
Rewarding Behaviors

Fahiem Bacchus
Dept. Computer Science
University of Waterloo

Waterloo, Ontario
Canada, N2L 3G1

fbacchus@logos.uwaterloo.ca

Craig Boutilier
Dept. Computer Science

University of British Columbia
Vancouver, B.C.

Canada, V6T 1Z4
cebly@cs.ubc.cs

Adam Grove
NEC Research Institute

4 Independence Way
Princeton NJ 08540, USA

grove@research.nj.nec.com

Abstract

Markov decision processes (MDPs) are a very popular tool for
decision theoretic planning (DTP), partly because of the well-
developed, expressive theory that includes effective solution
techniques. But the Markov assumption—that dynamics and
rewards depend on the current state only, and not on history—
is often inappropriate. This is especially true of rewards:
we frequently wish to associate rewards with behaviors that
extend over time. Of course, such reward processes can be
encoded in an MDP should we have a rich enough state space
(where states encode enough history). However it is often
difficult to “hand craft” suitable state spaces that encode an
appropriate amount of history.

We consider this problem in the case where non-Markovian re-
wards are encoded by assigning values to formulas of a tempo-
ral logic. These formulas characterize the value of temporally
extended behaviors. We argue that this allows a natural rep-
resentation of many commonly encountered non-Markovian
rewards. The main result is an algorithm which, given a de-
cision process with non-Markovian rewards expressed in this
manner, automatically constructs an equivalent MDP (with
Markovian reward structure), allowing optimal policy con-
struction using standard techniques.

1 Introduction

Recent years have seen a tremendous interest in extending
the classical planning paradigm to deal with domains involv-
ing uncertain information, actions with uncertain effects, and
problems with competing objectives. Much work in deci-
sion theoretic planning (DTP), generally aimed at address-
ing these issues, has adopted the theory of Markov decision
processes (MDPs) as the underlying conceptual and compu-
tational model [DKKN93, TR94, BD94, BDG95]. MDPs
allow one to formulate problems in which an agent is in-
volved in an on-going, process-oriented interaction with the
environment and receives rewards at various system states.
This generalizes the classical goal-oriented view of plan-
ning [BP95]. Instead of classical plans, one considers the
more flexible concept of a policy, namely a mapping from
each state to the action that should be executed in that state.
Effective optimization methods exist for computing policies
such that an agent executing the policy will maximize its
accumulated reward over time [Put94].

The fundamental assumption underling the formulation of
a planning problem as an MDP is that the system dynamics
and rewards are Markovian. That is, the manner in which the
system behaves when an action is executed, and the rewards
received, depend only on the system’s current state, not on
states previously visited. For example, if we wish to control
a robot it is usually not difficult to find a state space in which
the robot’s actions can be described as Markovian (stochastic)
state transitions. In fact, this is often the most natural way to
represent the effects of actions. Assigning natural Markovian
rewards can be more problematic.

Although it is sometimes easy to associate rewards with
individual states (e.g., in a navigation problem where rewards
are associated with locations), often a reward is most natu-
rally assigned to some behavior that occurs over an extended
period. In such cases, it can be difficult to encode the reward
as a function of state. For instance, we may reward an agent
in states where coffee has just been delivered, but only if this
state was preceded by a state (perhaps within k steps) where
a coffee request was issued, withholding reward for spurious
delivery. This reward is properly a function of the system
trajectory or history, and not of the state alone. Typical forms
of desirable temporally extended behaviors include response
to requests, bounded response, lack of response, maintaining
safety constraints, and so on. Temporally extended goals of
this nature have been examined to some extent in the litera-
ture [HH92, Dru89, Kab90, GK91], but not in the context of
generating effective policies.

The key difficulty with non-Markovian rewards is that
standard optimization techniques, most based on Bellman’s
[Bel57] dynamic programming principle, cannot be used.
One way of dealing with this predicament is to formulate
an equivalent decision problem in which the rewards are
Markovian. In particular, one can augment the state space
of the underlying system by adding variables that keep track
of the history relevant to the reward function. For instance,
Boutilier and Puterman [BP95] suggest straightforward ways
of encoding reward functions that involve simple requests.
This approach has the advantage that existing optimization
methods for MDPs can be used.

Unfortunately, in general, finding a good way to augment
the state space requires considerable cleverness—especially
if we are concerned with minimizing the size of the resulting

augmented space for computational reasons. In this paper,
we examine the problem of rewarding temporally extended
behaviors. We provide a natural, and quite expressive, means
for specifying rewards attached to behaviors extended over
time. Furthermore, we solve the problem of computing poli-
cies in the face of these non-Markovian rewards by develop-
ing an algorithm that automatically constructs a Markovian
reward process and associated MDP. Our algorithm auto-
mates the process of generating an appropriate augmentation
of the state space, and, when coupled with traditional pol-
icy construction techniques, provides a way of computing
policies for a much richer range of reward functions.

In Section 2 we introduce NMRDPs, essentially MDPs
with non-Markovian reward. System dynamics are specified
as with MDPs, but rewards are associated with formulas in
a suitable temporal logic. We define temporally-extended
reward functions (TERFs) by requiring that the reward as-
sociated with a formula be given at any state in which the
formula is satisfied. We note that the decision to reward an
agent in a given state should depend only on past states, not
on future states. For this reason, it will be more natural to en-
code our reward formulas using a past or backward-looking
temporal logic rather than the usual future or forward logics
like LTL, CTL [Eme90] or MTL [AH90]. In Section 3, we
describe a number of interesting and useful classes of target
behaviors and show how they can be encoded by TERFs.

