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The situation calculus is a second-order logic language used to describe the characteristics

of autonomous agents acting in a dynamic system. Its breadth and powerfulness has

been shown by the tremendous work achieved in broad areas. Recently, researchers have

become more and more interested in modeling and controlling the performance of agents

in an uncertainty system with such language.

In this paper, we focus on the problems that the autonomous agent performs sim-

ilar strategies repeatedly under same local situations in some uncertainty system. We

introduce a special concept of action — macro-action — into the situation calculus, ex-

tend basic action theories and regression operators, and develop a knowledge base for

the macro-actions so that the agent can remember certain information of them and later

“recall” it when the agent performs the macro-actions in the same local situation again,

therefore achieving the goal of saving computational time.

ii



Acknowledgements

I am very grateful to Raymond Reiter, my supervisor, for his patient guidance and helpful

advice at every stage of my work. His professional supervision makes me feel comfortable

and enjoyable during the period of studies. Besides, I also want to thank him for reading

my thesis carefully even in a bad health condition. My thanks also go to Craig Boutilier,

my vice-supervisor and second reader, for very useful discussion and reading the whole

thesis patiently. I want to thank Hector Levesque for taking over the responsibility when

Raymond is not available.

I would like to acknowledge Iluju Kiringa, YongMei Liu and Mikhail E. Soutchanski

who gave me nice suggestions. Thanks also go to many other friends I met both in

Canada and in China.

At last, but certainly not least, I would like to thank my parents and my brother for

their unconditional love and support I could feel even from the distance.

iii



Contents

1 Introduction 1

2 Literature Review and Background 4

2.1 The Language of the Situation Calculus . . . . . . . . . . . . . . . . . . 4

2.2 The Basic Action Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.3 Complex actions, Procedures and Golog . . . . . . . . . . . . . . . . . . 9

2.4 The Regression Operator . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.5 Stochastic Actions, Probability and stGolog . . . . . . . . . . . . . . . . 12

3 Introducing Macro-actions into the Uncertainty System 15

3.1 Example of Climbing Stairs and the Motivation . . . . . . . . . . . . . . 15

3.2 The Macro-actions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.2.1 Finding the Proper Structure of the Macro-actions . . . . . . . . 22

3.2.2 Spotting Macro-action . . . . . . . . . . . . . . . . . . . . . . . . 31

3.3 Example of Macro-actions for Robot Climbing Stairs . . . . . . . . . . . 34

4 Developing the Knowledge Base for Macro-actions 37

4.1 The Components of the Knowledge Base . . . . . . . . . . . . . . . . . . 37

4.2 An Extended Regression Operator Based on the Knowledge Base . . . . 42

4.3 The Knowledge Base (Static Part) Developer . . . . . . . . . . . . . . . . 47

4.3.1 The Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

iv



4.3.2 Implementation and Experiment . . . . . . . . . . . . . . . . . . . 51

5 The Reuse of the Macro-actions 58

5.1 An Interpreter over Macro-actions: macGolog . . . . . . . . . . . . . . . 58

5.1.1 Extending stGolog with Macro-actions . . . . . . . . . . . . . . . 58

5.1.2 Generating the Dynamic Part of the Knowledge Base . . . . . . . 63

5.1.3 The macGolog Interpreter . . . . . . . . . . . . . . . . . . . . . . 67

5.2 The Experiments and Discussion . . . . . . . . . . . . . . . . . . . . . . 72

5.2.1 The Experiment of the correctness . . . . . . . . . . . . . . . . . 72

5.2.2 Experiments of Comparison . . . . . . . . . . . . . . . . . . . . . 80

5.2.3 Summary: the Benefits and the Limitations . . . . . . . . . . . . 86

6 Conclusions and Future Work 87

Bibliography 90

A 94

B 97

C 100

D 116

v



Chapter 1

Introduction

Since the birth of artificial intelligence (AI) in the mid-1950s [20, 5], developing techniques

for constructing robust, autonomous agents that are able to achieve good performance in

complex, real-world environments is always a central goal of AI. In order to achieve such a

goal, researchers study simulated actions of autonomous agents in dynamic environments

and try to develop formalized high-level controllers for autonomous agents. Several logic-

based action formalisms have been developed to facilitate describing dynamic systems,

such as the situation calculus [18, 17, 28], features and fluents [29], A calculus [11] and

event calculus [14, 31]. The situation calculus is one of the oldest and most powerful

languages. After the solving of frame problem in the situation calculus [27], the research

on the applications of situation calculus and further implementations now become a very

active area in AI. The Cognitive Robotics group [1] of the University of Toronto has been

working on it and proposed a programming language called Golog [15] which “appears

to offer significant advantage over current tools for applications in dynamic domains like

the high-level programming of robots and software agents, process control, discrete event

simulation, complex database transactions, etc” [28].

To make autonomous agents perform “intelligently” in the real world, especially in

an uncertainty environment, we not only study the relationship between actions and
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Chapter 1. Introduction 2

dynamic world, but also need to get known about how human beings act intelligently

in a dynamic world, so that the autonomous agents can simulate human behaviors and

act “intelligently” (although AI is not always about simulating human intelligence [19]).

As we know, in the real world, people often meet with unpredictable situations. For

instance, when we flip a coin, we can not foretell the outcome is head or tail. So is

it for autonomous agent, it is natural to require an autonomous agent to fit in such

uncertainty system. Hence, from the end of 90’s of last century, based on the study of

the situation calculus and logic with probability [10], researchers began to work on high-

level programming for robot acting in probabilistic uncertainty systems with stochastic

actions. From different points of view, they give several kinds of study results. For

example, an extended interpreter of Golog called stGolog (c.f. [28] Chapter 12) deals

with derived probabilities and expected values problems for robots with probabilistic

uncertain outcomes of actions. The dtGolog [4] is another extended interpreter of Golog

dealing with decision-making problems. C. Boutilier, R. Reiter and B. Price proposed

symbolic dynamic programming for first-order Markov Dedision Processes (FOMDPs)

[3], which is a new approach using the situation calculus to deal with problems modeled

in FOMDPs. All these studies not only show the possibility of dealing with uncertainty

dynamic world by using the logic programming language, but also show the contribution

of planning and decision-making theory to high-level robotic control.

The research of uncertainty systems in the situation calculus till now is based on

primitive actions. Every step of regression and computation of probabilities needs to

be repeated even if we compute for same sequences of actions under similar situations

at different time. However, we notice that a robot, or more generally, an autonomous

agent often works under a similar environment and is asked to solve similar problems,

which involves lots of repetition in actions and outcomes of probabilities. For example,

if we ask an autonomous agent to climb a hundred continuous same-height stairs, it can

be viewed as that the agent repeats a certain sequence of actions at the same situation
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hundreds of times provided that we can reset the agent’s situation to be the initial

situation if malfunctions occur. Inspired by the idea of reuse of local policies for local

Markov decision processes (MDPs) [25, 13, 21, 32], we here are trying to consider certain

combinations of primitive actions described in the situation calculus as a whole , pre-

process its properties, and later reuse the outcomes as if the agent has “learned” the

knowledge, therefore make the agent become “cleverer”.

We will begin with some background review of the situation calculus, the Golog and

the stGolog in Chapter 2. And then, in Chapter 3, by giving an example of robot

climbing stairs, we lead the discussion to treating certain complex actions as a whole,

naming them as macro-actions, and discuss the change of basic action theories on them

as well as the extended probabilities for uncertainty systems. In Chapter 4, we develop

a knowledge base (static part) for macro-actions by using extended regression operator.

After developing the static part of the knowledge base, we give an interpreter modified

from the stGolog for programs that might include macro-actions in Chapter 5, and discuss

the benefits and limitations of using macro-actions based on experiments. We end up

with conclusions and future work in Chapter 6.



Chapter 2

Literature Review and Background

Since much of the proposed work is predicated on the high-level agent control in the

uncertainty system, a review of the technical and historical background for the work of

remaining chapters is presented here.

At least two aspects need to be addressed while modeling the behavior of an agent

acting in an uncertainty system. First, the situation calculus and the basic action theory

give us the power to model the dynamic world, the actions of the agent and their ef-

fects. Second, concerning the uncertainty system, we need a good understanding of how

probabilistic uncertainty is expressed in the situation calculus.

2.1 The Language of the Situation Calculus

The basic conceptual and formal ingredients of the situation calculus were first proposed

by John McCarthy in 1963 [18]. Based on several researchers’ study and proposals

[22, 6, 12, 30, 9], Ray Reiter [27] provided a solution to the frame problem observed by

John McCarthy and Pat Hayes [18] and systematically described the situation calculus-

based approaches to modeling dynamic world [28]. In the last ten years, under the

leadership of Ray Reiter and Hector Levesque, the Cognitive Robotics Group [1] at

4
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University of Toronto uses the situation calculus as a foundation for practical work in

planning, control, simulation, etc, which disabuses some limiting view of the situation

calculus [28]. Their work draws researchers’ attention, and the situation calculus becomes

more popular in the AI area.

The language of the situation calculus Lsc that we adopt here is from [28], which is a

second-order language specifically designed for representing dynamically changing world.

It is a three-sorted language with equality. The three disjoint sorts of Lsc are:

• action: a first-order term representing actions in dynamic world, such as jump (the

action of jumping), kick(x) (kicking object x), and put(r, x, y) (robot r putting

object x on top of object y), etc. The constant and function symbols for actions

are completely application-dependent.

