What robots can do:
Robot programs and effective achievability

FangzhenLin
Department of Computer Science
The Hong Kong University of Science and Technology
Clear Water Bay, Hong Kong
flin@cs.ust.hk

Hector Levesque
Department of Computer Science
University of Toronto
Toronto, Canada M5S 3H5
hector@ai .toronto.edu

May 15, 1997

Abstract

In this paper, we propose a definition of goa achievability: given a basic action the-
ory describing an initial state of the world and some primitive actions available to a
robot, including some actions which return binary sensing information, what goals can
be achieved by the robot? The main technical result of the paper isaproof that asimple
robot programming languageisuniversal, in that any effectively achievablegoa can be
achieved by getting therobot to execute one of the robot programs. The significance of
thisresult isat least two fold. First, it isin many ways similar to the equivalencethe-
orem between Turing machines and recursive functions, but applied to robots whose
actionsare specified by an action theory. Secondly, it providesformal justificationsfor
using the simplerobot programming language as afoundation for our work on robotics.

1 Introduction

Imagine that in the not too distant future, you are given a robot of some sort, and that you
want to figure out what it can do. Browsing through the manual that came with it, you dis-
cover that the robot is capable of performing under computer control any of a set of primi-
tiveactionsa,, ..., a,. According to the manual, what each action «; actually does depends
on the state of the environment. First, to complete successfully, a precondition of the ac-
tion must hold in the environment. Next, assuming the actionis successful, its effect on the
environment may aso depend on certain other conditions. Finally, some of the actions are
connected to sensorsand can return abinary val ueindicating when acertain condition holds.
The question is. assuming we are willing to do some programming, what do we expect to
be able to achieve with the robot?

In this paper, we propose an answer tothisquestion. Specifically, we propose an abstract
characterization of what goals are effectively achievable asafunction of agivenlogica the-
ory describing theinitial state of the world and the primitive actions available to the robot.
The main contribution of the paper isa precisetechnical framework where questions of goal
achievability can be posed and answered. The main technical result is a proof of the uni-
versality of the smple robot programming language introduced in [8]: it will turn out that a
goal is effectively achievable according to logical theory T iff thereisarobot program that
achievesit accordingto 7'.

1.1 A motivating example

To make the problem more concrete, imagine that you are also given a solid steel box that
containsatreasure. Thereisasmall robot-sized door on the box, which is currently closed,
andtherearetwo buttonsbesideit, agreen oneand ared one. The primitiveactionsavailable
to the robot are pressGreen, pressRed, and fetch. The manual says that if the robot happens
to be beside the closed door, pressGreen causes the green button to be pressed, and pressRed
similarly. The manual also saysthat the robot has aheat sensor so that apress action returns
1 when the button pressed was hot, and O otherwise. The fetch action causes the robot to
trundle inside the box and retrieve what's inside, provided that the robot is beside the door
and thedoor isopen.! The goa we are interested in here, obvioudly, is getting the treasure,
under assumptions like the following:

1. If weknow nothing el se about the environment, we want our account of achievability
to predict that we cannot achieve the goal. Of course, we might end up eventually
getting the treasure by forcing the door open with acrowbar, or by saying some magic

'In amore realistic setting, of course, there would be alarge number of other preconditionsfor actionslike
these.

words, or even by getting the robot to press the buttonsin some order. But thereisno
reason to believe a priori that any of these methods will work.

2. If we know that the red button opens the door of the box, we want our account of
achievability to say that we can achieve the goal using the robot: we get it to do the
sequence pressRed, then fetch. Of course, something might go wrong: the door might
jam, lightning might strike the robot, a comet might hit the earth. But thereisno rea-
son to believe that the sequence will fail given what we have been told.

3. If we know that one of the buttons opens the door of the box, and the other button
locks the door permanently, but we don’t know which is which, our account should
predict that we cannot achieve the goal using therobot. Asin (2), we know that there
isasequence of actionsthat will work — press one of the buttons then fetch — but here
we do not know what that sequenceis.

4. But consider the following situation: we know that the door can be opened by first
pressing the green button, and then pressing one more button, but we are not told
which, and again, getting it wrong locks the door permanently. However, suppose
that we know that the safe will lock forever iff the robot pushes a button that felt hot
on the previous press. Asin (3), we know that thereis a sequence of actionsthat will
work, and again we cannot say what that sequenceis. Thistime, however, our account
should predict that we can achieve the goal: we get the robot to pressGreen, and then
pressGreen once more if the button was cold, but pressRed if it was hot.

5. Finally, suppose we know that after pressing the green button some unspecified num-
ber of timesand at |east once, pressing the red button will open the door and pressing
thegreen onewill lock it forever. With no other information, we clearly cannot obtain
the treasure. However, if we also know asin (4) that the door will lock forever iff the
robot presses a button that was just hot, then we can once again achieve the goal: we
get the robot to repeatedly press the green button until it feels hot, then pressthered
one to open the door, and then fetch the treasure.

To the best of our knowledge, thereisas yet no formal framework that would give the intu-
itively correct answers for examples like these.

1.2 Relation to other work

There are, however, three areas of research that come close to providing these answers.
Planning As the five examples above illustrate, the idea of a goal being achievable

by arobot is clearly related to the concept of planning and especialy, given the sensing,

conditional planning, asin [2, 9, 13, 16]. In all of the variants above, we ended up saying

that the treasure was obtainable precisely when we could formulate some sort of plan to
obtainit. Why then not smply define goal achievability in termsof the existence of aplan?

The problem with thisinvolves characterizing exactly what we mean by aplan. Anobvi-
ous case iswhen afixed sequence of actionsissufficient. But in some of the variants above,
we needed to consider conditional and iterative plans, which suggests a structure morelike
that of aprogram[10]. Clearly these would not be programsin atraditional language like C
or LISP. For one thing, the primitive statements of the program would have to involve the
actions «a;, rather than the usual variable assignment or read/write statements. What would
we use as the conditionsin an if-then-else or awhile-loop statement? How should the exe-
cution of programs containing the «; be defined?

We believe that these questions can be resolved and that it is possible to characterize
achievability interms of such programs (see Section 4 below) . However, to avoid making
design decisions that might initially appear to be arbitrary or restrictive, we prefer to first
define achievability in ageneral program-independent way, and then prove that a program-
ming language is adequate according to this definition.

Computability A second concept related to achievability isthat of effective computabil-
ity [12]. Aswill becomeclear, wewill end up defining achievable goal s as those wherewhat
to do next to achieve them, given what isknown about the actionsand theinitial state of the
world, can be “computed” as afunction of what the sensors tell the robot.

However, we cannot simply use an existing account of computability for two reasons.
First, we want to allow for incomplete information about the environment surrounding the
robot. In contrast to typical accounts of computability, the initial state of the environment
need only be partially specified by a collection of axioms. The second reason concerns the
primitive actions. Intypical computability models, the available actions are predefined and
internal to the machine (or formalism). For instance, we might have actions to write and
read a Turing machine tape, or to increment and decrement registers, or to assign valuesto
variables, and so on. In our case, by contrast, the primitive actions for arobot are not pre-
defined and are external, in that they have effects in the environment outside of the robot.
These actions are al so described by a collection of axioms, which specify the action precon-
ditions and effects, and deal with the frame problem.