In Section 4, we consider the problem of constructing
optimal policies for NMRDPs. As mentioned, dynamic pro-
gramming cannot be used to construct policies in this setting.
Nominally, this requires one to resort to optimization over
a policy space that maps histories (rather than states) into
actions, a process that would incur great computational ex-
pense. We present a procedure that, instead, expands the
original state space by attaching a temporal formula to each
state. This formula keeps track of an appropriate amount of
relevant history. By constructing a state-based (Markovian)
reward function for the extended state space, we convert the
NMRDP into an equivalent MDP; in particular, optimal poli-
cies for this MDP determine optimal policies for the original
NMRDP in a natural way. In this way, we obtain a com-
pact representation of the required history-dependent policy
by considering only relevant history, and can produce this
policy using computationally-effective MDP algorithms.

2 Non-Markovian Rewards

2.1 Markov Decision Processes
Much recent work in DTP considers planning problems that
can be modeled by completely observable Markov Decision
Processes [How60, Put94]. In this model, we assume that
there is a finite set of system states S, a set of actionsA, and a
reward functionR. The effects of actions cannot be predicted
with certainty; hence we write Pr(s1; a; s2) = p (or s1

a;p�!s2)
to denote that s2 is reached with probability p when action a
is performed in state s1. Complete observability entails that
the agent always knows what state it is in. We assume that
the state space is characterized by a set of features, or logical
propositions. This allows actions to be described compactly

using probabilistic STRIPS rules [KHW94, BD94], Bayes
nets [DK89, BDG95] or other action representations.

A real-valued reward function R reflects the objectives,
tasks and goals to be accomplished by the agent, with R(s)
denoting the (immediate) utility of being in state s. For our
purposes, then, an MDP consists of S, A, R and the set of
transition distributions fPr(�; a; �) : a 2 Ag.

A stationary Markovian policy is a mapping � : S ! A,
where �(s) denotes the action an agent should perform
whenever it is in state s. One might think of such poli-
cies as reactive or universal plans [Sch87]. Given an MDP,
an agent ought to adopt a policy that maximizes the ex-
pected value over its (potentially infinite) trajectory through
the state space. The most common value criterion in DTP
for infinite-horizon problems is discounted total reward: the
current value of future rewards is discounted by some factor� (0 < � < 1), and we maximize the expected accumu-
lated discounted rewards over an infinite time period. The
expected value of a fixed policy � at any given state s can be
shown to satisfy [How60]:V�(s) = R(s) + �Xt2S Pr(s; �(s); t) � V�(t)
The value of � at any initial state s can be computed by
solving this system of linear equations. A policy � is optimal
if V�(s) � V�0(s) for all s 2 S and policies �0.

Techniques for constructing optimal policies in the case
of discounted rewards have been well-studied, and include
algorithms such as value iteration [Bel57] and policy itera-
tion [How60]. It should be noted that each of these algo-
rithms exploits the Markovian nature of the reward process.
We refer to [Put94] for an excellent treatment of MDPs and
associated computational methods.

2.2 A Temporal Logic of the Past
To reward agents for (temporally extended) behaviors, as
opposed to simply reaching certain states, we need a means
to specify rewards for specific trajectories through the state
space. Generally, we want to associate rewards with prop-
erties of trajectories rather than rewarding individual trajec-
tories. For example, we might reward an agent whenever
conditionQ is achieved within k steps of condition P , with-
out regard for the particular trajectory the agent is traversing.
Therefore, we associate rewards (or penalties) with desirable
(or undesirable) formulas in a suitable temporal logic that
describes such trajectory properties.

The logic we consider is “backward”, or past looking.
That is, the truth of a temporal formula depends on prior
states only, not on what will happen in the future. This
accords well with our view of reward processes because, in
most contexts, rewards should be earned based on what has
actually happened.

We present a past version of LTL [Eme90] called PLTL.
We assume an underlying finite set of propositional constants
P, the usual truth functional connectives, and the following
temporal operators: S (since), 2 (always in the past), 3
(once, or sometime in the past) and (previously).1 The

1These are the backward analogs of the LTL operators until,

formulas �1 S�2, 2�1,3�1 and �1 are well-formed when�1 and �2 are.2 We use > and ? to denote truth and falsity,
respectively. The semantics of PLTL is described with re-
spect to models of the form T = hs0; � � � ; sni, n � 0, where
each si is a state or valuation over P (i.e., si 2 2P). Such
a T is called a (finite) trajectory, or partial history. For any
trajectory T = hs0; � � � ; sni, and any 0 � i � n, let T (i)
denote the initial segment T (i) = hs0; � � � ; sii.

Intuitively, a temporal formula is true of T = hs0; � � � ; sni
if it is true at the last (or current state) with respect to the
history reflected in the trajectory. We define the truth of
formulas inductively as follows:� T j= P iff P 2 sn, for P 2 P� T j= �1 ^ �2 iff T j= �1 and T j= �2� T j= :� iff T 6j= �� T j= �1 S �2 iff there is some i � n s.t. T (i) j= �2 and

for all i < j � n, T (j) j= �1 (intuitively, �1 has been
true since the last time �2 held)� T j= 2� iff for all 0 � i � n, T (i) j= � (� has been true
at each point in the past)� T j= 3� iff for some 0 � i � n, T (i) j= � (� was true
at some point in the past)� T j= � iff n > 0 and T (n� 1) j= � (� was true at the
previous state)

One notable consequence of this semantics is the fact that
while f�;:�g is unsatisfiable, f:�;::�g is satisfi-
able: any model of the form hsi satisfies the latter.