• situation: a first-order term which denotes possible world histories. A distinguished

constant S0 and function symbol do are used. S0 denotes the initial situation,

before any action has been performed; do(a, s) denotes the situation that results

from performing action a in situation s.

• object: a catch-all sort representing for everything else depending on the domain of

application, such as ball, Mary, etc.

In fact, every situation corresponds to a sequence of actions. For example, the initial

situation S0 corresponds to empty sequence of actions, the situation

do(pickup(x), do(drop(y), do(pickup(y), S0)))

corresponds to the action sequence pickup(y),drop(y),pickup(x) from the beginning.

Moreover, we will use binary relation s < s′ to represent that s is a proper sub-history

of s′, and s v s′ is equivalent to s = s′ ∨ s < s′.

Another important term in the situation calculus is fluent. F luents are predicates

and functions whose values may vary from situation to situation, used to describe what
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holds in a situation. By convention, the last argument of a fluent is a situation. For

example, the fluent Holding(r, x, s) might stand for the relation of robot r holding object

x in situation s.

The logical symbols of the language are ¬,∧, ∃. Other connectives and the universal

quantifier are the usual abbreviations.

Finally, a distinguished predicate Poss(A, s) is used to state that the action A can

be performed in situation s. For example, Poss(pickup(r, x), S0) says that the robot is

able to pick up object x in the initial situation.

This completes the specification of the language Lsc. For later convenience, an ab-

breviation is introduced as follows:

Abbreviation 2.1 ([28] Chapter 4.5)

• do([], s)
def
= s;

• do([a1, a2, · · · , an], s)
def
= do(an, do(· · · , do(a1, s) · · · )).

And [a1, a2, · · · , an] is called a log.

Notice that there is a one-to-one correspondence between a log beginning at the initial

time and a situation, whenever this log is finite or infinite.

2.2 The Basic Action Theory

A basic action theory is a set of axioms represented in the situation calculus to model

the actions and their effects in a given dynamic system D together with functional fluent

consistency property. Hereby we just present a summary, the detailed explanation could

be found in [24, 28].

The set D = Df

⋃
Dap

⋃
Dss

⋃
Duna

⋃
DS0

consists of following axioms:

• Fundamental axioms, denoted as Df .

There are four axioms included in Df [24]. For instance, ¬s < S0 represents no

situation is a proper history of the initial situation.
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Since the fundamental axioms is so mechanical, we will not write them out during

description, but assume them to be true for any basic action theory.

• Action precondition axioms, denoted as Dap.

For each action function (could be 0-ary) A, there is one axiom of the form:

Poss(a(~x), s) ≡ Πa(~x, s),

where Πa(~x, s) is a formula uniform in s (cf. Appendix B), ~x = x1, x2, · · · , xn for

some natural number n (if n = 0, a(~x) is 0-ary A) and all atomic propositions in it

are fluents. This axiom characterizes the preconditions of performing action A in

the current situation s.

• Successor state axioms, denoted as Dss.

A successor state axiom for an (n+ 1)-ary (n ∈ {0, 1, 2, · · · }) relational fluent F is

a sentence of Lsc of the form:

F (~x, do(a, s)) ≡ ΦF (~x, a, s),

where ΦF (~x, a, s) is a formula uniform in s, ~x = x1, x2, · · · , xn (if n = 0, F has one

parameter of sort situation) and all atomic propositions in it are ground fluents or

of form a = ai where ai is some action.

Similarly, a successor state axiom for an (n+1)-ary functional fluent f is a sentence

of Lsc of the form:

f(~x, do(a, s)) = y ≡ Φf (~x, y, a, s),

where Φf (~x, y, a, s) is a formula uniform is s.

The successor state axiom for fluent F (respectively f) completely characterizes the

value of fluent F in the successor resulting from performing primitive action a in

situation s.
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• Unique name axioms, denoted as Duna.

For any n-ary action a, a(x1, · · · , xn) = a(y1, · · · , yn) ⊃ x1 = y1 ∧ · · ·∧xn = yn; for

any distinct actions a and b, a(~x) 6= b(~y).

Since the unique name axioms is so mechanical, we will not write them out during

description, but assume them to be true for any basic action theory.

• Initial database, denoted as DS0
.

It is a set of first order sentences in which S0 is the only term of the situation sort

(i.e., uniform in S0). No sentence of DS0
quantifies over situations, or mentions Poss

or the function symbol do. Notice that the initial database may contain sentences

mentioning no situation term at all, for example, unique names for individuals, or

“timeless” facts like dog(x) ⊃ mammal(x).

Finally, the functional fluent consistency property is as follows:

Suppose f is a functional fluent whose successor state axiom in Dss is

f(~x, do(a, s)) = y ≡ φf(~x, y, a, s),

then

Duna ∪ DS0
|= (∀~x).(∃y)φf(~x, y, a, s) ∧ [(∀y, y′).φf(~x, y, a, s) ∧ φf(~x, y

′, a, s)] ⊃ y = y′.

The reason of requiring this consistency property is that it provides a sufficient con-

dition for preventing a source of inconsistency in f ’s successor state axiom.

Notice that the models we consider in this report all satisfy the Markov property –

the truth values of the fluents at next situation are dependent only on the action and the

truth values of the fluents at current situation.
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2.3 Complex actions, Procedures and Golog

So far, in our treatment of the situation calculus, we only talked about primitive actions,

with effects and preconditions independent of each other. In this section we will intro-

duce a kind of compositional treatment of the frame problem for complex actions, i.e.,

actions that have other actions as components. This results in a novel kind of high-level

programming language – Golog [16].

To handle complex actions, it is sufficient to show that for each complex action δ we

care about, there is a ternary relation in the situation calculus, which we call Do(δ, s, s′),

is an abbreviation for a situation calculus formula which indicates that complex action

δ, when started in situation s, can terminate legally in situation s′. Here δ is of one of

the following actions:

1. Primitive action: a (a might have parameters).

2. Sequence: α;β. Do action α, followed by action β.

3. Test action: p?. Test the truth value of expression p in the current situation.

4. Nondeterministic action choice: α|β. Do α or do β.

5. Nondeterministic choice of arguments: (πx)α(x). Nondeterministically pick a

value for x, and for that value of x, do action α(x).

6. Conditionals: if-then-else and while loops.

7. Procedures, including recursion.

Because of the definition of complex actions, we then can deal with nondeterministic,

conditional, or concurrent operations. Detailed explanation and examples can be found

in [28]. Golog program is a procedure defined as following:

Definition 2.2 ([28] Chapter 6.1.1) A Golog program is of form:

proc P1(~v1)δ1 endproc;· · · ; proc Pn( ~vn)δn endproc; δ0

where Pi is declaration of procedures with formal parameter ~vi and procedure body δi

for each i(1 ≤ i ≤ n), δ0 is the main program body. δ0, · · · , δn are complex actions,
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extended by actions for procedure calls, as described in above Definition.

The semantics of a program is

Do({proc P1(~v1)δ1 endproc;· · · ; proc Pn( ~vn)δn endproc; δ0}, s, s
′)
def
=

(∀P1, · · · , Pn).[
∧n
i=1(∀s1, s2, ~vi).Do(δi, s1, s2) ⊃ Pi(~vi, s1, s2)] ⊃ Do(δ0, s, s

′),

i.e. when P1, · · · , Pn are the smallest binary relations on situations that are closed under

the evaluation of their procedure bodies δ1, · · · , δn, then any transition (s, s′) obtained by

evaluating the main program δ0 is a Golog transition for the evaluation for the program.

Golog appears to offer significant advantages over current tools for applications in

dynamic domains like the high-level programming of robots and software agents, process

control, discrete event simulation, complex database transactions, etc [2, 7].

2.4 The Regression Operator

Regression is a central computational mechanism that forms the basis for many plan-

ning procedures (Waldinger [33]) and for automated reasoning in the situation calculus

(Pednault [23], Pirri and Reiter [24]). Roughly speaking, the regression of a formula φ

through an action a is a formula φ′ that holds prior to a being performed iff φ holds after

a. Successor state axioms support regression in a natural way. In [28], Reiter introduces

a notation R as regression operator, and defines the regression of a regressable formula

W of Lsc as follows:

Definition 2.3 ([28] Definition 4.5.1) A formula W of Lsc is regressable iff

1. Every term of sort situation mentioned by W has the syntactic form

do([α1, · · · , αn], S0) for some n ≥ 0, and for terms α1, · · · , αn of sort action.

2. For every atom of the form Poss(α, σ) mentioned by W , α has the syntactic form

A(t1, · · · , tn) for some n-ary function symbol A of Lsc.
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3. W does not quantify over situations.

4. W does not mention the predicate symbol <, nor does it mention any equation atom

σ = σ′ for terms σ, σ′ of sort situation.

Definition 2.4 ([28] Definition 4.7.2)

1. Suppose W = Poss(a(~t), σ) where a(~t) and σ are of sort action and situation

respectively, and we have action precondition axiom of form

Poss(a(~x), s) ≡ Πa(~x, s) ,

without loss of generality, assume that all quantifiers (if any) of Πa(~x, s) have had

their quantified variables renamed to be distinct from the free variables (if any) of

Poss(a(~t), σ), then

R[W ] = R[Πa(~t, σ)] .

2. Suppose W is a regressable atom, but not a Poss atom. There are three possibilities:

(a) S0 is the only term of sort situation (if any) mentioned by W , then

R[W ] = W .

