
On Domain-Independent Heuristics for Planning with Qualitative Preferences

Jorge A. Baier and Sheila A. McIlraith
Department of Computer Science

University of Toronto
Toronto, Canada

Abstract

This paper describes a method for planning with rich
qualitative, temporally extended preferences (QTEPs)
using lookahead heuristics inspired by those employed
in state-of-the-art classical planners. Key to our ap-
proach is a transformation of the planning domain into
an equivalent but simplified planning domain. First,
compound preference formulae are transformed into
simpler, equivalent preference formulae. Second, tem-
porally extended preferences are replaced by equiv-
alent, atemporal preferences. These two simplifica-
tions enable us to propose a number of simple heuristic
strategies for planning with QTEPs. We propose an al-
gorithm that uses these heuristics and that furthermore
is provablyk-optimal, i.e. it finds all optimal plans of
length no greater than a parameterk. We compare our
planner against the PPLAN planner, which does not
use lookahead heuristics. Preliminary results show a
significant improvement in performance, often by or-
ders of magnitude.

1 Introduction
Standard goals only distinguish between plans that satisfythe
goal and those that do not but they provide no way of differ-
entiating between successful plans. Preferences, on the other
hand, express information about how “good” a plan is, thus
enabling a planner to identify successful plans that are more,
or less desirable.

The problem of planning with temporally extended pref-
erences (TEPs), i.e., preferences that refer to the whole ex-
ecution of the plan, was popularized by the 2006 Interna-
tional Planning Competition (IPC-5). Nevertheless, IPC-5fo-
cused effort on planning with preferences specified in PDDL3
[Gerevini and Long, 2005], a preference language that was
ultimately quantitative requiring a planner to optimize a nu-
meric objective function. In contrast to PDDL3, there have
been several proposals for preference languages that arequal-
itative or ordinal, rather than quantitative (e.g.,[Bienvenuet
al., 2006; Son and Pontelli, 2004; Delgrandeet al., 2004]).
Because such languages do not have to employ numbers, they
provide a natural and compelling means for users to specify
preferences over properties of plans. Unfortunately, existing
qualitative preference planners such as PPLAN[Bienvenuet
al., 2006] and Son and Pontelli[2004]’s planner that deal with
qualitative temporal preferences (QTEPs) do not demonstrate

performance comparable to the PDDL3-based TEP planners.
To be fair to the developers of these systems, efficiency was
not their objective. Both planners were proof-of-concept sys-
tems that had not been highly optimized. Nevertheless, our
analysis of their behaviour has led to observations that mo-
tivate the work presented here. In particular, PPLAN, the
more efficient of the two planners, exploits a best-first heuris-
tic search technique. Nevertheless, its heuristic does notpro-
vide guidance based on a measurement of achievement of the
preferences.

In this paper, we study the problem of planning with
QTEPs specified in a dialect of LPP, the qualitative prefer-
ence language proposed by Bienvenuet al. [2006] and ex-
ploited by their planner PPLAN. Our objective is to im-
prove the efficiency of QTEP planning by exploiting looka-
head domain-independent heuristic search, such as that exist-
ing in state-of-the-art classical planners. To do so, we propose
a two-step process to transform our QTEP planning problem
into a simplified planning problem. In the first step, we trans-
form LPP preferences into equivalent, more uniform, primi-
tive preferences that enables a simple adaptation of heuristic
approaches to planning for classical planning. Next we com-
pile temporally extended preferences into equivalent prefer-
ences that refer to (non-temporal) predicates of the domain

With this simplified planning problem in hand, we are now
able to exploit heuristic search. To this end, we propose
domain-independent heuristic strategies tailored to QTEP
planning, that employ a provably sound strategy for prun-
ing states from the search space. We prove that our planner
finds all optimal plans of length bounded by a parameterk.
We conduct a preliminary experimental investigation in a do-
main where qualitative preferences are natural. We compare
our planner against the PPLAN planner, which does not use
lookahead heuristics. Our results demonstrate a significant
gain in performance.

2 Preliminaries
In this section we review the LPP preference language and
define the problem of planning with preferences. We use the
situation calculus as the formal framework.

2.1 The Situation Calculus
The situation calculus is a logical language for specifyingand
reasoning about dynamical systems[Reiter, 2001]. In the sit-
uation calculus, thestateof the world is expressed in terms

of functions and relations (fluents) relativized to a particu-
lar situation s, e.g.,F(~x,s). A situations is a sequence of
the primitive actionsa∈ A performed from an initial, distin-
guished situationS0. The functiondo(a,s) maps a situation
and an action into a new situation. The distinguished binary
predicatePossis such thatPoss(a,s) is true iff actiona can be
performed in situations.

A basic action theory in the situation calculus,D, com-
prisesdomain-independent foundational axiomsand a set of
domain-dependent axioms. The foundational axioms,Σ, de-
fine the situations, their branching (tree) structure, and the sit-
uation predecessor relation<, such thats< s′ states that situ-
ationsprecedes situations′ in the situation tree. The domain-
dependent axioms describe: the dynamics of fluents (through
successor state axioms), action preconditions (a set of axioms
definingPoss), and the initial situation. Details of the form of
these axioms can be found in[Reiter, 2001].

A planning problemis a tuple 〈D,G〉 where D is a
basic action theory andG is a goal formula, representing
properties that must hold in the final situation. In the
situation calculus, planning is characterized as deductive
plan synthesis. Given a planning problem〈D,G〉, the task
is to determine a situations = do(an, . . . ,do(a1,S0))))

1

such that D |= (∃s).executable(s) ∧ G(s) where

executable(s)
def
= (∀a,s′).do(a,s′) ⊑ s⊃ Poss(a,s′).

