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Abstract

This paper describes a method for planning with rich
qualitative, temporally extended preferences (QTEPS)
using lookahead heuristics inspired by those employed
in state-of-the-art classical planners. Key to our ap-
proach is a transformation of the planning domain into
an equivalent but simplified planning domain. First,
compound preference formulae are transformed into
simpler, equivalent preference formulae. Second, tem-
porally extended preferences are replaced by equiv-
alent, atemporal preferences. These two simplifica-
tions enable us to propose a number of simple heuristic
strategies for planning with QTEPs. We propose an al-
gorithm that uses these heuristics and that furthermore
is provablyk-optimal, i.e. it finds all optimal plans of
length no greater than a parameteile compare our
planner against the PPLAN planner, which does not
use lookahead heuristics. Preliminary results show a
significant improvement in performance, often by or-
ders of magnitude.

Introduction

Standard goals only distinguish between plans that satisfy

performance comparable to the PDDL3-based TEP planners.
To be fair to the developers of these systems, efficiency was
not their objective. Both planners were proof-of-concests
tems that had not been highly optimized. Nevertheless, our
analysis of their behaviour has led to observations that mo-
tivate the work presented here. In particular, PPLAN, the
more efficient of the two planners, exploits a best-first Feeur

tic search technique. Nevertheless, its heuristic doepnoet

vide guidance based on a measurement of achievement of the
preferences.

In this paper, we study the problem of planning with
QTEPs specified in a dialect of LPP, the qualitative prefer-
ence language proposed by Bienvestual. [200d and ex-
ploited by their planner PPLAN. Our objective is to im-
prove the efficiency of QTEP planning by exploiting looka-
head domain-independent heuristic search, such as tls&t exi
ing in state-of-the-art classical planners. To do so, wppse
a two-step process to transform our QTEP planning problem
into a simplified planning problem. In the first step, we trans
form LPP preferences into equivalent, more uniform, primi-
tive preferences that enables a simple adaptation of hieuris
approaches to planning for classical planning. Next we com-
pile temporally extended preferences into equivalentegyref
ences that refer to (non-temporal) predicates of the domain

goal and those that do not but they provide no way of differ- With this simplified planning problem in hand, we are now

entiating between successful plans. Preferences, onlilee ot able to exploit heuristic search. To this end, we propose

hand, express information about how “good” a plan is, thusdlomain-independent heuristic strategies tailored to QTEP

enabling a planner to identify successful plans that areemor planning, that employ a provably sound strategy for prun-

or less desirable. ing states from the search space. We prove that our planner
The problem of planning with temporally extended pref- finds all optimal plans of length bounded by a paramé&ter

erences (TEPs), i.e., preferences that refer to the whole eXVe conduct a preliminary experimental investigation in a do

ecution of the plan, was popularized by the 2006 Internaimain where qualitative preferences are natural. We compare

tional Planning Competition (IPC-5). Nevertheless, IPfo-5 our planner against the PPLAN planner, which does not use

cused effort on planning with preferences specified in PDDL3ookahead heuristics. Our results demonstrate a signtfican

[Gerevini and Long, 2005 a preference language that was gain in performance.

ultimately quantitative requiring a planner to optimizea n

meric objective function. In contrast to PDDL3, there have2  preliminaries

been several proposals for preference languages thqtiare i i i

itative or ordinal, rather than quantitative (e.§Bienvenuet I this section we review the LPP preference language and

al., 2006; Son and Pontelli, 2004; Delgraneleal, 2004). d_eflng the problem of planning with preferences. We use the

Because such languages do not have to employ numbers, théjjuation calculus as the formal framework.

provide a natural and compelling means for users to speci . .

preferences over properties of plans. Unfortunately,teds %'1 The Situation Calculus

qualitative preference planners such as PPLBSMNvenuet  The situation calculus is a logical language for specifyang

al., 2004 and Son and Ponte[l2004's planner that deal with  reasoning about dynamical systefReiter, 2001. In the sit-

qualitative temporal preferences (QTEPS) do not demaestra uation calculus, thetateof the world is expressed in terms



of functions and relations (fluents) relativized to a partic 2. f € F, thenfinal(f) € B

lar situation s e.g.,F(X;s). A situations is a sequence of 3. Ifac A, thenocga) € B
the primitive actionsa € A performed from an initial, distin- 4. If 1 and ¢, are in B, then so are~d1, 1 A ¢2, P1V P2,
guished situatiors. The functiondo(a,s) maps a situation (IX)¢1, (VX)p1,next(¢d1), alwaygp1), eventuallypq),

and an action into a new situation. The distinguished binary anduntil (¢1, ¢2).
predicatePossis such thaPossa, s) is true iff actiona can be final(f) states that fluent holds in the final situationgcqa)

pezoggs‘?g g]czgﬁattéoe%ry 1 the situation calculd. com.  S2teS that actiom occurs in the present situation, and

