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Abstract

In this paper, we propose a definition of goal achievability: given a basic action the-
ory describing an initial state of the world and some primitive actions available to a
robot, including some actions which return binary sensing information, what goals can
be achieved by the robot? The main technical result of the paper is a proof that a simple
robot programming language is universal, in that any effectively achievable goal can be
achieved by getting the robot to execute one of the robot programs. The significance of
this result is at least two fold. First, it is in many ways similar to the equivalence the-
orem between Turing machines and recursive functions, but applied to robots whose
actions are specified by an action theory. Secondly, it provides formal justifications for
using the simple robot programming language as a foundation for our work on robotics.
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1 Introduction

Imagine that in the not too distant future, you are given a robot of some sort, and that you
want to figure out what it can do. Browsing through the manual that came with it, you dis-
cover that the robot is capable of performing under computer control any of a set of primi-
tive actions ����� . . . , ����� According to the manual, what each action �
	 actually does depends
on the state of the environment. First, to complete successfully, a precondition of the ac-
tion must hold in the environment. Next, assuming the action is successful, its effect on the
environment may also depend on certain other conditions. Finally, some of the actions are
connected to sensors and can return a binary value indicating when a certain condition holds.
The question is: assuming we are willing to do some programming, what do we expect to
be able to achieve with the robot?

In this paper, we propose an answer to this question. Specifically, we propose an abstract
characterization of what goals are effectively achievable as a function of a given logical the-
ory describing the initial state of the world and the primitive actions available to the robot.
The main contribution of the paper is a precise technical framework where questions of goal
achievability can be posed and answered. The main technical result is a proof of the uni-
versality of the simple robot programming language introduced in [8]: it will turn out that a
goal is effectively achievable according to logical theory

�
iff there is a robot program that

achieves it according to
�

.

1.1 A motivating example

To make the problem more concrete, imagine that you are also given a solid steel box that
contains a treasure. There is a small robot-sized door on the box, which is currently closed,
and there are two buttons beside it, a green one and a red one. The primitive actions available
to the robot are pressGreen, pressRed, and fetch. The manual says that if the robot happens
to be beside the closed door, pressGreen causes the green button to be pressed, and pressRed
similarly. The manual also says that the robot has a heat sensor so that a press action returns
1 when the button pressed was hot, and 0 otherwise. The fetch action causes the robot to
trundle inside the box and retrieve what’s inside, provided that the robot is beside the door
and the door is open.

�
The goal we are interested in here, obviously, is getting the treasure,

under assumptions like the following:

1. If we know nothing else about the environment, we want our account of achievability
to predict that we cannot achieve the goal. Of course, we might end up eventually
getting the treasure by forcing the door open with a crowbar, or by saying some magic

�
In a more realistic setting, of course, there would be a large number of other preconditions for actions like

these.
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words, or even by getting the robot to press the buttons in some order. But there is no
reason to believe a priori that any of these methods will work.

2. If we know that the red button opens the door of the box, we want our account of
achievability to say that we can achieve the goal using the robot: we get it to do the
sequence pressRed, then fetch. Of course, something might go wrong: the door might
jam, lightning might strike the robot, a comet might hit the earth. But there is no rea-
son to believe that the sequence will fail given what we have been told.

3. If we know that one of the buttons opens the door of the box, and the other button
locks the door permanently, but we don’t know which is which, our account should
predict that we cannot achieve the goal using the robot. As in (2), we know that there
is a sequence of actions that will work – press one of the buttons then fetch – but here
we do not know what that sequence is.

4. But consider the following situation: we know that the door can be opened by first
pressing the green button, and then pressing one more button, but we are not told
which, and again, getting it wrong locks the door permanently. However, suppose
that we know that the safe will lock forever iff the robot pushes a button that felt hot
on the previous press. As in (3), we know that there is a sequence of actions that will
work, and again we cannot say what that sequence is. This time, however, our account
should predict that we can achieve the goal: we get the robot to pressGreen, and then
pressGreen once more if the button was cold, but pressRed if it was hot.

5. Finally, suppose we know that after pressing the green button some unspecified num-
ber of times and at least once, pressing the red button will open the door and pressing
the green one will lock it forever. With no other information, we clearly cannot obtain
the treasure. However, if we also know as in (4) that the door will lock forever iff the
robot presses a button that was just hot, then we can once again achieve the goal: we
get the robot to repeatedly press the green button until it feels hot, then press the red
one to open the door, and then fetch the treasure.

To the best of our knowledge, there is as yet no formal framework that would give the intu-
itively correct answers for examples like these.

1.2 Relation to other work

There are, however, three areas of research that come close to providing these answers.
Planning As the five examples above illustrate, the idea of a goal being achievable

by a robot is clearly related to the concept of planning and especially, given the sensing,
conditional planning, as in [2, 9, 13, 16]. In all of the variants above, we ended up saying
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that the treasure was obtainable precisely when we could formulate some sort of plan to
obtain it. Why then not simply define goal achievability in terms of the existence of a plan?

The problem with this involves characterizing exactly what we mean by a plan. An obvi-
ous case is when a fixed sequence of actions is sufficient. But in some of the variants above,
we needed to consider conditional and iterative plans, which suggests a structure more like
that of a program [10]. Clearly these would not be programs in a traditional language like C
or LISP. For one thing, the primitive statements of the program would have to involve the
actions ��	 , rather than the usual variable assignment or read/write statements. What would
we use as the conditions in an if-then-else or a while-loop statement? How should the exe-
cution of programs containing the �
	 be defined?

We believe that these questions can be resolved and that it is possible to characterize
achievability in terms of such programs (see Section 4 below) . However, to avoid making
design decisions that might initially appear to be arbitrary or restrictive, we prefer to first
define achievability in a general program-independent way, and then prove that a program-
ming language is adequate according to this definition.

Computability A second concept related to achievability is that of effective computabil-
ity [12]. As will become clear, we will end up defining achievable goals as those where what
to do next to achieve them, given what is known about the actions and the initial state of the
world, can be “computed” as a function of what the sensors tell the robot.

However, we cannot simply use an existing account of computability for two reasons.
First, we want to allow for incomplete information about the environment surrounding the
robot. In contrast to typical accounts of computability, the initial state of the environment
need only be partially specified by a collection of axioms. The second reason concerns the
primitive actions. In typical computability models, the available actions are predefined and
internal to the machine (or formalism). For instance, we might have actions to write and
read a Turing machine tape, or to increment and decrement registers, or to assign values to
variables, and so on. In our case, by contrast, the primitive actions for a robot are not pre-
defined and are external, in that they have effects in the environment outside of the robot.
These actions are also described by a collection of axioms, which specify the action precon-
ditions and effects, and deal with the frame problem.