It is well-known that the modalities in LTL can be decom-
posed into present and future components [Eme90]. Simi-
larly, modalities of PLTL can be decomposed into present and
past components. For example,2� is equivalent to2�^�.
That is, 2� is true iff � is true of the current state and 2� is
true of the previous state. Using these equivalences we can
determine, for any formula �, what must have been true in
the previous state in order that � be true now. We call this
the regression of � through the current state. Note that if the
current component of � is falsified by the current state, then
nothing about the previous state can make � true now. In this
case the regression of � is ?.

Definition 2.1 The regression of � through s, denoted
Regr(�; s), is a formula in PLTL such that, for all trajec-
tories T of length n > 1 with final state s, we haveT j= � iff T (n� 1) j= Regr(�; s)
Regr(�; s) can be computed recursively:� If � 2 P, Regr(�; s) = > if s j= �, and ? otherwise� Regr(�1 ^ �2; s) = Regr(�1; s) ^ Regr(�2; s)� Regr(:�i; s) = :Regr(�1; s)� Regr(�; s) = �
always, eventually and next, respectively.

2We use the abbreviation k for k iterations of the modality
(e.g., 3� � �), and �k to stand for the disjunction of i
for 1 � i � k, (e.g., �2� � � _�).

� Regr(�1 S�2; s) = Regr(�2; s)_(Regr(�1; s)^(�1 S�2))� Regr(3�1; s) = Regr(�1; s) _3�1� Regr(2�1; s) = Regr(�1; s) ^ 2�1

Finally, we define some useful notation. For an MDP
(or NMRDP) with actions A and transition probabilities
Pr, a trajectory hs0; � � � ; sni is feasible iff there are actionsa1; � � � ; an 2 A such that Pr(si; ai; si+1) > 0. If �1 and�2 are PLTL formulas, �1 determines �2 iff either �1 j= �2
or �1 j= :�2 hold. Given any PLTL formula �, we define
Subformulas(�) to be the set of all subformulas of � (includ-
ing � itself). Note that jSubformulas(�)j � length(�).
2.3 Rewarding Temporally-Extended Behaviors
To reward behaviors, we must adopt a generalization of
MDPs that allows the reward given at any stage of the pro-
cess to depend on past history. A decision process with
non-Markovian reward, or NMRDP, is similar to an MDP
with the exception that the reward functionR takes as its do-
main histories of the form hs0; � � � ; sni for all n. Intuitively,
the agent receives reward R(hs0; � � � ; sni) at stage n if the
process has passed through state si at stage i for all i � n.
Clearly, the explicit specification of such a reward function
is impossible since there are an infinite number of different
histories. Instead, we assume that the reward function of an
NMRDP can be specified more compactly. In particular, we
assume that the reward function is defined by a finite set Φ
of reward formulas expressed in PLTL, together with a real-
valued reward ri associated with each �i 2 Φ (we sometimes
write this �i : ri). The temporally extended reward function
(TERF) R is then defined as follows:R(hs0; � � � ; sni) =Xfri : hs0; � � � ; sni j= �ig
This formulation gives a reward of ri at each state that sat-
isfies formula �i; if �i has a nontrivial temporal component
then the reward is history-dependent. Because reward for-
mulas are expressed in PLTL, rewards depend only on past
states, and the TERF can be unambiguously evaluated at each
stage of the process.3

Consideration should not be restricted to Markovian poli-
cies when dealing with NMRDPs. The value, and hence the
choice, of action at any stage may depend on history. We
thus take policies to be mappings from histories to actions.
As usual, the value of a given policy � is taken to be the
expectation of the discounted accumulated reward:V�(s0) = Ef 1Xn=0

�nR(hs0; s1; � � � ; sni)j�g:
Since TERFs are finitely specified, we can find good ways
of encoding and computing optimal policies (see Section 4).
But first we examine the expressive power of TERFs.

3The ri are assumed to be additive and independent (this is not
restrictive). Any (history independent) MDP can be expressed this
way by restricting Φ to contain no temporal operators.

3 Encoding Typical Forms of Behavior

To demonstrate that TERFs provide an appropriate and use-
ful language in which to specify rewards for NMRDPs, we
examine several common examples to see how they can be
encoded in PLTL. We make no claim that all interesting re-
wards can be encoded in this way, but the evidence suggests
that PLTL and TERFs can capture a very large and useful
class of reward functions.

Among the common types of behaviors, simple goal
achievement has retained a special place in classical plan-
ning. However, in a process-oriented model, like an MDP or
NMRDP, a number of subtleties arise in giving “goal achieve-
ment” a precise interpretation. We describe several possibili-
ties. Assume one such goal is the propositionG: we wish the
agent to reach a state in whichG holds and will reward it withr if it does so. The simplest reward formula for this goal isG.
As a TERF, this rewards the agent at every state satisfyingG,
and hence the agent is more highly rewarded (roughly) the
larger fraction of its time it spends inG-states. This provides
incentive for the agent to constantly maintainG if r is greater
than rewards it may receive for other behaviors.