Thus our account of goal achievability depends crucially on what the given axioms say
about theinitial state and the available actions. In some of the examples above, we had two
theories 7, C T, describing the sameinitia state and set of actions. A goal was considered
unachievablerelativeto theinformation provided by 7, but achievablerelativeto 7', where
additional information was available. We would like to define anotion of goal achievability
as arelation between a formal theory 7" and the goals we would like to achieve, and no
existing account of computability doesthis.

Knowing how Finally, the concept of achievability isvery closaly related to the con-
cept of an agent knowing how (or being able to) achieve a goal or execute a plan, as dis-
cussed for example, in[1, 17, 18]. One difference between the two concepts concerns the

3

issue of effectiveness. As far as we know, no existing account of knowing how or ability
considers whether or not the know how of an agent would be effective, in the sense of a-
lowing the agent to “compute” what to do. But putting effectiveness aside, thereis aso a
differencein point of view: who hasto know what and when. There may be conditions that
we would consider to be achievable, but that the agent does not know how to bring about.
For example, if the red button opens the door, we know that goal of getting the treasure is
achievable by the agent/robot; but if the agent does not know which button is the correct
one, we would not say that it knew how to get the treasure. Conversely, we can imagine a
situation where we do not consider the goal to be achievable (in the sense of being able to
produce a plan) because we do not know which buttonsto use, but where we know that the
agent does. We can a so imagine situations where the agent initially knows less than we do,
but after obtaining information from its sensors, knows as much or more than we do.

When reasoning about what one agent knows about another, the concept of knowing-
how or ability may be the more useful one; when attempting to analyze what we can get an
agent or robot to do for us, our notion of goal achievability may be the more appropriate.
Moreover, it ought to be the case that the two notions coincide when the agent knows exactly
what we do about the environment and the actions. The precise relation between the two
concepts is subtle, however, and we will not exploreit further here (see [6]).

In sum, whilethe concept of goal achievability isclearly related to the areas of planning,
computability, and agent ability, noneof these can give usthe answerswewant, for example,
in the five situations above.

Therest of the paper isorganized asfollows. In the next section, we review the situation
calculus, aformal logical language in terms of which the state of the environment and the
primitive actions can be described by a collection of axioms we call abasic action theory.
In Section 3, we define precisely what we mean by effective achievability (and related no-
tions) as a function of a given basic action theory. In Section 4, we review the syntax and
semantics of asimple robot programming language first proposed in [8] as a language for
plans. In Section 5, we present some results, including the main technical result of the pa-
per: the universality of the robot programming language. This is arobot analogue of the
classic universality result in computability theory: a function is computable iff thereis a
program/machinethat computesit. Finally, in Section 6, we summarize the paper and sug-
gest topicsfor further research.

2 Thesdituation calculus and basic action theories

Since the goa of this research is to make the specification of goal achievability depend on
a given action theory 7' describing the initial state of the world and the available actions,
we need to describe the representation language we use to formul ate the theories, which is
adialect of the situation calculus [11].

The language of the situation calculus is many-sorted. Normally, thereisa sort for sit-
uations, a sort for actions, and a sort for objects like blocks and people that are elements
in the domain of interest. We assume that there is a special constant S, used to denote the
initial situation, namely that situation in which no actions have yet occurred; thereisadis-
tinguished binary function symbol do where do(a, s) denotes the successor situation to s
resulting from performing the action «; relations whose truth values vary from situation to
situation, are called (relational) fluents, and are denoted by predicate symbols taking a sit-
uation term as their last argument; there is a specia predicate Poss(a, s) used to state that
action a is executablein situation s; and finally, thereis aspecial predicate S-(a, s) used to
state that the sensor associated with action « (if any) returnsthe value 1 in situation s.*

Within thislanguage, we can formulate domain theories which describe the initia state
of theworld and the actions avail able to the robot. We specify the preconditions of actions,
for example, by writing axioms that define Poss; we specify the condition measured by a
sensor by writing axioms that define SF, and so on. Here, we use a theory which contains
only the following axioms:

e Axiomsdescribing theinitia situation, S,. Syntactically, these axioms cannot men-
tion any other situation terms except So.

¢ Action preconditionaxioms, onefor each primitiveaction A, characterizing Poss(A4, s).
Syntactically, these axioms all have the following form:

Poss(A, s) = U ,(s),

where W 4(s) is aformulathat does not mention any other situation terms except s,
doesnot quantify over situation variables, and does not mention the special predicates
like Poss, SF', or < (introduced below).

¢ Sensed fluent axioms, one for each primitive action A, characterizing SF(A, s). Syn-
tactically, these axioms have the form:

SF(A,s) = H4(s),

wherell 4 (s) satisfies the same conditions as those for U 4(s) above. For actions that
have nothing to do with sensors, this should be [SF(A, s) = True].

e Successor state axioms, one for each fluent F, characterizing under what conditions
F(#,do(a, s)) holds as function of what holdsin situation s. These take the place of

2In[8], the predicate SF was used to characterize what an agent knew in asituationin terms of afluent K.
In this paper, we will not be concerned with the knowledge of agents.

the so-called effect axioms, but also provide a solution to the frame problem [14].
Syntactically, successor state axioms have the form:

Poss(a, s) D [F(Z,do(a,s)) = ®p(Z,a,s)],
where ¢ satisfies the same conditions as those for W 4(s) above.

e Unique names axioms for the primitive actions: For any two different actions A(%)
and A'(y), we have

A@) # A'(9),
and for any action A(z1, ..., z,), we have

Az, hzn) = AW, 0 Un) DT = Ao A2y = Y.

¢ Foundational, domain independent axiomsthat characterize the structure of the space
of situations, and define a predicate < so that s; < s, holds iff there are actions
ai,...,a,, 0 <mn,suchthat

sy = do([ay,. .., a,],s1) A Poss(ar,s1) A ... A Poss(a,,do([ar,...,an—1],51))

holds, wherefor any situation s, do([], s) = s, andinductively,do([a|L], s) = do(L, do(a,)).
These axioms are:

So # do(a, s),
do(ay, s1) = do(az, s2) D (a1 = az A s1 = s3),
(VP).P(So) A (Va, s)[P(s) D P(do(a,s))] D (Vs)P(s),
-5 < So,
s < do(a,s’) = (Poss(a,s') A s < §').

Notice the smilarity between these axioms and Peano Arithmetic. The first two ax-
ioms are unigue names assumptions; they eliminate finite cycles, and merging. The
third axiom is second-order induction; it amounts to a domain closure axiom which
says that every situation must be obtained by repeatedly applying do to S;,.* The last
two axioms define < inductively.

Following [4], we call atheory of thisform abasic action theory.

3For adiscussion of the use of inductionin the situation calculus, see (Reiter [15]).

3 Effective achievability

To defineinits most general form what arobot armed with primitiveactions a, ...a,,, can
achieve, it is useful to begin by looking at the problem from the point of view of a robot
controller, for instance, an onboard computer.

What arobot controller needs to do at any given point in time is to select the primitive
action to perform next (or to stop). We arewilling to assume arbitrary amounts of computa
tion and intelligence in making this decision, aswell as full access to the given basic action
theory. We do not want to assume, however, that the controller necessarily knows every-
thing there isto know about the current state of the environment. For example, if it is part
of the basic action theory that a door is open initially, the controller can use thisfact; but if
the action theory does not specify the state of the door, the robot may need to perform some
(sensing) action to find out whether it is open, assuming such an action is available.

