Integrating Actions and State Constraints: A
Closed-Form Solution to the Ramification
Problem (Sometimes)*

Sheila, A. Mcllraith!

Knowledge Systems Laboratory, Department of Computer Science,
Stanford University, Stanford, CA 94305-9020

Abstract

Integrating actions and state constraints is a central problem in knowledge rep-
resentation. State constraints are commonly used to represent the relationship be-
tween objects in the world. When a representation of action is integrated, state
constraints implicitly define indirect effects of actions and impose further precon-
ditions on the performance of actions. Thus, a semantically correct integration of
actions and state constraints must address the ramification and qualification prob-
lems, as well as the frame problem. In this paper we achieve such an integration for
a syntactically restricted class of situation calculus theories.

This paper presents two major technical contributions. The first contribution is
an axiomatic closed-form solution to the frame, ramification and qualification prob-
lems for a common class of theories. The solution is presented in the form of an
automatable procedure that compiles a syntactically restricted set of situation cal-
culus ramification constraints and effect axioms into a set of successor state axioms.
The second major contribution of this paper is an independent semantic justification
for this closed-form solution. In particular, we present a semantic specification for a
solution to the frame and ramification problems in terms of a prioritized minimiza-
tion policy, and show that the successor state axioms of our closed-form solution
adhere to this specification. Observing that our minimization policy is simply an
instance of prioritized circumscription, we exploit results of Lifschitz on computing
circumscription [13] to show that computing the prioritized circumscription yields
our successor state axioms. In the special case where there are no ramification con-
straints, computing the circumscription yields Reiter’s earlier successor state axiom
solution to the frame problem [33].

Key words: Ramification problem; Frame problem; Qualification problem;
Reasoning about action; State constraints; Planning; Model-based reasoning
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1 Introduction

This paper presents an axiomatic closed-form solution to the frame, ram-
ification and qualification problems for a commonly occurring class of state
constraints. The results in this paper are motivated by and contribute towards
addressing the following general problem.

Given a set of state constraints describing some aspect of the world which
we henceforth refer to as the system, how do we integrate a representation
of action, so that we can reason about the effects of an agent’s? actions on
the system, and the effect of the system on the agent’s ability to perform
those actions.

This general problem arises in the context of many applications of artificial
intelligence (AI). For example, in the case of diagnostic problem solving, we
might have a set of state constraints representing the behaviour of some device,
such as a power plant or a motor vehicle. We might then wish to integrate a
representation of action in order to perform such tasks as monitoring, system
maintenance, intrusive testing, repair, contingency planning or supervisory
control. In an e-commerce application, we might have a set of state constraints
representing the ontology of companies’ products, their compatibility, their
component parts, the suppliers of those parts, and the current inventory. We
might wish to integrate a representation of the actions of various agent pro-
grams that interact automatically with the system to, for example, configure a
system from component parts, or to buy or sell products. Finally, in an active
vision application, the state constraints might represent the properties of and
relationships between objects that could occur in a scene, and we might wish
to integrate a representation of actions in order to contemplate the effects of
moving the camera or acting upon objects in the scene in support of image
understanding.

Integrating actions and state constraints presents several knowledge represen-
tation challenges. In the context of a representation of action, state constraints
play two roles. On the one hand, they capture the relationship between ob-
jects in the world, and hence the consistent states of a system. In this role,
state constraints have traditionally been used to reason about system state; for
example, in the case of diagnostic problem solving, to conjecture diagnoses.
When integrated with a representation of action, state constraints play an
additional role. They serve as ramification constraints and qualification con-

* A subset of the material presented in this paper appeared in Representing Actions
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straints, implicitly defining indirect effects of actions, and further constraining
when actions can be performed, respectively. Consequently, in addressing the
general problem of integrating actions and state constraints, we must preserve
the original role of our state constraints while providing a solution to the
frame, ramification and qualification problems.

The frame, ramification and qualification problems are three classical prob-
lems that arise in reasoning about action using formal logic [7]. Put simply,
the frame problem, first posed by McCarthy and Hayes [23], is the problem
of characterizing what does not change when an action is performed. The
ramification problem, so named by Finger [6], is the problem of characteriz-
ing the indirect effects of actions; a problem that can arise when a theory of
action is integrated with a set of state constraints. Finally, the qualification
problem, also attributed to McCarthy [21], is the problem of characterizing
the preconditions for actions; a problem that is aggravated by the existence
of state constraints. Shanahan outlined three criteria for evaluating proposed
solutions to the frame problem [40]. These criteria apply equally well to the
ramification and qualification problems. Most fundamental is the criterion
of representational parsimony, which requires that the representation of the
solution be compact. Second, is the criterion of expressive flexibility, which
requires that the solution be sufficiently robust to deal with complex domain
features, e.g., non-determinism or concurrency. Finally the solution should be
elaboration tolerant [22], that is, intuitively, the representation should be easily
amenable to the addition of new information. A number of researchers have
examined the frame, ramification and qualification problems over the years,
(e.g., [7,5,40,39,34,15,42], to name but a few); however a general solution has
proven elusive.

In this paper, we address the general problem of integrating a representation
of action with an existing set of state constraints by exploiting the language
of the situation calculus and integrating a situation calculus representation
of action with a set of first-order logic state constraints. This paper presents
two major technical contributions to this end. First, for an arguably common
class of state constraints, we provide an axiomatic closed-form solution to
the frame and ramification problems. Our closed-form solution is captured
by a parsimonious set of first-order logic axioms, that compose part of the
domain axiomatization. We contrast this to solutions requiring nonmonotonic
reasoning or a non-classical consequence relation. A closed-form solution such
as ours is appealing for time-critical applications, as well as for tasks such
as diagnosis, where solving the frame and ramification problems is not an
end in itself. Our solution is presented via an automatable procedure that
compiles a set of situation calculus ramification constraints and effect axioms
into a set of successor state axioms. A shortcoming in the justification of our
closed-form solution is that it relies on an informal appeal to a completeness
assumption and a causal interpretation of the material implication connective.



To overcome these shortcoming, the second major contribution of this paper
is to provide independent semantic justification for our solution.

The paper is organized as follows. In Section 2 we overview the specific sit-
uation calculus language we employ. In Section 3 we describe our starting
point, a domain axiomatization that includes both state constraints and a sit-
uation calculus representation of action, but that does not address the frame,
ramification or qualification problems. This is illustrated with respect to a sim-
plified power plant feedwater system, which we refer to throughout the paper.
In Section 4 we examine the ramification problem in more detail, showing that
a previous solution to the frame and ramification problems in our language
is not sufficiently discriminating to capture the intended interpretation of our
domain axiomatization, and outlining our intuitions for a solution. In Sec-
tion 4.2 we describe our proposal for a closed-form solution to the frame and
ramification problems for a class of syntactically restricted state constraints,
which we contend occur commonly in applications of AI. The solution com-
prises a simple syntactic manipulation which compiles ramification constraints
and effect axioms into a set of successor state axioms, under a completeness
assumption and a causal interpretation of the material implication connective.
These successor state axioms capture the intended interpretation of our the-
ory. To complete the solution to our problem, Section 5 outlines a solution to
the qualification problem which appeals to existing results [16], compiling our
qualification constraints, necessary conditions for action and successor state
axioms into action precondition axioms. Section 6 discusses some advantages
and disadvantages of our approach.

In Section 7 we provide important independent semantic justification for the
solution to the frame and ramification problems, presented in the first half of
the paper. We first define a prioritized minimization policy following the in-
tuition exploited by our closed-form solution. Appealing to this minimization
policy we provide semantic specification for a solution to the frame and rami-
fication problems. Further we show that under a consistency assumption, our
successor state axioms are indeed a solution with respect to this specification.
Observing that our minimization policy is simply an instance of prioritized
circumscription, we exploit results by Lifschitz on computing circumscription
[13] to show that computing the prioritized circumscription yields our suc-
cessor state axioms. Finally, we show that when there are no ramifications,
computing the circumscription results in the set of successor state axioms Re-
iter proposed as a solution to the frame problem [33]. This provides further
justification for his solution to the frame problem. The paper concludes with
a discussion of related work and a summary of our contributions.



2 The Situation Calculus

The situation calculus was first proposed by John McCarthy in the early 1960’s
as a logical representation scheme for reasoning about action and change [20].
The situation calculus language we employ to represent our domains is a sorted
first-order language with equality. The language consists of sorts actions, situ-
ations, and domain. Each action is represented as a (parameterized) first-class
object within the language. The evolution of the world can be viewed as a tree
rooted at the distinguished initial situation S;. The branches of the tree are
determined by the possible future situations that could arise from the realiza-
tion of particular sequences of actions. As such, each situation along the tree
is simply a history of the sequence of actions performed to reach it. The func-
tion symbol do maps an action term and a situation term into a new situation
term. For example, do(Turn_on(Pump), Sp) is the situation resulting from per-
forming the action of turning on the pump in situation Sy. The distinguished
predicate Poss(a, s) denotes that an action a is possible to perform in situation
s (e.g., Poss(Turn_on(Pump), Sy)). As such, Poss determines the subset of the
situation tree consisting of situations that are possible in the world. Finally,
those properties or relations whose truth value can change from situation to
situation are referred to as fluents. For example, the property that the pump
is on in situation s could be represented by the fluent On(Pump, s).

In addition to the first-order language we use to axiomatize our domain, the
situation calculus also includes a set of foundational axioms, X t.une Which
establish properties of our situations and situation tree [16], and more recently
[32]. Included in these axioms is definition of the binary relation < which
provides a partial ordering over situations in the subset of the situation tree
that is Poss-ible. Finally, note that the situation calculus language we employ
in this paper is restricted to primitive, determinate actions. Our language does
not include a representation of time, concurrency or complex actions, but we
are currently extending our results to more expressive dialects of the situation
calculus (e.g., [35]).

Throughout this paper, we adopt the following notational convention. All for-
mulae are universally quantified with maximum scope, unless stated otherwise.
Variables begin with lower-case letters and constants begin with upper-case
letters.