In many cases, this is not the intended effect of specifying
a goal G. If we only care that G is achieved once, there are
several different interpretations that can be provided. The
strictest offers reward r only to the first state at which G
holds; that is, (G ^ :3G) : r. A more generous formula,3G : r, rewards every state that follows the achievement ofG. Finally, we may rewardG periodically, but not encourage
constant maintenance ofG, by rewardingG at most once ev-
ery k stages: formulaG^:(�kG) : r will rewardG-states
that have not occurred within k-stages of a previousG-state.
Yet another option rewards any G-state that occurs withink-stages of some :G-state (allowing up to k consecutiveG-rewards), using G ^�k:G : r.

In addition, PLTL allows one to formulate temporally ex-
tended goal sequences. For instance, if the agent is to be
rewarded for achieving G, followed immediately by H and
then by I , the reward formula 2G ^ H ^ I can be used.
Periodic reward of such behavior, or the similar behavior in
which other steps are allowed to intervene between G, H ,
and I , can also be prescribed in a straightforward fashion.

The formulations above assume that there is some goalG that is constantly desirable, a vestige of the classical in-
terpretation of goals. Such behaviors are more suited to
background, maintenance goals. In a process-oriented set-
ting, we are likely to want the agent to respond to requests or
commands to bring about some goal. In these settings, goals
are not constant: they arise periodically, can be fulfilled, for-
gotten, preempted, and might even expire. We model these
in PLTL using response formulas which specify a relation
between a command C and rewarded goal achievementG.

The most basic response formula is that of eventual re-
sponse, G ^3C—the agent is rewarded at any G-state that
follows a C-state in which the command is given (or is out-
standing). As usual, we may only wish to reward the first
state at whichG holds following the command, in which caseG ^(:G S C) suffices.

Many requests must be achieved in a timely fashion.
Immediate response formulas have the form G ^ C, re-
warding a goal achieved at the state following a command.
More generally, we have bounded response formulas of the
type G ^ �kC which reward goal achievement within k
steps of a request. This formula does not preclude multi-
ple rewards for a single request, so we might instead pre-
fer G ^ �kC ^ (:G S C), which rewards only the first
goal state. Finally, a graded reward can be given for faster
achievement of G (within limits). For instance, the set�G ^C : r1; G ^�2C : r2; G ^�3C : r3

	
rewards goal achievement in one step with reward r1+r2+r3,
in two steps with r2 + r3, and in three steps with r3.

In a longer version of this paper, we describe additional
types of behaviors, as well as the possibility of using other
logics to express different kinds of reward.

4 Modeling NMRDPs with MDPs

As has been pointed out, constructing optimal policies in
settings of non-Markovian reward can be computationally
prohibitive. In this section, we describe a method of state-
space expansion that determines the aspects of history that are
relevant to an NMRDP (i.e., which must be recorded so that
we can verify the truth of the temporal reward formulas), and
encodes this history within the state. A straightforward trans-
formation of the reward function, so that rewards are attached
to such extended states rather than trajectories, restores the
Markovian reward property. Together with an adjustment in
action descriptions to deal with the new state space, we then
have a (fully-observable) MDP that accurately reflects the
NMRDP, that can be solved by standard (relatively efficient)
methods. We begin by discussing the basic properties that
such a transformation should satisfy, and then specialize to
the case of rewards that are given by TERFs.

4.1 Markovian Transformations
To transform an NMRDP into an equivalent MDP requires
that we expand the state space S of the NMRDP so that each
new state in the expanded state space ES carries not just the
original state information,but also any additional information
required to render reward ascription independent of history.4

As we shall see, we can think of expanded states as consisting
of a base state annotated with a label that summarizes rele-
vant history. If GS = (S;A;R) is the NMRDP in question,
then we wish to produce an MDP GES = (ES; A;RES) with
expanded space ES. The actions A available to the agent
remain unchanged (since the aim is to produce a policy suit-
able for the original NMRDP), but the reward function RES
is now Markovian: it assigns rewards to (expanded) states.

For the new MDP to be useful, we would expect it to
bear a strong relationship to the NMRDP from which it was
constructed. In particular, we define a strong correspondence
between the two as follows:

4Here we are concerned only with reward ascription; the system
dynamics are already Markovian.

Definition 4.1 An MDPGES = (ES; A;RES) is an expansion
of an NMRDPGS = (S;A;R) if there are functions � : ES 7!S and � : S 7! ES such that:

1. For all s 2 S, �(�(s)) = s,
2. For all s; s0 2 S and es 2 ES, if Pr(s; a; s0) = p > 0 and�(es) = s, then there is a unique es0, �(es0) = s0, such

that Pr(es; a; es0) = p.

3. For any feasible trajectories hs0; � � � ; sni in GS andhes0; � � � ; esni inGES, where �(esi) = si and �(s0) = es0,
we have R(hs0; � � � ; sni) = RES(esn).
Intuitively, �(es) is the base state for es, the state in S

extended by es. For this reason, we will often speak of
extended states being labeled or annotated: each extended
state can be written s�l, where s 2 S is the base state, andl is a label that distinguishes es from other extensions of s.
However, among the extensions of s, we must pick out a
unique �(s) 2 ES as the “start state” corresponding to s. In
other words, �(s) should be thought of as that annotation of s
with an “empty” history; i.e., corresponding to an occurrence
of s at the very start of a trajectory. We will see below why
it is important to distinguish this extension of s from other
extensions.