. e ; . ' T next(¢;), alwa , eventuall , anduntil (¢1, are basic
prisesdomain-independent foundational axioarsd a set of Iinez(;ldr)lt)empo?/;qlb(l))gic (LTL) g(()ﬂls)tructs. (91, ¢2)
domain-dependent axiom3he foundational axioms,, de- BDFs establish preferred situations. By combining BDFs
fine the situations, their branching (tree) structure, &edsit- | ;5ing hoolean and temporal connectives, we are able to ex-
uation predecessor relation such thas C ' states that situ- press a wide variety of properties of situations. E.g
ationsprecedes situatiosi in the situation tree. The domain- '

dependent axioms describe: the dynamics of fluents (through (3x).hasingrntgx) A knowsHowToMake), (P1)
successor state axiofaction preconditions (a set of axioms (3x).eventually(oc{cook(x))), (P2)
definingPos3, and the initial situation. Details of the form of (3x).(3y).eventually(occ(orderTakeoutx, y))), (P3)
these axioms can be found|iReiter, 2001 (3x).(3y).eventually(ocq(orderRestaurarix,y))),  (P4)

A planning problemis a tuple (D,G) where D is a
basic action theory an is a goal formula, representing P1 expresses that in the initial situation Claire has theeitig
properties that must hold in the final situation. In theents to cook something she knows how to make. Observe that
situation calculus, planning is characterized as dedectivfluent formulae that are not inside temporal connectivessref
plan synthesis. Given a planning probl€f,G), the task  only to the initial situation. P2 — P4 tell us respectivelptth
is to determine a situatiors = do(ay,...,do(a1,S))))}  at some point Claire cooked something, ordered something
such that D | (3s).executablés) A G(s) where from take-out, or ordered something at a restaurant.

executablés) def (Va,§).do(a,¢) C s> Posga, <). To define preference orderings over alternative properties
’ T ’ of situations, we defindtomic Preference Formula@PFs).
2.2 The Preference Language LPP Each alternative being ordered comprises two components:

the property of the situation, specified by a BDF, ancgke

In this se%tion, we describe the syntax of LEBfenvenuet o1 which stipulates the relative strength of the prefeeen
al., 2004 2, a first-order language for specifying user pref-

erences. We provide an informal description of LPP here D€finition 2 (Atomic Preference Formula (APF)) Let  V
directing the reader tEBienvenuet al, 2008 for further de- b€ a totally ordered, finite set with minimal elemeginand
tails. LPP is richly expressive, enabling the specificappn Mmaximal elementnvax. An atomic preference formula is a
preferences over properties of state as well as temponedly e formula do[Vo] > ¢a[va] > ... >> ¢n[va], where eacly is a
tended preferences over multiple states. Unlike many prefe BDF, €ach ve V, vi <vj fori < j, and \b = Vmin. When
ence languages, LPP provides a total order on preferertces.l = 0, atomic preference formulae correspond to BDFs.
is qualitative in nature, facilitating elicitation. An APF expresses a preference over alternatives. In what
To illustrate LPP, we present the dinner example domain.follows, we let) = [0, 1] for parsimony (we could have cho-
The Dinner Example: It's dinner time and Claire is tired sen a strictly qualitative set likfbest< good< indifferent<
and hungry. Her goal is to be at home with her hunger satedbad < worst} instead). Returning to our example, the follow-
Claire can get food by cooking, ordering take-out food, or bying APF expresses Claire’s preference over what to eatdpizz
going to a restaurant. Because she is tired, she'd rather stdollowed by spaghetti, followed by épes):
home, and italian food is her most desired meal. _ eventually(ocdeat(pizza))[0] >
To understand the preference language, consider the plan  eyentually(ocqeat(spag))[0.4] >
we are trying to generate to be a situation as defined earlier. eventually(ocoeat(crépes))[0.5] (P5)
A user specifies his or her preferences in terms of a single, ) ]
so-calledGeneral Preference FormulaThis formula is an Moreover, Claire can use the following APF:
composition of preferences over constituent propertiesitof P3[0] > (P1AP2)[0.2] > P4[0.7], (P6)
uations. The basic building block of our preference formulato say that her first choice is take-out, followed by cooking
is aBasic Desire Formulavhich describes properties of (par- if she has the ingredients for something she knows how to

tial) situations. In the context of planning, situationsdee ~ Make, followed by going to a restaurant.
thought of as partial plans. To allow the user to specify more complex preferences and

to aggregate preferences, General Preference Formulae ex-

Definition 1 (Basic Desire Formula (BDF)) A basic desire tend LPP to conditional, conjunctive, and disjunctive pref

formula is a sentence drawn from the smallestsethere:

ences.
1L.FChB
Definition 3 (General Preference Formula (GPF))A for-
lwhich we abbreviate tdo([as, ..., an], S), or do(&, S). mula® is a general preference formula if one of the following

>The name LPP was not coined until after publication of this holds:
paper. e ®is an atomic preference formula



e ®isy: W, whereyis a BDF andV¥ is a general exploitation of new heuristic search techniques for plagni

preference formula [Conditional] with QTEPs expressed in LPP.
e ®isone of o . .
-Wo& W1 & ...& W, [General Conjunction] 3.1 The Need for Heuristics and Simplification
-Wo | W1 | ... | Wn [General Disjunction] A common property of existing planners for QTEPs like
where n> 1 and each¥; is a general preference formula. PPLAN and Son and Pontel2004’s planner is that they
Here are some example general preference formulae: do not actlvel_y guide search tovyards actions that satis#f pr
erences. This tends to result in poor performance even on
P1:P2 (P7) P5 | P6 (P8) P5&P6 (P9) problems with very simple preferences. To understand why

this happens, we focus on how PPLAN, the more efficient of
élge two planners, operates.