3 Domain Axiomatization: An Example

Once again, the problem we address in this paper assumes the existence of a
set of system state constraints and our task is to integrate a representation
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of action, solving the frame, ramification and qualification problems. In this
paper, we forgo preliminary discussion on transforming our original system
state constraints into situation calculus state constraints (See [26] for such a
discussion.) and assume that our axiomatizer has given us a situation calculus
domain axiomatization comprising the following sets of axioms:

Tsc UTer UTpece UTyna UTs,, (1)
where

e Tsc is a set of state constraints, comprised of Trom, Touar, and Tgomain:

- Tram 18 a set of ramification constraints,

+ Touat 15 a set of qualification constraints,

- Tyomain 1S a set of other domain constraints,

T,y is a set of effect axioms,

Thee is a set of axioms describing the necessary conditions for actions,
Tyna is a set of unique names axioms for actions, and

Ts, is a set of axioms describing what is known of the initial situation, Sp.

We describe these sets of axioms in further detail below. This axiomatization,
while combining state constraints and a representation of action, does not
solve the frame, ramification and qualification problems, and herein lies the
problem we address in this paper.

We illustrate the form of these axioms, and many of the concepts in this
paper with a simplified power plant feedwater system, depicted in Figure 1.
This example was extracted from a real-world diagnosis problem [1]. The sys-
tem consists of three potentially malfunctioning components: a power supply



(Power); a pump (Pump); and a boiler (Boiler). The power supply provides
power to both the pump and the boiler. The pump fills the header with wa-
ter, (Wtr_entering_hdr), which in turn provides water to the boiler, produc-
ing steam. Alternately, the header can be filled manually (Mnl_filling). To
make the example more interesting, we assume that once water is entering the
header, a siphon is created and water will only stop entering the header when
the siphon is disrupted. The system also contains lights and an alarm which
is triggered under certain conditions. The predicate Ok is used throughout
this example to designate that the component is operating normally. This is
an artifact of the diagnostic problem solving task from which this example
was drawn and has no bearing on our solution to the frame and ramification
problems. The axiomatization of the power plant feedwater systems presented
in this paper was designed to be the simplest representation that would suffice
to illustrate important concepts. In order to reduce the number of literals and
fluents in our axiomatization, we have elected to violate the no-function-in-
structure principle often followed by the model-based reasoning community
(e.g., [3]). Nevertheless, nothing in our proposed representation scheme pre-
cludes us from following this principle. For a more extensive axiomatization,
see [26].

In order to describe the syntactic form of these axioms, we need the following
definition of a simple formula, following [16].

Definition 1 (Simple Formula) A simple formula with respect to s is one
in which only domain-specific predicate symbols are mentioned (i.e., they do
not mention Poss or <), in which fluents do not include the function symbol
do, in which there is no quantification over sort situations, and in which there
s at most one free situations variable.

e T5c is a set of situation calculus state constraints. These incorporate the
existing system state constraints, indexed where appropriate with a situation
term, s. Ts¢ is in turn comprised of sets of ramification constraints 7}.4,, qual-
ification constraints Tg,, and domain constraints Tyomaein- The differentiation
of these constraints into different subsets reflects the role that they play in
the context of a theory of actions.

® T..m, the set of ramification constraints constrains the indirect effects of
actions. For each fluent F' in our language, we may have both positive and
negative ramification constraints of the following syntactic form.

v (Z,8) D F(T,s) (2)
vp(Z,s) D ~F(Z,s), (3)
+

where v (Z, s) and v (%, s) are simple formulae whose variables are among
Z,a, s. These ramification constraints are intended to be interpreted as causal
if-then rules. Le., if v} (%, s) is true, then it causes F(Z,s) to be true, and



similarly, if vy (%, s) is true, then it causes —F(Z, s) to be true. Hence, we say
that these ramification constraints causally influence fluent F'. This directional
or causal interpretation of the material implication connective is stronger than
the classical interpretation of D. In the sections to follow, we shall see how
to enforce this intended interpretation. The set of ramification constraints for
our feedwater example is as follows.

Ok(Power, s) A Ok(Pump, s) A On(Pump, s) D Wir_entering_hdr(s) (4)
Mnl_filling(s) D Witr_entering_hdr(s) (5)

Wir_entering_hdr(s) A Ok(Power,s) A Ok(Boiler, s)
AOn(Boiler, s) D Steam(s) (6)

- (Wtr_entering_hdr(s) A Ok(Power,s) A Ok(Boiler, s)
A On(Boiler, s)) D ~Steam(s) (7)

Axiom (4) states that if the power and pump are operating normally and if
the pump is on, then it causes water to be entering the header. If the pump
were off and we performed an action to turn it on, this axiom is intended to
dictate that the indirect effect of turning on the pump is that water will be
entering the header.

® Tiua, the set of qualification constraints further constrains when actions
are possible to perform. The set of qualification constraints for our feedwater
example is as follows.

=(On(Pump, s) N Mnl_filling(s)). (8)

This axiom states that it is impossible for the pump to be on and the header
to be manually filling in the same situation. Thus, if the system were manually
filling and we wanted to turn on the pump, this axiom would preclude us from
doing so, because the resulting situation would violate this state constraint.

® Tyomain, the set of domain constraints play no additional role in the context
of a theory of action. They simply serve to constrain the state of the system.
The set of domain constraints for our feedwater example is as follows.

Power # Pump # Boiler. 9)

This completes the axiomatization of our state constraints. Actions are ax-
iomatized as a set of effect axioms Ty, necessary conditions for actions 7.,
and unique names axioms for actions Ty 4, following the notation originally
introduced in [34].

e 1., the set of effect axioms describes the changes in the truth values of
fluents as a direct result of performing actions. For each fluent F' in our lan-
guage, we may have both positive and negative effect axioms of the following



syntactic form.

Poss(a, s) Avf (Z,a,8) D F(F,do(a,s)) (10)
Poss(a,s) Nvg(Z,a,s) D ~F(&,do(a, s)), (11)

where 7% (%, a,s) and vz (%, a, s) are simple formulae whose variables are
among T, a,s. As with the ramification constraints, we say that these effect
axioms causally influence fluent F'.

The following axioms compose T, for our feedwater example.

Poss(a, s) Na = Turn_on(z) D On(z,do(a, s)) (12)

Poss(a,s) Na = Turn_of f(z) D =On(z,do(a, s)) (13)

Poss(a, s) A a = Start-mnl_fill O Mnl_filling(do(a, s)) (14)
Poss(a,s) A a = Stop-mnl_fill D =Mnl_filling(do(a, s)) (15)
Poss(a,s) A a = Disrupt_siphon D —-Wtr_entering_hdr(do(a, s)) (16)
Poss(a, s) A a = Blow(z) D -Ok(z,do(a, s)) (17)

Poss(a, s) A a = Burn_out(z) D —Ok(z,do(a, s)) (18)

Poss(a, s) A a = Fail(z) D ~0k(z,do(a, s)) (19)

Poss(a,s) ANa = Fiz(z) D Ok(z,do(a, s)) (20)

Poss(a,s) A a = Auz_pwr D Ok(Power,do(a, s)) (21)

Axiom (12) states that if action a is possible in situation s, and a is the
Turn_on(z) action, then z will be On in the situation resulting from performing
action a in situation s.

e T, is the set of axioms representing the necessary conditions for individ-
ual actions to be performed. For each action prototype A in our language,
necessary conditions are of the following form.

Poss(A(Z),s) D wy, (22)

where 7% is a simple formula with respect to s, whose free variables are
among 7, s.

The following axioms compose T},.. for our feedwater example.

Poss(Turn_on(x),s) D x = Pump V x = Boiler (23)
Poss(Turn_on(z),s) D ~On(z, s) (24)
Poss(Turn_of f(z),s) D x = Pump V z = Boiler (25)
Poss(Turn_of f(x),s) D On(z, s) (26)
Poss(Start-mnl_fill, s) (27)

Poss(Stop-mnl_fill, s) (28)

Poss(Disrupt_siphon, s) D ~Mmnl_filling(s) (29)
Poss(Disrupt_siphon, s) D ~On(Pump, s) (30)



Poss(Blow(z),s) D = Boiler (31)

Poss(Blow(z),s) D On(z, s) (32)

Poss(Blow(Boiler), s) D =Wtr_entering_hdr(s) (33)
Poss(Burn_out(z),s) D x = Pump (34)
Poss(Burn_out(z),s) D On(z, s) (35)

Poss(Fail(z),s) D x = Power (36)

Poss(Fail(z),s) D Ok(z, s) (37)

Poss(Fiz(x),s) D =On(z, s) (38)

Poss(Fiz(x),s) D x = Power V & = Pump V x = Boiler (39)
Poss(Auz_power, s) (40)

Axioms (29) and (30) state that if it is possible to disrupt the siphon, then

the header must not be manual filling and the pump must not be on. Note
that many of the actions have no necessary conditions and thus are always
possible to perform.

e Ty 4 is the set of unique names axioms for actions. They are of the form of
(41) and (42). For different action prototypes A and A':

A@1, - @n) A W15 - Ym) (41)
A(ml,---axn) :A(yla---,yn) D221 =Y1N...NZp=1Yn (42)

Axiom (41) states that every action name refers to a distinct action. Axiom
(42) states that identical actions have identical arguments.

The following axioms compose Ty 4 for our feedwater example.

Turn_on(z1) # Turn_of f(z2) # Start_mnl_fill # Stop-mnl_fill
# Disrupt_siphon # Blow(z3) # Burn_out(z4)
# Fail(zs) # Fiz(ze) # Auz_power (43)

Turn_on(z) = Turn_on(y) Dx =y (44)
Turn_of f(z) = Turn-of f(y) Dz = (45)
Burn_out(z) = Burn_out(y) Dz = (46)
Blow(z) = Blow(y) D x = (47)

Fail(x) = Fail(y) Dx = (48)

Fiz(z) = Fiz(y) Dx =y (49)

This completes the axiomatization of actions.
e T, is the initial database. It captures what is known of the initial state of

the world. Ts, need not be complete, and usually isn’t. The following axioms
might compose T, for our feedwater example.