2.2 The Preference Language LPP
In this section, we describe the syntax of LPP[Bienvenuet
al., 2006] 2, a first-order language for specifying user pref-
erences. We provide an informal description of LPP here,
directing the reader to[Bienvenuet al., 2006] for further de-
tails. LPP is richly expressive, enabling the specificationof
preferences over properties of state as well as temporally ex-
tended preferences over multiple states. Unlike many prefer-
ence languages, LPP provides a total order on preferences. It
is qualitative in nature, facilitating elicitation.

To illustrate LPP, we present the dinner example domain.
The Dinner Example: It’s dinner time and Claire is tired
and hungry. Her goal is to be at home with her hunger sated.
Claire can get food by cooking, ordering take-out food, or by
going to a restaurant. Because she is tired, she’d rather stay
home, and italian food is her most desired meal.

To understand the preference language, consider the plan
we are trying to generate to be a situation as defined earlier.
A user specifies his or her preferences in terms of a single,
so-calledGeneral Preference Formula. This formula is an
composition of preferences over constituent properties ofsit-
uations. The basic building block of our preference formula
is aBasic Desire Formulawhich describes properties of (par-
tial) situations. In the context of planning, situations can be
thought of as partial plans.

Definition 1 (Basic Desire Formula (BDF)) A basic desire
formula is a sentence drawn from the smallest setB where:

1. F ⊂ B

1Which we abbreviate todo([a1, . . . ,an],S0), or do(~a,S0).
2The name LPP was not coined until after publication of this

paper.

2. f ∈ F , thenfinal(f) ∈ B
3. If a∈ A, thenocc(a) ∈ B
4. If ϕ1 andϕ2 are inB, then so are¬ϕ1, ϕ1∧ϕ2, ϕ1∨ϕ2,

(∃x)ϕ1, (∀x)ϕ1,next(ϕ1), always(ϕ1), eventually(ϕ1),
anduntil (ϕ1, ϕ2).

final(f) states that fluentf holds in the final situation,occ(a)
states that actiona occurs in the present situation, and
next(ϕ1), always(ϕ1), eventually(ϕ1), anduntil (ϕ1, ϕ2) are basic
linear temporal logic (LTL) constructs.

BDFs establish preferred situations. By combining BDFs
using boolean and temporal connectives, we are able to ex-
press a wide variety of properties of situations. E.g,

(∃x).hasIngrnts(x)∧knowsHowToMake(x), (P1)

(∃x).eventually(occ(cook(x))), (P2)

(∃x).(∃y).eventually(occ(orderTakeout(x,y))), (P3)

(∃x).(∃y).eventually(occ(orderRestaurant(x,y))), (P4)

P1 expresses that in the initial situation Claire has the ingredi-
ents to cook something she knows how to make. Observe that
fluent formulae that are not inside temporal connectives refer
only to the initial situation. P2 – P4 tell us respectively that
at some point Claire cooked something, ordered something
from take-out, or ordered something at a restaurant.

To define preference orderings over alternative properties
of situations, we defineAtomic Preference Formulae(APFs).
Each alternative being ordered comprises two components:
the property of the situation, specified by a BDF, and avalue
term which stipulates the relative strength of the preference.

Definition 2 (Atomic Preference Formula (APF)) Let V
be a totally ordered, finite set with minimal element vmin and
maximal element vmax. An atomic preference formula is a
formula ϕ0[v0] ≫ ϕ1[v1] ≫ ... ≫ ϕn[vn], where eachϕi is a
BDF, each vi ∈ V, vi < v j for i < j, and v0 = vmin. When
n = 0, atomic preference formulae correspond to BDFs.

An APF expresses a preference over alternatives. In what
follows, we letV = [0,1] for parsimony (we could have cho-
sen a strictly qualitative set like{best< good< indifferent<
bad< worst} instead). Returning to our example, the follow-
ing APF expresses Claire’s preference over what to eat (pizza,
followed by spaghetti, followed by crêpes):

eventually(occ(eat(pizza)))[0]≫
eventually(occ(eat(spag)))[0.4]≫

eventually(occ(eat(crêpes)))[0.5] (P5)

Moreover, Claire can use the following APF:
P3[0] ≫ (P1∧P2)[0.2] ≫ P4[0.7], (P6)

to say that her first choice is take-out, followed by cooking
if she has the ingredients for something she knows how to
make, followed by going to a restaurant.

To allow the user to specify more complex preferences and
to aggregate preferences, General Preference Formulae ex-
tend LPP to conditional, conjunctive, and disjunctive prefer-
ences.

Definition 3 (General Preference Formula (GPF))A for-
mulaΦ is a general preference formula if one of the following
holds:

• Φ is an atomic preference formula

• Φ is γ : Ψ, whereγ is a BDF andΨ is a general
preference formula [Conditional]

• Φ is one of
- Ψ0& Ψ1& ...& Ψn [General Conjunction]
- Ψ0 | Ψ1 | ... | Ψn [General Disjunction]

where n≥ 1 and eachΨi is a general preference formula.

Here are some example general preference formulae:

P1 : P2 (P7) P5 | P6 (P8) P5& P6 (P9)

P7 states that if Claire initially has the ingredients for some-
thing she can make, then she prefers to cook. Preferences
P9 and P8 show two ways we can combine Claire’s food and
time preferences into a single complex preference. P9 triesto
maximize the satisfaction of both of her preferences, whereas
P8 is appropriate if she would be content if either of the two
were satisfied.