(b) Suppose that W mentions a term of the form g(~t, do(α′, σ′)) for some func-

tional fluent g, and α′ and σ′ are of sort action and situation respectively.

g(~t, do(α′, σ′)) mentions a prime functional fluent [28] term of form f(~r, do(α, σ))

where α and σ are of sort action and situation uniform in S0 respectively. Sup-

pose f ’s successor state axiom in Dss is

f(~x, do(a, s)) = y ≡ φf(~x, y, a, s) .

Without loss of generality, assume that all quantifiers (if any) of φf(~x, y, a, s)

have had their quantified variables renamed to be distinct from the free vari-

ables (if any) of f(~r, do(α, σ)). Then

R[W ] = R[(∃y).φf (~r, y, α, σ) ∧W |f(~r,do(α,σ))
y ] .
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Here y is a variable not occurring free in W,~r, α or σ.

(c) W is a relational fluent atom of form F (~t, do(α, σ)) where α and σ are of sort

action and situation respectively. Let F ’s successor state axiom in Dss be

F (~x, do(a, s)) ≡ ΦF (~x, a, s) .

Without loss of generality, assume that all quantifiers (if any) of ΦF (~x, a, s)

have had their quantified variables renamed to be distinct from the free vari-

ables (if any) of F (~t, do(α, σ)). Then

R[W ] = R[ΦF (~t, α, σ)] .

3. For non-atomic formulas, regression is defined inductively as follows.

R[¬W ] = ¬R[W ]

R[W1 ∧W2] = R[W1] ∧R[W2]

R[(∃x)W ] = (∃x)R[W ]

2.5 Stochastic Actions, Probability and stGolog

In this work, we will concentrate on the dynamical systems with uncertainty. In an

uncertainty system, stochastic actions, actions with with uncertain outcomes that an

agent can perform, are introduced. For example ([28]) in text, stochastic action go(l)

means that the robot goes to location l, and the performance of go(l) ends up with two

outcomes: one is endUpAt(l) meaning that the robots ends up at location l, the other is

getLost(l) meaning that the robot gets lost in the process of going to location l. These

outcomes are nature’s choices, i.e., not under the control of the robot. Notationally, we

characterize this setting by:

choice(go(l), a)
def
= a = endUpAt(l) ∨ a = getLost(l).
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All the nature’s choices of stochastic actions are primitive actions and the action pre-

condition axioms and successor state axioms are presented for every primitive action.

Moreover, we need to represent the probability of each outcome of a stochastic action.

We must require that whenever one of nature’s action’s preconditions is false, the action

will have zero probability, i.e.,

prob(a, β, s) = p
def
= choice(β, a) ∧ Poss(a, s) ∧ p = prob0(a, β, s) ∨

[¬choice(β, a) ∨ ¬Poss(a, s)] ∧ p = 0. (2.1)

Here, prob0(a, β, s) is a specification of the probability that a is selected in the situation

s and the outcome of stochastic action β, given that a is one of the nature’s choices for

β and, moreover, that a is possible in s [28].

It is axiomatizer’s responsibility to ensure that a proper probability distribution has

been defined while formalizing a probabilistic domain in the situation calculus. One

needs to verify the following two properties:

for any stochastic action α and its nature’s choices Ai (i = 1, 2, . . . , k),

(a) Poss(Ai, s) ⊃ prob0(Ai, α, s) > 0, i = 1, 2, . . . , k. (2.2)

(b) Poss(A1, s) ∨ · · · ∨ Poss(Ak, s) ⊃
k∑

i=1

prob(Ai, α, s) = 1. (2.3)

Based on above extensions, new programs, named stGolog program [28] are con-

structed from stochastic actions together with the Golog program constructors sequence,

tests, while loops, conditionals and procedures. stGolog program do not involve any

form of nondeterminism; neither the nondeterministic choice, |, of two actions, nor the π

operator are allowed. Moreover, notice that there is a dummy symbol nil is introduced

into sequence indicating the end of the sequence, which is another difference from Golog

sequence. An stGolog interpreter (Appendix A) [28] is developed via stDo(α, p, s, s′)
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meaning that agent performs stGolog program (or actions) α at the situation s, by na-

ture’s choices, it may ends at situation s′ with probability p. With the help of stDo,

the probability that some situation-suppressed sentence ψ will be true after executing

stGolog program γ:

probF (ψ, γ)
def
=

∑

{(p,σ) | D|=stDo(γ:nil,p,S0,σ)∧ψ(σ)}

p, (2.4)

where D stands for the background basic action theory.

We also can introduce cost and reward of actions, exogenous events and uncertain

initial situation into stGolog [28]. To simplify problems we will meet with, we ignore

them here. Up till now, we finished reviewing almost all the knowledge background that

our later discussion will based on.

At last, for later convenience, we use the following conventions:

1. In an uncertainty system modeled in the situation calculus, we use upper-case letters

(with or without subscript and superscript) to denote the deterministic actions, use

lower-case letters (with or without subscript and superscript) to denote variables of

the deterministic actions, and use α, β (with or without subscript and superscript)

to denote any kinds of actions including either stochastic or deterministic, primitive

or complex, instance or variable. When we say α is of sort action, we mean that α

is either instance or variable of a deterministic primitive action.

2. For the sake of the convenience for expressions and notations, except specific an-

nouncement (e.g. in an example), for an uncertainty system modeled in the situ-

ation calculus, we may omit the free variables appearing in the action functions.

That is to say, n-ary action function, say a(~x), for some natural number n (whether

deterministic or stochastic, primitive or complex) will be often denoted as a later.



Chapter 3

Introducing Macro-actions into the

Uncertainty System

As we saw in the previous chapter, the basic action theories as well as the theory of

probability provide a convenient way for us to deal with high-level robot control in

uncertainty systems. However, we want to make the autonomous agent become “cleverer”

in the uncertainty world in the sense that it can remember what it did before under same

environment. Therefore, similar to an intelligent human being, the agent won’t waste

time on re-computation. In this chapter, we will discuss the motivation of the work in

this paper explicitly and then start the first step of reaching the object of making robot

“cleverer”.

3.1 Example of Climbing Stairs and the Motivation

One of the main purposes of creating intelligent autonomous agents is to make them

serve and help human beings efficiently on particular topics such as exploring volcanos,

assisting disabled people at home, and making products in the factories. These agents

although “living” in uncertainty systems, still meet lots of similar situations, work on

15



Chapter 3. Introducing Macro-actions into the Uncertainty System 16

the same tasks and repeat the same strategies most of the time. Let us first look at a

simple example as follows:

Example 3.1 Consider a robot with two legs, main and supporting, is asked to climb

stairs. We first declare following hypotheses:

(1) The main leg has thigh, shin and foot, and we will describe their actions in detail.

(2) We ignore most actions of supporting leg’s thigh and shin, and will simplify the

actions to only one action.

(3) The stairs are much lower than the legs’ knees.

(4) The width of every stair is short enough so that the robot is always directly in

front of the new stair after a previous sequence of climbing actions.

Figure 3.1: The Decomposion of Actions of Robot Climbing Stairs

(8) moveBarycenter(supporting)

(1) liftUpperLeg(h)

(7) stepDown(supporting)

(ready again)

(0) ready (2) forwLowLeg (3) stepDown(main)

(4) moveBarycenter(main) (5) straightMain (6) forwSupLeg

In detail, the following stochastic actions are concerned when we describe a robot climbing

stairs (cf. Figure 3.1):
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• liftUpperLeg(h), meaning that the robot lifts the thigh of the main leg, is decom-

posed into the following two nature’s choices:

− liftT ill(h): the thigh is lifted successfully till the knee’s height is h to

current stair;

− malfunc(h): malfunction occurs when robot lifts its thigh till the knee’s

height is h to current stair, then the main leg’s position will end up at

wrongPos, meaning wrong position, which represents an abnormal position

unsuitable for performing further actions.

• forwLowLeg, meaning that the robot moves forward the shin of the main leg, is

decomposed into the following two nature’s choices:

− forwLowLegS: the action forwLowLeg performs successfully;

− forwLowLegF : malfunction occurs and the action forwLowLeg fails.

• stepDown(l), meaning that the robot steps the leg and foot of leg l down straightly

till it touches the surface of the stair, is decomposed into the following two nature’s

choices:

− stepDownS(l): the action stepDown(l) performs successfully;

− stepDownF (l): malfunction occurs and the action stepDown(l) fails.

• moveBarycenter(l), meaning that the robot moves its barycenter onto leg l, is

decomposed into the following two nature’s choices:

− moveBarycenterS(l): the action moveBarycenter(l) performs successfully;

− moveBarycenterF (l): malfunction occurs and the action fails.

• straightLeg is actually a deterministic action, meaning that the robot straightens

his main leg (its side effect is that the supporting leg leaves the ground).

• forwSupLeg, meaning that the robot moves forward his supporting leg, is decom-

posed into the following two nature’s choices:

− forwSupLegS: the action forwSupLeg performs successfully;

− forwSupLegF : malfunction occurs and the action forwSupLeg fails.
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Notice that the current stair to leg l is defined as whose ground the foot of leg l is on,

or whose ground the foot of leg l was on before this foot touches a surface of some other

stair again; and the new stair to leg l is defined as the next stair in front of current one,

i.e., it will always be “new” to leg l before the foot of leg l touches the ground of the new

stair. Now, we introduce following fluents to specify the environment:

• Relational fluent straightMain(s): the main leg is straight.

• Relational fluent barycenter(l, s): the barycenter of the robot is on leg l.