Thus our account of goal achievability depends crucially on what the given axioms say
about the initial state and the available actions. In some of the examples above, we had two
theories

� ��� ���
describing the same initial state and set of actions. A goal was considered

unachievable relative to the information provided by
� � , but achievable relative to

���
where

additional information was available. We would like to define a notion of goal achievability
as a relation between a formal theory

�
and the goals we would like to achieve, and no

existing account of computability does this.
Knowing how Finally, the concept of achievability is very closely related to the con-

cept of an agent knowing how (or being able to) achieve a goal or execute a plan, as dis-
cussed for example, in [1, 17, 18]. One difference between the two concepts concerns the
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issue of effectiveness. As far as we know, no existing account of knowing how or ability
considers whether or not the know how of an agent would be effective, in the sense of al-
lowing the agent to “compute” what to do. But putting effectiveness aside, there is also a
difference in point of view: who has to know what and when. There may be conditions that
we would consider to be achievable, but that the agent does not know how to bring about.
For example, if the red button opens the door, we know that goal of getting the treasure is
achievable by the agent/robot; but if the agent does not know which button is the correct
one, we would not say that it knew how to get the treasure. Conversely, we can imagine a
situation where we do not consider the goal to be achievable (in the sense of being able to
produce a plan) because we do not know which buttons to use, but where we know that the
agent does. We can also imagine situations where the agent initially knows less than we do,
but after obtaining information from its sensors, knows as much or more than we do.

When reasoning about what one agent knows about another, the concept of knowing-
how or ability may be the more useful one; when attempting to analyze what we can get an
agent or robot to do for us, our notion of goal achievability may be the more appropriate.
Moreover, it ought to be the case that the two notions coincide when the agent knows exactly
what we do about the environment and the actions. The precise relation between the two
concepts is subtle, however, and we will not explore it further here (see [6]).

In sum, while the concept of goal achievability is clearly related to the areas of planning,
computability, and agent ability, none of these can give us the answers we want, for example,
in the five situations above.

The rest of the paper is organized as follows. In the next section, we review the situation
calculus, a formal logical language in terms of which the state of the environment and the
primitive actions can be described by a collection of axioms we call a basic action theory.
In Section 3, we define precisely what we mean by effective achievability (and related no-
tions) as a function of a given basic action theory. In Section 4, we review the syntax and
semantics of a simple robot programming language first proposed in [8] as a language for
plans. In Section 5, we present some results, including the main technical result of the pa-
per: the universality of the robot programming language. This is a robot analogue of the
classic universality result in computability theory: a function is computable iff there is a
program/machine that computes it. Finally, in Section 6, we summarize the paper and sug-
gest topics for further research.

2 The situation calculus and basic action theories

Since the goal of this research is to make the specification of goal achievability depend on
a given action theory

�
describing the initial state of the world and the available actions,

we need to describe the representation language we use to formulate the theories, which is
a dialect of the situation calculus [11].
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The language of the situation calculus is many-sorted. Normally, there is a sort for sit-
uations, a sort for actions, and a sort for objects like blocks and people that are elements
in the domain of interest. We assume that there is a special constant ��� used to denote the
initial situation, namely that situation in which no actions have yet occurred; there is a dis-
tinguished binary function symbol do where do � ������� denotes the successor situation to �
resulting from performing the action � ; relations whose truth values vary from situation to
situation, are called (relational) fluents, and are denoted by predicate symbols taking a sit-
uation term as their last argument; there is a special predicate Poss � ������� used to state that
action � is executable in situation �	� and finally, there is a special predicate SF � � �
��� used to
state that the sensor associated with action � (if any) returns the value � in situation � �

�

Within this language, we can formulate domain theories which describe the initial state
of the world and the actions available to the robot. We specify the preconditions of actions,
for example, by writing axioms that define Poss � we specify the condition measured by a
sensor by writing axioms that define SF � and so on. Here, we use a theory which contains
only the following axioms:


 Axioms describing the initial situation, � � . Syntactically, these axioms cannot men-
tion any other situation terms except � � .


 Action precondition axioms, one for each primitive action � , characterizing Poss ��� ����� .
Syntactically, these axioms all have the following form:

Poss ��� ����������� � ��� �

where ��� � ��� is a formula that does not mention any other situation terms except � ,
does not quantify over situation variables, and does not mention the special predicates
like ��� ��� , ��� , or � (introduced below).


 Sensed fluent axioms, one for each primitive action � , characterizing SF ��� ����� . Syn-
tactically, these axioms have the form:

SF ��� �
������� � � ��� �

where � � � ��� satisfies the same conditions as those for �!� � ��� above. For actions that
have nothing to do with sensors, this should be " SF ��� ������� True # .


 Successor state axioms, one for each fluent � , characterizing under what conditions
�$�&%' � do � �������(� holds as function of what holds in situation � � These take the place of

)
In [8], the predicate SF was used to characterize what an agent knew in a situation in terms of a fluent * .

In this paper, we will not be concerned with the knowledge of agents.
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the so-called effect axioms, but also provide a solution to the frame problem [14].
Syntactically, successor state axioms have the form:

Poss � ��������� " � ��%' � do � �������(������� ��%' � � ����� # �

where ��� satisfies the same conditions as those for � � � ��� above.


 Unique names axioms for the primitive actions: For any two different actions � ��%' �
and ��� ��%� � , we have

� �&%' �
	� � � ��%� � �
and for any action � � ' � � � � � ��' ��� , we have

� � ' � � � � � ��' ��� � � � � � � � � � ��� ���
� ' � � � ����������� ' � � � ���


 Foundational, domain independent axioms that characterize the structure of the space
of situations, and define a predicate � so that � � � � � holds iff there are actions
� � � � � � � � � , ����� , such that

� � � do �
" � � � � � � � � � # ��� � ��� Poss � � � �
� � ��� � � ��� Poss � � � � do �
" � � � � � � � � ��� � # ��� � � �

holds, where for any situation � , do ��" # ����� � � , and inductively, do ��" ���! # ����� � do �  � do � �������(� .
These axioms are:

� � 	� do � ������� �

do � � � �
� � � � do � � � ��� � �"� � � � � � � � � � � � � � �

�$#�� � � � � � � �%� �$# � �
��� " � � ���&� � � do � � �
��� � # � �$# ��� � � ��� �
' � � � � �

� � do � ����� � ��� � Poss � ����� � �%� � � � � � �

Notice the similarity between these axioms and Peano Arithmetic. The first two ax-
ioms are unique names assumptions; they eliminate finite cycles, and merging. The
third axiom is second-order induction; it amounts to a domain closure axiom which
says that every situation must be obtained by repeatedly applying (	� to � � . ) The last
two axioms define � inductively.

Following [4], we call a theory of this form a basic action theory.
*
For a discussion of the use of induction in the situation calculus, see (Reiter [15]).
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3 Effective achievability

To define in its most general form what a robot armed with primitive actions � � , . . . ����� can
achieve, it is useful to begin by looking at the problem from the point of view of a robot
controller, for instance, an onboard computer.