Semantics Informally, the semantics of LPP is achieved
through assigning a weight to a situations with respect to
a GPF,Φ, written ws(Φ). This weight is a composition of
its constituents. For BDFs, a situations is assigned the value
vmin if the BDF is satisfied ins, vmax otherwise. Similarly,
given an APF, and a situations, s is assigned the weight of
the best BDF that it satisfies within the defined APF. Return-
ing to our example above, for P5 if a situation included the
action of eating spaghetti, but not pizza, it would get a weight
of 0.4. Finally GPF semantics follow the natural semantics of
boolean connectives. As such General Conjunction yields the
maximum of its constituent GPF weights and General Dis-
junction yields the minimum of its constituent GPF weights.

The following definition shows us how to compare two sit-
uations with respect to a GPF.

Definition 4 (Preferred Situations) A situation s1 is at least
as preferred as a situation s2 with respect to a GPFΦ, written
pre f(s1,s2,Φ) if ws1(Φ) ≤ ws2(Φ).

Planning with preferences A preference-based planning
problem can be characterized by a tuple〈D,G,Φ〉, whereΦ is
a GPF, and—as in standard planning—D is a theory of action
andG is a goal formula. The problem of finding an optimal
plan can be defined also as a deductive task in the situation
calculus.

Definition 5 (Optimal Plan, k-Optimal Plan) Let
P = 〈D,G,Φ〉 be a preference-based planning problem.
Then~a is an optimal plan (resp. k-optimal plan) for P iff~a is
a plan (resp. a plan of length at most k) for〈D,G〉, and for
every plan (resp. every plan of length at most k)~b for 〈D,G〉,
pre f(do(~a,S0),do(~b,S0),Φ).

3 Simplifying the Planning Problem
In this section we propose a means of transforming planning
problems with LPP preferences into planning problems in
which preferences are described in a simplified but equiv-
alent form. This simplified form makes the problem more
amenable to exploiting heuristic search. We start by motivat-
ing the need for heuristics in planning with preferences, and
then we propose two simplifications to the LPP representa-
tion of preferences that together enable the development and

exploitation of new heuristic search techniques for planning
with QTEPs expressed in LPP.

3.1 The Need for Heuristics and Simplification
A common property of existing planners for QTEPs like
PPLAN and Son and Pontelli[2004]’s planner is that they
do not actively guide search towards actions that satisfy pref-
erences. This tends to result in poor performance even on
problems with very simple preferences. To understand why
this happens, we focus on how PPLAN, the more efficient of
the two planners, operates.

PPLAN is a best-first search forward chaining planner.
Search is guided by an admissible evaluation function that
evaluates partial plans with respect to whether they satisfy a
user-specified GPF,Φ. This function is the optimistic evalu-
ation of the preference formula with the pessimistic evalua-
tion and the plan length used as tie breakers where necessary,
in that order. Evaluation of a GPF with respect to a partial
plan results in assignment of a weight to that partial plan.
This weight is used to guide search towards plans with better
(lower) weights.

To illustrate the limitations of this approach, and the moti-
vation for a lookahead-style of heuristic search, considerhow
PPLAN processes the following GPFΦ,

[eventually(ϕ1)∧eventually(ϕ2)][v1]≫always(ϕ3)[v2].

Here, ϕ1 might be occ(clean(kitchen)), ϕ2 might be
occ(eat(pizza)) andϕ3 might beat(home). As its name sug-
gests, the optimistic evaluation of a component predicate in
a GPF assumes the predicate to be true, until proven false.
As such, the BDFeventually(ϕ1)∧ eventually(ϕ2) will be
true whether or not either ofϕ1 or ϕ2 have actually been sat-
isfied. eventually(ϕi) can never be falsified, since there is
always hope thatϕi will be achieved in a subsequent state of
the plan. Thus, there is no distinction between a partial plan
in which one or both ofϕ1 or ϕ2 is true and one in which they
are both false, and as such no measure of progress towards
satisfaction of the BDF. In contrast, the BDFalways(ϕ3) is
falsifiable as soon asϕ3 is false in some state.

An APF is assigned a weight equal to the smallest
weight BDF that is optimistically satisfied. Since BDF
eventually(ϕ1)∧eventually(ϕ2) is always optimistically sat-
isfied, our exampleΦ is always evaluated to weightv1.

In this case, as in many, the optimistic evaluation func-
tion provides poor guidance for QTEP planning. First, as
illustrated above, the optimistic evaluation function used in
PPLAN cannot, in many cases, distinguish between partial
plans that make progress towards satisfying preferences and
those that do not. Second, and more importantly, the evalu-
ation function provides no estimate of the number of actions
required to satisfy BDFeventually(ϕ1)∧eventually(ϕ2) nor
does it have a way of determining actions to select that will
make progress towards satisfaction of preferences. These
two limitations motivated us to explore the use of lookahead
heuristics from classical planning for guiding search.

In classical planning (where there is just one goal to sat-
isfy), heuristic approaches have proved to be quite success-
ful. All winners of recent international planning competi-
tions (in the non-optimal tracks) use heuristics to guide their

search (e.g. FF[Hoffmann and Nebel, 2001], Fast Down-
ward[Helmert, 2006], SGPlan5 [Hsuet al., 2007]). Unfortu-
nately, there are several barriers to immediate application of
these techniques to planning with QTEPs. First, these tech-
niques have been developed for single goals. In our case, we
may have multiple different preferences that we wish to sat-
isfy. Second, preferences, as specified in LPP, can interactin
rather complex ways (consider for example a conjunction of
conditional GPFs). Characterization of these complex inter-
actions is difficult with existing heuristic search formalisms
for classical planning. Finally, classical heuristic techniques
are tailored to final-state goals. In our case, preferences are
temporal formulae, so notions such as distance to a goal are
not defined for formulae such aseventually(φ).