PPLAN is a best-first search forward chaining planner.
earch is guided by an admissible evaluation function that
evaluates partial plans with respect to whether they sadisf
user-specified GPR). This function is the optimistic evalu-

P7 states that if Claire initially has the ingredients fomse

thing she can make, then she prefers to cook. Preferenc
P9 and P8 show two ways we can combine Claire’s food an%
time preferences into a single complex preference. P9twies
maximize the satisfaction of both of her preferences, waere

P8 is appropriate if she would be content if either of the tWoation of the preference formula with the pessimistic evalua

were Saf“Sf'Ed' ) _ ) tion and the plan length used as tie breakers where necessary
Semantics Informally, the semantics of LPP is achieved in that order. Evaluation of a GPF with respect to a partial
through assigning a weight to a situatierwith respect to  plan results in assignment of a weight to that partial plan.
a GPF,®, written ws(®). This weight is a composition of  Thjs weight is used to guide search towards plans with better
its constituents. For BDFs, a situatieis assigned the value (jower) weights.

Vmin if the BDF is satisfied irs, vmax otherwise. Similarly, To illustrate the limitations of this approach, and the moti

given an APF, and a situatios) s is assigned the weight of yation for a lookahead-style of heuristic search, conditer
the best BDF that it satisfies within the defined APF. Returnpp AN processes the following GRF;

ing to our example above, for P5 if a situation included the
action of eating spaghetti, but not pizza, it would get aweig ~ [eventually(¢s) A eventually(¢z)][v1] > always(§3)[va).
of 0.4. Finally GPF semantics follow the natural semantfcsoHere, ¢1 might be ocqcleankitcher)), ¢» might be

bool_ean conn_ectives. As such General Conjunction yielels .thoc eat(pizzg) and¢3 might beat(home. As its name sug-
maximum of its constituent GPF weights and General D'S'gecs(ts, t(he ogt)imistic evaluation c(>f a c?)mponent prediaate i
junction yields the minimum of its constituent GPF weights. 5 GpE assumes the predicate to be true, until proven false.

The following definition shows us how to compare two sit- 5¢ such, the BDFeventually(¢,) A eventually(¢,) will be
uations with respect to a GPF. true whether or not either afi; or ¢, have actually been sat-
Definition 4 (Preferred Situations) A situation g is atleast isfied. eventually(¢;) can never be falsified, since there is
as preferred as a situation svith respect to a GP®, written  always hope thap; will be achieved in a subsequent state of
pref(s, s, @) if ws, (P) < we, (P). the plan. Thus, there is no distinction between a partial pla

. . . inwhich one or both o, or ¢, is true and one in which they

Planning with preferences A preference-based planning gre poth false, and as such no measure of progress towards
problem can be characterized by a tufie G, @), where®is — giigtaction of the BDF. In contrast, the BRFvays(@s) is
a GPF, and—as in standard plannin@-s a theory of action ¢, jfiable as soon ags is false in some state.
andG is a goal formula. The problem of finding an optimal A, APF is assigned a weight equal to the smallest
plan can be defined also as a deductive task in the Situati%eight BDF that is optimistically satisfied. Since BDF

calculus. eventually(¢1) Aeventually(¢,) is always optimistically sat-
Definition 5 (Optimal Plan, k-Optimal Plan) Let isfied, our example is always evaluated to weight.

P = (D,G,®) be a preference-based planning problem. In this case, as in many, the optimistic evaluation func-
Thend is an optimal plan (resp. k-optimal plan) for P &fis  tion provides poor guidance for QTEP planning. First, as

a plan (resp. a plan of length at most k) f(#®,G), and for illustrated above, the optimistic evaluation function dise
every plan (resp. every plan of length at mosb pr (D,G), PPLAN cannot, in many cases, dlstlr_lgw_sh between partial
pre f(do(d, S),d o(B, %), D). plans that make progress towards satisfying preferencgs an

those that do not. Second, and more importantly, the evalu-
. e - ation function provides no estimate of the number of actions
3 Simplifying the Planning Problem required to satisfy BDReventually(¢1) A eventually(¢2) nor

In this section we propose a means of transforming planningloes it have a way of determining actions to select that will
problems with LPP preferences into planning problems inmake progress towards satisfaction of preferences. These
which preferences are described in a simplified but equiviwo limitations motivated us to explore the use of lookahead
alent form. This simplified form makes the problem more heuristics from classical planning for guiding search.
amenable to exploiting heuristic search. We start by mttiva  In classical planning (where there is just one goal to sat-
ing the need for heuristics in planning with preferencesl an isfy), heuristic approaches have proved to be quite suecess
then we propose two simplifications to the LPP representaful. All winners of recent international planning competi-
tion of preferences that together enable the developmeht artions (in the non-optimal tracks) use heuristics to guidsrth



search (e.g. FHEHoffmann and Nebel, 2001 Fast Down-
ward[Helmert, 2008, SGPlag [Hsuet al., 2007). Unfortu-
nately, there are several barriers to immediate applinatio

./E (true)

(washed ?x)

. . . . (washed ?x)
these techniques to planning with QTEPs. First, these tech- (exists (7c) /:my \
nigues have been developed for single goals. In our case, we (and E::fjcjji
may have multiple different preferences that we wish to sat- ' - pr—

or (no irty 7x))
(washed 7x))

)