The important parts of this definition are clauses (2) and
(3), which assert thatGES andGS are equivalent (with respect
to base states) in both their dynamics and reward structure.
In particular, clause (2) ensures, for any trajectory in GSs0

a1;p1�!s1 � � � sn�1
an;pn�! sn

and extended state es0 with base state s0, that there is a
trajectory in GES of similar structure

es0
a1;p1�!es1 � � � esn�1

an;pn�! esn
where �(esi) = si for all i. We call hes0; � � � ; esni andhs0; � � � ; sni weakly corresponding trajectories in this case.
Clause (3) imposes strong requirements on the reward as-
signed to the individual states in GES. In particular, ifhes0; � � � ; esni and hs0; � � � ; sni are weakly corresponding,
and �(s0) = es0 (i.e., es0 is a start state), we say these tra-
jectories are strongly corresponding. It is not hard to see
that this relationship is one-to-one: each hs0; � � � ; sni has a
unique strongly corresponding trajectory, and hes0; � � � ; esni
has a unique strongly corresponding trajectory iff es0 is a
start state. Clause (3) requires that RES assign rewards to
extended states in such a manner that strongly correspond-
ing trajectories receive the same reward. This need not be
the case for weakly corresponding trajectories since, intu-
itively, different annotations (extensions) of s0 correspond to
different possible histories.

If we can produce an MDP GES that is an expansion of
an NMRDP GS as specified by Defn. 4.1, then we can find
optimal policies for GS by solving GES instead.

Definition 4.2 Let �0 be a policy for MDP GES. The
corresponding policy � for the NMRDP GS is defined as�(hs0; � � � ; sni) = �0(esn), where hes0; � � � ; esni is the
strongly corresponding trajectory for hs0; � � � ; sni.

Proposition 4.3 For any policy �0 for MDP GES, corre-
sponding policy � for GS, and s 2 S, we have V�(s) =V�0(�(s)).
Corollary 4.4 Let �0 be an optimal policy for MDP GES.
Then the corresponding policy � is optimal for NMRDP GS.

Thus, given a suitable expanded MDP and an optimal policy�0, one can produce an optimal policy � for the NMRDP
quite easily. In practice, the agent need not construct � ex-
plicitly. Instead, it can run �0 over the expanded MDP. Once
the agent knows what base state it starts in, it determines the
corresponding extended state using the function �. Further-
more, the dynamics of the expanded MDP ensures that it can
keep track of the current extended state simply by observing
the base state to which each transition is made.

Finally, we should consider the size of the expanded MDP.
Often, we can fulfill the requirements of Defn. 4.1 with a
trivial MDP, that has states encoding complete trajectory in-
formation over some finite horizon. But such an expanded
space grows exponentially with the horizon. Furthermore,
even simple rewards—like3G, which only require one item
of history (a bit indicating if a G state has been passed
through)—can require in infinite amount of complete trajec-
tory history using this naive approach. If possible, we want to
encode only the relevant history, and find an MDP which has
a few states as possible (subject to Defn. 4.1). Note that state-
space size tends to be the dominant complexity-determining
factor in standard MDP solution techniques, especially as
applied to planning problems.5

4.2 Transformations using TERFs
The problem of finding a small MDP that expands a given
NMRDP is made easier if the latter’s rewards are given by a
TERF. In this case, it is natural to label states with PLTL for-
mulas that summarize history. More precisely, the new state
space ES consists of annotated states, of the form s�f wheres 2 S and f is a formula in PLTL. These annotations will be
meaningful and correct assertions about history, in a sense to
be made precise below. We give an algorithm that constructs
an expansion of the state space by producing labelings of
states that are sufficient to determine future reward.

We begin with a simple example to illustrate the essential
ideas. Consider a single reward formula �R = Q ^ P .
Recall that our goal is to encode all relevant history in a
state’s annotation. Thus, for each state s in which �R might
possibly be true, we need at least two distinct labels, one
implying the truth of �R and one its falsity.

Next, imagine that we have an extended state es = s� ,
whereQ is true in s and = P . (Thus es implies that �R
is true.) Next, suppose that s is reachable from some other
state s� (i.e., there is some transition in the NMRDP from s�
to s). Since we must ensure that es’s label is a correct as-
sertion about its history, in the expanded MDP any transition
from an extended version of s� (es�, say) to es must satisfy

5See [LDK95] on the complexity of solving MDPs. Generally,
the state space is problematic in planning problems because it grows
exponentially with the number of atomic propositions. Adding his-
tory “naively” to the domain exacerbates this problem considerably.

the “historical” constraints imposed by . In this example,
if there is a transition from es� to es it must be the case
that es� satisfiesP (otherwise, es might not satisfyP).
In general, we can use the regression operator to determine
what must have been true at earlier states. A reward for-
mula � is true of a trajectory terminating in es iff Regr(�; s)
holds at es’s predecessor. Thus, the formula Regr(�; s)—
or a stronger formula implying Regr(�; s)—must be part of
any label attached to states that reach es = s�� in one step.
This process is, naturally, repeated (states reaching es� must
satisfy P , etc.).

To quickly summarize this example, suppose that every
state is reachable from any other, and that P and Q are the
only propositions (hence, there are exactly 4 base states).
Then 12 extended states are necessary. For each base state
where Q is false (i.e., P ^ :Q and :P ^ :Q) we need one
extension labeled with :P and another with P . For
each of the two base states in which Q is true, we need 4
extended states, with the labels P ^P , :P ^P ,P ^:P , and:P ^:P . Note that every extended
state has the property that we can easily tell whether the
reward formula Q ^ P is true there. Furthermore, the
regression constraints discussed above hold. For example, lets� j= P ^ Q and es� = s��(:P ^P), and consider
the transition to the base state s where s j= :P ^ Q. It is
necessary that there be some labeling of s, es = s� , such
that Regr(; s) is implied by es�. But this is so, because
we can take to be P ^ :P . Note that if we had not
been able to find such , this would mean that es�’s label
did not encode enough history (because we would be unable
to determine the correct subsequent label after a move to s).