10



Ok(Power, So) A Ok(Pump, Sy) A Ok(Boiler, So) A =~On(Boiler, Sy)
A =On(Pump, So) N =Wtr_entering_hdr(So) A =Mnl_filling(Sy) (50)

4 The Frame and Ramification Problems

In the previous section, we illustrated a domain axiomatization in the situation
calculus that combined state constraints and a representation of action. Once
again, this domain axiomatization comprises the set of axioms in (1). The
job of the axiomatizer is done, however we observe that these axioms do not
provide a solution to the frame, ramification and qualification problems. In
this section, we explain the problems presented by the existing axiomatization
and propose a solution to the frame and ramification problems for what we
argue to be a common class of state constraints. The qualification problem is
discussed in a subsequent section.

We adopt the view of Reiter and others (e.g., [33,39,28]) that successor state
axioms and action precondition axioms provide an effective solution to the
frame and ramification problems, and the qualification problem, respectively,
because they are axiomatic, monotonic and generally parsimonious. Indeed,
Lin and Reiter [16] provided a semantic definition of a solution to the frame
and ramification problems for our situation calculus language. The definition
was based on minimal model semantics and a correspondence was identified to
successor state axioms. Unfortunately, this solution has its limitations. Some-
times there is no minimal model. In other cases, there are multiple minimal
models, some of which do not reflect the intended interpretation of the ramifi-
cation constraints and effect axioms. Most importantly, there is no guaranteed
procedure to produce a closed-form solution.

Our contribution in this section is to provide an automatic procedure for
generating a closed-form solution to the frame and ramification problems for
a common class of state constraints. This solution is distinguished because it
is closed-form and because it captures the intended interpretation of Tg- with
respect to the theory.

4.1 The Problem

We illustrate our problem with a subset of the feedwater system example.
Consider ramification constraint (4), i.e.,

OFk(Power, s) A Ok(Pump, s) A On(Pump, s) D Wir_entering_hdr(s).

11



Assume the effect axioms are as defined in the previous section and assume for
the sake of simplicity that Va, s.Poss(a, s), i.e., that all actions are possible in all
situations. Further assume that everything is off, and everything is operating
normally in the initial situation. In particular,

OFk(Power, Sy) A Ok(Pump, So) A =On(Pump, So) A =W tr_entering_hdr(Sp)

Now assume the action Turn_on(Pump) is performed in Sy, resulting in sit-
uation S; = do(Turn_on(Pump),Sp). From effect axiom (12), we infer that
On(Pump, S1). What does ramification constraint (4) tell us about the indi-
rect effects of this action? Recall that ramification constraint (4) is logically
equivalent to the following axiom.

=Ok(Power, s) V =Ok(Pump, s) V =On(Pump, s) V Wtr_entering_hdr(s) (51)

which holds for situation Sy, but does not hold in situation S;, if we per-

sist the truth status of all fluents, expect —On(Pump, Sy), which becomes
On(Pump, S1). We must restore the satisfiability by changing the truth value
of other fluents.

The intuition behind solutions to the frame problem is often to maximize
the persistence of the truth values of fluents between situations. I.e., don’t
change the truth value of a fluent unless you are forced to do so to maintain
satisfiability. Lin and Reiter’s minimization policy [16] is no different. If we
maximize the persistence of fluents while maintaining the satisfiability of (51),
we produce three minimal models. The relevant portions of the models are as
follows.

Ok(Power,S1) Ok(Pump,S1) On(Pump,S1) Wtr-entering-hdr(S1) (52)
-0Ok(Power,S1) Ok(Pump,S1) On(Pump,S1) —Wtr-entering-hdr(S1) (53)
Ok(Power,S1) —Ok(Pump,S1) On(Pump,S1) -Wtr-entering-hdr(S1) (54)

Clearly, the intended model is (52). We intend that turning on the pump
results in water entering the header. It does not result in a power supply
that is not Ok, nor in a pump that is not Ok. We intuitively know this to
be the intended model because we have a basic understanding of machin-
ery. More importantly, the axiomatizer has communicated the intended in-
terpretation through the syntactic form of the ramification constraints. As
explained above, we intend for positive and negative ramification constraints
of the form of (2) and (3) to be interpreted as if v/~ (%,s) is true then it
causes [-|F(Z, s), respectively to be true. This directional interpretation of the
material implication connective, combined with the notion of maximizing per-
sistence eliminates models (53) and (54), while designating (52), as the unique
minimal model. Unfortunately, such an interpretation of the material implica-
tion connective, D is stronger than the classical interpretation. In solving the
ramification problem we must enforce this intended interpretation, eliminating
unintended models.

12



It is interesting to note that the situation calculus ontology and in particular
the foundational axioms of the situation calculus already enforce such an in-
terpretation of the implication connective within the situation calculus effect
axioms. Le., given a positive or negative effect axiom of the form of (10) or
(11), if Poss(a,s) A ﬁjr/_](j', s) is true, then [-]F(%,do(a,s)) is caused to be
true. Since the situation tree cannot evolve from do(a, s) to s (as defined by
the foundational axioms) there are no other interpretations.

The idea of imposing a stronger, directional interpretation on the material
implication connective is not unique to this paper. The logic programming
community has done this for some time. In logic programming terminology
[12], a literal is defined in a rule or set of rules if it appears in the head
of a rule or set of rules. Hence, in logic programming terminology, ramifica-
tion constraints (4) and (5) and effect axiom (16) serve to define the fluent
[-]Wtr_entering_hdr. Logic programs realize this directional interpretation by
proceduralizing a type of minimization which causes literals contained in the
body of a rule to be minimized at a higher priority than those that appear in
the head. Some of the literature on reasoning about action (e.g., [19,15,42]) also
captures the intuition of exploiting directional influence by providing axiom-
atizations of state constraints with an explicit non-classical causal connective
or a distinguished C'auses predicate. We will discuss the relationship of this
work to ours, at the end of this paper.

In the section to follow, we show how to transform our situation calculus
domain axiomatization (1), into another situation calculus domain axiomati-
zation that captures all and only its intended interpretation.

4.2 The Solution

In this section we provide a transformation procedure that leads us to a
closed-form solution to the frame and ramification problems for axiomati-
zations whose syntactic representation of ramification constraints and effect
axioms collectively form what we refer to as a solitary stratified theory.

4.2.1 Preliminaries

Intuitively, a set of effect axioms and ramification constraints forms a solitary
stratified theory if the directed graph representing the causal influence between
fluents is acyclic. Figure 2 illustrates the causal influence graph for our feed-
water example. A solitary stratified theory separates fluents into a partition
L= (L1,Ls,...,L,), and decomposes the axioms, T into strata (11, T5,...,T),
such that the axioms that causally influence a fluent F; € L; are place in
stratum 7;. Further, the fluents that participate in causally influencing Fj,
i.e., the fluents in the antecedents of the ramification constraints and effect
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On(Bailer,s)

Ok(Bailer,s)

O
Ok(Power,s) Steam(s)

O
Ok(Pump,s)
O Witr_entering_hdr(s)
On(Pump,s)

O
Mnl_filling(s)

Fig. 2. Causal Influence in Feedwater Example

axioms for F;, are all drawn from L£;, 7 < 4. The stratification of a solitary
stratified theory is not unique and its determination is easily automated.

The notion of a “solitary stratified theory” is derivative of both solitary theo-
ries [13] and stratified logic programs (e.g., [12]). For those familiar with strat-
ified logic programs, a solitary stratified theory is a stratified logic program
that allows negation in the head of rules. It further differs from a stratified
logic program in that the criterion that defines a stratum applies a strictly <
relation, rather than <. The intuitive description above should be sufficient
for the reader to understand the closed-form solution presented in this sec-
tion. Nevertheless, we provide the following more formal definition of a solitary
stratified theory. The terminology and notation is derivative of definitions in
[13] in order to facilitate our semantic justification in Section 7.

Definition 2 (Solitary Stratified Theory) Suppose T is a theory in the
language of the situation calculus with domain fluents, L. T is a solitary strat-
ified theory with stratification (T1,Ts,...,Ty), and partition (L1,La,...,Ly),
where L1ULoU...ULy, =L, if T is the union

TTUTyU... T,

of sets of axioms T; where for each stratum, T; is solitary with respect to L;;
that s, each T; can be written as the union

(Di < =Ly) U (& < Ly),
where
(1) L; is the set of fluents, F; such that F; is only causally influenced by

azioms in Tj;
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(2) D; < ~L;, is an abbreviation for a set of formulae of the form
(DZ 2 _'F'i)a

one for each fluent F; € L;, where each D; is a formula containing no
fluents drawn from L£;U...U Ly,
(8) & < L;, is an abbreviation for a set of formulae of the form
(E; D Fy),

one for each fluent F; € L;, where each E; is a formula containing no
fluents drawn from L;U...UL,.

Example 1 In our feedwater example, T = Tyom U Ty is a solitary stratified
theory with partition (L1, L, L3) and stratification (T1, T, T3), where

o L1 = {On(Pump,s),On(Boiler, s), Ok(Pump, s), Ok(Boiler, s), Ok(Power, s),
Mnl_filling(s)}.
Ty comprises all the effect azioms except (16), i.e.,
D1 < =Ly comprises the conjunction of the negative effect arioms, i.e.,
(13), (15), (17), (18) and (19), and
& < Ly comprises the conjunction of the positive effect axioms, i.e., (12),
(14), (20) and (21).
o Ly = {Wir_entering_hdr(s)}.
Ty, comprises Ramification Constraints (4) and (5) and Effect Aziom (16).
o L3 = {Steam(s)}.
Ts comprises Ramification Constraints (6) and (7).

With our definition of solitary stratified theory in hand, we are now prepared
to present a solution to the frame and ramification problems.