So what does a robot controller have access to beyond the given basic action theory?
In its most general form, we might imagine that the robot controller remembers al of the
actionsit has selected until now, as well as the sensing results of al these actions. In gen-
eral, these sensing results must be compatible with the given action theory, but will not be
entailed by it, and so provide additional information to the controller.

Once we have specified what a robot controller is, we can then define the achievable
goals. Roughly, agoal will be considered to be achievable if there exists arobot controller
such that if we were to repeatedly do the primitive action it prescribes, then no matter how
the sensing turns out, we would eventually terminate in a Situation where, according to the
action theory, the goal condition would hold. We now proceed to formally define the rele-
vant notions.

3.1 Robot Controllersand Environments

We assume afiniteset A of actionsthat are parameterless, and represented by constant sym-
bols. Atany point, therobot will bein some state determined by the actionsit has performed
so far and, in the event of sensing, the readings of its sensors. More precisely, we define:

Definition 1 (History) A history o isan element of theset R = (A x {0,1})*.

Intuitively, the history (a1, 31) o - -+ o (e, 3,) meansthat o, ..., «, is the sequence of ac-
tions performed so far, and 3, ..., 3, are the respective sensing results of the actions: For
any 1, if the sensing fluent S /" holds for «; in the situation where the action is performed,
then 3, = 1, else 5; = 0. Noticethat by the form of basic action theories (cf. section 2), if
«; isan action that has nothing to do with sensors, then 3; = 1. Notice also that the empty
sequence ¢ is ahistory.

A robot controller is then a mapping from such a history to the next action to perform.
In addition to the given primitive actions in A, we assume some specia symbols. In the

7

following, let AT = A U {stop, abort, 1.}, where stop, abort, and | are specia symbols
notin A. Intuitively, stop will be used to denote termination, abort to signal exit beforethe
end of the computation, and L to denote an undefined computation.* Formally, we define:

Definition 2 (Robot controller) A (robot) controller C isany function fromhistoriesto ac-
tionsor special symbols, C: R = A*.

Definition 3 (Effective Controller) A controller is effectiveif the function C isrecursive.

It should be clear that the only feedback the robot gets from the environment is through
its sensors. Just as arobot controller specifies the next action to perform, an environment
specifies the sensing result of that action. More precisely, we define:

Definition 4 (Environment) An environment £ is any function from histories and actions
totheset {0,1},&: R x A= {0,1}.

In other words, (o, «) tells us what the sensor associated with action o will report given
the history o.

Intuitively, the picture isthis. We start with the empty history ¢; the robot controller C
chooses an action to perform a; = C(¢); the environment £ determines the value returned
by the oy sensor: 81 = E(¢, ay); given this result, the robot then chooses another action
to perform o, = C((e, 81)), and the environment determines the «; sensor value: 3, =
E((an, B1),az); then as = C((aq, 41) o (a2, 32)) and so on, until C says stop.

Definition 5 (System) Asystemisapair (C, £), whereC isa controller, and £ an environ-
ment.

Frequently, we shall refer to the system (C, £€) asthe controller C under the environment €.

Definition 6 ((Terminating) run) A history o isa run of a system (C, &) if, inductively,
either o istheempty sequencecor o = ¢’ (o, 3) suchthat o’ isarun of thesystem, C(¢') =
a € A andE(o’,a) = 8. Ahistory o isaterminating run of (C, €) ifitisarunof (C,)
andC(c) = stop.

Clearly, a system can have at most one terminating run.

“The reason we need abort and L will be made clear later in the context of robot programs.

3.2 Achievability and Effective Achievability

Note that neither controllers nor environments are part of the situation calculus; they are
smply abstract functions over the domain of histories. To make a connection with the sit-
uation calculus, we first relate histories to situations:

Definition 7 (Run and situation) Given any history o, and any situation term s, we define
another situation term, the end situation of o on s, written end(o, s), as: end(e, s) = s; and
inductively, if o = o' (a, 3), then end(o, s) = do(a, end(o’, s)).

Next, we relate environments to logical interpretations of a basic action theory.

Definition 8 (Environment and interpretation) Given an interpretation / and a ground
situation term S, an environment £ issaid to be determined by 7 at S iff for any history o,
and any action o, £(o, o) = 1iff [|= SF(a, end(o, 5)).

Itisclear that thereis exactly one such environment for any given 7 and S. In other words,
once we specify an interpretation of a basic action theory (and a starting situation), the in-
terpretation of the S- predicate completely determines how the sensing will turn out, and
hence the environment.

In general, we expect a basic action theory to be satisfied by many interpretations, cor-
responding to the various ways the environment could turn out. Goal achievability requires
acontroller towork in all such interpretations:

Definition 9 ((Effective) achievability) Given anactiontheory 7', agoal G(s) whichisa
formulawith asinglefree situation variable s, and a ground situationterm S, we say that
is(effectively) achievablein S according to 7' iff thereisan (effective) controller C such that
for any model 7 of 7', thereis a terminating run o of C under the environment determined
by 7 at S suchthat / = S < end(s,S) A G(end(s,.5)).

In general, there will be goalsthat are achievable but not effectively achievable. However,
aswe are going to show below, for context-free action theories, if agoal isachievable, then
it isalso effectively achievable.

3.3 Achievability in Context-Free Action Theories

By acontext-free action theory we mean atheory in which all actionsare context freeinthe
sensethat their effectsareindependent of the statein which they are executed. For example,
in the blocks world, the action stack(z, y), that picks up block = on the table and putsin on
top of block y, iscontext free—aslong asit is executable, it will always cause = to be on y.
On the other hand, in the extended blocks world in which there may be more than one block
on top of another block, the action unstack(z, y), that removes = from y, is not context free

—whether block y will be clear afterwards, for example, depends on whether » wasthe only
block on top of y.

Now an action theory is context free if, according to the theory, all actions are context
free. Formally, following[5], we call an actiontheory 7' context freeif every successor state
axiom in it has the following form:

Poss(a, s) D [F(Z,do(a,s)) = £ (Z,a) V (F(Z,s) A 75 (T, a))], D

where vf (7, a) and v (7, a) are situation independent formulas whose free variables are
among those in #, a. Under the following consistency condition [14]:

S | (Va, 7).~(vF (&, 5) Ave(E, 5)), (2)

the axiom (1) implies that for any action «, after the action is performed, F will be true
(added) for tuplesin {7 | v} (%, a)}, false (deleted) for tuplesin {7 | v (%, a)}, and persist
fortuplesin {#| -1 (Z, a) A—y7 (%, a)}. Theaction a iscontext-free because the conditions
v and vf are situation independent. Note that in the usual formulation of STRIPS, with
add and delete lists, every action is considered to be context-free.

Theorem 1 Let 7' be a context-free action theory, and the consistency condition (2) holds
for every fluent F'.° If agoal ¢ isachievablein S, thenit is also effectively achievable.

Proof: See Appendix A. m

Informally, the theorem hol ds because a context free action theory can only havefinite num-
ber of possible legal states. One can read the theorem in two ways. On the one hand, it
pointsto some potential computational advantages of working with context-free action the-
ories. On the other hand, it aso points out their expressive limitations. For example, this
theorem implies that it isimpossible to simulate an arbitrary context-sensitive action with
afinite set of context free actions.