(or (not (dirty 7x))
(washed ?7x))

rather complex ways (consider for example a conjunction of —
conditional GPFs). Characterization of these complexinte b)
actions is difficult with existing heuristic search fornsais : a8

for classical planning. Finally, classical heuristic teitjues Figure 1: PNFA for (ajpventually((3c) cafe(c) Aat(c)) and
are tailored to final-state goals. In our case, preferentes a(P) Vx[always(dirty(x) > eventually(washedx)))]

temporal formulae, so notions such as distance to a goal are

not defined for formulae such asentually(@). ; .
To adapt classical heuristic techniques for the case o mporally extended BD®, is replaced by aew domain

QTEP planning with LPP preferences, we propose to trans redicate Acgy that is true in the final state of a plan if and

form the QTEP planning problem into an equivalent problemon_llyhIf the p'&?I” ?atlsﬂes the t:ca_m!{oorallyt exttended formjutla_ d
that is more amenable to these techniques. In Section 3.2, ' "€ compliation process first ConStructs a parameterize

we simplify the syntax of LPP by transforming GPFs into anPondetelrlmini?tichndite s:cate automﬁta d(PNm? f.OI eaccr;
equivalent APF representation. In this way, we eliminate th emporaily extendeqg preference or hard constraint expess

3 .
problem of dealing with complex interactions among prefer-2S an LTL formulag . The PNFA represents a family of non-
ences. Then, in Section 3.3 we use techniques proposed terministic finite state automata. Its transitions abeled

Baier and Mcllraith[2004 to transform temporal first-order sets of first-order formulae. Its states intuitively “nitor’

preference formulae into equivalent atemporal formula. IntN€ Progress towards satisfying the original temporal faem

so doing, we transform the problem of planning with QTEPSA PNFA A accepts a sequence of domain states iff such se-

into an equivalent problem in which temporal preferences ar quence satisfieg. Figure 1 shows some examples of PNFA

expressed as final-state preferences. In Section 4 we are thi" first-order LTL formulae.
able to propose a set of heuristics, tailored to QTEP plapnin Parameters in the automata appear when the LTL formula

isfy. Second, preferences, as specified in LPP, can interact 3
{3
(@)

that we exploit for planning with LPP preferences. is externally quantified (e.g. Figure 1(b)). The intuiticn i
that differentobjects(or tuples of objects) can be in differ-
3.2 Simplifying GPFs into APFs ent states of the automata. As an example, consider that in

Here we prove that it is possible to significantly simplifgth the dinner domain,.the dishésand B are clean. Fogusing
syntax oprPFs. In fac?, the conditi%nal, co%/junctriJv?,B angPn the formula of Figure 1(b), both objects start off in sate
disjunctive GPFs can all be simplified into simple APFs. ~ do and gz of the automata because they are dty in the

] initial state. This means that initially both objects Sgtihe
Theorem 1 LetW be an arbitrary GPF over the set of pref- temporal formula, since both are in the automaton’s accept-
erence value¥, then it is possible to construct an equivalent jng stateg,. That is, the null plan satisfies the formula (b) of
APF @y, overV. Figure 1. Now, assume we perform the actiemve A, Pasta
Proof sketch: By induction in the number of operators of (which makesAdirty). In the resulting states stays ingp and
the GPF. We prove, for each type of GRE that there exists gz While Anow moves tay;. Hence A no longer satisfies the
an equivalent APRyy = ¢o[Vo] > ¢1[va] > --- > TRUE[]v,],  formula; it will satisfy it only if the plan reaches a stateevl
wherevg is the minimum element i andv, is the max- WashedA) is true.
imum. (Note thatg, containsall values inV; however, it To represent the automata within the domain, for each au-
can be often simplified when their BDFs are equivalent totomaton, we define a predicate specifying the automaton’s
FALSE.) For brevity, we omit the resulting formulae for each current set of states. When the automaton is parameterized,
case. Nevertheless, the size of the resulting formulaeésifi  the predicate has arguments, representing the currenf set o
in |¥| for conditional and disjunctive GPFs, however, its sizeautomaton states for a particul@ple of objects In our ex-
is exponential in the number of conjunctive operators. [J ample, the facfaut-state q0 A) represents that objeat

This simplification will be key when defining heuristics for 1S in 0. Moreover, for each automaton we defineaatept-
planning with LPP preferences. We will focus on computingiNd Predicate The accepting predicate is true of a tuple of
an estimation of each BDF composing the APF. Since ther@bjects if the plan has satisfied the temporal formula fohsuc
are no general conjunctions or disjunctions the heuristics & tUple. . o
not need to handle complex interactions between prefesence For further details of the compilation, we refer the reader

to [Baier and Mcllraith, 2006 We however present three of
3.3 Simplifying Temporal Formulae its results now.

We use techniques presented by Baier and Mcllf@€@0d to
represent the achievement of first-order temporally ex¢énd  3The construction works for an expressive a subset of LTL, i.e.

formulae within a classical planning domain. This resutts i those formulae in extended prenex normal form. ReféBier and
a new augmented classical planning domain in which eacMcllraith, 2004 for more details.



Proposition 1 (Correctness)Let A, be the automaton con- formula on which the effect of a was conditioned. On the
structed by the compilation algorithm from an LTL formula other hand, if factf was copied from layen to n+ 1 then
¢ . Then A accepts exactly the models¢pf h(f,n+1) =h(f,n).