Our algorithm constructs the set of extended phases some-
what indirectly, using a two phase approach. Phase I of our
algorithm constructs label sets for each state, ls(s), contain-
ing PLTL formulas that might be relevant to future reward.
The elements of ls(s) will not necessarily be the labels them-
selves, but are the ingredients out of which labels are con-
structed. In a certain sense (to be discussed in Section 4.3) it
does not matter if we add “too many” (or too strong) formulas
to ls(s), so there are in fact several distinct implementations
of Phase I. But as we have just seen, regression should be
used to impose constraints on label sets. If � 2 ls(s), so
that � might be (part of) the label of a extension es, then
Regr(�; s) must be implied by the annotation of any state
es� from which es is reachable.

Given that Phase I is correct (i.e., it finds all formulas
that might be relevant), we can restrict attention to extended
states whose labels are combinations of the formulas in ls(s),
asserting that some are true and others false. Formally:

Definition 4.5 If Ψ is a set of PLTL formulas, the atoms of
Ψ, denoted ATOMS(Ψ), is the set of all conjunctions that can
be formed from the members of Ψ and their negations. E.g.,
if Ψ = fq^p; pg, then ATOMS(Ψ) = f(q^p)^ p;:(q ^p) ^ p; (q ^p) ^ :p;:(q ^p) ^ :pg.

Thus, the labels extending s will belong to ATOMS(ls(s)).
In general, however, many of these atoms will be inconsistent,
or simply not reachable given the set of feasible trajectories
in the original NMRDP. Rather than performing theorem

proving to check consistency, we will generate the extended
states we require in a constructive fashion, by explicitly con-
sidering which states are reachable from a start state. This is
Phase II of our algorithm.

To illustrate, suppose that we have determined ls(s1) =fQ ^P;> ^ P;? ^ P; Pg, and that s1 j= :Q ^ P .
There is only one atom over ls(s1) that can be true at s1 in
the (length 1) trajectory hs1i, namely:f = :(Q ^P) ^ :(> ^P) ^ :(? ^P) ^ P:
We thus include s1�f in ES. (Note that s1�f can be logi-
cally simplified, to s1�:P .) >From this extended state we
consider, for each successor state s2 of s1, which atom overs2’s label set is true in the trajectory hs1; s2i. Again, this will
be unique: for instance, if s1 can succeed itself, we obtain a
new extended state s1�f 0 wheref 0 = :(Q ^P) ^ (>^P) ^ :(? ^P) ^ P
(This also can be simplified, in this case to s2�P .) For
any action a such that Pr(s1; a; s2) = p > 0, we assert that
Pr(s1�f; a; s2�f 0) = p. By adding extended states to ES in
this way, we will only add extended states that are reachable
and whose history is meaningful. For instance, we see that
while � = Q ^ P is in ls(s1), no label that makes �
true at s1 will be reachable (recall s1 makes Q false). This
effectively eliminates � from consideration at s1.

The algorithm is described in Figure 1. We defer a dis-
cussion of Phases I and III until Section 4.3. Note, however,
that an easy implementation of Phase I is to set ls(s), for alls, equal to

S�i2Φ Subformulas(�i) where Φ is the set of
reward formulas. All the results in this section apply to any
suitable choice of ls(�), including this one.

The MDPGES generated by the algorithm is an expansion
of GS. To show this, it is useful to define a more general
concept of which GES is an instance:

Definition 4.6 GES = (ES; A;RES) is a sound annotation ofGS = (S;A;R) if each state es 2 ES is of the form s�f fors 2 S and some PLTL formula f , and:

1. Fixing �(s�f) = s, there exists � : S 7! ES such that
clauses [1] and [2] of Definition 4.1 hold.

2. Let hs0�f0; s1�f1; : : : ; sn�fni, n � 0, be such that�(s0) = s0�f0. Then:hs0; s1; : : : ; sni j= fn
This definition is similar to our definition of expansion

(Defn. 4.1), except that we give the extended states a partic-
ular form: annotations using PLTL formulas. Furthermore,
instead of requiring that annotations summarize enough his-
tory for the purposes of determining rewards, we no longer
care why GES has the annotations it does; we only insist that
whatever history is recorded in these annotations be accurate.

Because of its generality, the notion of sound annotation
may have other applications. However, for our purposes
we must make one more assumption: that GES’s labels are
informative enough to determine rewards.

Definition 4.7 GES determines rewards over a set of reward
formulas Φ iff, for all es = s�f 2 ES and all �i 2 Φ, f
determines �i.

Phase I Find label sets:

Choose any ls : S 7! subsets of PLTL; such that:

For all s 2 S, all f 2 ATOMS(ls(s)), and all formulas �:
If � 2 Φ, the set of reward formulas for GS, then:f determines �
If � 2 ls(s0), where Pr(s; a; s0) > 0 for some a 2 A, then:f determines Regr(�; s0)

Note. See text for more discussion of this phase. However,
lssub(s) = [�i2Φ Subformulas(�i) is always suitable.

Phase II Generate GES:

1. For all s 2 S do:
(a) Find f 2 ATOMS(ls(s)) such that hsi j= f .

Note. Such an atom exists and is unique.
(b) Add s�f to ES.