4 A robot program language

In [8], the following question was considered: what should the output of a planning proce-
dure be? In the absence of sensing, the answer isreasonably clear and dates back to Green
[3]: aplanisalegaly executable sequence of actions that resultsin afina situation where
the goa condition holds. In the presence of sensing, however, a planner cannot simply re-
turn a sequence of actions since the actions to execute to satisfy the goa could depend on
the runtime result of earlier sensing operations (as in the examples in the introduction).

5Technically, thisconditionisnot necessary. However, it simplifiesour proof, and isareasonabl e condition
to impose on action theories.

10

Clearly, what is needed is something more like a program, with branches and loops. On
the other hand, it would need to beaprogramthat isnot only legally executable (in the sense
that the preconditions of the primitive actions at each step are satisfied), and leads to agoal
state (inthe sense that the program terminatesand the goal condition holdsintheterminating
situation), but also a program that does not require more information to execute than what
we expect the robot to have. For example, if all we know is that the door to the steel box
opens by pushing either the red or the green button, then the program which says something
like “if the red button is the one that opens the door then push it, else push the other one”
might satisfy the first two conditions, but not the last one.

There are various ways to ensure this last requirement. The approach taken in [8] isto
invent a smple language that contains branches and loops, but that does not mention any
conditions involving fluents. The resulting programs are then trivial to execute since with-
out such conditions, there is nothing for the robot executing the programsto know.

Consider the following ssimple programming language, defined as the least set of terms
satisfying the following:

1. nil and exit are programs;
2. If aisan action and ry and r, are programs, then branch(a, r, r2) isaprogram;
3. If ry and r, are programs, then loop(ry,) iSaprogram.

Wewill call such termsrobot programs and the resulting set of terms R, the robot program-
ming language.

Informally, these programs are executed by an agent asfollows: to execute nil the agent
doesnothing; to execute exit it must be executing aloop, in which case see bel ow; to execute
branch(a, ry, ;) it first executes primitive action «, and then it executes r, if the sensor
associated with « returns 1, and r, otherwise; to execute loop(ry, 2), it executes the body
rqy, and if it ends with nil, it repeats », again, and continues doing so until it ends with exit,
inwhich case it finishes by executing r,.

Note that many actions will not have an associated sensor and will always return 1. We
thus use the abbreviation seq(a, r) for branch(a, r, r) for those cases where the returned
valueisignored.

Here are some robot programs for the examples in the introduction. (Recall that the
pressGreen action returns 1 if the button is hot).

1. Sequence of actions:
seq(pressRed, seq(fetch, nil)).

2. Conditional plan:
branch(pressGreen,
seq(pressRed, seq(fetch, nil)),
seq(pressGreen, seq(fetch, nil))).

11

3. Ilterative plan:

loop(
branch(pressGreen, exit, nil),

seq(pressRed, seq(fetch, nil))).
Intuitively at least, the following should be clear:

¢ An agent can always be assumed to know how to execute a robot program. These
programsare completely deterministic, and do not mention any fluents. Assumingthe
binary sensing actions return asingle bit of information to the agent, there is nothing
else it should need to know.

e The example robot programs above, when executed, result in final situations where
the goal conditions from the introduction are satisfied.

To be precise about this, we need to first define what situation isthe final oneresulting from
executing a robot program in an initial Situation s. Because a robot program could con-
ceivably loop forever (e.g. loop(nil,nil)), we will use aformulaRdo(r, s, s") to mean that r
terminates|egally when started in s, and s’ isthe final situation. Formally, Rdo isan abbre-
viation for the following second-order formula:

RAO(r, 51, 80) & VPL.. D P(r,s1,55,1)] 3)
wherethe elipsisis (the conjunction of the universal closure of) the following:
1. Termination, normal case: P(nil, s, s, 1);
2. Termination, loop body: P(exit, s, s, 0);

3. Primitive actionsreturning 1:
Poss(a,s) A SF(a,s) A P(r',do(a,s),s’,z) D P(branch(a,r’,r"),s,s', z);

4. Primitive actions returning O:
Poss(a,s) A =SF(a,s) A P(r",do(a,s),s’,z) D P(branch(a,r’, r"),s,s’ z);

5. Loops, exit case:
P(r',s,s",0) A P(r",s",s',) D P(loop(r',r"),s, s, x);

6. Loops, repest case:
P(r',s,s", 1) A P(loop(r’,r"),s",s',x) D P(loop(r',r"),s, s, x).

By using second-order quantification in this way, we are defining Rdo recursively as the
least predicate P satisfying the constraints in the ellipsis. Second-order logic is necessary

12

here since there is no way to characterize the transitive closure implicit in unbounded iter-
ation in first-order terms.

Therelation P(r, s, s’,0) inthisdefinition isintended to hold when executing r starting
in s terminateslegally at s’ with exit; P(r, s, s’, 1) isthe same but terminating with nil. The
difference shows up when executing loop(r, r’): in the former case, we exit the loop and
continue with /; in the latter, we continue the iteration by repeating loop(r, r') once more.

With thisdefinitionin place, we can now characterizeprecisely the goal sthat are achiev-
able using robot programs:

Givenan actiontheory 7', arobot programr, agoal condition G(s) and aground
stuation term S, we say that r achieves G in S according to 7' iff

T = 3s".Rdo(r, S, s") A G(s")

We now relate this definition to effective achievability.

5 Robot programsare universal

Our main technical result in this paper is that agoal is achievable by an (augmented) robot
programiff it isachievable by an effective controller. We shall provethisin two parts. Firgt,
we show that for any robot program, thereis a corresponding effective controller for it. We
then show that if 5 special “ Turing machine actions’ are included, then any effective con-
troller can be ssimulated by arobot program.

5.1 From robot programsto effectivecontrollers

Theorem 2 For any robot program r and any ground situationterm S, thereis an effective
controller C such that for any interpretation 7 and any ground situation term S”:

1. If I = Rdo(r, S, 5"), then thereisa terminating run o of the system (C, £) such that
S’ = end(o, S), where £ is the environment determined by 7 at S.

2. If thereisaterminating run o of the system (C, £) such that end(o, S) = 57, then
I'=S5<S5 D>Rdo(r, S,S"). Here € isthe environment determined by 7 at S.

Proof: See Appendix B. m

13

5.2 From effective controllersto robot programs

Given an effective controller, there may not always be a robot program that simulates it.®
The easiest way to remedy thisisto add some special Turing machine actionsasin [8].

Formally, we assume that in addition to the actionsin A, we have 5 special actions, left,
right, mark, erase, read_mark, and two specia fluents Marked, loc, characterized by the
following axioms:

1. Precondition: the 5 actions are always possible
Poss(l€ft, s) A Poss(right, s) A Poss(mark, s) A Poss(erase, s) A Poss(read_mark; s);

2. Successor state: only erase and mark change the Marked fluent
Poss(a, s) O {Marked(n,do(a, s)) =
a=markAloc(s)=n V
Marked(n, s) A =[a = erase A loc(s) = n]};

3. Successor state: only left and right change the loc fluent
Poss(a, s) O {loc(do(a,s)) =n =
a=leftAloc(s)=n+1 V
a=rightAloc(s) =n—1 V
loc(s) =n Aa # left A a # right};

4. Sensed fluent: read_mark tells the agent whether the current location is marked
SF(left,s) A SF(right, s) A SF(erase, s) A SF(mark, s) A
[SF(read_mark, s) = Marked(loc(s), s)].