To adapt classical heuristic techniques for the case of
QTEP planning with LPP preferences, we propose to trans-
form the QTEP planning problem into an equivalent problem
that is more amenable to these techniques. In Section 3.2,
we simplify the syntax of LPP by transforming GPFs into an
equivalent APF representation. In this way, we eliminate the
problem of dealing with complex interactions among prefer-
ences. Then, in Section 3.3 we use techniques proposed by
Baier and McIlraith[2006] to transform temporal first-order
preference formulae into equivalent atemporal formula. In
so doing, we transform the problem of planning with QTEPs
into an equivalent problem in which temporal preferences are
expressed as final-state preferences. In Section 4 we are then
able to propose a set of heuristics, tailored to QTEP planning,
that we exploit for planning with LPP preferences.

3.2 Simplifying GPFs into APFs
Here we prove that it is possible to significantly simplify the
syntax of GPFs. In fact, the conditional, conjunctive, and
disjunctive GPFs can all be simplified into simple APFs.

Theorem 1 Let Ψ be an arbitrary GPF over the set of pref-
erence valuesV, then it is possible to construct an equivalent
APFφΨ, overV.

Proof sketch: By induction in the number of operators of
the GPF. We prove, for each type of GPFΨ, that there exists
an equivalent APFφψ = ϕ0[v0] ≫ ϕ1[v1] ≫ ·· · ≫ TRUE[vn],
wherev0 is the minimum element inV and vn is the max-
imum. (Note thatφψ containsall values inV; however, it
can be often simplified when their BDFs are equivalent to
FALSE.) For brevity, we omit the resulting formulae for each
case. Nevertheless, the size of the resulting formulae is linear
in |Ψ| for conditional and disjunctive GPFs, however, its size
is exponential in the number of conjunctive operators. �

This simplification will be key when defining heuristics for
planning with LPP preferences. We will focus on computing
an estimation of each BDF composing the APF. Since there
are no general conjunctions or disjunctions the heuristicsdo
not need to handle complex interactions between preferences.

3.3 Simplifying Temporal Formulae
We use techniques presented by Baier and McIlraith[2006] to
represent the achievement of first-order temporally extended
formulae within a classical planning domain. This results in
a new augmented classical planning domain in which each

{}q0

q1
{}

(exists (?c)

(and (cafe ?c)

(at ?c))) q2
?x

q0

q1
?x

?x

(washed ?x)

(dirty ?x)

(true)

(washed ?x)

(or (not (dirty ?x))

(washed ?x))

(or (not (dirty ?x))

(washed ?x))

(a) (b)
Figure 1: PNFA for (a)eventually((∃c)ca f e(c)∧at(c)) and
(b) ∀x[always(dirty(x) ⊃ eventually(washed(x)))]

temporally extended BDFϕ, is replaced by anew domain
predicate,Accϕ that is true in the final state of a plan if and
only if the plan satisfies the temporally extended formulaϕ.

The compilation process first constructs a parameterized
nondeterministic finite state automata (PNFA)Aϕ for each
temporally extended preference or hard constraint expressed
as an LTL formulaϕ.3 The PNFA represents a family of non-
deterministic finite state automata. Its transitions are labeled
by sets of first-order formulae. Its states intuitively “monitor”
the progress towards satisfying the original temporal formula.
A PNFA Aϕ accepts a sequence of domain states iff such se-
quence satisfiesϕ. Figure 1 shows some examples of PNFA
for first-order LTL formulae.

Parameters in the automata appear when the LTL formula
is externally quantified (e.g. Figure 1(b)). The intuition is
that differentobjects(or tuples of objects) can be in differ-
ent states of the automata. As an example, consider that in
the dinner domain, the dishesA andB are clean. Focusing
on the formula of Figure 1(b), both objects start off in states
q0 andq2 of the automata because they are notdirty in the
initial state. This means that initially both objects satisfy the
temporal formula, since both are in the automaton’s accept-
ing stateq2. That is, the null plan satisfies the formula (b) of
Figure 1. Now, assume we perform the actionserve(A,Pasta)
(which makesA dirty). In the resulting state,B stays inq0 and
q2 while A now moves toq1. Hence,A no longer satisfies the
formula; it will satisfy it only if the plan reaches a state where
washed(A) is true.

To represent the automata within the domain, for each au-
tomaton, we define a predicate specifying the automaton’s
current set of states. When the automaton is parameterized,
the predicate has arguments, representing the current set of
automaton states for a particulartuple of objects. In our ex-
ample, the fact(aut-state q0 A) represents that objectA
is in q0. Moreover, for each automaton we define anaccept-
ing predicate. The accepting predicate is true of a tuple of
objects if the plan has satisfied the temporal formula for such
a tuple.

For further details of the compilation, we refer the reader
to [Baier and McIlraith, 2006]. We however present three of
its results now.

3The construction works for an expressive a subset of LTL, i.e.
those formulae in extended prenex normal form. Refer to[Baier and
McIlraith, 2006] for more details.

Proposition 1 (Correctness)Let Aϕ be the automaton con-
structed by the compilation algorithm from an LTL formula
ϕ . Then Aϕ accepts exactly the models ofϕ.

Proposition 2 (Size of the Automaton)Let ϕ be in negated
normal form, then the number of states of Aϕ is 2O(|ϕ|).

Proposition 3 (Size of output planning problem) The size
of the resulting planning domain is O(n|Q|ℓ) whereℓ is the
maximum size of a transition in AG , n is the number of action
terms in the domain, and|Q| is the number of states of the
automaton.

Although in theory, the number of states of the automaton
can blowup exponentially, we have developed techniques to
reduce its final size. We have observed that in practice, the
number of states of the resulting automata is comparable to
the size of the formula[Baier and McIlraith, 2006].

