any ¢ > 0. Thus,
we may assume that a user chooses default rules with
such a parameter in mind, and that P(CI(KB)|KB) >
1—¢. We can also assume that the preference ordering
is ‘“‘constructed’’ by clustering together worlds that have
actua utility within some reasonably small range, and
treating distinct clusters as separated by areasonably large
gap in utility. Thus, the user can treat certain outcomes as
having (more or less) indistinguishable utility. Outcomes
in different clusters have sufficiently different utilities. To
analyze the appropriateness of our goal derivation scheme,
we make thisassumption precise by assigning apoint utility
4; to each cluster in the preference ordering. Let 6 denote
the smallest gap J; — J;41 between any two adjacent point
utilities (the **smallest perceptible change’’ in utility) and
let = do — 4, denote the magnitude of the possible range
inutility.

Goals (or decisions) are determined with respect to a given
KB, which induces a decision problem in the obvious
fashion: given UI(KB) what is an optimal action set?
Let /* denote the expected utility of an optimal action
under the assumptions above, and let £U (.A) denote the
expected utility of arbitrary action set .A. For any goa set
A, we want to compare EU(A) to U*. We consider a
special case first. A degenerate KB is one for which every
action set gpplied to UI(KB) leads to an equally desirable
outcome--- UI(KB) allowsno decisionsto bedistinguished.
Since only unlikely circumstances (that contradict default
conclusions) can influence the choice of action, our scheme
cannot generally be optima in this case, but the error is
bounded by the probability of default violation:

Proposition 6 If KB induces a degenerate decision prob-
lem, then U* — EU(A) < ¢ for any goal set A.



Degenerate problemswill be rare: we imagine some differ-
entiation among decisions is possible most of the time. If
thisisthecase, thenwehave U™ — EU (A) < ¢ — (1—¢)d.

Proposition 7 If KB is nondegenerate, any goal set A is
an optimal decisionif (1 —¢) > e.

This gives some idea of the circumstances under which
the assumption of separability is sound. Of coursg, it is
unreasonable to only reason with qualitative constraints
that meet these stringent requirements. But they do suggest
useful abstractions for ordinary goa derivation, and the
degree to which these conditions are approximated gives
reasonabl e assurance of good decisions. Thus, the separa-
bility assumption provides a computationally manageable
procedure for finding ‘*‘ satisficing’’ solutions.

4.3 Incomplete Knowledge

The goal s described above seem reasonabl e, in accord with
the general maxim ‘‘do the best thing possible consistent
withyour knowledge.”” Wedubbed suchgoals*‘ CK-goas’”
because they seem correct when an agent has complete
knowledge of the world (or at least of uncontrollable
atoms). But CK-goals do not always determine the best
course of action if an agent’s knowledge is incomplete.
Consider the preferences in the umbrella example and an
agent with an empty knowledge base. For all the agent
knows it could rain or not (it has no indication either

way). Using CK-goals, the agent ought to do(U), for the
best situation consistent with KB = § is RU. Leaving its
umbrella is the best choice should it turn out not to rain;
but should it rain, the agent has ensured the worst possible
outcome. It is not clear that U should be a goa. Indeed,
onemight expect U/ to beagoal, for no matter how R turns
out, the agent has avoided the worst outcome.

In the MEU framework, once can deal with such uncer-
tainty easily; but qualitatively, when trying to do as much
as possible with strictly ordina vaue information, a dif-
ferent approach is required. The scales of preference and
normality are unknown and incomparable. It isclear, inthe
presence of incomplete knowledge, that there are various
strategies for determining goals. CK-goas form merely
one aternative. Such a strategy is opportunistic, or opti-
mistic. Clearly it maximizes potential gain, for it alows
the possibility of the agent ending up with the best possible
outcome. In certain domainsthis might be a prudent choice
(for example, where a cooperative agent determines the
outcome of uncontrollables). Of course, another strategy
might be the cautious strategy that minimizes potential
loss.!! This too can be captured in our logic.