These axioms ensure that the 5 special actions provide the robot with what amounts to a
Turing machine tape.

In the following, we will be using what we will call a TM basic action theory. This
is abasic action theory as before, but where A includes the 5 specia actions, 7' contains
the above axioms, and where the successor state axiomsin 7' for fluents other than loc and
Marked are such they are unaffected by the 5 actions. More precisely, for any fluent F' that
isdifferent from Marked and loc, and when A isany of the 5 special actions, the theory T
entails:

Poss(A, s) D [F(do(A,s)) = F(s)].

In the following, for any ground situation term .S, we define clean(5) to be the situa-
tion term obtained from S by deleting all the specia five actions: clean(S,) = S, and

5The proof of thisis somewnhat |aborious. Observe that despite the presence of loops, arobot program has
no internal memory and so no way of counting. So consider an action theory that encodes a string problem:
decideif astring of 0sand 1shasmoreOsthan 1s. A Turing machine can do this, but afinite-state automaton
cannot. Similarly, an effective controller can achieve the corresponding goal, but a robot program in general
cannot. We omit the details.

14

clean(do(«, 5)) = do(«, clean(.5)) if o € A isnot aTuring action, and clean(do(«, 5)) =
clean(S) otherwise.

Theorem 3 For any TM basic action theory 7', any effective controller C, and any ground
situationterm S, there is a robot program r such that for any model 7 of 7" (as above) and
any ground situation S’, we have

1. If I = Rdo(r, S, .S"), then thereis a terminating run o of the system (C, £) such that
clean(S’) = end(o, S), where £ isthe environment determined by / at S.

2. Ifthereisaterminating runo of thesystem(C, £) suchthat S’ = end(o, S), thenthere
isasituation S” such that S* = clean(S”), and I |= S < end(o,.S) D Rdo(r, S, S"),
where £ isthe environment determined by 7 at S.

Proof: See Appendix C. m

5.3 Themain theorem
By Theorem 2 and 3, we have the following result:

Theorem 4 Let 7" be any TM basic action theory and G be any goal that does not mention
the special fluentsloc and Marked. Then (- is effectively achievablein S according to 7' iff
thereisa robot program r such that r achieves ¢ in S according to 7'.

Proof: Suppose isachieved by the effective controller C. We show that the robot program
r for C asin Theorem 3 achieves (5. Suppose / isany model of 7'. Then, by the definition
of achievability, thereis aterminating run o of (C,€) suchthat / = S < end(o,S) A
G(end(o, S)), where £ is the environment determined by 7 and S. According to Theo-
rem 3, thereisa situation S” such that clean(S”) = end(o,S)and I = S < end(o, S) D
Rdo(r, S, S”). Thus I |= Rdo(r, S,S”). By I = G(end(s, S)) and clean(S”) = end(o, S),
wehave ! = G(S”) (by aproperty about clean). So 7 |= (3s")Rdo(r, S, s') AG(s"). There-
foreT |= (3s)Rdo(r, S, s") A G(s'), and so r achieves .

Conversaly, suppose r achieves G in S. We show that the effective controller C for r
asin Theorem 2 achieves G in S, i.e. for any model 7 of T, thereis aterminating run o
of the system (C.€) suchthat 7 = S < end(o, S) A G(end(o, S)), where £ is the envi-
ronment determined by 7 and .S. Now suppose 7 isamodel of 7', by the assumption that
r achieves (G, i.e. T' |= (3s")Rdo(r, S, s') A G(s'), thereis aground situation term S* such
that / = Rdo(r, S, S") A G(S"). By Theorem 2, thereis aterminating run o of (C, £) such
that S” = end(o, S). So I |= Rdo(r, S,end(c, 5)) A G(end(o, S)). But by the definition of
Rdo, we have = (Vs1, s5)RdO(r, s1,52) D s1 < s;. Thuswehave I = S < end(o, 5).
This shows that (¢ is achieved by the controller C. m

15

6 Conclusion

We have provided a definition of what it might mean for a condition to be achievable by a
robot relative to a given action theory which describes the initial state of the world and the
primitive actions avail able to the robot. Our main technical contributionisin showing that
this notion of effective achievability coincides with a notion of achievability by a smple
class of robot programsindependently introduced in [8]. The significance of thisresultisat
least two fold. First, it isin many ways similar to the equivalence theorem between Turing
machines and recursive functions, but applied to robots whose actions are specified by an
action theory. Secondly, it provides formal justifications for using the smple class of robot
programs as afoundation for our work on robotics. For instance, [8] usesthis class of robot
programsas abasisfor robot planning. We are also beginning work on compiling high-level
GOLOG programs|[7] into this class of robot programs.

There are some limitationswith our current model that are worth mentioning here. First
of all, wehave assumed that there are only afinite number of parameterlessactions. We have
also assumed that the sensing actions are binary, characterized by the special SF predicate.
Furthermore, we have assumed that the only feedback from the environment is the result
of these sensing actions. In particular, we have not concerned ourselves here with possible
action failure or exogenous actions. Some of these assumptions, such as the binary nature
of sensing, are easy to relax; otherswill require more effort.

In concluding, wewant to mention that we areworking on relating thiswork to our other
work on agent ability and knowing-how [6]. Another direction worth pursuing isinvestigat-
ing the“finiteautomaton” version of achievability, i.e. the power of robot programswithout
the specia Turing machine actions.

Acknowledgments

Thiswork was done as part of the Cognitive Robotics project at the University of Toronto,
and we greatly benefitted from discussions with Yves Lespérance, and Ray Reiter. Finan-
cia support for the second author was gratefully received from the Natural Sciences and
Engineering Research Council of Canada, the Information Technology Research Centre of
Ontario, and the Institute for Robotics and Intelligent Systems of Canada. The first author
was aso supported in part by grant DAG96/97.EG34 from the Hong Kong University of
Science and Technol ogy.

References

[1] E. Davis. Knowledge Preconditions for Plans. Journal of Logic and Computation,
vol. 4, no. 5, pp. 721-766, Oct. 1994.

16

[2] O. Etzioni, S. Hanks, D. Weld, D. Draper, N. Lesh, and M. Williamson. An approach
to planning with incomplete information. 1n Principles of Knowledge Representa-
tion and Reasoning: Proceedings of the Third International Conference, pp. 115-125,
Cambridge, MA, 1992. Morgan Kaufmann Publishing.

[3] C. Green. Theorem proving by resolution as a basis for question-answering systems.
In Machine Intelligence 4, pp. 183-205. Edinburgh University Press, 1969.

[4] F. LinandR. Reiter. State constraintsrevisited. In Journal of Logic and Computation,
Vol. 4, No. 5, pp. 655678, 1994.

[5] F. Linand R. Reiter. How to progress a database. Artificial Intelligence, 1997. To
appear.

[6] Y. Lespérance, H. Levesgue, and F. Lin. Ability and knowing how in the situation
calculus. In preparation, 1997.

[7] H. J. Levesgue, R. Reiter, Y. Lespérance, F. Lin, and R. Scherl. GOLOG: A logic
programming language for dynamic domains. To appear in the Journal of Logic Pro-
gramming, 1996.