Note. This will be the start state corresponding to s.
(c) Mark s�f unvisited.
2. While there exists an unvisited state es 2 ES, es = s�f do:
(a) For all s0 such that Pr(s; a; s0) > 0 for some a do:

i. Find f 0 2 ATOMS(ls(s0)) such that f j= Regr(f 0; s0).
ii. If s0�f 0 62 ES then add s0�f 0 to ES and mark it unvisited.

iii. Set Pr(s�f ; a; s0�f 0) equal to Pr(s; a; s0), for all a.
3. For es = s�f in ES, set RES(es) to

P�i2Φfri : f j= �ig.

4. Set Pr(s�f ; a; s0�f 0) = 0 for all transition probabilities not
previously assigned.

Phase III Minimization: See Section 4.3 for discussion.

Note. This phase is not always necessary.

Figure 1: Algorithm to find Annotated Expansion of GS

Proposition 4.8 If GES = (ES; A;RES) is sound annotation
of GS that determines rewards over Φ, and RES(s�f) =P�i2Φ fri : f j= �ig, then GES is an expansion of GS.

The key to understanding our algorithm is realizing that it
is designed to generate a MDP that satisfies the conditions of
this proposition. Thus, by the results of Section 4.1, we have
succeeded in our goal of finding an equivalent MDP GES for
any NMRDP GS whose rewards are given using a TERF. In
particular, we have the following key result:

Theorem 4.9 Let GS be an NMRDP whose reward function
is given by a TERF, over a set of formulas Φ. The Expansion
Algorithm of Figure 1 constructs an MDP GES that is an
expansion of GS.

Once this expansionGES is constructed, an optimal policy
for the MDPGES can be computed using standard techniques.
The correspondence presented in Section 4.1 shows that an
agent executing this policy will behave optimally with re-
spect to the original NMRDP. We note that the labels in GES
determine the history that must be kept track of during policy
execution. In particular, suppose we are given a policy �0
defined on the extended space to apply to the NMRDP, and
the process starts in state s0. We take the extended state to bes0’s unique start state es0 and perform �0(es0) = a. An ob-
servation of the resulting state s1 is made. The dynamics of
the extended MDP ensure that there is a unique es1 extending

s1 that is reachable from es0 under action a. Thus, we next
execute action �0(es1), and proceed as before. Note that we
can keep track of the extended state that we are currently in
even though we only get to directly observe base states.

4.3 Other Properties of the Algorithm
In this section, we very briefly discuss some of the other
interesting issues raised by the expansion algorithm.

We begin by examining Phase I. As already noted, one
possible implementation is ls(s) = lssub(s); i.e., the label
sets consisting of all subformulas of Φ. An advantage of this
choice is that Phase I becomes trivial, with complexityO(L),
where L = P�i2Φ length(�i) is a bound on the number of
subformulas we generate. Furthermore, we can bound the
size ofGES. Since there are at most 2L atoms over ls(s), each
base state can receive at most this number of distinct labels.
ThusGES can be at most this factor larger thanGS (although
Phase II does not usually generate all conceivable labels.)
The exponential here may seem discouraging, but there are
simple, natural examples in which this number of historical
distinctions is required for implementing an optimal policy.
For instance, for the reward formula nP , we need to keep
track of whenP was true among the previousn steps, leading
to 2n distinct annotations.

Nevertheless, the main disadvantage of lssub(�) is that it
can lead to unnecessarily fine distinctions among histories,
so that GES as produced by Phase II is not guaranteed to
be minimal (in the sense of having as few states as possible
among valid expansions of GS). If minimality is important,
a separate step after Phase II is required. Fortunately, min-
imizing GES can be performed using a variant of standard
algorithms for minimizing finite state automata [HU79]. We
defer discussion to the full paper, but note that the complexity
of doing this is only polynomial in the size of GES. Thus,
so long as the intermediate GES produced by Phase II is of
manageable size, minimization is fairly straightforward.6

A second implementation of Phase I constructs label sets
lsw with “weaker” formulas, subject to the stated require-
ments. More precisely, we initially set lsw(s) = Φ, for
all s. Then, so long as we can find s, s0, such that s0 is
reachable from s and fRegr(�; s0) : � 2 lsw(s0)g 6� lsw(s),
we add fRegr(�; s0) : � 2 lsw(s0)g to lsw(s). We iterate un-
til this terminates—which it will, so long as we are careful
not to add different (but logically equivalent) formulas twice
to lsw(s). This procedure ensures the necessary properties
of ls(�): For many natural examples of reward formula, this
process terminates quickly, generating small label sets.

The major reason for considering lsw(�) is that GES, as
constructed subsequently by Phase II, is then guaranteed to
have minimal size. But lsw(�) has a serious drawback as well:
Phase I can potentially become very complex. The number
of iterations until termination can be exponential (in the size
of the reward formulas) and the size of the label sets can grow
double-exponentially. Perhaps the optimal strategy, then, is
to begin to implement Phase I using lsw(�), but if any reward

6If GES is much larger than necessary, Phase II’s complexity
could cause difficulties.

formula proves troublesome, to then revert to the subformula
technique at that point.

We conclude by noting that Phase II is, in comparison,
unproblematic. Since each extended state is visited exactly
once the complexity is linear in the size of the final answer
(i.e., the size of GES.) Furthermore, none of the operations
performed in Phase II are difficult. Steps 1.a and 2.a.i appear
to involve theorem-proving, but this is misleading. Step 1.a
is actually just model checking (over what is, furthermore,
a very short trajectory) and in this particular case can be
done in time proportional to

P�2ls(s) length(�). Step 2.a.i
can also be performed quickly; the details depend on exactly
how Phase I is implemented, but in general (and in particular,
for the two proposals discussed above) enough book-keeping
information can be recorded during Phase I so that 2.a.i can
be performed in time proportional to jls(s)j. Again, space
limitations prevent us from providing the details.