Let acomplete action set be any complete truth assignment
totheatomsinC. These are thealternative courses of action
available. To minimize potential |oss, we must consider the

"These alternatives are analogs of the maximax and maximin
decision criteria for decision making without outcome probabili-
ties (under strict uncertainty [13]).

worst possible outcome for each aternative, and pick those
with the ‘‘best’” worst outcomes. If A;, A, are complete
action sats, A; isasgood as Ay (A < Ap) iff

M = &p (A2 AUIKB) A ~Sp (AL A UI(KB)))

Intuitively, if A; < A then the worst worlds satisfying
A; are a least as preferred as those satisfying Az (in
the context UI(KB)). It is not hard to see that < forms
a transitive, connected preference relation on action sets.
The best actions sets are those minimal in this ordering <.
To determine the best action sets, however, we do not need
to compare al action setsin a pairwise fashion:

Theorem 8 A4; isabest actionset iff M | A; < —A,.

This holds because the negation of a complete action set
(a complete conjunction of literals) is consistent with any
other complete action set. If an agent chooses other than a
best action set, it opensthe possibility for aworse outcome:

Theorem 9 Let A; be a best action set for KB and .A; be
any complete action set. For any w |= UI(KB) A A;, there
issome v |= UI(KB) A A; suchthat w <p v.

Now, we say « isa cautiousgoal iff
V{A;: A; isabestactionset } =«

In this way, if (say) A A B and A A —=B are best action
sets, then A isagod but B isnot. Simply doing A (and
letting B run its natural course) is sufficient. This notion
of goal has controllability built in (ignoring tautol ogies). In
our example above, U/ isacautious god .

Wecannot expect best action sets, ingeneral, to besufficient
in the same sense that CK-goal sets are. The potential for
desirable and undesirable outcomes makes it impossible to
ensure best outcomes consistent with UI(KB). However,
we can show that if thereis some action set that i s sufficient
for KB then all best action sets will be sufficient.

Proposition 10 If someaction set.A for KBis CK-sufficient
for KB, then every best action set is CK-sufficient.

Hence, CK-sufficiency can be applied even in the case
of incomplete knowledge. Its applicability implies that
possible outcomes of unknown uncontrollables have no
influence on preference: al relevant factors are known.

The cautious strategy seems applicablein asituation where
one expects the worst possible outcome, for example, in a
game against an adversary. Once the agent has performed
its action, it expects the worst possible outcome, so there
is no advantage to discriminating among the candidate
(best) action sets: al have equally good worst outcomes.
However, it’s not clear that thisis the best strategy if the
outcome of uncontrollables is essentially ‘‘random.”” If
outcomes are simply determined by the natural progression
of events, then one should be more sdlective. We think
of nature as neither benevolent (a cooperative agent) or
malevolent (an adversary). Therefore, even if we decide to



be cautious (choosing among best action sets), we should
account for the fact that a worst outcome might not occur:
we should choose the action setsthat take advantage of this
fact.

Observations

It should be clear that if an agent can observe the truth
values of certain unknown propositionsbeforeit acts, it can
improveitsdecisions. In many cases, it will make theworst
outcomesbetter and change the actions chosen. To continue
the *‘umbrella’ example, suppose R and C' are unknown.
The agent’ s cautiousgoal isthen U If it wereintheagent’s
power to determine C' or C' before acting, its actions could
change. Observing C' indicates the impossibility of R, and

the agent could then decide to do(U/).

Space limitations preclude a deep discussion, but briefly,
we can distinguish two types of uncontrollable atoms:
observables and unobservables. Suppose KB determines a
best action set Ag. Intuitively, the observation of some
unknown uncontrollable atom O is worthwhile if it can
potentially change the agent's goal set. Cautious and
optimistic goals must be treated differently. Assume first
a cautious strategy. Note that a goa set accounts for
some worst outcome which must include either O or O.
Thus, an observation can never be guaranteed to changethe
agent’s decision: it may ‘‘validate’’ its cautious approach.
In our example, observing C' will not change the agent’s
decision, but observing C' will. We say atom O has value
if Ap is not a best action set for one of KBU {O} or
KB U {O}. Inthis case, observing O is worthwhile since
it might (depending on its actua truth value) change the
agent’s goal set. This is a qualitative analog of value of
information. Of course, we cannot quantify the potential
value of making an observation; but we may compare the
relative values of two pieces of information O and P. For
simplicity, assume that positive observations O and P are
the‘*improving’’ outcomes. Let .4, and . Ap bebest action
sets for O and P. The value of O isas great as that of P
just when

M E Bp(ApAUI(KBU{P})A=Sp (Ao AUIKBU{O})))

A similar treatment of optimistic goals can be given, where
the valuable observations are undesired outcomes that
change appropriate action. Observation O has vaue iff
-I(Ap|UI(KBU{O}) or =I(Ag|UI{(KBU {O}) hold.