4 Planning for LPP with Heuristic Search
With the new compiled problem in hand, we propose several
heuristics for planning with LPP preferences using forward
search. These heuristics are inspired by those used in state-
of-the-art heuristic-search classical planners. They provide a
way of measuring progress towards the goal and the prefer-
ences. The rest of this section describes these heuristics,and
proposes a planning algorithm for planning with preferences.

4.1 Guiding the Search
In the new compiled domain, to determine whether a TEP
is satisfied we just need to check whether the corresponding
accepting predicate is satisfied in the last state of the plan.
This enables us to use heuristics that have been proposed for
classical planning.

In particular, our heuristics for preferences and goals
utilize the additive heuristic proposed for classical plan-
ning by Bonet and Geffner[2001]. Although Bonet and
Geffner[2001]’s heuristic was defined for STRIPS operators,
in this paper we lift it to the more general case of ADL oper-
ators[Pednault, 1989].

To compute the heuristic, we use a well-known artifact for
classical planning: therelaxed planning graph[Hoffmann
and Nebel, 2001]. We can view this graph as composed of
relaxed states. A relaxed state at depthn+1 is generated by
addingall the effects of actions that can be performed in the
relaxed state of depthn, and then by copying all facts that
appear in layern. Relaxed states can simultaneously contain
both a factf , and its negation,¬ f . Thus, if an executable ac-
tion has the effect of making factp true and factq false, then
{p,¬q} is added to the successive relaxed state.

Moreover, each factf in layer i is assigned a heuristic cost
h(f , i). All facts in the first layer of the graph have cost 0. If
a fact does not appear in layeri, thenh(f , i) = ∞. If the fact
f is added by actiona to layern+1, then,

h(f ,n+1) = min {h(f ,n),1+ ∑
ℓ∈Γa, f

h(ℓ,n)},

whereΓa, f is a minimal set of facts in layern that are needed
to produce effectf . In other words,Γa, f is a minimal set
of facts, that makes true both the precondition ofa and any

formula on which the effectf of a was conditioned. On the
other hand, if factf was copied from layern to n+ 1 then
h(f ,n+1) = h(f ,n).

To compute heuristics for a states, we expand the relaxed
graph starting from states. The relaxed graph is expanded
until a fixed point is found or until the goal and all preferences
are satisfied.

Intuitively, any mechanism for guiding search when plan-
ning with preferences should guide the search towards (1)
satisfying the goal, and (2) generating good-quality (low-
weight) plans. Nevertheless, low-weight preferences may be
hard to achieve, and therefore this fact should be considered
by the heuristics. Below we describe 3 heuristic functions that
we use to build search strategies for planning with QTEPs.
Each function addresses some aspect of these intuitions.

Heuristic functions

Goal distance function (G) This function is a measure of
how hard it is to reach the goal. Formally, letG be a set of
goal facts, and letN be the last layer of the expanded relaxed
graph.4 The goal distance for a states is G(s) = ∑g∈G h(g,N).

Preference distance function (P)Suppose the APF describ-
ing our preferences isϕ0[v0] ≫ ·· · ≫ ϕn[vn]. We can esti-
mate how hard it is to achieve each of the formulaeϕ0, . . . ,ϕn
in a similar way to the processing of the goal. Thus,P is
a function returning a vector such that itsi-th component is
pi = h(Accϕi ,N), whereAccϕi is the accepting predicate ofϕi ,
andN is the depth of the relaxed graph. Ifϕi is not temporal,
we use the heuristic cost ofϕi .

Best relaxed preference weight (B) An estimation of the
preference weight of any successor of the current state. The
best relaxed preference weight is a lowerbound on the prefer-
ence weight that a successor of the current state can achieve
when completed to satisfy the goal. Although this function
is similar in spirit to the optimistic weight by Bienvenuet
al. [2006], now, by using the relaxed planning graph, we can
often obtain a better estimate. We compute the preference
weight in each of the relaxed states. TheB function corre-
sponds to the lowest of these. Intuitively, by using the relaxed
graph, we are sometimes able to detect some accepting predi-
cates that can never be made true from the current state. Thus,
theB function is an evaluation of the original APF which only
regards such unreachable predicates as being false.

Strategies for Guiding Search
With the heuristic functions defined above, we are ready to
propose strategies to heuristically guide search for planning
with QTEPs. Each of these strategies corresponds to a par-
ticular way the search frontier is ranked. Below, we define 4
different strategies to guide search.

Since in planning with preferences it is mandatory to
achieve the goal, all strategies we propose here guide the
search in some way towards the goal. Before we introduce
the strategies, we define two ways of comparing the prefer-
ence distance vectors.

4To simplify the explanation, we assume that the goal is a con-
junction of facts. Our planner can also handle the general case.

Strategy Check whether If tied, check whether
goal-value G1 < G2 P1 <VALUE P2
goal-easy G1 < G2 P1 <EASY P2
value-goal P1 <VALUE P2 G1 < G2
easy-goal P1 <EASY P2 G1 < G2

Table 1: Four strategies to determine whethers1 ≺ s2. G1 and
G2 are thegoal distances, andP1 andP2 are the preference
distance vectors ofs1 ands2.

Definition 6 (<VALUE) Let P = (p0, . . . , pmax) and Q =
(q0, . . . ,qmax) be preference distance vectors. Then we
say thatP <VALUE Q if P is lexicographically smaller than
Q. Formally, P <VALUE Q iff p0 < q0, or p0 = q0 and
(p1, . . . , pmax) <VALUE (q1, . . . ,qmax).

Intuitively P <VALUE Q means that the best-weighted BDF
preference ofP has been estimated easier (with a lower
heuristic cost) thanQ. Ties are resolved by looking at the
next best-weighted BDF.