• Relational fluent footOnGround(l, s): the foot of leg l is on the ground.

• Relational fluent overNewStair(l, s): the leg l is over the new stair to leg l.

• Functional fluent mainToCurr(s): either is the height of the main leg’s the foot

to the ground of the current stair to main, or becomes a special term wrongPos if

stochastic action liftUpperLeg(H) for some H doesn’t perform successfully; and

once the robot’s main leg is in wrongPos, it stays.

Because nature’s actions above are all deterministic, it is predictable how they change

the state of the world.

straightMain(do(a, s)) ≡ a = straightLeg∨

straightMain(s) ∧ ¬(∃h)a = liftT ill(h),

barycenter(l, do(a, s)) ≡ a = moveBarycenterS(l) ∨ barycenter(l, s)∧

¬(∃l′)[a = moveBarycenterS(l′) ∧ l 6= l′],

footOnGround(l, do(a, s)) ≡

a = stepDownS(l) ∨ footOnGround(l, s) ∧ [l = main∧

¬(∃h)a = liftT ill(h) ∨ l = supporting ∧ a 6= straightLeg],

overNewStair(l, do(a, s)) ≡

a = forwLowLegS ∧ l = main ∨ a = forwSupLegS ∧ l = supporting∨

overNewStair(l, s) ∧ a 6= stepDownS(l),
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mainToCurr(do(a, s)) = h ≡

a = stepDownS(main)∧h = 0∨(∃h′)a = malfunc(h′)∧h = wrongPos∨

a = liftT ill(h) ∨mainToCurr(s) = wrongPos ∧ h = wrongPos∨

mainToCurr(s) 6= wrongPos ∧ ¬(∃h′)a = malfunc(h′)∧

a 6= stepDownS(main) ∧ ¬(∃h′)[a = liftT ill(h′) ∧ h 6= h′]∧

h = mainToCurr(s).

Moreover, the action preconditions for nature’s actions are specified as follows:

Poss(liftT ill(h), s) ≡ barycenter(supporting, s),

Poss(malfunc(h), s) ≡ barycenter(supporting, s),

Poss(forwLowLegS, s) ≡ ¬mainToCurr(wrongPos, s)∧

¬footOnGround(main, s),

Poss(forwLowLegF, s) ≡ ¬mainToCurr(wrongPos, s)∧

¬footOnGround(main, s),

Poss(stepDownS(l), s) ≡ ¬footOnGround(l, s) ∧ overNewStair(l, s),

Poss(stepDownF (l), s) ≡ ¬footOnGround(l, s) ∧ overNewStair(l, s),

Poss(moveBarycenterS(l), s) ≡ footOnGround(l, s),

Poss(moveBarycenterF (l), s) ≡ footOnGround(l, s),

Poss(straightLeg, s) ≡ ¬straightMain(s) ∧ footOnGround(main, s)

∧barycenter(main, s),

Poss(forwSupLegS, s) ≡ barycenter(main, s) ∧ straightMain(s),

Poss(forwSupLegF, s) ≡ barycenter(main, s) ∧ straightMain(s).

For example, the robot is possible to lift the thigh of his main leg iff its barycenter is on

his supporting leg; it can attempt to move forward the shin of his main leg iff his main

leg is not in a wrong position and the foot of his main leg is not on the ground; etc.

Moreover, since we are characterizing an uncertainty model, we need to declare the

following probabilities:
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prob0(liftT ill(h), liftUpperLeg(h), s)
def
= 100/(h+ 100),

prob0(malfunc(h), liftUpperLeg(h), s)
def
= h/(h+ 100),

prob0(forwLowLegS, forwLowLeg, s)
def
= 80/(mainToCurr(s) + 80),

prob0(forwLowLegF, forwLowLeg, s)
def
= mainToCurr(s)/(mainToCurr(s)+80),

prob0(stepDownS(l), stepDown(l), s)
def
= 0.9,

prob0(stepDownF (l), stepDown(l), s)
def
= 0.1,

prob0(moveBarycenterS(l), moveBarycenter(l), s)
def
= 0.8,

prob0(moveBarycenterF (l), moveBarycenter(l), s)
def
= 0.2,

prob0(straightLeg, straightLeg, s)
def
= 1.0,

prob0(forwSupLegS, forwSupLeg, s)
def
= 0.8,

prob0(forwSupLegF, forwSupLeg, s)
def
= 0.2.

At last, we have following complete description of the initial database:

straightMain(S0),

barycenter(supporting, S0),

footOnGround(l, S0) ≡ l = main ∨ l = supporting,

¬overNewStair(l, S0),

mainToCurr(0, S0),

legalStair(h) ≡ number(h) ∧ 0 < h < 20,

where predicate number(h) means that h is a real number. Then, the following sequence

of stochastic actions

proc climbing(h) (3.1)

?(legalStair(h)); liftUpperLeg(h); forwLowLeg; stepDown(main);

moveBarycenter(main); straightLeg; forwSupLeg;

stepDown(supporting);moveBarycenter(supporting)

endproc



Chapter 3. Introducing Macro-actions into the Uncertainty System 21

describes the actions that the robot need to execute when it climbs a stair, and it climbs

the legal stair successfully iff the log

[liftT ill(h), forwLowLegS, stepDownS(main),moveBarycenterS(main), straightLegS,

forwSupLegS, stepDownS(supporting),moveBarycenterS(supporting)]

is performed by nature’s choices when the above sequence of stochastic actions is re-

quested to be performed by the agent.

Thinking of human beings, when they climb stairs, they don’t care how many stairs

they’ve climbed or how they have climbed. As long as they know how to climb stairs and

there is some stair in front of them, they will naturally repeat the sequence of climbing

actions without “thinking”. If they fall by accident (not very seriously injured of course),

they will stand up again and repeat the sequence of actions. Similar for the autonomous

agent here, we would like the robot to concentrate on the local status of climbing a stair,

and provide that the controller can reset the robot to the initial status when malfunctions

occur. If we ask the robot to climb stairs of same height n times (including the times

that the robot is reset and requested to re-climb) without remembering how it climbs

former stairs, we need to compute the probabilities of the nature’s choices of above

sequence repeatedly, and do regressions step by step again and again by using stGolog,

since the methodology we have met before in the situation calculus is memoryless except

the history of the log from the initial situations. We hope that the agent can have some

“memory”, and will “recall” the information it remembers, and therefore will perform

climbing actions without “thinking” in some sense. To achieve this, our intuitive idea

is considering certain types of complex actions in the situation calculus as a whole,

performing some preprocessing (including extending the basic axioms and probabilities

and save them as rules) and later reusing the saved informations for application. This is

exactly what we are going to do in the later sections and chapters.
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3.2 The Macro-actions

In this section, we focus on the uncertainty system with stochastic actions described

above in Section 2.5. We are going to observe different types of complex actions in the

situation calculus generally to see which kinds of complex actions can be consider as a

whole (later, without ambiguity, called macro-action in the situation calculus), and get

unique extended precondition axioms, extended successor state axioms, axioms of the

probabilities for them, therefore for the purpose of reuse. In practical life, intelligent

agents are often designed to deal with particular types of problems as the examples

mentioned in the former section, meet with similar environments and perform similar

sequence of actions repeatedly. Under such situations, to reuse the outcome of certain

type of macro-actions for solving problems may bring us computational advantage.

3.2.1 Finding the Proper Structure of the Macro-actions

For the clarity, we restate here that we are dealing with the uncertainty system with

stochastic actions α1, α2, · · · , αt. And, we have the nature’s choices Ai,1, Ai,2, · · · , Ai,ki

for stochastic action αi (when ki = 1, αi is actually a deterministic action), the pre-

condition axioms for every primitive deterministic action, successor state axioms for

fluents involving primitive deterministic actions and probability of each nature’s choice

of stochastic actions as prob0 given above in section 2.5.

Firstly, we will not consider disjunction “|” or existential quantification “π” as a

part of macro-actions, because we are interested in probabilistic uncertainty and wish

to obtain the explicit probabilistic information that we desire to keep for macro-actions.

The logical uncertainty expressed with disjunction and existential quantification doesn’t

has such exact information. For example (cf. [28] chapter 12), after dropping a coin,

there is some place on the floor where it will end up with, but we don’t know where and

how exact that place will be. Therefore, it is impossible for us to keep any numerical
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information for logical uncertainty.

Secondly, let’s look at a complex action that we are obviously not easy to get a

unique successor axiom for – the “while” loop. We may have a look at the following

simple example.

Example 3.2 Suppose we are given stochastic action flipcoin with the following basic

axioms:

choice(a, f lipcoin) ≡ a = fliphead ∨ a = fliptail,

Poss(fliphead, s) ≡ true,

Poss(fliptail, s) ≡ true,

head(do(a, s)) ≡ a = fliphead ∨ head(s) ∧ a 6= fliptail,

tail(do(a, s)) ≡ a = fliptail ∨ tail(s) ∧ a 6= fliphead,

prob0(fliphead, f lipcoin, s) = 0.5,

prob0(fliptail, f lipcoin, s) = 0.5,

¬head(S0),

¬tail(S0).

And now, we may have following procedure:

proc showHead while ¬head do flipcoin endproc

It is easy to see that there is no way for us to tell in advance how many times we need to

flip the coin to satisfy the goal ”showing head” under general situations. Although for any

finite number of iterations we can foretell the exact probability, there could have infinite

choices to achieve the conditions of the “while” loop. However, there is not enough space

for us to keep the extended axioms and probabilities for all the possible finite iterations.