What a robot controller needs to do at any given point in time is to select the primitive
action to perform next (or to stop). We are willing to assume arbitrary amounts of computa-
tion and intelligence in making this decision, as well as full access to the given basic action
theory. We do not want to assume, however, that the controller necessarily knows every-
thing there is to know about the current state of the environment. For example, if it is part
of the basic action theory that a door is open initially, the controller can use this fact; but if
the action theory does not specify the state of the door, the robot may need to perform some
(sensing) action to find out whether it is open, assuming such an action is available.

So what does a robot controller have access to beyond the given basic action theory?
In its most general form, we might imagine that the robot controller remembers all of the
actions it has selected until now, as well as the sensing results of all these actions. In gen-
eral, these sensing results must be compatible with the given action theory, but will not be
entailed by it, and so provide additional information to the controller.

Once we have specified what a robot controller is, we can then define the achievable
goals. Roughly, a goal will be considered to be achievable if there exists a robot controller
such that if we were to repeatedly do the primitive action it prescribes, then no matter how
the sensing turns out, we would eventually terminate in a situation where, according to the
action theory, the goal condition would hold. We now proceed to formally define the rele-
vant notions.

3.1 Robot Controllers and Environments

We assume a finite set � of actions that are parameterless, and represented by constant sym-
bols. At any point, the robot will be in some state determined by the actions it has performed
so far and, in the event of sensing, the readings of its sensors. More precisely, we define:

Definition 1 (History) A history � is an element of the set � � ������� � � �	� ��
 .
Intuitively, the history ��� � ��
 � ����������� ��� ����
��	� means that � ��� � � � � � � is the sequence of ac-
tions performed so far, and 
 ��� � � � ��
�� are the respective sensing results of the actions: For
any � , if the sensing fluent ��� holds for � 	 in the situation where the action is performed,
then 
 	 � � , else 
 	 � � . Notice that by the form of basic action theories (cf. section 2), if
� 	 is an action that has nothing to do with sensors, then 
 	 � � . Notice also that the empty
sequence � is a history.

A robot controller is then a mapping from such a history to the next action to perform.
In addition to the given primitive actions in � , we assume some special symbols. In the
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following, let ��� � ��� � stop � abort ��� � , where stop, abort, and � are special symbols
not in � . Intuitively, stop will be used to denote termination, abort to signal exit before the
end of the computation, and � to denote an undefined computation. � Formally, we define:

Definition 2 (Robot controller) A (robot) controller � is any function from histories to ac-
tions or special symbols, �	� ��
 ��� .

Definition 3 (Effective Controller) A controller is effective if the function � is recursive.

It should be clear that the only feedback the robot gets from the environment is through
its sensors. Just as a robot controller specifies the next action to perform, an environment
specifies the sensing result of that action. More precisely, we define:

Definition 4 (Environment) An environment 
 is any function from histories and actions
to the set � � � �	� , 
�� � � ��
 � � � �	� .
In other words, 
�� � � � � tells us what the sensor associated with action � will report given
the history � �

Intuitively, the picture is this. We start with the empty history � ; the robot controller �
chooses an action to perform � � � ��� � �
� the environment 
 determines the value returned
by the � � sensor: 
 � � 
�� � � � � � ; given this result, the robot then chooses another action
to perform � � � � �(� � � ��
 � � � � and the environment determines the � � sensor value: 
 � �

��(��� � ��
 � � � � � � ; then � ) � ��� � � � ��
 � � � � �

� ��
 � � � and so on, until � says stop �

Definition 5 (System) A system is a pair ��� � 
 � , where � is a controller, and 
 an environ-
ment.

Frequently, we shall refer to the system ��� � 
 � as the controller � under the environment 
 .

Definition 6 ((Terminating) run) A history � is a run of a system ��� � 
 � if, inductively,
either � is the empty sequence � or � � � � � ��� ��
 � such that � � is a run of the system, ��� � � � �
��� � , and 
�� � � � � � � 
 . A history � is a terminating run of ��� � 
 � if it is a run of ��� � 
 �
and ��� � � � stop.

Clearly, a system can have at most one terminating run.
�
The reason we need abort and � will be made clear later in the context of robot programs.
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3.2 Achievability and Effective Achievability

Note that neither controllers nor environments are part of the situation calculus; they are
simply abstract functions over the domain of histories. To make a connection with the sit-
uation calculus, we first relate histories to situations:

Definition 7 (Run and situation) Given any history � , and any situation term � , we define
another situation term, the end situation of � on � , written end � � ����� , as: end � � ����� � � ; and
inductively, if � � � � � ��� ��
 � , then end � � ����� � do � � � end � � � �����(� .
Next, we relate environments to logical interpretations of a basic action theory.

Definition 8 (Environment and interpretation) Given an interpretation � and a ground
situation term � , an environment 
 is said to be determined by � at � iff for any history � ,
and any action � , 
�� � � � � � � iff � � � SF ��� � end ��� � � �(� .
It is clear that there is exactly one such environment for any given � and � . In other words,
once we specify an interpretation of a basic action theory (and a starting situation), the in-
terpretation of the SF predicate completely determines how the sensing will turn out, and
hence the environment.

In general, we expect a basic action theory to be satisfied by many interpretations, cor-
responding to the various ways the environment could turn out. Goal achievability requires
a controller to work in all such interpretations:

Definition 9 ((Effective) achievability) Given an action theory
�

, a goal � � ��� which is a
formula with a single free situation variable � , and a ground situation term � , we say that �
is (effectively) achievable in � according to

�
iff there is an (effective) controller � such that

for any model � of
�

, there is a terminating run � of � under the environment determined
by � at � such that � � � � � end � � � � �%� � � end � � � � �(� �

In general, there will be goals that are achievable but not effectively achievable. However,
as we are going to show below, for context-free action theories, if a goal is achievable, then
it is also effectively achievable.

3.3 Achievability in Context-Free Action Theories

By a context-free action theory we mean a theory in which all actions are context free in the
sense that their effects are independent of the state in which they are executed. For example,
in the blocks world, the action stack � ' ��� � , that picks up block ' on the table and puts in on
top of block � , is context free – as long as it is executable, it will always cause ' to be on � .
On the other hand, in the extended blocks world in which there may be more than one block
on top of another block, the action unstack � ' ��� � , that removes ' from � , is not context free
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– whether block � will be clear afterwards, for example, depends on whether ' was the only
block on top of � .

Now an action theory is context free if, according to the theory, all actions are context
free. Formally, following [5], we call an action theory

�
context free if every successor state

axiom in it has the following form:

Poss � ��������� " �$��%' � do � � ����� ����� �� ��%' � � ��� � �$�&%' �����%� ' �
�� ��%' � � �(� # � (1)

where � �� ��%' � � � and �
�� ��%' � � � are situation independent formulas whose free variables are

among those in %' � � . Under the following consistency condition [14]:

� � � �$# � � %' � � ' � � �� ��%' �
���%���
�� ��%' ����� � � (2)

the axiom (1) implies that for any action � , after the action is performed, � will be true
(added) for tuples in � %' ��� �� ��%' � � � � , false (deleted) for tuples in � %' ���

�� ��%' � � � � , and persist
for tuples in � %' � ' � �� �&%' � � � � ' �

�� ��%' � � � � . The action � is context-free because the conditions
� �� and � �� are situation independent. Note that in the usual formulation of STRIPS, with
add and delete lists, every action is considered to be context-free.