Proposition 2 (Size of the Automaton)Let ¢ be in negated ~ T0 compute heuristics for a stasewe expand the relaxed
normal form, then the number of states gfi& 20(191), graph starting from state The relaxed graph is expanded
» i . ] until a fixed point is found or until the goal and all prefereac
Proposition 3 (Size of output planning problem) The size  gre satisfied.
of the resulting planning domain is (@|Q|¢) where( is the Intuitively, any mechanism for guiding search when plan-
maximum size of a transition ingAn is the number of action  ning with preferences should guide the search towards (1)
terms in the domain, an@) is the number of states of the satisfying the goal, and (2) generating good-quality (low-
automaton. weight) plans. Nevertheless, low-weight preferences ney b
Although in theory, the number of states of the automatorhard to achieve, and therefore this fact should be congidere
can blowup exponentially, we have developed techniques tby the heuristics. Below we describe 3 heuristic functidag t
reduce its final size. We have observed that in practice, theve use to build search strategies for planning with QTEPS.
number of states of the resulting automata is comparable t&ach function addresses some aspect of these intuitions.

the size of the formul&Baier and Mcllraith, 200b o )
Heuristic functions

4 Planning for LPP with Heuristic Search Goal distance function ) This function is a measure of

With the new compiled problem in hand, we propose severalloW hard it is to reach the goal. Formally, lgtbe a set of
heuristics for planning with LPP preferences using forwardd02! facts, and lell be the last layer of the expanded relaxed
search. These heuristics are inspired by those used in staf@'@Ph” The goal distance for a stadés G(s) = 3 g h(g,N).
of-the-art heuristic-search classical planners. Theyidoa Preference distance function (PSuppose the APF describ-
way of measuring progress towards the goal and the prefeing our preferences igg[Vo] > --- > ¢n[vn]. We can esti-
ences. The rest of this section describes these heuriatids, mate how hard it is to achieve each of the formupge. . ., ¢y,
proposes a planning algorithm for planning with preference in a similar way to the processing of the goal. Thisis
- a function returning a vector such that itth component is
4.1 Guiding the Search pi = h(Acgs,,N), whereAcgy, is the accepting predicate ¢f,
In the new compiled domain, to determine whether a TEPandN is the depth of the relaxed graph.df is not temporal,
is satisfied we just need to check whether the correspondinge use the heuristic cost ¢f.

ac:_:epting predicate is satis_fie_d in the last state of the. pla?sest relaxed preference weightB) An estimation of the
Tlh's enallblles us to use heuristics that have been proposed Qe rence weight of any successor of the current state. The
classical pianning. best relaxed preference weight is a lowerbound on the prefer

In partlcular,. our heu.rls'ncs for preferences and goalsence weight that a successor of the current state can achieve
utilize the additive heuristic proposed for classical plan

ning by Bonet and Geffnef2001. Although Bonet and when completed to satisfy the goal. Although this function

. S ; is similar in spirit to the optimistic weight by Bienveret
Geffner[2001]’s heuristic was defined for STRIPS operators, : .
in this paper we lift it to the more general case of ADL oper- al. [2008, now, by using the relaxed planning graph, we can

ators[Pednault, 1989 often obtain a better estimate. We compute the preference

T te the heuristi -k tifact f weight in each of the relaxed states. TBdunction corre-
0 compute the Reurstc, we use a well-known aritact 1or ¢, 4 s tg the lowest of these. Intuitively, by using thexeta
classical planning: theelaxed planning grapHHoffmann

; . graph, we are sometimes able to detect some accepting predi-
and Nebel, 200]L We can view this graph as composed of cai05 that can never be made true from the current state, Thus
relaxed statesA relaxed state at depti+ 1 is generated by

. ; . theB function is an evaluation of the original APF which only
addingall the effects of actions that can be performed in theregards such unreachable predicates as being false.

relaxed state of depth, and then by copying all facts that
appear in layen. Relaxed states can simultaneously containstrategies for Guiding Search

:J.Othha fafhtf’ af?d itts fnegail(t_ion?f. 1t'hus, if dafn exefc:Jtabtlﬁ aC- With the heuristic functions defined above, we are ready to
lon has ed?j 30,[ othma ing fagt ruelan da(iqt alse, then  yropose strategies to heuristically guide search for prann
{p,—q} is added to the successive relaxed state. with QTEPs. Each of these strategies corresponds to a par-

Moreover, each fact in layeri is assigned a heuristic cost . P :
h(f,i). All facts in the first layer of the graph have cost 0. If g?#;?éI)'/;/?t/rg:ggsiggrtghgz?dnélg;;gﬁnked. Below, we define 4

a fact does not appear in layethenh(f, i) = co. If the fact Since in planning with preferences it is mandatory to

f is added by actioa to layern-+ 1, then, achieve the goal, all strategies we propose here guide the
h(f,n+1) = min {h(f,n),1+ z h(¢,n)}, search in some way towards the goal. Before we introduce
e the strategies, we define two ways of comparing the prefer-

. . . ence distance vectors.
whererl 4 ; is @ minimal set of facts in layarthat are needed

to produce effectf. In other words, ;¢ is a minimal set “To simplify the explanation, we assume that the goal is a con-
of facts, that makes true both the preconditioraaind any junction of facts. Our planner can also handle the general case.