Definition 7 (<EASY) Let P = (p0, . . . , pmax) and Q =
(q0, . . . ,qmax) be preference distance vectors. Moreover, let
bestP be the smallest i such that pi = min j{p j}, and let bestQ
be defined analogously. Then, we say thatP <EASY Q iff
pbestP < qbestQ , or pbestP = qbestQ and bestP < bestQ.

Intuitively bestP corresponds to the index of the best-
weighted preference that is also estimated to be the easiest
among all the preferences in the APF. Therefore, intuitively,
P <EASY Q means that eitherP contains a preference formula
that has been estimated to be easier than all those inQ, or the
easiest preferences of both vectors have been estimated to be
equally hard butP’s easiest preference has a better associated
weight.

Now, when ranking the search frontier we say thats1 is bet-
ter thans2 (denoted bys1 ≺ s2) using four different criteria.
These criteria are shown in Table 1, and they correspond to a
prioritization of some of the functions defined above. For ex-
ample, under strategygoal-value first we check whether the
distance to the goal ofs1 is less than that ofs2; in case of a
tie we check whethers1’s preference vector is better thans2’s
with respect to<VALUE .

Our proposed strategies are based on intuitions and hands-
on experience. We want to achieve the goal and therefore
we consider progress towards its satisfaction as importantin
all the defined strategies. The “value” family of strategiesare
greedy in the sense that they strive to create a highly-preferred
plan first. Although this is intuitively desirable, it can bethe
case that low-weight BDFs are difficult to achieve, requiring
very long plans, and therefore a lot of search effort. With that
in mind, the “easy” family of heuristics attempt to gradually
satisfy those preferences that are estimated as easily achiev-
able. These strategies guide the search towards rapidly find-
ing a plan, no matter how good it is. However, finding a plan
is always good, since the algorithm is able to use its weight as
a upperbound to prune the search space for subsequent better
plans, as we see in the next section.

4.2 The Planning Algorithm

Our planning algorithm, depicted in Figure 2, performs a
best-first search in the space of states, incrementally gener-
ating plans of ever better quality. Additionally, the algorithm
prunes states from the search space in two cases: (1) when
the plan violates a user-defined hard constraint, or (2) when
an estimate of the lowerbound on the weight of all its succes-
sors (computed by the function PREFWEIGHTBOUNDFN) is
no better than the weight of the best plan that has been found
so far. In our implementation, PREFWEIGHTBOUNDFN cor-
responds to theB function proposed above. Henceforth, we
refer to pruning using PREFWEIGHTBOUNDFN as theprun-
ing strategy.

Input : init : initial state,goal: goal formula,hardConstraints: a
formula for hard constraints,ϕ: an APF, STRATEGY: a
ranking function,k: a bound for the plan length

begin
frontier← INITFRONTIER(init)
bestWeight←∞; while frontier 6= ∅ do

current← REMOVEBEST(frontier)
f ←ProgresshardConstraintsover to last state ofcurrent
if f is not falsethen

if current is a plan and its weight is< bestWeightthen
Output thecurrent plan
if this is first plan foundthen

hardConstraints← hardConstraints∪
{always(PREFWEIGHTBOUNDFN < bestWeight)}

bestWeight←WEIGHT(ϕ,current)

if LENGTH (succ)< k then
succ← EXPAND(current)

COMPUTEHEURISTICS(succ)
f rontier← MERGE(succ, frontier,STRATEGY)

end
Figure 2: HPLAN -QP’s search algorithm.

4.3 Theoretical Results

We have investigated two relevant properties of the pro-
posed algorithm: whether thepruning strategy is sound, and
whether the algorithm is able to producek-optimal plans. We
now elaborate on these notions and our results.

Soundness of Pruning Strategy
We say that a pruning strategy issoundif whenever it prunes
a states from the search space then no successor ofs has a
weight that is better than that of the best plan found so far.

Theorem 2 Thebest relaxed preference weight functionis a
sound pruning strategy.

Proof sketch: The result follows by first proving that if there
is a fact f (resp. a negative fact¬ f) that does not appear
in the deepest state layer of a relaxed plan graph constructed
from s, then f (resp. ¬ f) is not true in any successor ofs.
Now if our APF isϕ0[v0] ≫ ·· · ≫ ϕn[vn], when we evaluate
eachAccϕi in the deepest relaxed state, we obtain thatAccϕi
is false iff ϕi is false in every successor ofs. It is easy to see
that when we evaluate the APF in the deepest relaxed state
we obtain an optimistic estimation of the preference weight
that can be reached by any successor ofs. �

This property of the pruning is very important, since it will
allow the algorithm to sometimes prove that an optimal solu-
tion has been found without visiting the entire search space.

k-Optimality
We say that a planning algorithm isk-optimal, if it eventu-
ally returns the best-weighted plan among all those of length
bounded byk.

Theorem 3 The algorithm of Figure 2 is k-optimal.

Proof sketch: This is straightforward from Theorem 2 and
the fact that the algorithm exhausts the space of plans of
length up tok.

It is important to note here that this result does not mean
that thefirst plan found by HPLAN -QP isk-optimal. This
is an important difference with respect to the PPLAN plan-
ner, where effectively the first (and only) plan returned is a
k-optimal plan.

5 Implementation and Evaluation
We implemented the proof-of-concept planner HPLAN -QP.
The planner consists of two modules. The first is a pre-
processor that reads problems in an extended PDDL3 lan-
guage, which allows the definition of APFs through an ad-
ditional construct. The second module is a modified version
of TLPLAN [Bacchus and Kabanza, 1998] which is able to
compute the heuristic functions and implements the search
algorithm of Section 4.