Theorem 1 Let
�

be a context-free action theory, and the consistency condition (2) holds
for every fluent � . � If a goal � is achievable in � , then it is also effectively achievable.

Proof: See Appendix A.
Informally, the theorem holds because a context free action theory can only have finite num-
ber of possible legal states. One can read the theorem in two ways. On the one hand, it
points to some potential computational advantages of working with context-free action the-
ories. On the other hand, it also points out their expressive limitations. For example, this
theorem implies that it is impossible to simulate an arbitrary context-sensitive action with
a finite set of context free actions.

4 A robot program language

In [8], the following question was considered: what should the output of a planning proce-
dure be? In the absence of sensing, the answer is reasonably clear and dates back to Green
[3]: a plan is a legally executable sequence of actions that results in a final situation where
the goal condition holds. In the presence of sensing, however, a planner cannot simply re-
turn a sequence of actions since the actions to execute to satisfy the goal could depend on
the runtime result of earlier sensing operations (as in the examples in the introduction).
	
Technically, this condition is not necessary. However, it simplifies our proof, and is a reasonable condition

to impose on action theories.
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Clearly, what is needed is something more like a program, with branches and loops. On
the other hand, it would need to be a program that is not only legally executable (in the sense
that the preconditions of the primitive actions at each step are satisfied), and leads to a goal
state (in the sense that the program terminates and the goal condition holds in the terminating
situation), but also a program that does not require more information to execute than what
we expect the robot to have. For example, if all we know is that the door to the steel box
opens by pushing either the red or the green button, then the program which says something
like “if the red button is the one that opens the door then push it, else push the other one”
might satisfy the first two conditions, but not the last one.

There are various ways to ensure this last requirement. The approach taken in [8] is to
invent a simple language that contains branches and loops, but that does not mention any
conditions involving fluents. The resulting programs are then trivial to execute since with-
out such conditions, there is nothing for the robot executing the programs to know.

Consider the following simple programming language, defined as the least set of terms
satisfying the following:

1. nil and exit are programs;

2. If � is an action and � � and �
�

are programs, then branch � ��� � � � � � � is a program;

3. If � � and �
�

are programs, then loop ��� ��� � � � is a program.

We will call such terms robot programs and the resulting set of terms � , the robot program-
ming language.

Informally, these programs are executed by an agent as follows: to execute nil the agent
does nothing; to execute exit it must be executing a loop, in which case see below; to execute
branch � � � � � � � � � it first executes primitive action � , and then it executes � � if the sensor
associated with � returns 1, and �

�
otherwise; to execute loop ��� � � � � � , it executes the body

� � , and if it ends with nil, it repeats � � again, and continues doing so until it ends with exit,
in which case it finishes by executing �

� �
Note that many actions will not have an associated sensor and will always return 1. We

thus use the abbreviation seq � ��� � � for branch � ��� � � � � for those cases where the returned
value is ignored.

Here are some robot programs for the examples in the introduction. (Recall that the
pressGreen action returns 1 if the button is hot).

1. Sequence of actions:
seq(pressRed, seq(fetch, nil)).

2. Conditional plan:
branch(pressGreen,

seq(pressRed, seq(fetch, nil)),
seq(pressGreen, seq(fetch, nil))).
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3. Iterative plan:
loop(

branch(pressGreen, exit, nil),
seq(pressRed, seq(fetch, nil))).

Intuitively at least, the following should be clear:


 An agent can always be assumed to know how to execute a robot program. These
programs are completely deterministic, and do not mention any fluents. Assuming the
binary sensing actions return a single bit of information to the agent, there is nothing
else it should need to know.


 The example robot programs above, when executed, result in final situations where
the goal conditions from the introduction are satisfied.

To be precise about this, we need to first define what situation is the final one resulting from
executing a robot program � in an initial situation � . Because a robot program could con-
ceivably loop forever (e.g. loop(nil,nil)), we will use a formula Rdo ��� ��� ��� � � to mean that �

terminates legally when started in � , and � � is the final situation. Formally, Rdo is an abbre-
viation for the following second-order formula:

Rdo � � �
� � �
� � �
������ #��$" � � ��� � � � ��� ����� � � � � # (3)

where the ellipsis is (the conjunction of the universal closure of) the following:

1. Termination, normal case: � � nil ��� ��� � � ���

2. Termination, loop body: � � exit ��� ��� � � ���

3. Primitive actions returning 1:
Poss � ��������� SF � ������� � � � � � � do � ������� ��� � ��' � � � � branch � � � � � � � � � � ��� ��� � ��' ���

4. Primitive actions returning 0:
Poss � ��������� ' SF � � �
����� � � � � � � do � ������� ��� � ��' � � � � branch � � � ��� � ��� � � ��� ��� � �
' �
�

5. Loops, exit case:
� ����� �
���
� � � � � ��� � ����� � �
� � � ��� � ��' � � � � loop ����� � ��� � � ��� ��� � ��' �
�

6. Loops, repeat case:
� ��� � �
���
� � � � � ��� � � loop � � � � � � � � ��� � � ��� � ��' � � � � loop ��� � � � � � � �
���
� � ��' � �

By using second-order quantification in this way, we are defining Rdo recursively as the
least predicate � satisfying the constraints in the ellipsis. Second-order logic is necessary
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here since there is no way to characterize the transitive closure implicit in unbounded iter-
ation in first-order terms.

The relation � ��� ��� ��� � � � � in this definition is intended to hold when executing � starting
in � terminates legally at � � with exit; � ��� ��� ��� � � � � is the same but terminating with nil. The
difference shows up when executing loop ��� � � � � : in the former case, we exit the loop and
continue with � � ; in the latter, we continue the iteration by repeating loop � � � � � � once more.

With this definition in place, we can now characterize precisely the goals that are achiev-
able using robot programs:

Given an action theory
�

, a robot program � , a goal condition � � ��� and a ground
situation term � , we say that � achieves � in � according to

�
iff

� � ��� � � � Rdo � � � � ��� � �%� � � � � �

We now relate this definition to effective achievability.

5 Robot programs are universal

Our main technical result in this paper is that a goal is achievable by an (augmented) robot
program iff it is achievable by an effective controller. We shall prove this in two parts. First,
we show that for any robot program, there is a corresponding effective controller for it. We
then show that if 5 special “Turing machine actions” are included, then any effective con-
troller can be simulated by a robot program.

5.1 From robot programs to effective controllers

Theorem 2 For any robot program � and any ground situation term � , there is an effective
controller � such that for any interpretation � and any ground situation term ��� :

1. If � � � Rdo ��� � � � ��� � , then there is a terminating run � of the system ��� � 
 � such that
� � � end � � � � � , where 
 is the environment determined by � at � .

2. If there is a terminating run � of the system ��� � 
 � such that end � � � � � � � � , then
� � � � ��� � � Rdo ��� � � � � � � . Here 
 is the environment determined by � at � .