[8] H. Levesque. What is planning in the presence of sensing? In Proc. of AAAI-96,
Portland, OR, to appear, Aug. 1996.

[9] K. Krebsbach, D. Olawsky, and M. Gini. An empirica study of sensing and defaulting
in planning. In Proc. of 1st Conference on Al Planning Systems, pp. 136144, San
Mateo CA, 1992.

[10] Z. Manna and R. Waldinger. How to clear a block: A theory of plans. Journal of
Automated Reasoning, 3:343-377, 1987.

[11] J. McCarthy and P. J. Hayes. Some philosophical problems from the standpoint of
artificial intelligence. 1n Machine Intelligence 4, pp. 463-502. Edinburgh University
Press, 1969.

[12] E. Mendelson An Introduction to Mathematical Logic. Van Rostrand Reinhold Com-
pany, New York, 1964.

[13] M. Peot and D. Smith. Conditional nonlinear planning. In Proc. of 1st Conference on
Al Planning Systems, pp. 189-197, San Mateo CA, 1992.

[14] R. Reiter. Theframe problemin thesituation calculus: A simple solution (sometimes)
and acompleteness result for goal regression. In Vladimir Lifschitz, editor, Artificial
Intelligence and Mathematical Theory of Computation: Papersin Honor of John Mc-
Carthy, pp. 359-380. Academic Press, San Diego, CA, 1991.

17

[15] R. Reiter. Proving propertiesof statesin the situation calculus. Artificial Intelligence,
64:337-351, 1993.

[16] M. Schoppers. Building plans to monitor and exploit open-loop and closed-loop dy-
namics. In Proc. of 1st Conference on Al Planning Systems, pp. 204213, San Mateo
CA, 1992

[17] S. Thomas. PLACA, An Agent Oriented Programming Language. Ph.D. Thesis. De-
partment of Computer Science, Stanford University, 1993.

[18] W. van der Hoek, B. van Linder, and J.-J. Ch. Meyer. A logic of capabilities. In A.
Nerode and Y. Matiyasevitch editors, Proc. of LFCS-94, the 3rd I nter national Sympo-
siumon the Logical Foundations of Computer Science, pp. 366—378, Springer Verlag,
1994.

18

Appendix A Proof of Theorem 1

Theorem 1 Let 7' be a context-free action theory, and the consistency condition (2) holds
for every fluent F. If agoal GG isachievablein S, thenit is also effectively achievable.
Wefirst provealemmawhich saysthat the set of legal statesin acontext-freeaction the-
ory isfinite. Toformulatethelemma, wefirstintroduceafew notations. Let F'y (27, s), - - -, F. (27, s)
be all the fluents in the language. We define SameState(s, s’), meaning that s and s’ yield
the same state, asfollows:

SameState(s, s') <
(VZ)(Fi(Z1,8) = Fi(Z1,8)) Ao AN(VE)(Fu(Znys) = Fu(Zn,).
The following are some simpl e properties about SameState:

Lemma 6.1 For any basic action theory 7', we have:
T E (Va,s,s').SameSate(s, s') D [Poss(a, s) = Poss(a, s')],
T E (Va,s,s).SameSate(s, s') D [SF(a, s) = SF(a, s)],
T E (Ya,s,s').Poss(a,s) N SameState(s, s') O SameState(do(«, s), do(a, s')).

Proof: Trivialy from the definition of basic action theories. m

Lemma 6.2 Let 7' be a context-free action theory with finite number of parameterless ac-
tions. Under the consistency condition (2), there is a natural number N such that the fol-
lowing set

{]| do(¢&, So) || | € isalist of actions}

containslessthan NV elements, where for any list of actions £,

| do(&, So) || = {do(¢',So) | T = Sy < do(€,Sp) A Sy <do(¢,So) D
SameState(do(¢, Sy), do(¢', So)) }

In other words, the number of possibly different legal statesis bounded by V.

Proof: To simplify our proof, without loss of generality, we assume that the action theory
has only two actions A and B. Consider an arbitrary fluent F'(Z, s). Suppose its successor
state axiomisas (1). By the consistency condition (2), we have

T = F(Z,do([], So)) = F (&, So),

19

True if v (7, A)
T = 5o < do([A], So) D F(Z,do([A], So)) = { False if v7 (7, A)
F(Z,5,) otherwise,
True if v£(Z, B)
T k= So < do([B], So) D F(&,do([B], S)) = { False if v (7, B)
F(Z,S) otherwise,

True if (7, A) A =5 (
True if v£(Z, B

T |= Sy < do([A, B], So) D F(#,do([A, B],Sy)) = ¢ False if v7 (2, A
False if vz (%, B

F(Z,5,) otherwise,

True if vE£(7, B) A =5 (
True if v (7, A

T = S, < do([B, A, So) D F(Z,do([B, A], So)) = { False if (7, B
False if77(7, A

F(#,5,) otherwise.

Furthermore
T |= So < do([A, A], Sy) D F(Z,do([A, A], So)) = F(#,do([A], Sv)),
T |= So < do([B, B], So) D F(Z,do([B, B],Sy)) = F(Z,do([B], o)),
[

T = So < do([A, B, A, So) A So < do([B, A], So) D
F(Z,do([A, B, A], So)) = F(%,do(|B, A], S)

T |= S, < do([A, B, B], o) D F(,do([A, B, B], S,
T |= S, < do([B, A, A], So) D F(Z,do([B, A, A], So)
[

T |= So < do([B, A, B], So) A So < do([A, B], So) O
F(7,do([B, A, B], So)) = F(Z,do([A, B], S0)).

Il
=
\.Hll
o
=}
=
=
55

Sincethefluent F' is arbitrary, the finiteness of the set in question follows. m

Proof of Theorem 1 Suppose G is achievablein S according to 7. We need to show
that there is a recursive controller that achieves G in S accordingto 7'. In fact, we can do
better. We' Il show that thereisafinite controller that achieves &. Let C bearobot controller

that achieves (G according to 7', and et

S = {0 | oisaterminating run of C under the environment
determined by amodel of 7" at S}

20

Then the following controller

sop Ifoes (4)

1 If oisnot aprefix of any history in S
C'(o) =
o If for some 3, o - (o, 3) isaprefix of ahistory in S

is clearly well (uniquely) defined, and achieves ¢ in S aswell. Furthermore, if S isfinite,
then C’ isfinite, thus recursive. We now show that S isindeed finite.

Observe, however, that even though thereare only finitely many states, we cannot bound
the length of arun by removing “loops’ starting and ending in the same state (and guarantee
thefinitenessof S thisway). Thisis because acontroller may be using pure sensing actions
which do not change the state to obtain information. So we need a dightly more complex
approach.

Given a set of histories H, and ahistory o € ‘H,asegment 7 ino: 0 = 010700y fOr
some o, and o, issaid to be determinateif for any o’ in ‘H, whenever o, isaproper prefix
of o/, theno, - T isaprefix of o’. Inother words, the underlying controller determined by H
according to (4) with S replaced by H, if any, does not need to consider the alternative out-
come of the actionsin ~. Notice that the empty sequence istrivially a determinate segment
of any history & with respect to any «; and o, above.