Strategy Check whether If tied, check whether 4.2 The Planning Algorithm

goal-value G1 <Gy P1 <vaLue P2 ) ) ] o

goal-easy G, <Gy P; <easy P2 Our planning algorithm, depicted in Figure 2, performs a
value-goal  P1 <yaue P2 Gy < Gy best-first search in the space of states, incrementallyrgene
easy-goal P; <easy P2 G, < Gy ating plans of ever better quality. Additionally, the algjom

prunes states from the search space in two cases: (1) when

Table 1: Four strategies to determine whether s,. Giand  the plan violates a user-defined hard constraint, or (2) when

G, are thegoal distancesandP; andP, are the preference an estimate of the lowerbound on the weight of all its succes-
distance vectors & ands;. sors (computed by the functiorRRFWEIGHTBOUNDFN) is

no better than the weight of the best plan that has been found
so far. In our implementation,FREFWEIGHTBOUNDFN cor-
responds to th®& function proposed above. Henceforth, we
refer to pruning using REFWEIGHTBOUNDFN as theprun-

ing strategy

Definition 6 (<yaLue) Let P = (po,...,Pmax) and Q =
(do,---,0max) be preference distance vectors. Then we
say thatP <y ue Q if P is lexicographically smaller than
Q. Formally, P <yaue Q iff po < 0o, OF pp = go and

(P1,- -+ Pmax) <varue (d1,---,0max)- Input : init: initial state,goal: goal formulahardConstraintsa
formula for hard constraintsgj: an APF, SRATEGY: a
Intuitively P <vaiue Q means that the best-weighted BDF beain ranking functionk: a bound for the plan length
preference ofP has been estimated easier (with a lower fr%mier&|N,TFRONT|ER(mit)
heuristic cost) thar@Q. Ties are resolved by looking at the bestWeight— oo; while frontier # () do
—wei current«— REMOVEBEST(frontier)
next best We|ghted BDF. f «—Progres$ardConstraintover to last state afurrent
L if fis not falsethen
Definition 7 (<gasy) Let P = (po,...,Pmay and Q = if current is a plan and its weight is bestWeighthen
(do,---,qmax) be preference distance vectors. Moreover, let ?ltlr:pu_t t?ecturrlentfplandh
H HE. . I IS IS Tirst plan roundanen
besp b(_—} the smallest i such that £ min j{p;}, and let be_s§ hardConstraints. hardConstraints)
be defined analogously. Then, we say tRatgasy Q iff {always(PREFWEIGHTBOUNDFN < bestWeight}
Poesp < Ubesgy» OF Poesp = Ubest and best < besp. bestWeight— WEIGHT(¢, current)
. . if LENGTH (succk k then
Intuitively besp corresponds to the index of the best- | succ— EXPAND(current)
weighted preference that is also estimated to be the easigst | | | computeHEURISTICS(SUC)
among all the preferences in the APF. Therefore, intuijivel | frontier «—— MERGE(succfrontier, STRATEGY)
P <easy Q means that eithe? contains a preference formula | 4
that has been estimated to be easier than all thoQe am the Figure 2: HRAN-QP’s search algorithm.

easiest preferences of both vectors have been estimated to'b
equally hard buP’s easiest preference has a better associated
weight.

Now, when ranking the search frontier we say thds bet-  4-3  Theoretical Results

ter thans; (denoted bys; < sp) using four different criteria. \e have investigated two relevant properties of the pro-
These criteria are shown in Table 1, and they correspond t0 gosed algorithm: whether thguning strategy is soundind
prioritization of some of the functions defined above. For ex \yhether the algorithm is able to produc@ptimal plans. We

ample, under strateggoal-value first we check whether the o\ elaborate on these notions and our results.
distance to the goal of; is less than that of;; in case of a

tie we check whethes's preference vector is better thagis Soundness of Pruning Strategy

with respect to<vaLue - We say that a pruning strategyseundif whenever it prunes
Our proposed strategies are based on intuitions and hands-states from the search space then no successa lds a
on experience. We want to achieve the goal and thereforaeight that is better than that of the best plan found so far.
we consider progress towards its satisfaction as impoitant
all the defined strategies. The “value” family of strategies
greedy in the sense that they strive to create a highly-pexfe
plan first. Although this is intuitively desirable, it can ttee  Proof sketch: The result follows by first proving that if there
case that low-weight BDFs are difficult to achieve, requjrin is a factf (resp. a negative factf) that does not appear
very long plans, and therefore a lot of search effort. Withtth in the deepest state layer of a relaxed plan graph constructe
in mind, the “easy” family of heuristics attempt to gradyall from s, then f (resp. —f) is not true in any successor ef
satisfy those preferences that are estimated as easilgvachi Now if our APF is@o[Vo] > - -+ > ¢n[Vn], when we evaluate
able. These strategies guide the search towards rapidly fingtachAcgy, in the deepest relaxed state, we obtain #edy,
ing a plan, no matter how good it is. However, finding a planis false iff ¢; is false in every successor sflt is easy to see
is always good, since the algorithm is able to use its weight athat when we evaluate the APF in the deepest relaxed state
a upperbound to prune the search space for subsequent betteg obtain an optimistic estimation of the preference weight
plans, as we see in the next section. that can be reached by any successa: of |

Theorem 2 Thebest relaxed preference weight functisra
sound pruning strategy.