Proof: See Appendix B.
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5.2 From effective controllers to robot programs

Given an effective controller, there may not always be a robot program that simulates it. �
The easiest way to remedy this is to add some special Turing machine actions as in [8].

Formally, we assume that in addition to the actions in � , we have 5 special actions, left,
right, mark, erase, read mark, and two special fluents Marked, loc, characterized by the
following axioms:

1. Precondition: the 5 actions are always possible
Poss � left ����� � Poss � right �
��� � Poss � mark ����� � Poss � erase ����� � Poss � read mark ����� ;

2. Successor state: only erase and mark change the Marked fluent
Poss � ��������� � Marked � � � do � � �
��� ���

� � mark � loc � ��� � � �

Marked � � �
���%� ' " � � erase � loc � ��� � � # � ;
3. Successor state: only left and right change the loc fluent

Poss � ��������� � loc � do � � ����� � � � �
� � left � loc � ��� � � � � �
� � right � loc � ��� � ��� � �

loc � ��� � � � � 	� left � � 	� right � ;
4. Sensed fluent: read mark tells the agent whether the current location is marked

SF � left ������� SF � right ����� � SF � erase ������� SF � mark �������
" SF � read mark ������� Marked � loc � ��� ����� # .

These axioms ensure that the 5 special actions provide the robot with what amounts to a
Turing machine tape.

In the following, we will be using what we will call a TM basic action theory. This
is a basic action theory as before, but where � includes the 5 special actions,

�
contains

the above axioms, and where the successor state axioms in
�

for fluents other than loc and
Marked are such they are unaffected by the 5 actions. More precisely, for any fluent � that
is different from Marked and loc, and when � is any of the 5 special actions, the theory

�

entails:
Poss ��� ������� " � � do ��� �����(��� � � ��� # �

In the following, for any ground situation term � , we define clean � � � to be the situa-
tion term obtained from � by deleting all the special five actions: clean � � � � � � � , and
�
The proof of this is somewhat laborious. Observe that despite the presence of loops, a robot program has

no internal memory and so no way of counting. So consider an action theory that encodes a string problem:
decide if a string of 0s and 1s has more 0s than 1s. A Turing machine can do this, but a finite-state automaton
cannot. Similarly, an effective controller can achieve the corresponding goal, but a robot program in general
cannot. We omit the details.
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clean � do � � � � �(� � do � � � clean � � �(� if � ��� is not a Turing action, and clean � do � � � � �(� �
clean � � � otherwise.

Theorem 3 For any TM basic action theory
�

, any effective controller � , and any ground
situation term � , there is a robot program � such that for any model � of

�
(as above) and

any ground situation ��� , we have

1. If � � � Rdo � � � � � ��� � , then there is a terminating run � of the system ��� � 
 � such that
clean � ��� � � end ��� � � � , where 
 is the environment determined by � at � .

2. If there is a terminating run � of the system ��� � 
 � such that ��� � end ��� � � � , then there
is a situation �&� � such that ��� � clean � ��� � � , and � � � � � end � � � � �
� Rdo ��� � � � ��� � � ,
where 
 is the environment determined by � at � .

Proof: See Appendix C.

5.3 The main theorem

By Theorem 2 and 3, we have the following result:

Theorem 4 Let
�

be any TM basic action theory and � be any goal that does not mention
the special fluents loc and Marked. Then � is effectively achievable in � according to

�
iff

there is a robot program � such that � achieves � in � according to
�

.

Proof: Suppose � is achieved by the effective controller � . We show that the robot program
� for � as in Theorem 3 achieves � . Suppose � is any model of

�
. Then, by the definition

of achievability, there is a terminating run � of ��� � 
 � such that � � � � � end � � � � � �
� � end � � � � � � , where 
 is the environment determined by � and � . According to Theo-
rem 3, there is a situation �&� � such that clean � �&� � � � end � � � � � and � � � � � end � � � � � �
Rdo � � � � � ��� � � . Thus � � � Rdo � � � � � ��� � � . By � � � � � end ��� � � �(� and clean � �&� � � � end ��� � � � ,
we have � � � � � ��� � � (by a property about clean). So � � � � � � � � Rdo � � � � ��� � � � � � � � � . There-
fore

� � � � � � � � Rdo � � � � ��� � �%� � � � � � , and so � achieves � �

Conversely, suppose � achieves � in � . We show that the effective controller � for �

as in Theorem 2 achieves � in � , i.e. for any model � of
�

, there is a terminating run �
of the system ��� � 
 � such that � � � � � end � � � � �
� � � end ��� � � �(� , where 
 is the envi-
ronment determined by � and � . Now suppose � is a model of

�
, by the assumption that

� achieves � , i.e.
� � � � � � � � Rdo ��� � � ��� � �%� � � � � � � there is a ground situation term ��� such

that � � � Rdo ��� � � � ��� �%� � � � � � . By Theorem 2, there is a terminating run � of ��� � 
 � such
that ��� � end ��� � � � � So � � � Rdo ��� � � � end � � � � � � � � � end � � � � � � . But by the definition of
Rdo, we have � � � # � � ��� � � Rdo ��� ��� � ��� � � � � � � � � . Thus we have � � � � � end ��� � � � .
This shows that � is achieved by the controller � .
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6 Conclusion

We have provided a definition of what it might mean for a condition to be achievable by a
robot relative to a given action theory which describes the initial state of the world and the
primitive actions available to the robot. Our main technical contribution is in showing that
this notion of effective achievability coincides with a notion of achievability by a simple
class of robot programs independently introduced in [8]. The significance of this result is at
least two fold. First, it is in many ways similar to the equivalence theorem between Turing
machines and recursive functions, but applied to robots whose actions are specified by an
action theory. Secondly, it provides formal justifications for using the simple class of robot
programs as a foundation for our work on robotics. For instance, [8] uses this class of robot
programs as a basis for robot planning. We are also beginning work on compiling high-level
GOLOG programs [7] into this class of robot programs.

There are some limitations with our current model that are worth mentioning here. First
of all, we have assumed that there are only a finite number of parameterless actions. We have
also assumed that the sensing actions are binary, characterized by the special SF predicate.
Furthermore, we have assumed that the only feedback from the environment is the result
of these sensing actions. In particular, we have not concerned ourselves here with possible
action failure or exogenous actions. Some of these assumptions, such as the binary nature
of sensing, are easy to relax; others will require more effort.

In concluding, we want to mention that we are working on relating this work to our other
work on agent ability and knowing-how [6]. Another direction worth pursuing is investigat-
ing the “finite automaton” version of achievability, i.e. the power of robot programs without
the special Turing machine actions.
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Appendix A Proof of Theorem 1

Theorem 1 Let
�

be a context-free action theory, and the consistency condition (2) holds
for every fluent � . If a goal � is achievable in � , then it is also effectively achievable.