In conclusion, the annotation algorithm appears to be quite
practical. The potential exists for exponential work (relative
to the size of GS) but this is generally the case exactly when
we really do need to store a lot of history (i.e., when GES is
necessarily large).

5 Concluding Remarks

While MDPs provide a useful framework for DTP, some
of the necessary assumptions can be quite restrictive (at the
very least, requiring that some planning problems be encoded
in an unnatural way). We have presented a technique that
weakens the impact of one of these assumptions, namely,
the requirement of Markovian (or state-based) reward. The
main contributions of this work are a methodology for the
natural specification of temporally extended rewards, and an
algorithm that automatically constructs an equivalent MDP,
allowing standard MDP solution techniques to be used to
construct optimal policies.

There are a number of interesting directions in which this
work can be extended. First, similar techniques can be used
to cope with non-Markovian dynamics, and can also be used
with partially-observable processes. In addition, other tem-
poral logics (such as more standard forward-looking logics)
and process logics can potentially be used in a similar fashion
to specify different classes of behaviors.

Another interesting idea is to use compact representations
of MDPs to obviate the need for computation involving in-
dividual states. For instance, Bayes net representations have
been used to specify actions for MDPs in [BDG95], and
can be exploited in policy construction. Given an NMRDP
specified in this way, we could produce new Bayes net action
descriptions involving an expandedset of variables (or propo-
sitions) that render the underlying reward process Markovian,
rather than expanding states explicitly.

Finally, our technique does not work well if the expanded
MDP is large, which may be the case if a lot of history
is necessary (note that this is inherent in formulating such
a problem as an MDP, whether automatically constructed or
not). The complexity of policy construction is typically dom-
inated by the size of the state space. An important direction

for future work is to combine policy construction with state
space expansion. The hope is that one can avoid generating
many expanded states using dominance arguments particular
to the reward structure of the given NMRDP.

Acknowledgements
The work of Fahiem Bacchus and Craig Boutilier was sup-
ported by the Canadian government through their NSERC
and IRIS programs.

We thank the anonymous referees for their thoughtful re-
views. It is unfortunate that space limitations prevented us
from responding to several of their valuable suggestions.

References
[AH90] R. Alur and T. Henzinger. Real-time logics: complexity

and expressiveness. LICS-90, Philadelphia, 1990.
[BD94] C. Boutilier and R. Dearden. Using abstractions for

decision-theoretic planning with time constraints. AAAI-94,
pp.1016–1022, Seattle, 1994.

[BDG95] C. Boutilier, R. Dearden, and M. Goldszmidt. Exploit-
ing structure in policy construction. IJCAI-95, pp.1104–1111,
Montreal, 1995.

[Bel57] R. E. Bellman. Dynamic Programming. Princeton Univer-
sity Press, Princeton, 1957.

[BP95] C. Boutilier and M. L. Puterman. Process-oriented plan-
ning and average-reward optimality. IJCAI-95, pp.1096–1103,
Montreal, 1995.

[DK89] T. Dean and K. Kanazawa. A model for reasoning about
persistence and causation. Comp. Intel., 5:142–150, 1989.

[DKKN93] T. Dean, L. P. Kaelbling, J. Kirman, and A. Nicholson.
Planning with deadlines in stochastic domains. AAAI-93, pp.574–
579, Washington, D.C., 1993.

[Dru89] M. Drummond. Situated control rules. KR-89, pp.103–
113, Toronto, 1989.

[Eme90] E. A. Emerson. Temporal and modal logic. In J. van
Leeuwen, ed., Handbook Theor. Comp. Sci., Vol.B, pp.997–1072,
1990.

[GK91] P. Godefroid and F. Kabanza. An efficient reactive planner
for synthesizing reactive plans. AAAI-91, pp.640–645, 1991.

[HH92] P. Haddawy and S. Hanks. Representations for decision-
theoretic planning: Utility functions for deadline goals. KR-92,
pp.71–82, Cambridge, 1992.

[How60] R. A. Howard. Dynamic Programming and Markov Pro-
cesses. MIT Press, Cambridge, 1960.

[HU79] J. E. Hopcroft and J. D. Ullman. Introduction to Automata
Theory, Languages and Computation. Addison-Wesley, 1979.

[Kab90] F. Kabanza. Synthesis of reactive plans for multi-path
environments. AAAI-90, pp.164–169, 1990.

[KHW94] N. Kushmerick, S. Hanks and D. Weld. An algorithm
for probabilistic least-commitment planning. AAAI-94, pp.1073–
1078, Seattle, 1994.

[LDK95] M. Littman, T. L. Dean and L. P. Kaelbling. On the com-
plexity of solving Markov decision problems. UAI-95, pp.394–
402, Montreal, 1995.

[Put94] M. L. Puterman. Markov Decision Processes: Discrete
Stochastic Dynamic Programming. Wiley, New York, 1994.

[Sch87] M. J. Schoppers. Universal plans for reactive robots in
unpredictable environments. IJCAI-87, 1039–1046, Milan, 1987.

[TR94] J. Tash and S. Russell. Control strategies for a stochastic
planner. AAAI-94, 1079–1085, Seattle, 1994.