This property of the pruning is very important, since it will PPLAN |goal-easy|goal-value|easy-goal]value-goal
allow the algorithm to sometimes prove that an optimal solu-  |ProbA #ExpN ([#ExpN_¢[#ExpN_([#ExpN_¢[#ExpN ¢
tion has been found without visiting the entire search space 1 7\2 32 3l 2 3/ 2 3 2

2 7|2 32 3 2 32 3 2
k-Optimality 3 82|l 32| 3 2 32 3 2
We say that a planning algorithm ksoptimal, if it eventu- 4 92 3/ 2 3| 2 3/ 2 8 7
ally returns the best-weighted plan among all those of lengt 5 154 3 2 3 2 3 2 3 2
bounded b)k. 6 233 3| 2 7 4 3| 2 3 2

7 295 345 20 5| 275 8 7
Theorem 3 The algorithm of Figure 2 is k-optimal. 8 423l 12 3] 12 3 4 3 4l 3
Proof sketch: This is straightforward from Theorem 2 and 9 5581 135 13 5 43 4 3
the fact that the algorithm exhausts the space of plans of ﬁ* g;g 1(2; g 4212 3 1(1)2 2 2 i
length up tok. , 12 o25| 335 33 5| 65 6 5

It is important to note here that this result does not mean |13 1716l 11617 7| 11617 7| 24 7| 24 7
that thefirst plan found by HRAN-QP isk-optimal. This 14 1943 4 3 4 3 4 3 4 2
is an important difference with respect to the PPLAN plan- 15 2577 178 71 32 7| 1747 26 7
ner, where effectively the first (and only) plan returned is a 16 3137 58 7 58 7 8| 7 8l 7
k-optimal plan. 17 137876] 12/ 6| 12| 6| 7562 6 7l 6

18 176084 5 2 5| 4| 2949 7 5 4
5 Implementation and Evaluation " ;33835 el o wad o
We implemented the proof-of-concept planner IAR-QP. 21 1>20000-} 747y 7Y 7 8 7 8 7
The planner consists of two modules. The first is a pre- gg: 38882‘ 82 ; 32 ; Z g 14: ;
processor that reads problems in an extended PDDL3 lan- oar 22000d-|  ad 6| 22 2 e a 7

guage, which allows the definition of APFs through an ad-
ditional construct. The second module is a modified versionfable 2: Nodes expanded (#ExpN) and plan lengjhob-
of TLPLAN [Bacchus and Kabanza, 1998hich is able to tained by PPLAN and our 4 strategies from Table 1.
compute the heuristic functions and implements the search

algorithm of Section 4.

We performed a preliminary evaluation of the different
strategies we proposed overdaner domainoriginally in-
troduced in[Bienvenuet al., 2004. In this domain, there is
an agent that is able to drive to restaurants and stores, coo
and eat food. In all our experiments, the agent is initiatly a
home and her goal is to be sated; availability of ingredient

Finally, it is important to note that PPLAN is an optimal
planner. It uses an admissible heuristic to guarantee that i
always finds the optimal plan first. The benefit is that the
R;uristic is more informative, the drawback is that optimal

cannot be guaranteed unless we search the entire search
space. To guarantee optimality, we search the whole search

I | loiti . hni o
to cook and weather conditions vary across individual ahiti Space cleverly by exploiting sound pruning techniques dis

. : ) cussed in Section 4.3 that enable us to vastly reduced the
states. Different problems are obtained by adding pre&en o, -q that must be searched. While we prove that our planner

%inds the most preferred plan, we make no guarantees about

visit. In the most complex problems, the preference stateg,o length of that plan. Nevertheless, experimental rgsult

that she would like to eat several types of food and/or Visitgp, o\ that in the dinner domain, lengths of plans are compa-

different places. . rable to the optimal found by PPLAN.
Table 2 contains a summary of the results. It shows the

number of states visited by the planner (equivalent to th
number of times the main Igop ofﬁhe algo(rit?\m of Figure 266 Summary and Related Work
was executed) and the length of the final plan. We also showh this paper we explored computational issues associated
the same metrics for the PPLAN planner. Problems markedVith planning with temporally extended preferences ex-
with a star (*) are those where the weight of the optimal planpressed in the LPP preference language. The poor perfor-
is greater than 0, i.e., the preferences cannot be fullgfgadi ~ Mance of existing QTEP planners provided motivation for our

The results show that in most cases, at least one of ouPproach, which was to develop domain-independent heuris-
strategies outperforms PPLAN in the number of states vistiC search techniques for QTEP planners. To this end, we
ited, sometimes by several orders of magnitBdalso, it's proposed a suite of heuristics that can be used for planning
often the case that the strategies that make the goal the firégtith QTEPs expressed in LPP. We also proposed a planning
priority expand more nodes, and sometimes generate longé@gorithm that isk-optimal. We were able to employ more
plans. A plausible explanation is that this happens becausgffective search strategies that do not guide the seargbtio o
these strategies tend to be “goal obsessive” in the sense th@al solutions, while still guaranteeing optimality by dise
whenever a plan is found, any action that violates the gdal wi ing sound pruning techniques that enabled us to vastly educ
have a low priority, even if it helps to satisfy a preference.  the plan search space. While focussed on LPP our results are
- amenable to a variety of QTEP languages.