We first prove a lemma which says that the set of legal states in a context-free action the-
ory is finite. To formulate the lemma, we first introduce a few notations. Let � � ��%' ������� � ����� � � � ��%' � �
���
be all the fluents in the language. We define SameState � � ��� � � , meaning that � and � � yield
the same state, as follows:

SameState � ���
� � �
� � ��

� #�%' � � � � � ��%' � ������� � � ��%' � ��� � �(�%��������� �$#�%' �&� � � � ��%' �
������� � � �&%' ����� � � � �

The following are some simple properties about SameState:

Lemma 6.1 For any basic action theory
�

, we have:

� � � � # ����� ��� � � � SameState � ���
� � � � " Poss � ��������� Poss � � ��� � � # �
� � � � # ����� ��� � � � SameState � ���
� � � � " SF � � ������� SF � � �
� � � # �
� � � � # ����� ��� � � � Poss � ������� � SameState � ���
� � �"� SameState � do � � ����� � do � � �
� � �(� �

Proof: Trivially from the definition of basic action theories.

Lemma 6.2 Let
�

be a context-free action theory with finite number of parameterless ac-
tions. Under the consistency condition (2), there is a natural number � such that the fol-
lowing set

��� do ��� � � � � � � � is a list of actions �
contains less than � elements, where for any list of actions � ,

� do ��� � � � � � � � do ��� � � � � � � � � � � � � do ��� � � � �%� � � � do ��� � � � � �"�
SameState � do ��� � � � � � do ��� � � � � � � �

In other words, the number of possibly different legal states is bounded by � .

Proof: To simplify our proof, without loss of generality, we assume that the action theory
has only two actions � and � . Consider an arbitrary fluent � ��%' ����� . Suppose its successor
state axiom is as (1). By the consistency condition (2), we have

� � � �$��%' � do ��" # � � � � ��� � ��%' � � � � �
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� � � � � � do ��" � # � � � ��� � ��%' � do ��" � # � � � � � �
��� �� True if � �� �&%' � � �

False if �
�� �&%' � � �

�$��%' � � � � otherwise,

� � � � ��� do �
" � # � � � �"� �$��%' � do ��" � # � � � �(���
��� �� True if � �� ��%' � � �

False if �
�� ��%' � � �

� ��%' � � � � otherwise,

� � � � � � do �
" � � � # � � � �"� � ��%' � do �
" � � � # � � � �(���

�������� �������

True if � �� ��%' � � � � ' �
�� ��%' � � �

True if � �� ��%' � � �
False if �

�� ��%' � � � � ' � �� ��%' � � �
False if �

�� ��%' � � �
� ��%' � � � � otherwise,

� � � � � � do �
" � � ��# � � � �"� � ��%' � do �
" � � � # � � � �(���

�������� �������

True if � �� ��%' � � � � ' �
�� ��%' � � �

True if � �� ��%' � � �
False if �

�� ��%' � � � � ' � �� ��%' � � �
False if �

�� ��%' � � �
� ��%' � � � � otherwise.

Furthermore
� � � � � � do ��" � � � # � � � �"� �$��%' � do ��" � � � # � � � � ��� � ��%' � do �
" � # � � � � � �
� � � � � � do ��" � � � # � � � �"� � ��%' � do �
" � � � # � � � �(��� � ��%' � do �
" � # � � � � � �
� � � � � � do ��" � � � � � # � � � � � � �
� do ��" � � � # � � � � �

� ��%' � do �
" � � � � � # � � � � ��� �$��%' � do �
" � � � # � � � �(� �
� � � � � � do ��" � � � � � # � � � �"� �$��%' � do ��" � � � � � # � � � �(��� �$�&%' � do ��" � � � # � � � � � �
� � � � � � do ��" � � � � � # � � � �"� � ��%' � do ��" � � � � ��# � � � � ��� � ��%' � do ��" � � � # � � � �(� �
� � � � � � do ��" � � � � � # � � � ��� � � � do ��" � � � # � � � �"�

� ��%' � do �
" � � � � � # � � � � � � �$�&%' � do ��" � � � # � � � � � �

Since the fluent � is arbitrary, the finiteness of the set in question follows.

Proof of Theorem 1 Suppose � is achievable in � according to
�

. We need to show
that there is a recursive controller that achieves � in � according to

�
. In fact, we can do

better. We’ll show that there is a finite controller that achieves � . Let � be a robot controller
that achieves � according to

�
, and let

� � � � � � is a terminating run of � under the environment

determined by a model of
�

at � �
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Then the following controller

� � � � � �
��� ��
� If � is not a prefix of any history in

�
stop If ��� �
� If for some 
 , � � � � ��
�� is a prefix of a history in

� (4)

is clearly well (uniquely) defined, and achieves � in � as well. Furthermore, if
�

is finite,
then �%� is finite, thus recursive. We now show that

�
is indeed finite.

Observe, however, that even though there are only finitely many states, we cannot bound
the length of a run by removing “loops” starting and ending in the same state (and guarantee
the finiteness of

�
this way). This is because a controller may be using pure sensing actions

which do not change the state to obtain information. So we need a slightly more complex
approach.

Given a set of histories � , and a history � ��� , a segment � in � : � � � ��� � � � � for
some � � and � � , is said to be determinate if for any �%� in � , whenever � � is a proper prefix
of � � , then � � � � is a prefix of � � . In other words, the underlying controller determined by �
according to (4) with

�
replaced by � , if any, does not need to consider the alternative out-

come of the actions in � . Notice that the empty sequence is trivially a determinate segment
of any history � with respect to any � � and � � above.

Given any run � � �
, we can decompose it into

� � � � � ��� � ��
 � ��� ����� � ��� � � ��� ��
 � � � ��� � � (5)

such that

1. � � � � � � � � � � � are determinate segments of � in
�

.

2. � ��� ��� � ��
 �(� � � � � � � � � � � � ��
 � � are not determinate segments of � in
�

.

Clearly, this decomposition is unique. Furthermore, it has the following properties:

(I) For any � � � �
, if

� � � � �� � � � � � ��
 �� � � ������� � �� � � � �� ��
 �� ��� � �� � �

is a similar decomposition of � � , and

� � � ��
 � ��������� � � ��� ��
 � � � � � � � ��
 �� � � ����� � ��� �� ��
 �� � �

then � � � � . Suppose the above equation holds, then � �	� , � 	 � � �	 , and 
 	 � 
 �	 ,
��� ��� � . We show by induction on ��� ��� � that

� � � ��� � ��
 � � � ��� ��� � 	 � � � 	 ��
 	 � � � �� � ��� � � ��
 �� ��������� � � �	 � � � �	 ��
 �	 � �
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The base case is trivial because both of them are empty sequence. Suppose

� � � ��� � ��
 �(� � ��� ��� � 	 � � � 	 ��
 	 � � � �� � ��� � � ��
 �� ��������� � � �	 � � � �	 ��
 �	 � �
we show that

� � � ��� � ��
 �(� � ��� ��� � 	 � ��� � � 	 � ����
 	 � �(� � � �� � ��� � � ��
 �� ��������� � � �	 � �
� � � �	 � �

��
 �	 � �
� �

that is, � 	 � � � � �	 � � . Because � 	 � � is a determinate segment, by definition, we have
that � � � � � � ��
 � ����������� � 	 � � must be a prefix of � � . Similarly, � �� � � � � � ��
 �� ����������� � �	 � �
is a prefix of � . So either � 	 � � � � �	 � � or one of them is a proper prefix of the other.
The latter is impossible because otherwise, say � 	 � � is a proper prefix of � �	 � � , then
� �	 � � cannot be a determinate segment of � , which violates our assumptions. This
proves that

� � � ��� ����
 � ��� ����� � � � � � � � ��
 � � � � �� � ��� � � ��
 �� ��������� � � �� � � � � � ��
 �� � �
Finally, � � � � . For otherwise, one of them would be a proper prefix of the other,
which is impossible because they are both runs of � under some environment.