4.2.2 A Closed-Form Solution

In what follows, we present a syntactic manipulation procedure that results
in a closed-form solution to the frame and ramification problems for solitary
stratified theory T' = Ty U T}.qmm. The procedure takes effect axioms, ramifica-
tion constraints and the (causal) partition of their fluents as input, and under
a completeness assumption, transforms them into a set of successor state ax-
ioms. The ideas presented in this section draw some intuition from Reiter’s
solution to the frame problem without state constraints [33]. Our solution is
predicated on our notion of causal influence and on an appeal to a complete-
ness assumption that enables us to generate explanation closure axioms (e.g.,
28], [39]).
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Transformation Procedure

Let T' = Tyom U Tes be asolitary stratified theory, with partition (L4, Lo, ..., L)
and stratification (71,7T5,...,T,). Let T,y be comprised of positive and neg-
ative effect axioms of the form of (10) and (11). Let 7,4, be comprised of
positive and negative ramification constraints of the form of (2) and (3). Note
that henceforth, action and predicate arguments, ¥ will not be explicitly rep-
resented in canonical formulae.

Step 1. From the effect axioms, Tey and the ramification constraints, Trqm,
generate positive and negative general causal influence axioms, of the following
form.

General Causal Influence Axioms
For every fluent F; € L;,

[Poss(a,s) A ] (7?,21 (a,s)V U}'i (do(a, s))) D Fi(do(a,s)) (55)
[Poss(a,s) A ] (vg,(a;8) Vg, (do(a, 5))) D ~Fi(do(a, s)) (56)

where [Poss(a,s) A ] indicates that Poss(a,s) may or may not occur.

Example 2 Positive and negative general causal influence axioms for the flu-
ent On(z,s) € L1 are

Poss(a,s) A a = Turn_on(z) D On(z,do(a,s)) (57)
Poss(a,s) ANa =Turn_of f(z) D =On(z,do(a, s)). (58)

Positive and negative general causal influence axioms for Wir_entering_hdr(s) €
Lo are

(Ok(Power,do(a, s)) A Ok(Pump,do(a,s)) A On(Pump,do(a, s)))
V Mnl_filling(do(a, s)) D Wtr_entering_hdr(do(a, s)) (59)
Poss(a, s) A a = Disrupt_siphon D ~Wtr_entering_hdr(do(a, s)). (60)

Step 2. Make the following causal completeness assumption.

Causal Completeness Assumption

All the conditions underwhich an action a can lead, directly or indirectly, to fluent
F' becoming true or false in the successor state are characterized in the positive
and negative general causal influence axioms for fluent F.
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Step 3. From the causal completeness assumption, generate explanation clo-
sure arioms.

We argue that if action a is possible in s and if the truth value of fluent F;
changes from true to false upon doing action a in situation s, then either
Vg (a, s) is true or vg (do(a, s)) is true. An analogous argument can be made
when the truth value of fluent F' changes from false to true upon doing ac-
tion a in situation s. This assumption is captured in the following positive and
negative explanation closure axioms.

Explanation Closure Axioms
For every fluent F; € L;,

Poss(a, s) A Fi(s) A ~F;(do(a, s)) D v, (a,s) V vg(do(a, s)) (61)
Poss(a, s) A —Fi(s) A Fi(do(a,s)) D 'y}; (a,s)V 'UE (do(a, s)). (62)

Step 4. From the positive and negative general causal influence axioms and
the explanation closure axioms, define intermediate successor state axioms for
each fluent F;.

The successor state axioms are distinguished as intermediate because in the
next step, we simplify them through a further syntactic transformation.

Intermediate Successor State Axioms
For every fluent F; € L;,

Poss(a, s) D [Fi(do(a,s)) = P%] (63)

where,
I =75, (a,8) Vg (do(a, s)) vV (F(s) A=(vg,(a,8) V v, (do(a, 5))))-

The set of intermediate successor state axioms is define as the set, Tiss =
Uiz1,...n T1ss;, where Tigg, is the set of intermediate successor state axioms for
fluents F; € L;.

The formulae (63) and (66) below may be understood as follows,

Poss(a, s) D [Fi(do(a,s)) =
an action made it true
V a ramification made it true
V F; was already true in s
A neither an action nor a ramification made it false].

Example 3 Intermediate successor state axioms for the fluent On(z,s) € L4
and for the fluent Wir_entering_hdr(s) € Lo are as follows.

Poss(a, s) D [On(z,do(a,s)) = a = Turn_on(x)
V (On(z,s) ANa # Turn_of f(z))] (64)
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Poss(a,s) D [Wir_entering_hdr(do(a, s)) = Mnl_filling(do(a, s))
V (Ok(Power,do(a, s)) A Ok(Pump,do(a,s)) A On(Pump,do(a, s)))
V Witr_entering_hdr(s) A a # Disrupt_siphon)] (65)

At this point we could consider ourselves done. Indeed, the intermediate suc-
cessor state axioms provide a solution to the frame and ramification prob-
lems. They capture only the intended interpretation of our effect axioms and
ramification constraints. In many instances, we may actually stop with this
representation, which is relatively compact. Note however that the interme-
diate successor state axioms can be further compiled. In particular, observe
the intermediate successor state axiom defining the conditions underwhich
F;(do(a, s)) will be true is itself defined in terms of other fluents relativized to
situation do(a, s). For example, the successor state axiom for Wir_entering_hdr
is defined in terms of Mnl_filling(do(a,s)), Ok(Power,do(a,s)), etc. Each of
these fluents is itself defined in other intermediate successor state axioms. In
the final step of our transformation procedure, we use regression rewriting to
rewrite these intermediate successor state axioms so that our final successor
state axioms are defined in terms of simple formulae, and hence contain no
reference to fluents relativized to do(a, s).

Definition 3 (Regression (e.g., [43,33])) Regression is a recursive rewrit-
ing procedure used here to reduce the nesting of the do function in situation
terms. If F is a fluent with (intermediate) successor state axiom Poss(a,s) D
F(%,do(a,s)) = ®p(Z,a,s) in Tss then the regression of F(ti,...,ty,,do(a,s)),
i.e., Rss[F(t1,-.-,tn,do(a,0))] = ®p {1 5mbs

t1yeenyln,,0 *

Regression generalizes over formulae as one would expect. See [26] for a de-
tailed description.

The challenge is that we want this rewriting to terminate in a set of simple for-
mulae. For example, regressing the following two intermediate successor state
axioms Poss(a,s) D [F(do(a,s)) = G(do(a,s))] and Poss(a,s) D [G(do(a,s)) =
F(do(a,s))] will never terminate. The merit of our solution is that for solitary
stratified theories, regression rewriting will terminate and it will lead to final
successor state axioms defined in terms of simple formulae. In Step 5, we de-
scribe the final form of our successor state axioms. In Theorem 1 we prove
that regression is guaranteed to terminate and to be defined in terms of simple
formulae.

Step 5. By regressing the intermediate successor state axioms, generate (fi-
nal) successor state arioms.
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Successor State Axioms
For every fluent F; € L;,

Poss(a, s) D [Fi(do(a,s)) = @r], (66)
where unlike @7, ®r, is a simple formula of the following form,

Qp = R?S_Sl [‘b;‘m]
= Riss 1, (a,8) V v}, (do(a, 9)) V (Fi(s) A (75, (a,5) V vp, (do(a, 5))))]
= 7f,(a, ) V Ry [vf; (do(a, 5))]

V (E(s) A=(1z(a,8) V Rig [v7; (do(a, 9))))).- (67)

Rid [#] is the repeated regression of formula ¢ under successor state axioms
TSS1: e ,Tssiil.

The set of successor state axioms is Tss = U;=1,.. » Tss;, where Tsg, is the set
of axioms for fluents F; € L;.

Example 4 (64) is both the intermediate and the final successor state axiom
for fluent On(Pump,s). The intermediate successor state axiom (65) trans-
forms into the following successor state axiom under regression.

Poss(a,s) D [Wir_entering_hdr(do(a, s)) =

a = Start_mnl_fill

vV (Mnl_filling(s) A a # Stop_mnl_fill)

V [(a # Fail(Power) A (Ok(Power, s) V a = Auz_power \V a = Fiz(Power)))
A (a # Burn_out(Pump) A (Ok(Pump, s) V a = Fiz(Pump)))
A (a = Turn_on(Pump) V (On(Pump, s) A a # Turn_of f(Pump)))]

V (Witr_entering_hdr(s) A a # Disrupt_siphon)]. (68)

Proposition 1 Suppose T = Ter U Tram @5 a solitary stratified theory with
intermediate successor state axioms Trss and (final) successor state azioms
Tss as defined above. Further suppose,

e R;ss|p] denotes the repeated regression of ¢ under Tigg,
e Riss,[¢] denotes the repeated regression of ¢ under Tgs,,
e Riss[d] denotes the repeated regression of ¢ under Tiss,,T1ss,,- - - 1158, -

Corresponding terminology holds for successor state azioms Tsg.

Then for every fluent F\ € Ly, the successor state axiom for F} is identical to
its intermediate successor state axioms, and is of the following general form.

Poss(a,s) D [Fi(do(a, s)) = 71—1“—1 (a,s) V (F1(s) A “Vr, (a,s))]

More generally, Tiss, = Tss, -
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Further, for any formula ¢, R'gg[d] = Ris|d], and for any fluent F;(Z, do(a, s)),

1ss[Fi(&,do(a, 5))] = Rs[F;(Z, do(a, 5))] = Rss; [Fi(Z, do(a, 5))]

Since T 1is a solitary stratified theory, if ®% mentions fluents relativized to
situation do(a, s), then those fluents are drawn from {Lq,...,L; 1}. Also ob-
serve that ®p, is a simple formula. Hence it follows that if Rss,_ ,[®r,] men-
tions fluents relativized to situation do(a, s), then those fluents are drawn from
{Ly,...,Li »}. More generally, it follows that R%g [®r,] is a simple formula.

Theorem 1 Suppose T = T,.p U T qm, 15 a solitary stratified theory with in-
termediate successor state axioms Trss and (final) successor state azioms Tsg
as described above. Then for any fluent F; € L, Riss'[F;(do(a, s)] is a simple
formula. More generally, for any successor state axiom of the form of (66),
Ris [®r] is a simple formula.