SNote however that the development of PPLAN did not focus on  Key to our approach is the simplification of the original
optimizing the efficiency of the implementation. qualitative preference formula: first, by simplifying itrsyax,



and then by incorporating additional predicates in the doma  planning. In5th International Planning Competition Booklet

to eliminate their temporal formulae. We proved bounds on (IPC-2006) pp. 54-57, 2006.

the size of this transformation. [Bienvenuet al, 2006 M. Bienvenu, C. Fritz, and S. Mcllraith.
Preliminary experimental results suggest that our planner Planning with qualitative temporal preferences. Firoc. of the

performs up to orders of magnitude better than PPLAN, a 10th Intl Conference on Knowledge Representation and Reason-

planner designed for the same language. Nevertheless, we ing (KR-06) pp. 134-144, 2006.

believe that there is still room for improvement. First, the [Bonet and Geffner, 2001B. Bonet and H. Geffner. Planning as
heuristics we used for preferences are simple; we beli@ate th  heuristic searchAtrtificial Intelligence 129(1-2):5-33, 2001.

exploiting more complex heurisitcs such as, for example, th [Brafman and Chernyavsky, 200%. Brafman and

length of relaxed p|an_5[H0ffmann and Nebel, 20®]may Y. Chernyavsky. Planning with goal preferences and con-

provide even better guidance. Further, we think that sfiae straints. InProc. of the 15th Int'l Conference on Automated

that better combine goal-directed heuristics and prefaren Planning and Scheduling (ICAPS-0%)p. 182-191, 2005.

directed heuristics still need to be explored. [Delgrandeet al, 2004 J. P. Delgrande, T. Schaub, and H. Tom-
FOT obvious reasons, we did not compare our planner to pits. Domain-specific preferences for causal reasoning and plan-

a variety of related work on planning wituantitativepref- ning. InProc. of the 14th Int'| Conference on Automated Plan-

erences. Most notable among them are the participants of ning and Scheduling (ICAPS-Q4)p. 63—72, 2004.

; S
IPC-5, which handle the PDDL3 languagéocharf® [Ben-  [Eqelkampetal, 2004 S. Edelkamp, S. Jabbar, and M. Naizih.
ton et al, 2004 is a heuristic planner for finite-state pref- | arge-scale optimal PDDL3 planning with MIPS-XXL. Bth
erences.miPs-xxL [Edelkampet al., 2006 andmiPs-BDD International Planning Competition Booklet (IPC-200pp. 28—
[Edelkamp, 200bboth use Bichi automata to plan with tem- 30, 2006.

porally extended preferences by invoking the heuristiopla [Edelkamp, 2006 S. Edelkamp. Optimal symbolic PDDL3 plan-
ner FF[Hoffmann and Nebel, 2001 SGPlag [Hsuet al, ning with MIPS-BDD. In5th International Planning Competi-
2007 uses a completely different approach. It partitions the tion Booklet (IPC-2006)pp. 31-33, 2006.

planning problem into several subproblems. It then SolVe§rq|qmanret al, 2004 R. Feldmann, G. Brewka, and S. Wenzel.
them heuristically and integrates their solutions. Fwall "~ pjanning with prioritized goals. IRroc. of the 10th IntI Confer-

HPLAN-P [Baieret al, 2007 is a heuristic planner that ex-  ence on Knowledge Representation and Reasoning (KRsp6)
ploits the same compilation shown in this paper to simplify 503-514, 2006.

temporal formulae in PDDL3. However, it cannot handle [Gerevini and Long, 20d5A. Gerevini and D. Long. Plan con-

qualitative preferences. straints and preferences for PDDL3. Tech. Rep. 2005-08-07, De-
Other planners for problems with preferences include the partment of Electronics for Automation, University of Brescia,

following. Son and Pontell[2004 propose a planner for Brescia, Italy, 2005.

qualitative temporally extended preferences based on@nswyy

set programming. This planner was not designed to be ef[-

ficient; its performance degrades significantly as the kengt
’ . . Hoffmann and Nebel, 2001J. Hoffmann and B. Nebel. The FF
of the plan increases. The planning strategy by FeldmanL planning system: Fast plan generation through heuristic search.

et al.[200d employs the heuristic planner Metric-fHoff- Journal of Artificial Intelligence Research4:253-302, 2001.
mann, 2008 to plan for prioritized goals A plan for a

c . . ; . [Hoffmann, 2003 J. Hoffmann. The Metric-FF planning system:
h'.gh .pnomy goal IS fqund by 'r.]t.eratlvely planning for gls ) Translating “ignoring delete lists” to numeric state variables.
with Increasing priority. P”O”“Z.ed goals only refer to fi Journal of Artificial Intelligence ResearcB0:291-341, 2003.
nal states. Finally, less related is the work by Brafman ancf '
Chernyavsk){ZOOS, who proposed a CSP approach to plan- Hsuet al, 2007 C.-W. Hsu, B. Wah, R. Huang, and Y. Chen. Con-

. RS o frs : straint partitioning for solving planning problems with trajectory
hing with final-state qualitative preferences specifiechgsi constraints and goal preferences.Hroc. of the 20th Int’l Joint

elmert, 2006 M. Helmert. The Fast Downward planning system.
Journal of Artificial Intelligence Researc@6:191-246, 2006.

TCP-nets. Conference on Artificial Intelligence (IJCAI-G72007. To ap-
pear.
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