(II) For any ��� ����� � � , if � 	 � ��� , then
� 	� � � � end ����� �
� � ��� � � �"� SameState � end ��� 	 � � � � 	 � � � � end ����� � � � ��� � � �(� �

where for any ��� � � � , � � is the history:

� ��� � � ����
 �(��������� � � � � ��� � ��
 � � �
For otherwise, suppose
� � � � � end ����� � � � ��� � � �"� SameState � end ��� 	 � � � � 	 � � � � end ����� � � � ��� � � � � � (6)

We claim that ��� � ����� ��
 � � would have to be a determinate segment of � , a contradic-
tion with the assumptions that we made about equation (5). To show that ��� � � ��� ��
 � �
is a determinate segment of � , suppose �%� � �

, and ��� � � is a proper prefix of � � . Then
�	� �
� � ��� must be a prefix of �%� for ��� is a determinate segment of � . Because both � �
and � are terminating runs of the controller � , for some 
 , �
� � � � ��� � � ��� ��
 � must be
a prefix of � � . Now let � be the model of

�
under which �%� is the terminating run of

the controller � . Since �%� � �
, by Definition 9, � � � � � end � �%� � � � . Thus by (6),

� � � SameState � end ��� 	 � � � � 	 � � � � end ����� � � � ��� � � � � �
Since � 	 � ��� , by Lemma 6.1 
 � 
 	 . Similarly, 
 � � 
�	 . So 
 � 
 � . Thus ��� is a
prefix of � � . This shows that ��� � � ��� ��
 � � is a determinate segment of � .

Thus by Lemma 6.2 and the above property (II), for any run � in
�

, if it is decomposed
as (5), then � ��� � � , where � is the number of actions, and � is the upper bound of
the number of possible equivalent classes given in Lemma 6.2. By property (I), this implies
that

�
must be finite.
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Appendix B Proof of Theorem 2

We shall prove a more general result than Theorem 2. To that end, we introduce a relation
Rexit ��� ��� ��� � � meaning that when started in � , the program � will exit (abort) in � � . It is de-
fined in the way similar to Rdo in Section 4, as an abbreviation of the following second-order
formula:

Rexit ��� ��� ��� � �
������ �$#�� � " � ��� � � � � ��� � � � � # �

where the ellipsis is exactly the same as in (3), i.e. the conjunction of six conditions given
in Section 4. From this definition, it is easy to verify that the following are consequences of
any basic action theory:

' Rexit � nil ��� ��� � � �
Rexit � exit ��� ����� �

Rexit � branch � ��� � � � � � � ��� ��� � � �
Poss � �������%� " SF � ��������� Rexit ��� ��� do � � ����� ��� � � # � " ' SF � � �����"� Rexit ��� � � do � � ����� ��� � � # �

The purpose of introducing Rexit is for the following lemma:

Lemma 6.3 Let
�

be an action theory, and � a model of
�

. For any ground situation terms
� and ��� , � � � Rdo � loop ��� � � � � � � � � � � � iff there are some ground situation terms � ��� � � � � � � ,
����� , such that

1. � � � � and � � � � � .

2. For any ��� ����� ��� , � � � Rdo � � � � � 	 � � 	 � � � .
3. � � � Rexit � � � � � � � � � � � � � � , and � � � Rdo ��� � � � ���
� � � � � .

Similarly, � � � Rexit � loop ��� � � � � � � � � � � � iff there are some � � � � � � � � � , ����� , such that

1. � � � � and � � � � � .

2. For any ��� ����� ��� , � � � Rdo � � � � � 	 � � 	 � � � .
3. � � � Rexit � � � � � � � � � � � � � � , and � � � Rexit � � � � � � � � � � � � .

Proof: By induction on the structure of �
� .

In the following, a history � is called an exiting run of a system ��� � 
 � iff it is a run of the
system, and ��� � � � abort. The following theorem includes Theorem 2 as a special case.

Theorem 5 For any robot program � and any ground situation term � , there is an effective
robot controller � such that for any interpretation � and any ground situation term � � :
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1. (a) If � � � Rdo ��� � � � ��� � , then there is a terminating run � of ��� � 
 � such that � � �
end � � � � � ; (b) if � � � Rexit � � � � � � � � , then there is an exiting run � of ��� � 
 � such that
� � � end � � � � � , where 
 is the environment determined by � at � .

2. (a) If there is a terminating run � of ��� � 
 � such that end � � � � � � � � , then � � � � �
� � � Rdo � � � � � � � � ; (b) If there is an exiting run � of ��� � 
 � such that end ��� � � � � � � ,
then � � � � � � � � Rexit � � � � � ��� � , where 
 is the environment determined by � at � .

Proof: We shall construct a recursive function � ��� � ��� � � , where � is the set of robot
programs, such that for any robot program � , � ��� � � � � � is a robot controller that satisfies the
two conditions in the theorem with respect to � . We define � inductively on the structure of
robot programs:

� � nil � � � �
�

stop if � � �
� otherwise

� � exit � � � �
�

abort if � � �
� otherwise

� � branch � ��� � � � � � � � � � �
����� ����
� if � � �� � � ��� � � � if � � � � � � � � � �� � � � � � � � if � � � � � � � � � �
� otherwise

� � loop � � � � � � � � � � �

���������� ���������

� ��� � � � � � � if for some ��� � � � � � ��������� � � � � � � � � � � such that� � � � � � 	 � � stop for ��� ����� � and � � � � � � � � � abort �� ��� � � � � � otherwise, where � � is a history
such that for some ��� � � � � � � ��������� � � � � � �� � � � � � 	 � � stop for ��� ����� � and there is no
proper prefix � � � of � � such that � ��� � � � � � � � stop

Clearly, for any program � , � ��� � � � � � is a recursive function. We now show that � ��� ��� � � �
satisfies the two conditions in the Theorem. We do so by induction over the structure of
programs.



� is nil. For any ground situation term � , and any interpretation � :

� � � �$# ��� � Rdo � nil � � ������� � � � �%� ' � � ��� Rexit � nil � � �
��� �

From this, and the definition of � � nil � � � , the two conditions in the theorem are triv-
ially satisfied.