We performed a preliminary evaluation of the different
strategies we proposed over adinner domainoriginally in-
troduced in[Bienvenuet al., 2006]. In this domain, there is
an agent that is able to drive to restaurants and stores, cook,
and eat food. In all our experiments, the agent is initially at
home and her goal is to be sated; availability of ingredients
to cook and weather conditions vary across individual initial
states. Different problems are obtained by adding preferences
about things she would like to eat or places she would like to
visit. In the most complex problems, the preference states
that she would like to eat several types of food and/or visit
different places.

Table 2 contains a summary of the results. It shows the
number of states visited by the planner (equivalent to the
number of times the main loop of the algorithm of Figure 2
was executed) and the length of the final plan. We also show
the same metrics for the PPLAN planner. Problems marked
with a star (*) are those where the weight of the optimal plan
is greater than 0, i.e., the preferences cannot be fully satisfied.

The results show that in most cases, at least one of our
strategies outperforms PPLAN in the number of states vis-
ited, sometimes by several orders of magnitude.5 Also, it’s
often the case that the strategies that make the goal the first
priority expand more nodes, and sometimes generate longer
plans. A plausible explanation is that this happens because
these strategies tend to be “goal obsessive” in the sense that
whenever a plan is found, any action that violates the goal will
have a low priority, even if it helps to satisfy a preference.

5Note however that the development of PPLAN did not focus on
optimizing the efficiency of the implementation.

PPLAN goal-easy goal-value easy-goal value-goal

Prob# #ExpN ℓ #ExpN ℓ #ExpN ℓ #ExpN ℓ #ExpN ℓ

1 7 2 3 2 3 2 3 2 3 2
2 7 2 3 2 3 2 3 2 3 2
3 8 2 3 2 3 2 3 2 3 2
4 9 2 3 2 3 2 3 2 8 7
5 15 4 3 2 3 2 3 2 3 2
6 23 3 3 2 7 4 3 2 3 2
7 29 5 34 5 20 5 27 5 8 7
8 42 3 12 3 12 3 4 3 4 3
9 55 3 13 5 13 5 4 3 4 3
10 57 8 22 8 22 8 10 8 9 8
11* 57 6 107 6 45 7 102 6 5 4
12 92 5 33 5 33 5 6 5 6 5
13 1716 11617 7 11617 7 24 7 24 7
14 1943 4 3 4 3 4 3 4 2
15 2577 178 7 32 7 174 7 26 7
16 3137 58 7 58 7 8 7 8 7
17 137876 12 6 12 6 7562 6 7 6
18 176064 5 2 5 4 2948 7 5 4
19* >20000 - 3 2 3 2 3 2 3 2
20 >20000 - 554 8 22 8 554 8 9 8
21 >20000 - 71 7 71 7 8 7 8 7
22* >20000 - 85 7 30 7 7 6 145 7
23* >20000 - 4 3 4 3 4 3 6 5
24* >20000 - 49 6 22 2 7 6 8 7

Table 2: Nodes expanded (#ExpN) and plan length (ℓ) ob-
tained by PPLAN and our 4 strategies from Table 1.

Finally, it is important to note that PPLAN is an optimal
planner. It uses an admissible heuristic to guarantee that it
always finds the optimal plan first. The benefit is that the
heuristic is more informative, the drawback is that optimal-
ity cannot be guaranteed unless we search the entire search
space. To guarantee optimality, we search the whole search
space cleverly by exploiting sound pruning techniques dis-
cussed in Section 4.3 that enable us to vastly reduced the
space that must be searched. While we prove that our planner
finds the most preferred plan, we make no guarantees about
the length of that plan. Nevertheless, experimental results
show that in the dinner domain, lengths of plans are compa-
rable to the optimal found by PPLAN.

6 Summary and Related Work
In this paper we explored computational issues associated
with planning with temporally extended preferences ex-
pressed in the LPP preference language. The poor perfor-
mance of existing QTEP planners provided motivation for our
approach, which was to develop domain-independent heuris-
tic search techniques for QTEP planners. To this end, we
proposed a suite of heuristics that can be used for planning
with QTEPs expressed in LPP. We also proposed a planning
algorithm that isk-optimal. We were able to employ more
effective search strategies that do not guide the search to opti-
mal solutions, while still guaranteeing optimality by develop-
ing sound pruning techniques that enabled us to vastly reduce
the plan search space. While focussed on LPP our results are
amenable to a variety of QTEP languages.

Key to our approach is the simplification of the original
qualitative preference formula: first, by simplifying it syntax,

and then by incorporating additional predicates in the domain
to eliminate their temporal formulae. We proved bounds on
the size of this transformation.

Preliminary experimental results suggest that our planner
performs up to orders of magnitude better than PPLAN, a
planner designed for the same language. Nevertheless, we
believe that there is still room for improvement. First, the
heuristics we used for preferences are simple; we believe that
exploiting more complex heurisitcs such as, for example, the
length of relaxed plans[Hoffmann and Nebel, 2001] may
provide even better guidance. Further, we think that strategies
that better combine goal-directed heuristics and preference-
directed heuristics still need to be explored.

For obvious reasons, we did not compare our planner to
a variety of related work on planning withquantitativepref-
erences. Most notable among them are the participants of
IPC-5, which handle the PDDL3 language.YochanPS [Ben-
ton et al., 2006] is a heuristic planner for finite-state pref-
erences.MIPS-XXL [Edelkampet al., 2006] andMIPS-BDD
[Edelkamp, 2006] both use B̈uchi automata to plan with tem-
porally extended preferences by invoking the heuristic plan-
ner FF[Hoffmann and Nebel, 2001]. SGPlan5 [Hsu et al.,
2007] uses a completely different approach. It partitions the
planning problem into several subproblems. It then solves
them heuristically and integrates their solutions. Finally,
HPLAN -P [Baieret al., 2007] is a heuristic planner that ex-
ploits the same compilation shown in this paper to simplify
temporal formulae in PDDL3. However, it cannot handle
qualitative preferences.