Therefore, we will not consider the “while” loop as a part of macro-actions.

Thirdly, the sequence action operator “;” seems considerable for constructing the

macro-actions we need. Intuitively, a finite sequence of stochastic actions is totally de-

terministic in some sense, therefore easy for us to trace its characters and effects.
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Consider a finite sequence of stochastic actions α = α1;α2; · · · ;αn (n ≥ 1). We

present following extended definition of regressable formulas and prime functional flu-

ents.

Definition 3.3 Suppose s is either the initial situation S0 or a variable of sort situation.

A formula W of Lsc is called s-regressable for s iff

1. every term of sort situation mentioned by W has the form do([α1, · · · , αn], s) for

some n ≥ 0 (special case: if n = 0, do([α1, · · · , αn], s) = s) and for terms

α1, · · · , αn of sort action;

2. other conditions are same as the 2nd, 3rd and 4th conditions in the Definition 2.3.

Definition 3.4 Suppose s is either the initial situation S0 or a variable of sort situation.

A functional fluent term is s-prime for s iff it has the form f(~t, do([α1, · · · , αn], s)) for

n ≥ 1 and each of the terms ~t, α1, · · · , αn is uniform in s.

Notice that the regressable formula defined in [28] is same as S0-regressable formula

and prime functional fluent [28] is same as S0-prime functional fluent we defined here.

Moreover, the concept uniform is defined in [28] as Definition 4.4.1 (also, cf. Appendix

B). Similar to Remark 4.7.1 in [28], we have

Remark 3.5 Suppose that g(~τ, do(α, σ)) has the property that every term of sort situation

that it mentions has the form do([α1, · · · , αn], s) for some n ≥ 0. Then g(~τ , do(α, σ))

mentions a s-prime functional fluent term.

We then can extend the regression operator R onto s-regressable formula W for some

situation s as follows:

Definition 3.6

1. Suppose W = Poss(a(~t), σ) where a(~t) and σ are of sort action and situation

respectively, R[W ] is defined same as Definition 2.4.
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2. Suppose W is a s-regressable atom, but not a Poss atom.

(a) s is the only term of sort situation (if any) mentioned by W . Then

R[W ] = W .

(b) Otherwise, the definition of R[W ] is same as Definition 2.4, except for chang-

ing ”prime functional fluent” to be ”s-prime functional fluent”.

3. For non-atomic formulas, regression is defined same as Definition 2.4.

The reason we still keep using notation R is because the definition above is same as Def-

inition 2.4 when W is regressable, i.e., Definition 3.6 is only an extension of the original

regression operator.

Now we return to discuss if we can extend the action precondition axioms, the suc-

cessor state axioms and the probability axioms for complex action composed by using

operator “;”. Suppose we have a sequential action A = A1;A2; · · · ;An, where Ai is prim-

itive deterministic action for every i ∈ {1, 2, · · · , n}, notice that

Do(A, s, s′) ≡ (∃!s0, s1, · · · , sn).s0 = s ∧ sn = s′ ∧ (∧ni=1si = do(Ai, si−1))

≡ s′ = do([A1, A2, · · · , An], s),

hence, to distinguish from abbreviation log and later be convenient to establish extended

axioms, we can extend the notation do(A, s) where A is of sort primitive action to be

do(A1;A2; · · · ;An, s) (n ≥ 1) for primitive actions A1, A2, · · · , An, indicating the situa-

tion after taking deterministic sequential action A1;A2; · · · ;An in the situation s.
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• The precondition axiom Poss(A, s) can be extended as follows:

n = 1 Poss(A, s) is the precondition axiom given in D for action A;

n > 1 Poss(A, s), meaning that A can be performed in the situation s,

= Poss(A1;A2; · · · ;An, s)

def
= (∧ni=2Poss(Ai, do([A1, · · · , Ai−1], s))) ∧ Poss(A1, s) (3.2)

≡ R[(∧ni=2Poss(Ai, do([A1, · · · , Ai−1], s))) ∧ Poss(A1, s)],

≡ Π(~t, s),

where Π(~t, s) is a formula uniform in s obtained by regression and sim-

plification. The brief proof of the property that the regression result of

a s-regressable formula is uniform in s can be found in Appendix B.

• Suppose given sequential action variable a = a1; a2; · · · ; an (n ∈ N ), where every

ai is a variable for primitive deterministic action for every i ∈ {1, 2, · · · , n}, the

successor state axiom of every relational fluent F (~x, do(a, s)) and of every functional

fluent f(~x, do(a, s)) can be extended as follows:

n = 1 F (~x, do(a, s)) ≡ φF (~x, a, s) is the given successor state axiom for re-

lational fluent F ; and f(~x, do(a, s)) = y ≡ φf(~x, y, a, s) is the given

successor state axiom for functional fluent f ;

n > 1 F (~x, do(a, s))

= F (~x, do(a1; a2; · · · ; an, s))

≡ R[F (~x, do([a1, a2, · · · , an], s))]

≡ ψF (~x, a1, a2, · · · , an, s)

for some ψF uniform in s, if F is relational fluent; and

f(~x, do(a, s)) = y

≡ f(~x, do(a1; a2; · · · ; an, s)) = y

≡ R[f(~x, do([a1, a2, · · · , an], s)) = y]

≡ Ψf (~x, y, a1, a2, · · · , an, s)

for some Ψf uniform in s, if f is functional fluent.
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• Now we also need to extend the probability function(2.1) prob in the stGolog for a

deterministic sequential action A = A1;A2; · · · ;Am of stochastic sequential action

α = α1;α2; · · · ;αn, which is denoted as probMac.

probMac(A, α, s) = p
def
=

choiceMac(α,A) ∧ Poss(A, s) ∧ p = prob0(A1, α1, s)∗

prob0(A2, α2, do(A1, s)) ∗ · · · ∗ prob0(Am, αm, do([A1, · · · , Am−1], s))

∨(¬choiceMac(α,A) ∨ ¬Poss(A, s)) ∧ p = 0,

in which we define predication choiceMac as follows:

choiceMac(α, a)
def
=

a ∈ {A1;A2 · · · ;Am | m ∈ N ∧ 1 ≤ m ≤ n ∧ (∧mi=1choice(αi, Ai)},

and say that deterministic sequential action A is a nature’s choice of α if

choiceMac(α,A) is true. In fact, choiceMac is an extension of choice, and probMac

is an extension of prob in the stGolog.

As in [28], to specify an appropriate probabilistic domain for an uncertainty system,

we need to verify that a proper probability distribution has been defined, i.e., the axiom-

atizer must ensure the two propositions (2.2) and (2.3) described Section 2.5 are satisfied.

Therefore, according to the specification above, we can prove several properties for the

definition of probMac.

Lemma 3.7 Let α = α1;α2; · · · ;αn (n ∈ N and n ≥ 1) be stochastic sequential actions,

and A be deterministic sequential actions satisfying that

choiceMac(α,A) ≡ true.

Suppose properties (a) and (b) above have been verified, then the following sentences

follow from these properties, and the definition of probMac:

1. All probabilities for deterministic sequential actions are bounded by 0 and 1:

(∀a, ~x, s).0 ≤ probMac(a, α, s) ≤ 1.
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2. All non-outcomes of α have probability 0:

(∀a, ~x, s).¬choiceMac(α, a) ⊃ probMac(a, α, s) = 0.

3. Nature’s choices are possible iff they have non-zero probability:

(∀~x, s).P oss(A, s) ≡ probMac(A, α, s) > 0.

Proof: Straightforward from the definition of probMac and properties (a) and (b). �

Definition 3.8 For any stochastic sequential action α = α1;α2; · · · ;αn and situation s,

we define following set

maxPoss(α, s)
def
= {A = A1;A2; · · · ;Am | choiceMac(α,A) ∧ Poss(A, s)∧

(m = seqLength(α) ∨m < seqLength(α) ∧ ((∀a).choice(αm+1, a) ⊃ ¬Poss(A; a, s)))},

where the predicate seqLength(a), meaning the length of a, for macro-action or sequential

action a is recursively defined as follows:

1. if a is a deterministic or stochastic action, then seqLength(a) = 1;

2. if a is of form α; β, then seqLength(a) = seqLength(α) + seqLength(β).

Intuitively, set maxPoss(α, s) is a collection of the maximal possible performable

choices of α in the situation s. Then, we have following property.

Theorem 3.9 In the probabilistic domain specified properly satisfying above two condi-

tions (a) and (b), for any stochastic sequential action α = α1;α2; · · · ;αn, we have

∨
(A = A1, · · · , An ∧ choiceMac(α,A) ∧ Poss(A, s)) ⊃

∑

A∈maxPoss(α,s)

probMac(A, α, s) = 1.

Proof: We will prove it by complete induction on n.

• n = 0, choiceMac(α,A) = ∅, the precondition is false, hence the whole proposition

is true;
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• n = 1, α is primitive action, every A satisfying the precondition is its nature’s

choice, then our proposition is same as (b), therefore the proposition is true;

• Now, we suppose the proposition is true for n < k where k is some natural number,

we are considering for n = k, i.e. for any α = α1;α2; · · · ;αk, suppose there exists

A0 such that A0 = A0
1;A

0
2; · · · ;A0

k ∧ choiceMac(α,A0)∧ Poss(A0, s), we will prove

that
∑

A∈maxPoss(α,s)

probMac(A, α, s) = 1.