� is exit. This case is analogous to the case of nil: For any � , and any � ,

� � � � # ��� � Rexit � exit � � ����� � � � � �%� ' � � ��� Rdo � exit � � ����� �
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� is branch � ��� � � � � � � . Inductively, we assume that the two conditions are satisfied
for � ��� � � � � � � and � ��� � � � � � � . Let � be an arbitrary ground situation term, and � an
arbitrary interpretation.

Suppose � � � Rdo � branch � � � � � � � � � � � � � � � . By the definition of Rdo, there are two
cases:

1. � � � SF � ��� � ��� Rdo � � ��� do � ��� � � � � � � . By inductive assumption, there is a termi-
nating run � of � ��� ��� ��� � � under the environment determined by � at do � ��� � �
such that ��� � end � � � do � ��� � �(� . By our construction of � � branch � � � � � � � � � � � � ,
� � � � ��� � is a terminating run of � ��� � branch � � � � ��� � � � � � � under the environ-
ment determined by � at � . � Furthermore,

end �(� ��� � ��� � � � � � end � � � do � ��� � �(� � � � �

2. � � � ' SF � ��� � �%� Rdo ��� � � do � ��� � � � � � � . analogous to the previous case.

This proves condition (1)(a) of the theorem. The proof of (1)(b) is analogous.

To prove (2)(a), suppose � is a terminating run of � ��� � branch � � � � � � � � � � � � under the
environment 
 determined by � at � . Again, there are two cases:

1. � � � SF � ��� � � . By our construction, � � � � � � � � � � , and � � is a terminating run
of � ��� � � ��� � � under the environment determined by � at do � ��� � � . By inductive
assumption,

� � � do � � � � � ��� � � Rdo ��� ��� do � ��� � � � � � � �
where � � � end � � � � do � ��� � �(� � end � � � � � . By

� � � Poss � � � � � � SF � ��� � � � Rdo ��� ��� do � ��� � � � � � ��� Rdo � branch � ��� � � � � � � � � � � � � �

we have
� � � � � � � � Rdo � branch � � � � � � � � � � � � � � � �

2. � � � ' SF � ��� � � . analogous to the previous case.

This proves (2)(a). The proof of (2)(b) is again analogous.



� is loop ��� ��� � � � . The proof for this case is exactly like that for the branch case, but
using Lemma 6.3.

�
This makes use of easy lemma that if � is a terminating run of

�
under the environment determined by �

at do ���	��

� , and ��� � SF ���	��

� , then ���	��������� is a terminating run of
���

under the environment determined by
� at 
 , where

�	�
is a controller such that

��� �����
��� and
�	� �����	������������� � ����� .
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Appendix C Proof of Theorem 3

We restate Theorem 3:

Theorem 3 For any TM basic action theory
�

, any effective controller � , and any ground
situation term � , there is a robot program � such that for any model � of

�
and any ground

situation ��� , we have

1. If � � � Rdo � � � � � � � � , then there is a terminating run � of the system ��� � 
 � such that
clean � ��� � � end ��� � � � , where 
 is the environment determined by � at � .

2. If there is a terminating run � of the system ��� � 
 � such that ��� � end ��� � � � , then there
is a situation �&� � such that ��� � clean � ��� � � , and � � � � � end � � � � �
� Rdo ��� � � � ��� � � ,
where 
 is the environment determined by � at � .

Proof: The proof involves using the fluents Marked and loc to emulate a Turing machine
tape. If Marked � � ����� holds, then the � th position of the tape will be 1, and otherwise, 0. To
indicate the state of some segment of the tape, we will show a sequence of 0s and 1s, with
the current location (i.e. loc � ��� ) taken to be the position of the first digit of the underlined
pair of 0s and 1s. Thus if the initial segment of the tape in � � is � � ��� � � , then loc � � � � � � ,' Marked � � � � � � , ' Marked ��� � � � � , Marked � � � � � � , etc.

We assume without loss of generality that there are only two action � and � . We can
encode a history as follows:

00 � � 
 � ����� � � 
 � 11 �
where � 	 is 01 or 10 for action � or action � respectively, and where 
 	 is 01 or 10 for
outcome � or � respectively. Since � is a recursive function, there is a Turing machine �
that computes it. Given a history encoded as above, it will terminate with the tape looking
like

00 � � 
 � ����� � � 
 � � �
where � is either 00 (for abort or � ), 11 (for stop) or 01 or 10 as above for � or � . Since
the five special actions have the same power as a Turing machine, there is a robot program
��� that consists of only Turing actions that senses and marks the tape in exactly this way.

We can now describe the robot program that achieves the same goal as the controller � .


 For any fixed string � of 0s and 1s, let write ��� � be the robot program that writes � on
the tape and sets loc to the position just right of � . It is defined inductively by:

write � � � � nil;
write � 0 � � � seq � erase � seq � right � write ��� �(� � ;
write � 1 � � � seq � mark � seq � right � write ��� �(� � .
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 The robot program home is such that whenever the tape encodes some history like:

00 � � 
 � ����� � � 
�� � �

home will reset loc to � :
loop(seq(left, branch(read mark,

seq(left, nil),
seq(left, branch(read mark, nil, exit)))),

nil).


 The robot program ini is "write � 0011 � � home # . �

 The robot program �

� performs the action � , and writes either 0111 or 1011 on the
tape depending on the sensing result returned:

branch ��� � "write � 1011 � � home # � "write � 0111 � � home # � .
The program ��� is analogous.


 The robot program interpret is

branch(read mark,
seq(right, branch(read mark,

seq(right, exit),
seq(right, ��� ))),

seq(right, branch(read mark,
seq(right, � � ),
seq(right, loop(nil,nil)))))


 Finally, the desired robot program � is " ini � loop ��" � � � interpret # � nil � # where � � is
the robot program associated with a single step of the effective controller � .

To paraphrase, the robot program � , starting at some home position on the tape, first writes
0011 encoding the empty history, and then returns to the home position. Next, within a
loop, it repeatedly uses � � to place a suitable � at the end of the history, and then interprets

�
For any robot programs � and � � , ����� � means executing � followed by � � . Formally, the “;” notation is

defined inductively:
	
nil �
��� �
� ;	
exit ����� � exit;	
branch ���	��� � ��� ) ���
����� branch ���	� 	 � � ����� � 	 � ) ������� ;	
loop ��� � ��� ) ������� � loop ��� � � 	 � ) ������� .
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this � : if it is 00 it goes into an infinite loop; if it is 11 it exits the loop (and so terminates);
if it is 10, it performs action � , writes either 0111 or 1011 on the tape depending on the
sensing result returned, and then returns to the home position; if it is 01, it does the same as
above but for action � . Note that when � is 01 or 10, the effect of writing 0111 or 1011
on the tape depending on the result of action � or � ensures that the tape now encodes an
extended history

00 � � 
 � ����� � � 
�� � � � ��
�� � � 11 �
which is then ready for the next iteration.

It can be verified that from this construction, the conditions in the theorem follow.
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