The successor state axioms and the intermediate successor state axioms pro-
vide alternate closed-form solutions to the frame and ramification problems.
In our axiomatization (1), we may replace T4y, and T, by 7559, the ramifica-
tion constraints relativized to situation Sy, and either Tss or T;ss (henceforth
denoted T[I]Ss), the intermediate or final successor state axioms. In Section
7 we also show that this closed-form solution is conditioned on a consistency
assumption that ensures that either an action is impossible to perform, or that
the action cannot directly or indirectly make a fluent both true and false in

the same situation.

5 The Qualification Problem

Our new domain axiomatization,

TUNA U T[I]SS u TSO u Triom U Tqual U Tdomain u Tnec (69)

now provides a solution to the frame and ramification problems. It remains

to address the qualification problem. As previously observed the qualification
constraints in 7Ty,,; can further restrict those situations s in which an action a
is Poss-ible. We propose to use Lin and Reiter’s solution [16], to determine a
set of action precondition axioms T)4p. It transforms the necessary conditions
for actions, Ty, and the qualification constraints, 7, into a set of action
precondition axioms 74p, under an assumption of domain closure on actions.
Following their results, we add one more step to our procedure.
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Step 6. Define one action precondition axiom for each action prototype A(T)
as follows.

Action Precondition Axioms

Poss(A(Z),s) =114 A /\ e, (70)
CeTyyal
where,
Ilg = Rgs[C(do(A(T), 5))] (71)

My =74 V... vah for each 7% of (22) in Tpe.. Rss is the repeated regres-
sion operator under the successor state axioms, Tsg. Recall that following
Proposition 1, this regression is equivalent to regression with the intermediate
successor state axioms.

Example 5 Consider the qualification constraint (8),
=(On(Pump, s) N Mnl_filling(s)),
effect axioms (12) and (14),

Poss(a,s) A a = Turn_on(z) D On(z,do(a,s)),
Poss(a,s) A a = Start-mnl_fill D Mnl_filling(do(a, s)),

and necessary conditions for actions,(23), (24) and (27),

Poss(Turn_on(z),s) D x = Pump V z = Boiler
Poss(Turn_on(z),s) D ~On(z, s)
Poss(Start-mnl_fill, s).

The qualification constraint dictates that it is not possible to perform the
action Turn_on(Pump) when the fluent Mnl_filling(s) holds, and similarly
that it is not possible to perform the action Start_mnl_fill when the fluent
On(Pump, s) holds.

The action precondition axioms for Start-mnl_fill and Turn_on(z) following
Step 6 of our procedure are:

Poss(Turn_on(z),s) = (x = Pump V x = Boiler)

A =On(z, s)
A (x = Pump D ~Man_filling(x)) (72)
Poss(Start_mnl_fill, s) = =On(Pump, s). (73)
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The action precondition axioms provide a closed-form solution to the qual-
ification problem under the assumption of domain closure on actions. Since
we have compiled T, and Tgyq into Typ, we can replace 15, and Ti,q by
Typ and T(ﬁfal in our theory, where T(ﬁfal is the set of qualification constraints

relativized to situation Sy;. We also add a domain closure axiom for actions,
Tpca-

6 Discussion of the Closed-Form Solution

Incorporating the results of the previous sections yields the following final
domain axiomatization which integrates our syntactically restricted state con-
straints and a representation of action, while solving the frame, ramification
and qualification problems:

TynaUTpca UTinss UTap UTs, UTES U Tiomain, (74)
where

Y tound 15 the set of foundational axioms for situations.

Tyna is a set of unique name axioms for actions.

Tpca is a domain closure axiom for actions.

Tsc is a set of state constraints. It is comprised of T}4m, Touar, a0d Taomain-

T, am 1s a set of ramification constraints.

Toual 1s a set of qualification constraints.

Taomain 18 @ set of domain constraints. These are the state constraints which

are neither qualification constraints, nor ramification constraints.

o Ty, is a set of axioms describing the initial state of the world. where 752 is
the set of state constraints, relativized to Sy.

e Tinjss is either a set of intermediate or final successor state axioms, derived
from T,; and T, under a causal completeness assumption.

e Typ is a set of action precondition axioms, derived from Te., Tyya and

Tinss under a causal completeness assumption.

Recall that in Section 1 we presented three criteria for evaluating solutions to
the frame, ramification and qualification problems, following Shanahan [40].
We claim that our closed-form solution to the frame and ramification problems
adheres to these criteria, as does Lin and Reiter’s solution to the qualification
problem, which we have adopted to complete our representation. We discuss
the criteria with respect to our solution to the frame and ramification prob-
lems.

On the subject of representational parsimony, it was previously shown that
successor state axioms provide a representationally parsimonious solution to
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the frame problem in the absence of the ramification problem [32]. In partic-
ular, the brute-force approach to addressing the frame problem, requires the
addition of 2 x F x A frame axioms (where F is the number of fluents in
the language and A is the number of actions in the language). In contrast, a
successor state axiom solution to the frame problem requires only F successor
state axioms. When we use successor state axioms to solve the ramification
problem as well, there will still only be F successor state axioms, however the
length of each successor state axioms will be increased.

The most compact solution to the frame and ramification problems is pro-
vided by the intermediate successor state axioms. In this case, the length of
each axiom is roughly proportional to the number of actions, and the number
of ramification constraints that directly affect the truth value of the fluent, i.e.,
the number of effect axioms and ramification constraints for a fluent. Under
the assumption that few actions and ramifications directly affect any indi-
vidual fluent, the intermediate successor state axioms remain short, and the
representation is compact. The intermediate successor state axioms also have
the virtue of preserving the structure and compositionality of the representa-
tion — something that is important for model-based reasoning applications as
well as for elaboration tolerance. In contrast, the (final) successor state ax-
ioms represent a compiled, and thus less compact, version of the intermediate
successor state axioms. In particular, we still have F successor state axioms,
but the length of each axiom will be proportional to the number of actions
and ramification constraints that indirectly, as well as directly, affect a fluent.
Arguably this is still quite small, however it will grow with the size of the
stratification, and has the potential to explode. So, on the basis of parsimony,
the intermediate successor state axioms are a superior representation. In prac-
tice, there may be instances where the advantages of the precompilation into
final successor state axioms, outweigh those of parsimony. Such a trade-off
between parsimony and the potential runtime computational advantages of
precompilation is an issue best addressed with respect to the specific domain
and application.

On the subject of the expressive flexibility criterion, we believe our succes-
sor state axiom solution will score well. While there is little in this paper
to demonstrate this point, solutions to the frame problem based on successor
state axioms have been extended to knowledge producing actions [38], to com-
plex actions [11], and to aspects of continuous domains [29,35]. Preliminary
investigation indicates that our solution to the ramification problem extends
to these problems in the same straightforward manner.

Finally, on the subject of elaboration tolerance, our successor state axiom
solution again scores well. As noted above, intermediate successor state ax-
ioms are more amenable to elaboration than final successor state axioms, but
elaboration is straightforward and automatable in both cases. If new actions,
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effect axioms or ramification constraints are added to the theory, they can be
incorporated by a simple rewrite of the successor state axioms for the affected
fluents, following the syntactic form provided in (63) or (66).

One potential criticism of our closed-form solution is that we are relying on
the syntactic form of our axiomatization. In particular, we are relying on the
fact that the axiomatizer has written the ramification constraints so that the
implication sign may be correctly interpreted as causal influence. This need
not be the case. Note that for any such axiomatization, we may instead be
given the causal relationship between fluents, i.e., the causal influence graph,
or a separate data structure describing the causal influence, and use this to
generate the stratification and hence the successor state axioms.

A second potential criticism is that our closed-form solution is predicated on
a loose appeal to a completeness assumption. We address this in the section
to follow by providing independent semantic justification for our closed-form
solution.

A third potential criticism of our closed-form solution is that it is restricted to
the class of solitary stratified theories. While we can make no definitive claims
about the frequency of occurrence of solitary stratified theories in general,
they appear to be common in the representations of engineering artifacts.
In these systems, the causal influence between fluents often reflects physical
connectivity of components and subcomponents.

To close our discussion, we’d like to make the important observation that
this representation can be viewed as an executable specification because it
is easily realized in Prolog by exploiting Prolog’s completion semantics and
simply replacing the equivalence signs, characteristic of Tjyss and Txp, by
implications [32]. The Lloyd-Topor transformation [18] must then be applied,
to convert the resultant theory into Prolog clausal form. Indeed, as an inter-
esting aside, in the sections to follow we show that our successor state axioms
are semantically characterized as the outcome of computing a particular pri-
oritized circumscription. Perfect models in logic programs have a prioritized
circumscription semantics [31], thus the logic program produced from trans-
lation of our successor state axioms also has a perfect model semantics. This
is discussed more thoroughly in [26].

7 Semantic Justification

In previous sections, we presented a closed-form solution to the frame and
ramification problems for syntactically restricted ramification constraints and
effect axioms that collectively form a solitary stratified theory. Our solution
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involved compiling effect axioms and ramification constraints into successor
state axioms. Unfortunately, the compilation procedure, and as a consequence,
our closed-form solution are predicated on a loose appeal to a completeness
assumption, and on a causal interpretation of the material implication connec-
tive. In the rest of this paper we provide an independent semantic justification
for our closed-form solution. In particular we show how to specify and com-
pute a solution to the frame and ramification problems using minimal model
semantics and circumscription. This represents the second major technical
contribution of this paper.