Let α′ = α1;α2; · · · ;αk−1, since A0 satisfying that choiceMac(α,A0)∧Poss(A0, s),

therefore, let A′ = A0
1;A

0
2; · · · ;A0

k−1, and it is easy to see that A′ satisfies

choiceMac(α′, A′) ∧ Poss(A′, s).

By hypothesis,we have

∑

A∈maxPoss(α′,s)

probMac(A, α′, s) = 1.

Then for every A ∈ maxPoss(α′, s), suppose A = A1; · · · ;Am for some m ≤ k− 1,

(1) if m < k − 1, then A ∈ maxPoss(α, s) by definition of maxPoss;

(2) if m = k−1 and for any Ak satisfying choice(αk, Ak) ⊃ ¬Poss(A;Ak, s), then

A ∈ maxPoss(α, s) by definition of maxPoss;

(3) if m = k − 1 and there exists ak satisfying choice(αk, Ak) ∧ Poss(A;Ak, s),

then Poss(Ak, do([A1, · · · , Ak−1], s)) by the definition of Poss for deterministic

sequential action, therefore by induction assumption

∑

b∈maxPoss(αk ,do([A1,··· ,Ak−1],s))

probMac(b, αk, do([A1, · · · , Ak−1], s))

=
∑

b∈maxPoss(αk ,do([A1,··· ,Ak−1],s))

prob0(b, αk, do([A1, · · · , Ak−1], s)) = 1



Chapter 3. Introducing Macro-actions into the Uncertainty System 30

so, for fixed A, let B′
i = A;Bi for every Bi ∈ maxPoss(αk, do([A1, · · · ,

Ak−1], s)), we have B′
i ∈ maxPoss(α, s), and

∑

i

probMac(B′
i, α, s))

= probMac(A, α′, s) ∗

(
∑

B∈maxPoss(αk ,do([A1,··· ,Ak−1],s))

prob0(B, αk, do([A1, · · · , Ak−1], s)))

= probMac(A, α′, s).

Therefore, by (1),(2), and (3), we have

∑

A∈maxPoss(α,s)

probMac(A, α, s)

=
∑

A∈maxPoss(α′,s)

probMac(A, α′, s) = 1.

Hence, we proved the proposition is true for all n ∈ N . �

This theorem indicates the common sense of the property of probabilities. The defi-

nition of maxPoss and the property above are what we are really interested in. Because

as we argued in the motivation, when the agent meets the macro-action in the same local

situation it has met before, rather than recomputes the possible choices and probabilities,

we would like the agent to “recall” the maximal possible deterministic sequences it has

computed and remembered before.

Up till now, everything works properly for sequential actions, and it is reasonable for

us to consider the macro-action can be of form α1;α2; · · · ;αn for n stochastic actions

where n is a finite natural number no less than 2.

Finally, there are still two complex actions we need to consider. We think it is not an

obligation to keep the test action “?” as a part of macro-actions. The reason is that “?”

is not actually an action which might affects the state of the environment, i.e., executing

the test action will not affect the truth values of any fluents in the system. There is no
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extra intermediate information we need to keep for executing the test action. However,

joining the testing actions into the macro-actions may make it difficult for us to define the

nature’s choices for a macro-action, since the tests can appear anywhere in the macro-

action and these tests are situation-based. Similarly, for the conditional complex action

if ϕ then α else β we are more interested in the probability results of executing of the

body α or β than the testing of ϕ. Hence, currently we would like to keep our life easy

and will not bind the testing and the conditional complex action into macro-actions.

Maybe in the near future, we would like to discuss what will happen if we combine these

two actions as parts of the macro-actions under certain condition.

3.2.2 Spotting Macro-action

What does spotting macro-actions mean? Why do we need to do this? Given a very long

sequence of stochastic actions, for example,

go(office(Sue)); giveMail(Sue); giveCoffee(Sue); go(office(Pat));

giveMail(Pat); giveCoffee(Pat),

we are not willing to treat it as a whole macro-action, since it is actually can be considered

as performing same macro-action go(office(p)); giveMail(p); giveCoffee(p) on different

instances, which has unique precondition axiom, successor state axiom and probability

computing formulas. Moreover, if we do not have obvious disparity between normal

sequential actions and the macro-actions, it is difficult for the agent to identify macro-

actions from a long sequence of stochastic actions. Another reason is that the macro-

actions actually can be viewed as a kind of special procedures, but we still need to differ it

from the ordinary ones. Finally, if the macro-actions have names, it will be convenient for

both the controller and the autonomous agent to remember and recognize them. Hence,

similar to procedures, we introduce terms macro and endmacro such that

macro pname ∆ endmacro,
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meaning that ∆ is a macro-action named pname.

Therefore, as an example, if we define

macro serve(p) go(office(p)); giveMail(p); giveCoffee(p) endmacro,

then the example we mentioned at the beginning of this sub-section can be represented

as

serve(Sue); serve(Pat).

All in all, we summarize the definition of macro-action as follows:

Definition 3.10 A macro-action in an uncertainty system described is a sequence of

stochastic actions α1;α2; · · · ;αn with some name pname, denoted as

macro pname α1;α2; · · · ;αn endmacro,

where n ∈ N and n ≥ 2. We also say that “pname is a macro-action with body

α1;α2; · · · ;αn”.

To simplify the problem in this work, we do not allow the nesting of macro-actions,

that is to say, the body of pname only consists of sequence of stochastic actions. Moreover,

the definitions of macro-actions in a dynamic system must follow the unique name axiom.

As a result, the definitions of choiceMac, probMac, seqLength andmaxPoss in above

sub-section also can be extended as follows.

Definition 3.11 For any macro-action pname with body ∆,

choiceMac(pname, a) ≡ choiceMac(∆, a),

probMac(A, pname, s) = p ≡ probMac(A,∆, s) = p,

seqLength(pname) = seqLength(∆),

maxPoss(pname, s) = l ≡ maxPoss(∆, s) = l.

Moreover, for later convenience, we would like to give following description of nota-

tions.
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Notation 3.12 For any macro-action or sequential action α, let α[n] denote the nth

deterministic or stochastic action of α or of α’s body for 1 ≤ n ≤ seqLength(α), i.e.

1. if α is a macro-action with body ∆ , then α[n] = ∆[n];

2. otherwise, if n ≤ 0 or n > seqLength(α), then α[n]
def
= nil, else α[n] is of

sort action such that there exist actions a1, a2, · · · , an−1, an+1, · · · , aseqLength(α)

satisfying that

α = a1; a2 · · · ; an−1;α[n]; an+1; · · · ; aseqLength(α).

Notation 3.13 Notice that, up till now, we extend several terms of the language Lsc

described in Chapter 2.1 as follows:

1. the term do(a, s) is extended to the form do(a1; a2; · · · ; an, s)(n ≥ 1) where

every ai is of sort action and s is of sort situation;

2. the predicate Poss(A, s) is extended to the form Poss(A1;A2; · · · ;An, s)(n ≥

1) stating that deterministic sequential action A1;A2; · · · ;An can be performed

in the situation s.

We denote language Lsc with above extensions as language L′
sc, i.e., the difference between

Lsc and L′
sc is that Lsc does not allow above two kinds of extended terms.

After observation and discussion above, we finally decided the structure of macro-

action, and found that it is possible to develop a knowledge base for macro-action, which

will include the extended successor state axioms, action preconditions, and probabilities

for the macro-actions. We would like to see this work later in next chapter, and now we

may look at following example of robot climbing stairs for better understanding.
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3.3 Example of Macro-actions for Robot Climbing

Stairs

Continuing Example 3.1 in previous section, suppose we have

macro stepMain(h) (3.3)

liftUpperLeg(h); forwLowLeg; stepDown(main);moveBarycenter(main);

straightLeg

endmacro,

macro stepSupp (3.4)

forwSupLeg; stepDown(supporting);moveBarycenter(supporting)

endmacro,

i.e., we define two macro-actions stepMain(h) and stepSupp, and the procedure of climb-

ing a stair of height h therefore can be defined as follows:

proc climbing(h) ?(legalStair(h)); stepMain(h); stepSupp endproc. (3.5)

We also can define following macro-action

macro climbStair(h) (3.6)

liftUpperLeg(h); forwLowLeg; stepDown(main);moveBarycenter(main);

straightLeg; forwSupLeg; stepDown(supporting);moveBarycenter(supporting)

endmacro

and therefore the previous procedure climbing(h) (3.1) can be represented as

proc climbing(h) ?(legalStair(h)); climbStair(h) endproc. (3.7)

According to the definition of choiceMac, for example
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choiceMac(malfunc(h), stepMain(h)) ≡ true,

choiceMac(liftT ill(h); stepDown(main), stepMain(h)) ≡ false,

choiceMac(forwSupLegS; stepDownF (supporting);

moveBarycenterS(supporting), stepSupp) ≡ true.

Since seqLength(stepMain(h)) = 5 and seqLength(stepSupp) = 3, then we have

nature’s choices of length from 1 to 5, therefore we might need all the extended successor

state axiom for sequences a1; · · · ; an where n = 2, 3, 4, 5. For instance, consider fluent

barycenter and for variables a1 and a2, we have

barycenter(l, do(a1; a2, s)) ≡ R[barycenter(l, do([a1, a2], s))]

= R[a2 = moveBarycenterS(l) ∨ barycenter(l, do(a1, s))∧

¬(∃l′)[a2 = moveBarycenterS(l′) ∧ l 6= l′]]

≡ a2 = moveBarycenterS(l) ∨ {a1 = moveBarycenterS(l)

∨barycenter(l, s) ∧ ¬(∃l′)[a1 = moveBarycenterS(l′) ∧ l 6= l′]}

∧¬(∃l′)[a2 = moveBarycenterS(l′) ∧ l 6= l′]].