Givenany runo € S, we can decomposeit into

o=o010(a1,B1)0 -+ ooko(k, Bk)o Ort1 (5)
such that
1. o4,...,0141 &edeterminate segmentsof o in S.
2. 010 (a1,01),...,0k0 (ak, Bx) aenot determinate segments of o in S.

Clearly, this decomposition is unique. Furthermore, it has the following properties:
() Forany o’ € S, if
o' = 0o (0f,) e 0l o (0l Bh) 0t
isasimilar decomposition of &', and
(1, B1) o -+ o (ak, Br) = (af, i) o -+ o (00, B),

then o = o’. Suppose the above equation holds, thenm = k, a; = o}, and 8; = 3,
1 <4 < k. Weshow by inductionon 0 < i < k that

(J'lo(al,/gl)o oO'io((lZ',/\/))i>:O'io((Xll,/3{>o oU;o((X;,ﬁZ().

21

The base case is trivial because both of them are empty sequence. Suppose

0'10(0[1,/31)0 oUio(Ozi,ﬂi) = 0'10(0/1,%3{)0 oU;o(a;,ﬁZ{),
we show that

010 (alyﬁl) o o040 (Ofi+1,ﬁz‘+1) =0y0 (0/17%3{) oo Uz,'+1 0 (a;-l-l?/@z{-}-l)?
that is, 0:11 = o] ,. Because 0,4, isadeterminate segment, by definition, we have
that oy o (a1, B1) 0 -+ 0 0iy1 Mustbeaprefixof o', Similarly, of o (}, 3]) 0 - -+ 0 074
isaprefix of o. So either 0,,., = o/, or one of them isa proper prefix of the other.
The latter isimpossible because otherwise, say o, is a proper prefix of o/, then
o/, canot be a determinate segment of o, which violates our assumptions. This
proves that

oro(ar,Br) o ooko (g, Bi) = o 0(0/1,%3{)0 0‘7120(%’51/;)-
Finaly, o = o'. For otherwise, one of them would be a proper prefix of the other,
which isimpossible because they are both runs of C under some environment.
() Forany 1 <i < j <k, if o; = «j, then
T WS <end(é_i00;,5) D SameState(end(&;_1 0 05, .5), end({-1 0 05, 5)),
wherefor any 0 < m < k, &, isthe history:

J1 0 (al,ﬁl) o " 00y o (Oém,ﬁm).
For otherwise, suppose
TS <end(§-i00;,5) D SameState(end(&;—1 - 04, 5),end(€j—1 0 0;,5)). (6)

We claimthat o; - (o, ;) would have to be a determinate segment of o, acontradic-
tion with the assumptions that we made about equation (5). To show that o o («;, 3;)
isadeterminate segment of o, suppose o’ € S, and ¢;_, isaproper prefix of o’. Then
;-1 0 0; must beaprefix of o’ for o; is adeterminate segment of o. Because both ¢’
and o are terminating runs of the controller C, for some 3, ;1 o 0; o (¢,) must be
aprefix of o’. Now let I be the model of 7" under which ¢’ is the terminating run of
the controller C. Sinceo’ € S, by Definition9, I = 5 < end(o¢’, .S). Thus by (6),

I E SameState(end(é,-1 0 0;, S), end(é;_1 0 75, 5)).

Sincea; = a;, by Lemma6.1 5 = 3;. Smilarly, 3, = 3;. So 8 = ;. Thus¢; isa
prefix of o’. Thisshowsthat o; - (a;, 3;) is a determinate sesgment of o.

Thus by Lemma 6.2 and the above property (I1), for any runo in S, if it is decomposed
as(5),thenk < M x N, where M isthe number of actions, and V is the upper bound of
the number of possible equivalent classes givenin Lemma6.2. By property (1), thisimplies
that S must be finite.

22

Appendix B Proof of Theorem 2

We shall prove a more general result than Theorem 2. To that end, we introduce a relation
Rexit(r, s, s') meaning that when started in s, the program r will exit (abort) in s’. Itisde-
finedintheway similar to Rdo in Section 4, asan abbreviation of thefollowing second-order
formula

Rexit(r, s,s") = (VP)[--- D P(s, s, 0)].

wherethe ellipsisis exactly the same asin (3), i.e. the conjunction of six conditions given
in Section 4. From this definition, it iseasy to verify that the following are consequences of
any basic action theory:

—Rexit(nil, s, s'),
Rexit(exit, s, s),
Rexit(branch(a,rq,rs),s,s') =
Poss(a, s) A [SF(a, s) D Rexit(rq,do(a, s),s")] A [-SF(a, s) D Rexit(ry,do(a, s), s')].

The purpose of introducing Rexit is for the following lemma:

Lemma 6.3 Let T be an action theory, and 7 amodel of 7'. For any ground situation terms
Sand S’, I = Rdo(loop(ri,r2), S,.S") iff there are some ground situation terms S, ..., S,
n > 3, such that

1. §=5and S = S,.
2. Foranyl <i<n—3, 1| Rdo(ry,S;, Si+1).
3. I = Rexit(ry, S,—2, Sn—1),and I |= Rdo(r3, S,,—1, 5y).
Smilarly, I = Rexit(loop(ry,r2), S, S') iff there are some Sy, ..., S,,, n > 3, such that
1. §=5and S = S,.
2. Foranyl <i<n—3, 1| Rdo(r,S;, Si+1).
3. I = Rexit(ry, Sp_2,5,-1),and I |= Rexit(ra, Sn_1,5n).

Proof: By induction on the structure of r;. m

Inthefollowing, ahistory o iscalled an exiting run of asystem (C, £) iff itisarun of the
system, and C(o) = abort. The following theorem includes Theorem 2 as a special case.

Theorem 5 For any robot program r and any ground situationterm S, thereis an effective
robot controller C such that for any interpretation / and any ground situation term S”:

23

1. (a) If I = Rdo(r, S,S"), then there isa terminating run o of (C, £) such that 5" =
end(o, S); (b) if I |= Rexit(r, S, S”), thenthereisan exiting run o of (C, £) such that
S’ = end(o, S), where £ is the environment determined by 7 at S.

2. (a) Ifthereisaterminating run o of (C, £) such that end(c, S) = S’ then I = S <
S" > Rdo(r, S, S"); (b) If thereisan exiting run o of (C, £) such that end(c, S) = 5,
then 7 = 5 < 5" D Rexit(r, .5, S"), where £ isthe environment determined by 7 at 5.

Proof: Weshall construct arecursivefunctionT' : P xR — AT, where P isthe set of robot
programs, such that for any robot programr, Ao T'(r, o) isarobot controller that satisfiesthe
two conditionsin the theorem with respect to ». We defineI" inductively on the structure of
robot programs:
. | stop ifo=¢
r(ail, o) = { 1 otherwise

) abort ifo=c¢
I(edt, o) = { 1 otherwise

a ifo=c¢
['(ri,0") ifo=(a,1)o0’
['(rq,0') ifo=(a,0)o0’
1 otherwise

I'(branch(a,r,r2),0) =

['(rq,0"”) ifforsomen > 0,0 =0y0 -+ 00,00 oc” suchthat
I'(ri,0;) =stopfor1 <: <n, andT'(ry,c’) = abort.
I'(r,0') otherwise, where o’ isahistory
such that forsomen > 0,0 = oy0 -+ 00, 00,
I'(ry,0;) = stopfor1 <i < n, andthereisno
proper prefix o of o’ such that I'(ry, ¢”) = stop
Clearly, for any program r, Ao T'(r, o) isarecursive function. We now show that Ao T'(r, o)

satisfies the two conditions in the Theorem. We do so by induction over the structure of
programs.