We achieve our semantic justification as follows. Exploiting the causal in-
fluence ordering among fluents that induces a solitary stratified theory, we
specify a nonmonotonic solution to the frame and ramification problems in
terms of a prioritized minimization policy. We show that under a consistency
assumption, our successor state axioms (66) are solutions to the frame and
ramification problems with respect to the specification. We also show that any
solution with respect to our specification is also a solution with respect to Lin
and Reiter’s specification [16]. In Section 7.2, we observe that our minimiza-
tion policy is equivalent to a particular instance of prioritized circumscription,
where the prioritization is equivalent to the causal influence ordering. Through
simple syntactic renaming and by exploiting results from Lifschitz on comput-
ing circumscription (e.g., [13]), we show that under a consistency assumption,
computing this prioritized circumscription results in the computation of our
successor state axioms. This result establishes the correctness of our closed-
form solution with respect to our nonmonotonic specification. Finally, we use
these results to show that, in the case where there are no ramification con-
straints, computing the circumscription results in the successor state axioms
defined by Reiter in his solution to the frame problem [33].

7.1 Minimization Policy

In this section we define a prioritized minimization policy and use it to specify
what counts as a solution to the frame and ramification problems for solitary
stratified theories. To solve the frame problem, we wish to capture the intuition
that things normally stay the same, and that when they do not, it is abnormal.
We express the notion of abnormality through the distinguished predicate
abg, (a, s), one for each fluent F; in our domain axiomatization. The predicate
abg, (a, s) is an abbreviation for —[F;(s) = F;(do(a, s))], i-e., it is ab-normal if
F; changes truth value from one situation to the next.

We wish to minimize abg, (a, s), and in so doing, capture the intuition that in

the absence of something abnormal, the truth value of a fluent persists after
an action is performed. In order to define our minimization policy, we must
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differentiate between an initial situation and the situation resulting from per-
forming an action, which we will refer to henceforth as the resulting situation.
Like the minimization policies advocated by Lin and Shoham [17] and Lin
and Reiter [16], our policy minimizes abg, (a, s) with Poss(a, s) and the truth
status of fluents in the initial situation, F;(%, s) remaining fixed. Fluents in
the resulting situation, F;(do(a, s)) are allowed to vary.

While we share basic minimization principles with previously advocated so-
lutions to the frame and ramification problems, our minimization policy is
distinguished because it places a priority ordering over the minimization of
the predicate abg,(a, s). The ordering is derived from the partitioning of flu-
ents in our domain axiomatization into £ = (Lq, Lo, ..., L,), according to
causal influence. Under this partition, fluents in £; are only causally influ-
enced by fluents in £, j < 4. This dictates the following priority ordering for
our minimization policy

Aby > Aby > ... > Ab,,

where Ab; is a tuple containing the abnormality predicate abg,(a, s) for each
fluent F; € L;. Abi(a, s) is assigned the highest priority for minimization, and
Ab,,(a, s) is assigned the lowest priority. Hence, the priority ordering corre-
sponds to our causal influence ordering. This causal influence ordering can
be articulated independently, or it can be communicated by an axiomatizer
through the strategic placement of material implication connectives in the ax-
ioms of our theory, T' = T, s UT, 4, as illustrated earlier in this paper. The use
of material implication to reflect causal influence results in a solitary stratified
theory, with a stratification corresponding to our priority ordering.

Under this prioritized minimization policy, each abp,(a, s) is minimized, even
at the expense of increasing the extent of predicates abg,,,(a,s), ..., abg, (a, s)
and the truth value of fluents in the resulting situation, Fy(do(a,s)), k =
1,...,n. As we will see, this prioritized minimization policy captures our in-
tended solution to the frame and ramification problems for solitary stratified
theories.

To get a better grasp of the intuition behind this minimization policy, we may
think of causal change as temporal change that we have abstracted away in
our knowledge representation scheme. Hence, the causal ordering dictated by
our causal influence graph, captured in the grouping of fluents in our soli-
tary stratified theory, and exploited in the prioritization of our minimization
policy, can be though of as an abstraction of a temporal ordering on the nec-
essary propagation of change. With this intuition in mind, we can think of
our minimization policy as minimizing causal change according to this im-
plicit temporal ordering, or explicit causal ordering. Since changes in fluents
in £, cause changes in fluents in L,,...,Ly, and changes in fluents in £; and
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Lo cause changes in fluents in Ls,...,L£,, and so on, we can minimize over-
all change by minimizing change following this causal ordering, and hence
minimize the propagation of change.

The definition of the minimization policy follows. At first glance, it may look
complex and daunting, rather than simple and intuitive. We elected to express
it this way to be mathematically precise, and to relate it to previous work on
the frame and ramification problems. As will be shown in the section to follow,
our nonmonotonic specification reduces to a simple prioritized circumscription,
minimizing causal change following our causal influence ordering.

Let s and a denote variables of sort situation and action respectively. Further,
let o5, 0, and o, denote assignment functions from free variables of sorts
situation, action and domain, respectively. For the purposes of this definition
only, we explicitly include action and predicate arguments S.

Definition 4 (Prioritized Model Preference) Suppose, T is a solitary strat-
ified theory with stratification (T1,...,T,), domain fluents L, and partition
(L1, Lo, ..., L), where L = U, L;. Suppose abg,(Z,a,s) is an abbreviation
for —[Fi(%,s) = F;(%, do(a, s))] and M and M’ are models of T .

Model M’ is preferred over model M with respect to variable assignment to
situations, o, (denoted by M' <,, M), iff the following conditions hold.

(1) M and M’ have the same universe of discourse.
(2) M and M’ agree on their interpretation of everything, including Poss,
with the potential exception of domain fluents.
(8) (a) M and M’ agree on the extensions of every fluent Fy(Z,s), in every
stratum T;, 1 =1,...,n.
Le., for any assignment o, and o4, and any fluent Fi(Z,s), i =
1,...,n,
M oy,04 = Fy(E, 5)
uf
M, o,,04 E Fi(Z,s)
(b) For somei, 1 <i<mn,
M and M’ agree on the extensions of every abr, (Z,a, s) in stratum
T;, j =1,...,i— 1, and the extensions of abp,(Z,a,s) in M’ are a
subset of the extensions of abg,(Z, a, s) in M.
Le., for some i and any assignment o, and o4, and any fluent F;(Z, s),
j=1,...0—1,
M, 0,,04,04 = Poss(a, s) A —abg, (£, a, s)
uf
M, 0,,04,04 = —abg, (L, a, s)
and for some fluent F;(Z,s), there are two assignments o, and oy
such that,
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M, 05,04,04 = Poss(a, s) A\ abg, (%, a, s)
but
M 05,0,,04 = —abg, (T, a,s)

Definition 5 (Minimal Model) M is a minimal model of T if there is no
M’ and no variable assignment to situations o, such that M <5y M.

From our prioritized model preference, we provide a semantic specification
for a solution to the frame and ramification problems for our syntactically
restricted theories. In particular, we specify that under the prioritized mini-
mization policy, the minimal models of our restricted theories prescribe solu-
tions to the frame and ramification problem. Recall that X,,q4 is the set of
foundational axioms of the situation calculus [16].

Definition 6 (Semantic Specification) Suppose
Y =Yround UTuna U Ty UTram (75)

where T = TpfUTrqm 15 a solitary stratified theory, with stratification (T1, T, ..., Ty),
domain fluents L, and partition (Lq, Lo, ..., Ly), such that L =}, L;. Finally
suppose M is a minimal model of X.

Then M captures a solution to the frame and ramification problem for 3.

As observed in Section 4.1, Lin and Reiter previously defined a solution to the
frame and ramification problem as the minimal models of our same ¥ under a
similar non-prioritized minimization policy [16]. Interestingly, our minimiza-
tion policy collapses to Lin and Reiter’s policy when n = 1.

Proposition 2 If M is a minimal model of ¥, then M 1is also a minimal
model of ¥ under Lin and Reiter’s minimization policy, outlined in [16].

Remark 6 If M captures a solution to the frame and ramification problem
for 33 as specified in Definition 6, then it also meets Lin and Reiter’s general
specification for a solution to the frame and ramification problem, as outlined
in [16].

To contrast our minimization policy to Lin and Reiter’s, recall that their
specification provides criteria for a solution to the frame and ramification
problems. Unlike our specification which is limited to a syntactically restricted
class of state constraints, their specification need not yield a minimal model,
and indeed can yield multiple minimal models, some of which will not reflect
the intended interpretation of the effect axioms and ramification constraints.
Further, as we show in the pages to follow, our specification for our restricted
theories guarantees a procedure to generate a closed-form solution, whereas
Lin and Reiter’s does not.
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Next we demonstrate the relationship between our semantically specified solu-
tion to the frame and ramification problem and the successor state axioms we
defined in (66). This relationship is predicated on a consistency assumption.

Assumption 1 (Consistency Assumption) For each fluent F; € L; as-
sume that:

Tuna UThee = (Va, s).Poss(a, s) D
= (V7. (a, 8) V R[vj, (do(a, 5))]) A (V7 (a, 5) V R[vE, (do(a, 5))])]. (76)

where R[$] is the regression of ¢ under successor state axioms Tsg.

This consistency assumption may be understood as follows. The unique names
assumptions for actions and the necessary conditions for action, Ty y 4 and T,
enforce that if an action is possible in a situation, i.e., Poss(a, s), then

Poss(a, s) D It is not the case that both
(an action or a ramification makes F;(do(a, s)) true)
A (an action or a ramification makes F;(do(a, s)) false).

The consistency assumption ensures that either an action is impossible to
perform in situation s, or that performing the action will not result in a
situation where a fluent is determined to be both true and false by some
combination of effect axioms and ramification constraints. The unique names
axioms, Tyya ensure that no action has the effect of making a fluent both
true and false in the same situation. The necessary conditions for actions, 7},..
dictate that an action is impossible to perform in a situation if performing
the action results in an inconsistency between the effect of the action and the
intended effects of ramification constraints.

The following theorem states that under Consistency Assumption 1, if we re-
place the effect axioms, T,y and ramification constraints, T, by the successor
state axioms of (66), Tss and the ramification constraints relativized to the
initial situation, 75 . that the resulting theory will entail the ramification
constraints, not only at situation Sy, but via the successor state axioms, at
every situation s that follows Sy on the tree of Poss-ible situations, i.e., those
situations s such that Sy < s. (Recall that < over situations is defined in
Y found-) This enables us to exclude T,4, and Ty from our theory, provided
TS0 is present.