For other fluents and different lengths of deterministic sequential actions, the regression

calculations are similar according to the description we gave in the previous section.

As examples of the extended action preconditions, both liftT ill(h); forwLowlLegS

andmalfunc(h); forwLowlLegS are nature’s choices of macro-action stepMain(h), their

precondition axioms are

Poss(liftT ill(h); forwLowlLegS, s)

≡ Poss(liftT ill(h), s) ∧ Poss(forwLowlLegS, do(liftT ill(h), s))

≡ R[Poss(liftT ill(h), s) ∧ Poss(forwLowlLegS, do(liftT ill(h), s))]

= R[barycenter(supporting, s) ∧ ¬mainToCurr(wrongPos, do(liftT ill(h), s))

∧¬footOnGround(main, do(liftT ill(h), s))]

≡ barycenter(supporting, s) (by using regression and simplification), and
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Poss(malfunc(h); forwLowlLegS, s)

≡ R[Poss(malfunc(h), s) ∧ Poss(forwLowlLegS, do(malfunc(h), s))]

= R[barycenter(supporting, s) ∧ ¬mainToCurr(wrongPos, do(malfunc(h), s))

∧¬footOnGround(main, do(malfunc(h), s))]

= R[barycenter(supporting, s) ∧ ¬true] (by regression and simplification)

≡ false.

Other extended action preconditions can be obtained similarly. At last, some examples

of the extended probabilities are given as follows according to the descriptions in the

previous section:

i. for A = liftT ill(h); forwLowlLegS and α = stepMain(h), we have

probMac(liftT ill(h); forwLowlLegS, stepMain(h), s) = p

≡ choiceMac(α,A)∧Poss(A, s)∧p = prob0(liftT ill(h), liftUpperLeg(h), s)∗

prob0(forwLowlLegS, forwLowlLeg, do(liftT ill(h), s))

∨(¬choiceMac(α,A) ∨ ¬Poss(A, s)) ∧ p = 0.

ii. probMac(malfunc(h); forwLowlLegS, stepMain(h), s) = 0, since we have the

fact that ¬Poss(malfunc(h); forwLowlLegS, s) for any situation s;

In this chapter, we discussed the motivation of the work that goes on in this paper.

Next, we began with the first step of finding what we mean macro-action and argued

that the structure is possible and reasonable for later development. finally, we worked on

an concrete example of macro-actions to get more sense. Based on this, in next chapter,

we are going to perform the formal work how to develop a database for macro-actions in

an uncertainty model for the purpose of reuse in later application.



Chapter 4

Developing the Knowledge Base for

Macro-actions

We have decided the frame of the macro-actions in last chapter. Now, we are going to in-

troduce a knowledge base which stores the information of macro-actions of an uncertainty

system. To develop the knowledge base, we present an algorithm for this procedure and

implement it in Prolog.

4.1 The Components of the Knowledge Base

As we have seen the example of robot climbing stairs, the purpose of having a knowledge

base for macro-actions is that the autonomous agent can reuse local information of macro-

actions when it repeats the same procedures or strategies which are composed of macro-

actions and other complex actions under the same state of environment at different time.

The reason that we call it a knowledge base rather than database is that we not only want

to save the results of extended probabilities of the nature’s choices, but also want to keep

the extended action axioms which are more like knowledge than data.

Suppose the controller presents the basic action theories D (including extended parts

37



Chapter 4. Developing the Knowledge Base for Macro-actions 38

such as nature’s choices and probabilities) for an uncertainty system as we described in

Section 2.5, and wants to introduce several macro-actions p1, p2, · · · , pt (t ∈ N ). We

would like to develop a knowledge base for these macro-actions which consists of two

parts: static part and dynamic part. People may ask why we need two parts and what

exactly they look like. We feel it will be much easier for us to set forth the reasons after

expressing the explicit components of these two parts than to argue the reasons first.

The static part of the knowledge base is as follows:

• Definitions of Macro-actions

It consists of the statements of macro-action of the form

macro pname ∆ endmacro.

We also introduce a special predicate currentMaxLength(n) which denotes the

maximal length of all the macro-actions in current knowledge base. Initially, when

knowledge base is empty, we have the fact currentMaxLength(0). Formally, it is

defined as follows

currentMaxLength(n)
def
=

if there is some macro-action in current knowledge base, then

n = seqLength(p0) for some macro-action (procedure) p0

in current knowledge base and n ≥ seqLength(p)

for every macro-action p in current knowledge base;

else n = 0. (4.1)

Since we may have nature’s choices of macro-actions ranging from length 1 to n

satisfying that currentMaxLength(n), we would like to keep the extended successor

state axioms for deterministic sequences from length 1 to n in next part.
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• Derived Theories for Macro-actions

All the derived axioms are computed and stored here, for instance, preconditions

axioms for every deterministic choices of macro-actions,etc. It includes the following

three sub-groups.

a. The Extended Successor State Axioms for Fluents

Assume the maximum length of macro-actions declared in the first part is n,

i.e., currentMaxLength(n), we keep the extended successor state axioms of

every fluent for deterministic sequences no longer than n as the form of

F (~x, do(a1; a2; . . . ; am, s)) ≡ ΨF (~x, a1, a2, . . . , am, s), (4.2)

or

f(~x, do(a1; a2; . . . ; am, s)) = y ≡ Ψf(~x, y, a1, a2, . . . , am, s), (4.3)

where m is natural number such that 2 ≤ m ≤ n, F represents a relational

fluent, f represents a functional fluent, and ΨF (respectively, Ψf) is some

formula uniform in s obtained by regression and simplification.

b. The Extended Precondition Axioms for Nature’s Choices of Macro-actions

As discussed in Section 3.2, we are interested in the extended precondition

axioms for nature’s choices of macro-actions. We keep them certainly for the

sake of reuse. These extended Precondition Axioms are of form

Poss(A1;A2; . . . ;Am, s) ≡ Π(~t, s), (4.4)

where A1;A2; . . . ;Am is a nature’s choice of some macro-action declared in

part a., and Π is some formula uniform in s obtained by regression and simpli-

fication. Moreover, since later we will implement the knowledge base by using

Prolog, according to the property of the closed world assumption(CWA) [26],

we need not keep those axioms in which Π’s are false.
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Additionally, we introduce a predicate localChoice(α, L), meaning that L is a

list of all the nature’s choices of macro-action α satisfying that

for any A ∈ L, there is precondition axiom of form Poss(A, s) ≡ ΠA(s)

either in this knowledge base or in D,

i.e. we discard all those nature’s choices of a macro-action that are obviously

not possible to be performed in any situation. We gather such information

for every existing macro-action in this knowledge base. To do this additional

information collecting operation can bring us the advantage that the agent

later won’t waste time on those non-performable choices.

c. The Extended Probabilities for Nature’s Choices of Macro-actions

The most important information for uncertainty system is the probability

of every nature’s choice of macro-action, which is as the given definition of

probMac in Section 3.2. To achieve the goal of reusing useful results of macro-

actions rather than recomputing them, we prefer saving the regression results

which are uniform in s for the definition of probMac(A, α, s). But, since we

have already had the information of the extended precondition axioms kept

in the knowledge base, rather than using the original definition in Chapter 3,

the following equivalent definition is more suitable for us (the equality can be

easily proved by induction):

given A representing deterministic sequential action and variable α represent-

ing a stochastic action or a macro-action,

probMac(A, α, s) = p
def
=

choiceMac(α,A) ∧ Poss(A, s) ∧ p = probMac0(A, α, s)

∨(¬choiceMac(α,A) ∨ ¬Poss(A, s)) ∧ p = 0, (4.5)

in which we introduce the supplementary predicate probMac0(A, α, s) defined
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recursively as follows:

probMac0(A, α, s) = p
def
=

if seqLength(A) = 1 then p = prob0(A, α[1], s),

else (∃y1, y2)[y1 = probMac0(A[1]; · · · ;A[n− 1], α, s) ∧

y2 = prob0(A[n], α[n], do(A[1]; · · · ;A[n− 1], s)) ∧ p = y1 ∗ y2]

where n = seqLength(A) ∧ n > 1. (4.6)

Notice that if we have Poss(A, s) ≡ false for some macro-action α’s choice

A, i.e. there is no rule for Poss(A, s) in part b., by CWA [26] and negation

as failure, we could definitely know that probMac(A, α, s) = 0 by definition

(4.5), therefore, it is not necessary to compute and save the regression result

of probMac0(A, α, s) for such A. Hence, we only need to keep the regression

results of probMac0 as follows

probMac0(A, α, s) = p ≡ f(p,~t, s) (4.7)

where f is a formula uniform in s obtained by regression and simplification of

(4.6) for every α’s nature’s choice A which has the precondition axiom in D

or in part b..

We have finished describing the components of the static part of the knowledge base.