I'(loop(r1,72), o) =

e risnil. For any ground situation term S, and any interpretation /:
I E (Vs)(Rdo(nil, S, s) = s = 5) A =(3s)Rexit(nil, S, s).

From this, and the definition of I'(nil, o), the two conditionsin the theorem are triv-
ially satisfied.

e risexit. Thiscase isanaogous to the case of nil: For any S, and any 7,

I = (Vs)(Rexit(exit, S, s) = s = S) A =(ds)Rdo(exit, S, s).

24

e r isbranch(a,r,r;). Inductively, we assume that the two conditions are satisfied
for \oT'(ry,0) and AoT'(r,, o). Let S be an arbitrary ground situation term, and 7 an
arbitrary interpretation.

Suppose I = Rdo(branch(a, ry,72), .5, S’). By the definition of Rdo, there are two
cases:

1. I = SF(a, S)ARdo(ry,do(a, S), S"). By inductive assumption, thereis atermi-
nating run 7 of Ao I'(r, o) under the environment determined by / at do(«, .5)
suchthat S = end(r, do(a, S)). By our construction of I'(branch(a, ry, 3), o),
(a,1) o7 isaterminating run of AoT'(branch(a,r,),s) under the environ-
ment determined by 7 at .S.” Furthermore,

end((a,1)0.7,5) =end(r,do(a, S)) = 5"
2. I &= ~S(a,S) A Rdo(r,do(a, S), S’). analogous to the previous case.

This proves condition (1)(a) of the theorem. The proof of (1)(b) is analogous.
To prove (2)(a), suppose T isaterminating run of AoT'(branch(a, rq,r2), o) under the
environment £ determined by 7 at S. Again, there are two cases:

1. I = SF(a, S). By our construction, 7 = (a,1). 7/, and 7’ isaterminating run
of AoT'(r1, o) under the environment determined by 7 at do(«, S). By inductive
assumption,

I = do(a, S) < 5" D Rdo(ry,do(a, S),S"),

where S’ = end(7’, do(«, 5)) = end(r, S). By
I = Poss(a, S)ASF(a, S)ARdo(rq,do(«a, S), S") D Rdo(branch(a, r1,r2), .5, 5"),

we have
I =S <S> Rdo(branch(a,ry,), S, S").

2. I E =SF(a,S). analogousto the previous case.
This proves (2)(a). The proof of (2)(b) is again analogous.

e risloop(ry,r;). The proof for this case is exactly like that for the branch case, but
using Lemma 6.3.

“This makes use of easy lemmathat if = isaterminating run of ¢ under the environment determined by 7
a do(a, S),and I = SF(a, S), then (a, 1) o T isaterminating run of ¢’ under the environment determined by
I a S, where (" isacontroller suchthat C'(¢) = a and C'((a, 1) o o) = C(0).

25

Appendix C Proof of Theorem 3

We restate Theorem 3:

Theorem 3 For any TM basic action theory 7', any effective controller C, and any ground
situationterm S, thereisarobot program» such that for any model 7 of 7" and any ground
situation S, we have

1. If I = Rdo(r, S, .S"), then thereis a terminating run o of the system (C, £) such that
clean(S’) = end(s, S), where £ isthe environment determined by 7 at S

2. Ifthereisaterminating run o of thesystem (C, £) suchthat S’ = end(o,), thenthere
isasituation S” such that 5" = clean(S”),and I = S < end(s,.S) D Rdo(r, S, S"),
where £ isthe environment determined by 7 at .S

Proof: Theproof involvesus ng the fluentsMarked and |oc to emulate a Turing machine
tape. If Marked(n, s) holds, then the nth position of thetape will be 1, and otherwise, 0. To
indicate the state of some segment of the tape, we will show a sequence of Osand 1s, with
the current location (i.e. loc(s)) taken to be the position of thefirst digit of the underlined
pair of 0sand 1s. Thusif theinitial segment of thetapein S, is001011, thenloc(Sy) = 1,
—Marked(1, Sp), ~Marked(2, Sy), Marked(3, S), etc

We assume without loss of generality that there are only two action A and B. We can
encode a history asfollows:

@alﬂl e anﬁnlla

where «; is01 or 10 for action A or action B respectively, and where 3, is01 or 10 for
outcome 0 or 1 respectively. Since C is arecursive function, there is a Turing machine M
that computesit. Given a history encoded as above, it will terminate with the tape looking
like

OOOél/Bl s anﬁng,
where o iseither 00 (for abortor 1), 11 (for stop) or 01 or 10 asabovefor A or B. Since
the five specia actions have the same power as a Turing machine, thereis arobot program

ras that consists of only Turing actions that senses and marks the tape in exactly this way.
We can now describe the robot program that achieves the same goa as the controller C.

e For any fixed string = of 0sand 1s, let write(z) be the robot program that writes z on
the tape and sets loc to the position just right of z. It is defined inductively by:

write(e) = nil;
write(0z) = seq(erase, seq(right, write(z)));
write(1z) = seq(mark, seq(right, write(z))).

26

The robot program home is such that whenever the tape encodes some history like:
Ooalﬁl Tt anﬁnga
home will reset locto 1:

loop(seq(left, branch(read_mark,
seq(left, nil),
seq(left, branch(read_mark, nil, exit)))),
nil).

The robot program ini is [write(0011) ; home].®

Therobot program r 4 performsthe action A, and writeseither 0111 or 1011 onthe
tape depending on the sensing result returned:

branch(A, [write(1011) ; home], [write{0111) ; home]).
The program r 5 is analogous.
The robot program interpret is

branch(read_mark,
seq(right, branch(read_mark,
seq(right, exit),
seq(right, r5))),
seq(right, branch(read_mark,
seq(right, r.4),
seq(right, loop(nil nil)))))

e Finally, the desired robot program r is [ini; loop([ras ; interpret], nil)] where ras is
the robot program associated with a single step of the effective controller C.

To paraphrase, the robot program r, starting at some home position on the tape, first writes
0011 encoding the empty history, and then returns to the home position. Next, within a
loop, it repeatedly usesr, to place asuitable o at the end of the history, and then interprets

8For any robot programs and r/, r ; *' means executing r followed by r’. Formally, the“;” notationis
defined inductively:

il] = r;

[exit; r] = exit;

[branch(a, r1, 72); 7] = branch(a, [r1; 7], [r2; 7]);
[loop(rs, 2);] = loop(ry, [ro; 7]).

27

thisa: if itis00 it goesintoaninfiniteloop; ifitis11 it exitstheloop (and so terminates);
if itis10, it performsaction A, writeseither 0111 or 1011 on the tape depending on the
sensing result returned, and then returnsto the home position; if itis01, it doesthe same as
above but for action B. Note that when « isO1 or 10, the effect of writing0111 or 1011
on the tape depending on the result of action A or B ensures that the tape now encodes an
extended history

_0041%31 s Olnﬂnan+1%3n+111,

which is then ready for the next iteration.
It can be verified that from this construction, the conditionsin the theorem follow. m

28