5 Concluding Remarks

Related Work

Other attemptsto define goal s using preferences bear some
relationship to our system. Doyle and Wellman [12] define
goals that exhibit a conditional aspect like ours. Roughly,
B is agoa given A just when A A B is preferred to
A A =B for any fixed circumstance. For instance, if such
arelationship holds A A B should be preferred given C,
given —C', and so on. Such goals incorporate a ceteris
paribus assumption: B ispreferred to — B given A, all else

being equal. This guarantees that doing B will lead to a
better situation whenever A holds. Our conditional goals
are much wesker. No such assurances can be provided.
Intuitively, if B isagoa given A, then doing B will lead
to a better situation, all else being normal. However, this
permits defeasible goals, affording greater flexibility and
naturalness of expression. Only factors directly relevant
to utility need be stated, and others are assumed to be
irrelevant. In addition, our goas incorporate elements of
controllability.

Pearl [24] has proposed a system using much the same
underlying logical apparatus as ours. However, condi-
tional statements are taken to impose specific constraints
on utility and probability distributions, alowing expected
utility calculations (with **order of magnitude’’ values) to
be performed. While this allows stronger conclusions to
be reached in general, it makes stronger demands on the
input information as well. Thus, the system cannot be
construed as truly qualitative, so in a sense the aim here
is different. Tan and Pearl [28] introduce a somewhat
more qualitative system. It handles quantified conditional
desires (adopting the machinery of qualitative probability
[14]). To account for likelihood, they adopt our model
of closing under default consequence before consulting
preferences. Incompletely specified preferences induce a
“*compact’”’ model where worlds gravitate toward neutral -
ity, but as noted earlier, this is not an obvioudy useful
strategy. Furthermore, conditiona preferences are given
a ceteris paribus interpretation along the lines of Doyle
and Wellman. Aside from the unknown impact on the
computation of compact rankings, their particular seman-
tics is of questionable value for representing conditional
preferences. For example, apreference for A given AV B
requiresthat —A A — B bedispreferred. In our semantics, a
conditiona preference given any « imposes no constraints
on the degree of preference of —«a-worlds.

Our representation of preferences draws much from work
on deontic logic, where preference may be determined
by some legal or mora code. Indeed, our logic can be
applied to such problems [6]. However, the slogan that
characterizes ided goals, ‘‘do the best given what you
know,’ is accepted in much work on the derivation of
obligations. Just as in the derivation of goas, such a
mechanism is not generaly appropriate. Some work in
deontic logic has recently begun to incorporate, as we do
here, default information [20, 1].

Summary

We have presented alogic QDT for representing qualitative
preferenceand likelihood i nformation. We have shown how
defeasible conditiona preferences can be expressed, and
described several methods for goa derivation based on the
assumption that priority be given to defaults. There are
a number of ways in which this work can be extended.
Clearly, the account of action and ability is naive. An
object-level characterization of actions with true causal
structure can be added to the conditional framework [24]



to make goal derivation moreredlistic.

The assumption of separability and priority of default
information must be relaxed in many circumstances. In
order to alow reasonable decisions to be made, a logic
that allows tradeoffs of likelihood and preference to be
expressed inaqualitativefashionisdesirable. For instance,
if I instruct my robot that it should run across the street
(instead of crossing at the crosswalk) to save three minutes
whilefetching my coffee, it can safely deduce that running
across the street is worth the risk if a courier deadline is
involved. | have implicitly caibrated part of its preference
and normality rankings with each other. We are currently
exploring how such mechanisms to reason directly with
such qualitative tradeoff information [9]. This can be
viewed as a mechanism to deal with imperatives, and
propagate the implicit knowledge in such commands to
other contexts.

Related tothisisafuller investigation of the different forms
preference information might take in such a setting. As
mentioned earlier, user preferences might be stated inde-
pendently of typicality information, or might incorporate
expected circumstances and controllability information. A
well-devel oped logic for these and other ‘* entangled’’ con-
gtraintsis certainly worth pursuing.
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