Theorem 2 Suppose X is the theory defined in Definition 6 and Tsg is the set
of successor state azioms derived from Tpp and Tyom of ¥ as per (66). Further,
assume Consistency Assumption 1 holds.

29



Then for every ramification constraint (Vs).C(s) € Tram,
Zfound UTlgnyaUTgs U T,,.Sl;‘om |: (VS)S() <sD C(S),

where T30 is the set of ramification constraints relativized to Sy,

Trom = {C(80) | (V5).C(s) € Tram}-

The following theorem proves that, under Consistency Assumption 1, the suc-
cessor state axioms provide a solution to the frame and ramification problems,
in keeping with our specification. Later, we will see that the results in this the-
orem are subsumed by Theorem 5.

Theorem 3 Suppose Y is the theory defined in Definition 6 and Tsg is the set
of successor state arioms derived from Top and Tpqy of X as per (66). Finally
assume that Consistency Assumption 1 holds.

Then of M is a model of ¥ toung U Tuna U Tss U TS then M is a minimal
model of ¥ and M captures a solution to the frame and ramification problems
under Definition 6.

The models of these theories are not equivalent because the successor state
axioms, Tsg only characterize the effects of Poss-ible actions, not all actions.
Replacing the ramification constraints by 750 and Tsg is insufficient. To be
complete, we must somehow express that the ramification constraints hold for
the situations that are not accessible from Sy using Poss. We can address this
issue mathematically, but for most of our applications we are only interested
in considering the subset of the situation tree that is Poss-ible, and so instead

we simply restrict further discussion to this subset of all situations.
7.2 Computing Minimal Models using Circumscription

In this section we observe that semantic entailment in the minimal models of
our prioritized model preference can be captured by circumscription and that,
for the class of theories we are studying, the result of circumscription is first-
order definable. We further show that for our class of theories, the successor
state axioms defined in (66) are equivalent to those generated by computing
our circumscription. Indeed, under a consistency assumption, we show that
our circumscription computes the explanation closure axioms, and in turn
the successor state axioms. This result formally establishes the equivalence
between a monotonic theory which includes the successor state axioms of (66),
and our nonmonotonic specification of a solution to the frame and ramification
problems. In what follows we provide a variety of intermediate results that
culminate in the main results, stated in Proposition 3 and Theorem 5.
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The objective of our circumscriptive policy is to minimize the difference be-
tween the truth value of fluents in an initial situation and a resultant situation.
For any situation S, our circumscription minimizes abg, (a, S) with Poss(a, S)
and F;(S) fixed and with F;(do(a, S)) allowed to vary.

To simplify the computation of this circumscription, we transform our theory
>’ into a simpler theory, ¥*. The circumscription is then computed with respect
to X* by exploiting results of Lifschitz on computing circumscription (e.g.,
[13,14]). Our objective in transforming our theory is three-fold.

e To make the literal ab explicit in our theory.

e To remove all mention of the situation term s, since our minimization pol-
icy and corresponding circumscription is defined with respect to a fixed
situation S.

e To syntactically distinguish between F'in F(do(a, s)) and F in F(s) so that
we can exploit results on computing circumscription, and in particular so
that we can easily compute the predicate completion of fluents, F' in our
resultant situation, fixing fluents, F' in the initial situation.

The transformation and results are not complex, although the notation may be
a little off-putting. To illustrate the transformation, consider the effect axioms
and ramification constraints for the fluent Wtr_entering_hdr(s), as originally
defined in our feedwater example.

Poss(a, s) A a = Disrupt_siphon O —Wir_entering_hdr(do(a, s))
Ok(Power, s) A Ok(Pump, s) A On(Pump, s) D Wtr_entering_hdr(s)
Mnl_filling(s) D Wtr_entering_hdr(s)

Our first step is to distinguish the predicate abp, (a, s) into abf, (a, s)Aabz, (a, s),
and to make them explicit in our theory by adding positive and negative
generic frame axioms, one for each fluent F; € L. We refer to these frame ax-
ioms collectively as T'frqme. In our example, our frame axioms are as follows.

Poss(a,s) N Wir_entering-hdr(s) A =abyy, cniering ndr(8: )
D Wir_entering_hdr(do(a, s))

Poss(a, s) N ~“Wtr_entering_hdr(s) A _'ab%tr_ente'ring_hdr(a7 s)
D ~Wir_entering_hdr(do(a, s))

Next, we rewrite our theory ¥ U T}.qme as a new theory, X*. To do so,
we extend our language by the addition of a new predicate Poss® and new
predicates F}, F}*, ab}j, and abp, , one for each fluent F; € L. Then, for
every axiom in X U Tfqme, We replace each occurrence of Poss(a,s), F(s),
F(do(a,s)), abf,, and abj with the corresponding occurrence of Poss*, Fy,

Er, ab}j, and aby, . In our example above, the axioms are transformed as
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follows.

Poss*(a) A a = Disrupt_siphon D -Wir_entering_hdr**(a)
Ok* (Power) N Ok™(Pump) A On*(Pump) D Wir_entering_hdr*
Mnl_filling* D Wtr_entering_hdr*
O™ (Power,a) A Ok™* (Pump, a) A On**(Pump, a) D Wtr_entering_hdr**(a)
Mnl_filling™ (a) D Wir_entering_hdr**(a)
Poss®(a) A Wir_entering-hdr® A —abjy,. cniering nar(@)
D Wir_entering_-hdr*™*(a)
Poss*(a) N ~Wtr_entering_hdr* A —|ab*W+tT_entmng_hdr(a)
D ~Wir_entering_hdr**(a)

Using analogous notation to that employed in 3, we refer to a = Disrupt_siphon
as ’Ylt[/_tr_entering_hdr (a’) and
(Ok*(Power) A Ok*(Pump) A On™(Pump)) V Mnl_filling*, and
(O™ (Power, a) A Ok™ (Pump,a) A On™ (Pump,a)) V Mnl_filling™ (a)

*+ s+ .
as UWtr_entering_hdr and UWtr_entering_hdr(a) respectlvely.

: *—+ *— *ok—
There is no 7Wtr_entering_hdr (a)’ no UWtr_entering_hdr’ and no UWtr_entering_hdr (a)

Generalizing this example, X* is produced from ¥ U T4, as follows.

Definition 7 (3*) Suppose ¥ is the theory defined in Definition 6. Define ¥.*
to be the theory

Z]found UTyna U T;(f U Tr*am U T;rame (77)

where Trame 15 the set of positive and negative frame axioms, one each for

each fluent F; € L;,

Poss(a, s) A\ Fi(Z,s) A —abg, (T, a,s) D F;(F,do(a, s)) (78)
Poss(a,s) N —F;(Z,s) A ﬂabj;i (%,a,s) D —F;(Z,do(a, s)) (79)

and T;mme, T:f and T, . are Tiame above, and Ty, Trom drawn from X with

ram

each occurrence of F;(Z, s) replaced by F} (%),

each occurrence of F;(Z,do(a, s)) replaced by F;*(Z,a),

each occurrence of abg/_] (%, a, s) replaced by ab;E,Jr/_] (Z,a), and
each occurrence of Poss(a, s) replaced by Poss*(a).

Correspondingly,
e cach occurrence of %;;/_] (%, a,s) is replaced by ’y;[f/_] (%, a),

e cach occurrence of UE/_](.’E', s) is replaced by U;}EJF/_] (%), and

e cach occurrence of U;;/_](f, do(a, s)) is replaced by U;:H/_] (%, a).
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Lemma 1 below establishes that our nonmonotonic specification of a solution
to the frame and ramification problems can be captured by prioritized cir-
cumscription in our transformed theory. The results follow directly from the
semantic definition of prioritized circumscription (e.g., [13]), and the definition
of our prioritized model preference.

Lemma 1 Suppose Y. is the theory defined in Definition 6 and X* is the theory
defined in Definition 7. Then M is a minimal model of X with respect to the
prioritized model preference of Definition 4 iff M’ is a model of

Vs.CIRCT(X*; Aby > ... > Aby; Ff*, ... FY),

where each Ab; is a tuple containing the abnormality predicates ab}j (a) and
aby. (a), and where CIRC™ is the circumscription CIRC(X*; Aby > ... >
Abp; F*, ... F*) with

each occurrence of ab**/~1(a) replaced by the corresponding ab;:/_] (a,s),
each occurrence of F replaced by Fi(s),

each occurrence of F}*(a) replaced by F;(do(a, s)), and

each occurrence of Poss*(a) replaced by Poss(a, s).

Lifschitz proved some very nice results identifying when circumscription is
first-order definable, and when we can actually compute the axioms that result
from a circumscription (e.g., [13,14]). In the theorem to follow, we exploit
these results to show that, under a consistency assumption, our prioritized
circumscription of Ab; with respect to X* leads to the creation of explanation
closure axioms, which when combined with effect axioms and ramification
constraints, are equivalent to successor state axioms.

The consistency assumption upon which we predicate our theorem is the trans-
formation of Consistency Assumption 1. Recall that the objective of the con-
sistency assumption is to ensure that Fj(do(a, s)) and —F;(do(a, s)) never co-
occurred. Since we have added generic frame axioms to ¥*, we must reflect
this addition in the consistency assumption.

Assumption 2 (Consistency Assumption) For each fluent F; € L;, as-
sume that:

TunaUT,,. = Poss*(a) D
= [ (@) VT (a) V (B A =ab; (a)))
A (g, (@) Vi~ (a) V (= F] A —ablf (a)))]- (80)

Theorem 4 Suppose X* is as defined in Definition 7 and Consistency As-
sumption 2 holds. Then

CIRC(X*; Aby > ... > Aby; Fi™(a),...,F;*(a))
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= ZfO’Wld UTyna U T:f U T:am U TE‘C’ U leb—equz'vs
Efound UTyna U T.;S U T:lb—equivs

where,

o The = Ui T, 1s the set of explanation closure axioms for theory 3*.
Each Ty, is a set of formulae of the following form, one each for every
F, e ;.