Other planners for problems with preferences include the
following. Son and Pontelli[2004] propose a planner for
qualitative temporally extended preferences based on answer
set programming. This planner was not designed to be ef-
ficient; its performance degrades significantly as the length
of the plan increases. The planning strategy by Feldmann
et al. [2006] employs the heuristic planner Metric-FF[Hoff-
mann, 2003] to plan for prioritized goals. A plan for a
high-priority goal is found by interatively planning for goals
with increasing priority. Prioritized goals only refer to fi-
nal states. Finally, less related is the work by Brafman and
Chernyavsky[2005], who proposed a CSP approach to plan-
ning with final-state qualitative preferences specified using
TCP-nets.

References
[Bacchus and Kabanza, 1998] F. Bacchus and F. Kabanza. Plan-

ning for temporally extended goals.Annals of Mathematics and
Artificial Intelligence, 22(1-2):5–27, 1998.

[Baier and McIlraith, 2006] J. A. Baier and S. A. McIlraith. Plan-
ning with first-order temporally extended goals using heuristic
search. InProc. of the 21st National Conference on Artificial
Intelligence (AAAI-06), pp. 788–795, 2006.

[Baieret al., 2007] J. Baier, F. Bacchus, and S. McIlraith. A heuris-
tic search approach to planning with temporally extended prefer-
ences. InProc. of the 20th Int’l Joint Conference on Artificial
Intelligence (IJCAI-07), 2007. To appear.

[Bentonet al., 2006] J. Benton, S. Kambhampati, and M. B. Do.
YochanPS: PDDL3 simple preferences and partial satisfaction

planning. In5th International Planning Competition Booklet
(IPC-2006), pp. 54–57, 2006.

[Bienvenuet al., 2006] M. Bienvenu, C. Fritz, and S. McIlraith.
Planning with qualitative temporal preferences. InProc. of the
10th Int’l Conference on Knowledge Representation and Reason-
ing (KR-06), pp. 134–144, 2006.

[Bonet and Geffner, 2001] B. Bonet and H. Geffner. Planning as
heuristic search.Artificial Intelligence, 129(1-2):5–33, 2001.

[Brafman and Chernyavsky, 2005] R. Brafman and
Y. Chernyavsky. Planning with goal preferences and con-
straints. InProc. of the 15th Int’l Conference on Automated
Planning and Scheduling (ICAPS-05), pp. 182–191, 2005.

[Delgrandeet al., 2004] J. P. Delgrande, T. Schaub, and H. Tom-
pits. Domain-specific preferences for causal reasoning and plan-
ning. In Proc. of the 14th Int’l Conference on Automated Plan-
ning and Scheduling (ICAPS-04), pp. 63–72, 2004.

[Edelkampet al., 2006] S. Edelkamp, S. Jabbar, and M. Naizih.
Large-scale optimal PDDL3 planning with MIPS-XXL. In5th
International Planning Competition Booklet (IPC-2006), pp. 28–
30, 2006.

[Edelkamp, 2006] S. Edelkamp. Optimal symbolic PDDL3 plan-
ning with MIPS-BDD. In5th International Planning Competi-
tion Booklet (IPC-2006), pp. 31–33, 2006.

[Feldmannet al., 2006] R. Feldmann, G. Brewka, and S. Wenzel.
Planning with prioritized goals. InProc. of the 10th Int’l Confer-
ence on Knowledge Representation and Reasoning (KR-06), pp.
503–514, 2006.

[Gerevini and Long, 2005] A. Gerevini and D. Long. Plan con-
straints and preferences for PDDL3. Tech. Rep. 2005-08-07, De-
partment of Electronics for Automation, University of Brescia,
Brescia, Italy, 2005.

[Helmert, 2006] M. Helmert. The Fast Downward planning system.
Journal of Artificial Intelligence Research, 26:191–246, 2006.

[Hoffmann and Nebel, 2001] J. Hoffmann and B. Nebel. The FF
planning system: Fast plan generation through heuristic search.
Journal of Artificial Intelligence Research, 14:253–302, 2001.

[Hoffmann, 2003] J. Hoffmann. The Metric-FF planning system:
Translating “ignoring delete lists” to numeric state variables.
Journal of Artificial Intelligence Research, 20:291–341, 2003.

[Hsuet al., 2007] C.-W. Hsu, B. Wah, R. Huang, and Y. Chen. Con-
straint partitioning for solving planning problems with trajectory
constraints and goal preferences. InProc. of the 20th Int’l Joint
Conference on Artificial Intelligence (IJCAI-07), 2007. To ap-
pear.

[Pednault, 1989] E. P. D. Pednault. ADL: Exploring the middle
ground between STRIPS and the situation calculus. InProc. of
the 1st Int’l Conference of Knowledge Representation and Rea-
soning (KR-89), pp. 324–332, 1989.

[Reiter, 2001] R. Reiter. Knowledge in Action: Logical Founda-
tions for Specifying and Implementing Dynamical Systems. MIT
Press, Cambridge, MA, 2001.

[Son and Pontelli, 2004] T. C. Son and E. Pontelli. Planning with
preferences using logic programming. InProc. of the 7th Int’l
Conference on Logic Programming and Nonmonotonic Reason-
ing (LPNMR-04), number 2923 in LNCS, pp. 247–260. Springer,
2004.