Poss*(a) A Fi A=F}*(a) > v (a) V vy~ (a)
Poss™(a) A —F; N Fj*(a) D ’y;j' (a) V v}j""(a).

o TS = Ui Tss, 1s the set of successor state arioms for theory X*. Each
Tss, 15 a set of formulae of the following form, one for every F; € L;.

Poss™(a) D [F;*(a) =7 (a) VR v (a)]
vV (F(s) A=(vg; (@) VR v~ (@)

where R~ is the regression operator under the successor state azioms,
* *
TSSI U LR UT55171-

® T cquivs = Uie1 Ty cquivs; 05 the set of circumscribed definition of aby' (a)
and aby; (a). TR equivs; 1S @ set of formulae of the following form, one for-
mula for every F; € L;.

ab}j(a) = Poss™(a) N ~F A (’y}j’(a) vV UE"" (a)
aby, (a) = Poss™(a) A Fi' A (v, (a) Vv (a))

We have shown that our circumscription computes our successor state ax-
ioms in our transformed theory. In what follows we easily relate the results of
Theorem 4 back to the successor state axioms of our original language.

Proposition 3 Suppose ¥ is the theory defined in Definition 6 and X* is

the theory defined in Definition 7 and assume that Consistency Assumption 2
holds. Then

Vs.CIRCT(X*; Aby > ... > Aby; Fr*,...,FY)
= 2found UTynaUTss U TAbfequivs

where

e CIRC™ is as defined in Lemma 1.

o Tss is the set of successor state axioms for fluents F; € L; of . They
are of the form of (66).

® Tab—cquivs S Thy_cquivs: 0f Theorem 4, with each occurrence of ab*™/~)(a),

F}, F}*(a), and Poss*(a) replaced by the corresponding ab[;;/f} (a,s), Fi(s),
Fi(do(a,s)), and Poss(a,s).
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Finally, in the theorem to follow, we show that if we restrict our consideration
to the situations that are Poss-ible in the world, (i.e., s, s.t. So < s, using nota-
tion from X t4yn4), then the nonmonotonic theory X ouna U Tuna U Tep U Trom
is equivalent to the monotonic theory ¥ toung U Tyna U Tss.

Theorem 5 Suppose X is the theory defined in Definition 6 and assume that
Consistency Assumption 1 holds. Further, suppose M is a model of X.

Then for variable assignment os to s such that, Sy < s,

M is a minimal model of 3> with respect to the prioritized model preference of
Definition 4

iff
M' is a model of Y found U Tuna U Tss.

Using similar rewriting tricks, we can apply these results to Reiter’s successor
state axiom solution to the frame problem to establish that in the case where
there are no ramification constraints, our prioritized minimization policy, and
also Lin and Reiter’s minimization policy [16] both compute Reiter’s successor
state axioms, and hence his closed-form solution to the frame problem. These
results confirm the syntactic form of Reiter’s successor state axiom solution.

Theorem 6 Suppose Y is the theory defined in Definition 6 and that T,u, =

{}. Further, assume the following consistency condition holds for every F; €
Ei:

Tuna b~k (@ 9) A7 (a,5)) (81)

Suppose M is a model of 2. Then for variable assignment o, to s such that,
SO S S,

M is a minimal model of X2 with respect to the prioritized model preference of
Definition 4

iff
M’ is a model of Y found U Tuna U Tssr,

where Tssp 1S the set of successor state axioms of the following form.

Poss(a, s) D [Fi(do(a,s)) = 7}5 (a,s) V (Fi(s) A ~Vr, (a,s))] (82)

(81) states that an action cannot make a fluent both true and false in the same
situation. It captures the same intuition as our previous consistency assump-
tion without the need to discuss ramifications, and consequently, without the
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need to restrict ourselves to those situations that are Poss-ible. The succes-
sor state axioms, Tssp defined in (82) are the successor state axioms Reiter
identified as his solution to the frame problem [33].

This concludes the independent semantic justification for our closed-form so-
lution. Proofs of theorems can be found at the publisher’s web site, as noted
at the end of this paper. Detailed proofs and further results can be found in
[26].

8 Related Work

The dialect of the situation calculus language used in this paper originates
with the Cognitive Robotics Group at the University of Toronto. The intuition
behind our solution to the frame and ramification problems — the notion of
interpreting our ramification constraints as directional or definitional in nature
was originally inspired by research on the semantics of normal logic programs
and deductive databases (e.g., [31]), and by the preliminary work of Pinto
[29]. Our compilation approach to solving the ramification problem, and more
specifically our appeal to a completeness assumption to generate explanation
closure axioms was inspired by Reiter’s [33], Schubert’s [39] and Pednault’s
[28] approaches to solving the frame problem.

Our closed-form solution relies on a notion of causal influence, which can
either be expressed by a causal interpretation of the implication connective
in the axiomatization, or by provision of a separate causal influence graph,
describing the causal relationships between fluents. Lin [15] and McCain &
Turner [19] were among the first to describe the relationship between fluents in
a ramification constraint as causal. In contrast to our approach, Lin introduced
an explicit C'aused predicate into his axiomatization, while McCain & Turner
express ramification constraints as causal laws with a special = connective.

The basic minimization policy we employed in our semantic justification is
derivative of Lin and Shoham [17] and Lin and Reiter [16], with the impor-
tant addition of making the minimization prioritized with respect to the causal
influence ordering of fluents. As a result, we were able to draw a correspon-
dence between our nonmonotonic specification and circumscription, to show
that the corresponding prioritized circumscription was first-order definable,
and that when the circumscription was computed under a consistency as-
sumption, it produced our closed-form solution. Several other researchers have
proposed nonmonotonic solutions to the frame and ramification problems that
are based on circumscription. For example, Lin [15], Kartha & Lifschitz [10]
and Giunchiglia [8] provide circumscription-based solutions in terms of the sit-
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uation calculus, while Gustafsson & Doherty [9] present a solution in the action
language PMON. Each of these characterizations differs in how it axiomatizes
the domain, and hence which predicates it minimizes in its circumscription.
A distinguishing feature of our characterization is that unlike [10,15,9], our
circumscription is prioritized and further, it is applied to the whole theory,
not just to some part of the theory. Circumscribing only part of a theory is
a technique referred to by Sandewall as filtered preferential entailment [36].
Shanahan [40] provides an extended discussion of the merits of and objections
to this technique, which he refers to as forced separation. That said, the spirit
of many of these solutions is similar, whether it is a predicate called C'aused
[15], Occluded [9] or Ab (e.g., [10]) that is being minimized. Indeed the author
suspects that for the syntactically restricted case studied here, all our different
proposed solutions may produce equivalent intended interpretations, just as
many of the independent solutions to the frame problem proved to be identi-
cal under certain conditions [2]. A final distinguishing feature of our work is
that we prove that our nonmonotonic solution leads to an articulated closed-
form solution, under a consistency assumption. Causality can be expressed as
a separate structure and need not be included in the original axiomatization
of state constraints. Hence, we claim it is more amenable to addressing the
motivating problem we introduced in Section 1.

In addition to circumscription-based solutions to the frame and ramification
problem, Ternovskaia [41] and Denecker et al. [4] independently proposed to
characterize effect axioms and ramification constraints as inductive defini-
tions of fluents. They used these inductive definitions as an alternative to
a circumscription-based definition of solutions to the frame and ramification
problems. [41] went on to show that both Reiter’s closed-form solution to
the frame problem and our closed-form solution to the frame and ramifica-
tion problems could be semantically justified by appealing to this notion of
inductive definitions, providing an alternative to our justification based on
prioritized circumscription.

Finally, several researchers have addressed the ramification problem by ex-
ploiting some form of postprocessing or propagation of indirect effects, that
follows computation of direct effects. Thielscher [42] suggests computing ram-
ifications by an additional post-processing step over ramification constraints
defined as causal laws. This is somewhat akin to Pinto’s notion of computing
ramifications via prime implicate generation [30]. Both share intuitions with
Sandewall’s transition cascade semantics [37].
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9 Contributions

This paper addressed the problem of integrating a theory of action with a pre-
existing set of state constraints. The first major contribution of this paper was
provision of a closed-form solution to the frame, ramification and qualification
problems for an arguably common class of theories, which we referred to as
solitary stratified theories. The solution was presented as an automatable pro-
cedure that included compilation of effect axioms and ramification constraints
into a set of successor state axioms. The benefit of our solution over many
previous solutions is that the axiomatic closed-form solution enables us to use
monotonic reasoning machinery to perform inference, rather than having to
reason nonmonotonically. Further, the closed-form solution can be viewed as
an executable specification, and is easily realized in Prolog.

The second major contribution of this paper was an independent semantic jus-
tification for our solution. Limiting our attention to solitary stratified theories,
we proposed a semantic specification for a solution to the frame and ramifica-
tion problems in terms of a prioritized minimization policy, proving that the
successor state axioms of our closed-form solution agreed with this specifica-
tion. Establishing our minimization policy as an instance of prioritized circum-
scription over the causal influence ordering of fluents, we observed that this
circumscription was first-order definable and showed that computing the pri-
oritized circumscription produced our successor state axioms. We also showed
that in the special case where there are no ramification constraints, comput-
ing the circumscription produced exactly Reiter’s earlier successor state axiom
solution to the frame problem. Not only did these results provide semantic jus-
tification for our closed-form solution to the frame and ramification problem,
and as a side effect, Reiter’s closed-form solution to the frame problem, but
they also provided a nonmonotonic characterization of the solution, which
relates this work to other research on this subject.

In closing, the research presented in this paper was originally motivated by
the specific problem of integrating a representation of action with the repre-
sentation of the behaviour of physical systems, for the purpose of diagnostic
problem solving. [26,25,27] provide an account of this specific problem and the
use of our solution in various diagnostic problem solving tasks.
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Proofs

Proofs for the results presented in this paper are available electronically from
the publisher’s web site at http://www.elsevier.to-be-determined.
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