Clearly, all of the knowledge we keep in this part are universal in the sense that they are

not relevant to particular situations, i.e., s is a variable of sort situation and we can obtain

the knowledge for macro-actions described above without any descriptions of the initial

database and any exact programs. Therefore, “static” does not mean that this part could

not change at all, it means that the static part of a knowledge base is relatively stable

and will not change with the changing of the initial database and programs. Controller

can extend this part by adding more macro-actions, or totally discard the whole part by

deleting the file that is used to save the above information and re-build a new one.
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The dynamic part of the knowledge base depends on particular situations. This part

contains 3-ary predicate maxPossBase facts such that

maxPossBase(List, α, S) ≡ List = maxPoss(α, S)

for some macro-action α and situation instance S. The information of maxPoss(α, S)

we discussed in previous chapter is very useful and the reuse of it can save computational

time for the autonomous agent when it performs the macro-action (possibly on different

instances) under the same situation. These facts, maxPossBase(List, α, S), depend on

particular situations, therefore relate to the initial database and programs. They are

generated during executing and will disappear when the controller reloads new initial

database. Since this dynamic part is related to the initial situation, we embed the gen-

eration into application interpreter. The detail will be discussed later during application

in Chapter 5.

By giving the descriptions of the knowledge base, it is clear that why we would like

to separate it into two parts. We would not like the general knowledge in the static part

to disappear so easily, while, on the other hand, would not like to keep the situation

instance related information any more once the initial database changes.

4.2 An Extended Regression Operator Based on the

Knowledge Base

Given the structures of knowledge base for macro-actions, it is very natural for us to think

of introducing an extended regression operator, which will help us develop the knowledge

base formally and later for the purpose of reusing the extended axioms in the base. Our

new regression operator R? will be defined on s-regressable formula in L′
sc, i.e., we allow

formulas to include the extended terms described in Notation 3.13.
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Definition 4.1 Suppose s either is the initial situation S0 or a variable of sort situation.

A formula W of L′
sc is s-regressable for some situation s iff

1. every term of sort situation mentioned by W has the form do(αn, · · · , do(α1, s) · · · )

for some n ≥ 0, and every αi (1 ≤ i ≤ n) either is of sort action or is of form

αi,1; · · · ;αi,mi
for some mi ≥ 2 and every αi,j (1 ≤ j ≤ mi) is of sort action;

2. for every atom of the form Poss(α, σ) mentioned by W , α = A1( ~x1); · · · ;An( ~xn)

for some n ≥ 1 and all Ai are action function symbols of Lsc;

3. other conditions are same as the 3rd and 4th conditions in the Definition 2.3.

A functional fluent term is s-prime for s, iff it has the form f(~t, do(αn, · · · , do(α1, s) · · · )

for n ≥ 1, where every αi (1 ≤ i ≤ n) either is of sort action, or is of form αi,1; · · · ;αi,mi

for some mi ≥ 2 and every αi,j (1 ≤ j ≤ mi) is of sort action; and each of the terms ~t is

uniform in s.

And now, we give the definition of the extended regression operator R? for s-regressable

formula W in L′
sc ( where s is either S0 or a variable of sort situation) as follows:

Definition 4.2 The Extended Regression Operator

1. Suppose W = Poss(α(~t), σ) where α(~t) is a sequence of deterministic actions (in-

cluding of length 1, i.e., primitive action) and σ is of sort situation, there are two

cases:

(a) If there is (extended) action precondition axiom given as

Poss(α(~x), s1) ≡ Πα(~x, s1),

without loss of generality, assume that all quantifiers (if any) of Πα(~x, s1) have

had their quantified variables renamed to be distinct from the free variables (if

any) of Poss(α(~t), σ), then

R?[W ] = R?[Πα(~t, σ)].
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(b) Otherwise, we must have seqLength(α(~t)) > 1, and suppose the recursive

definition of Poss(a1; · · · ; an, s) for n > 1 is of form

Poss(a1; · · · ; an, s) ≡

Poss(a1; · · · ; an−1, s) ∧ Poss(an, do(a1; · · · ; an−1, s)), (4.8)

which is equivalent to the original definition formula(3.2) (can be proved eas-

ily), without loss of generality, assume that all quantifiers (if any) of above

formula have had their quantified variables renamed to be distinct from the

free variables (if any) of Poss(α(~t), σ), then let

R?[W ] = R?[Poss(α1(~t1); · · · ;αn−1( ~tn−1), σ) ∧

Poss(αn(~tn), do((α1(~t1); · · · ;αn−1( ~tn−1), σ))].

2. Suppose W is a s-regressable atom, but not a Poss atom. There are three possibil-

ities:

(a) s is the only term of sort situation (if any) mentioned by W , then

R?[W ] = W.

(b) Suppose that W mentions a term of the form g(~t, do(α′, σ′)) for some func-

tional fluent g, α′ = α′
1; · · · ;α′

n for some n > 0 and every α′
i is of sort action,

and σ′ is of sort situation. g(~t, do(α′, σ′)) mentions a s-prime functional fluent

term of form f(~r, do(α, σ)) where α = α1; · · · ;αm for some m > 0 and every

αi is of sort action, and σ is of sort situation.

• If there is formula of form

f(~x, do(a1; · · · ; am, s1)) = y ≡ ψf (~x, y, a1, · · · , am, s1)

in the knowledge base, without loss of generality, assume that all quanti-

fiers (if any) of ψf (~x, y, a1, · · · , am, s1) have had their quantified variables
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renamed to be distinct from the free variables (if any) of f(~r, do(α, σ)),

then

R?[W ] = R?[(∃y).ψf(~r, y, α1, · · · , αm, σ) ∧W |f(~r,do(α,σ))
y ];

• otherwise, suppose f ’s successor state axiom in Dss is

f(~x, do(a, s1)) = y ≡ φf(~x, y, a, s1),

without loss of generality, assume that all quantifiers(if any) of φf(~x, y, a, s1)

have had their quantified variables renamed to be distinct from the free

variables (if any) of f(~r, do((α, σ)), then let σ1 = do(α1; · · · ;αm−1, σ)

(when m− 1 = 0, σ1 = σ) and

R?[W ] = R?[(∃y).φf(~r, y, αm, σ1) ∧W |f(~r,do(α,σ))
y ].

Here y is a variable not occurring free in W,~r, α or σ.

(c) W is a relational fluent atom of form F (~t, do(α, σ)) where α = α1; · · · ;αn for

n > 0 and every αi is of sort action, and σ is of sort situation.

• If there is formula of form

F (~x, do(a1; · · · ; an, s1)) ≡ ψF (~x, a1, · · · , an, s1)

in the knowledge base, without loss of generality, assume that all quan-

tifiers (if any) of ψF (~x, a1, · · · , an, s1) have had their quantified variables

renamed to be distinct from the free variables (if any) of F (~t, do(α, σ)),

then

R?[W ] = R?[ψF (~t, α1, · · · , αn, σ)];

• otherwise, suppose F ’s successor state axiom in Dss is

F (~x, do(a, s1)) ≡ ΦF (~x, a, s1),
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without loss of generality, assume that all quantifiers(if any) of ΦF (~x, a, s1)

have had their quantified variables renamed to be distinct from the free

variables (if any) of F (~t, do(α, σ)), then let σ1 = do(α1; · · · ;αn−1, σ)

(when n− 1 = 0, σ1 = σ) and

R?[W ] = R?[ΦF (~t, αn, σ1)].

3. For non-atomic formulas, regression is defined inductively as follows.

R?[¬W ] = ¬R?[W ]

R?[W1 ∧W2] = R?[W1] ∧ R?[W2]

R?[(∃x)W ] = (∃x)R?[W ]

Because regression repeatedly substitutes logically equivalent formulas for atoms,

what the operator delivers will be logically equivalent for what it starts with. This

forms the basis of the following:

Theorem 4.3 Suppose W is a s-regressable sentence of L′
sc for some situation s that

mentions no functional fluents, and D is a basic theory of actions. Then R? is a sentence

uniform in s. Moreover,

D |= W ≡ R?[W ].

According to above theorem and Theorem 4.5.1, Theorem 4.5.2 in [28], we also have

the following properties:

Theorem 4.4 Suppose W is a regressable sentence of Lsc that mentions no functional

fluents, and D is a basic theory of actions. Then

D |= R[W ] ≡ R?[W ].
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Theorem 4.5 Suppose W is a regressable sentence of Lsc that mentions no functional

fluents, and D is a basic theory of actions. Then

D |= W iff DS0
∪ Duna |= R?[W ].

Moreover, as we discussed in previous chapter, do(a1; a2; · · · ; an, s) represents the

same situation as do([a1, a2, · · · , an], s) for deterministic actions. Hence, for any S0-

regressable formula W1 in L′
sc, there is a regressable formula W2 equivalent to W1 ob-

tained by replacing any Poss(α, σ) in W1 with its equivalent formula of form (3.2) if

seqLength(α) > 1 and replacing any do(a1; a2; · · · ; an, σ) inW1 with do([a1, a2, · · · , an], σ).

We call W2 as the equal formula of W1 in Lsc, and it is easy to see that

Theorem 4.6 Suppose W1 is a S0-regressable sentence of L′
sc that mentions no functional

fluents, W2 is the equal formula of W1 in Lsc, and D is a basic theory of actions. Then

D |= W2 iff DS0
∪ Duna |= R?[W1].

These mean that our regression operator R? can obtain the equivalent result as the

original operator. Based on the definition of regression operator R? and above properties,

we are now going to develop the knowledge base developer which is a program used to

develop the static part of the knowledge base in a formal way.

4.3 The Knowledge Base (Static Part) Developer

We have seen how we designed the knowledge base, and we are going to present how the

agent develops the knowledge base (static part) based on the user-provided basic action

theories and descriptions of macro-actions. Our basic idea is that for a given dynamic
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system with its knowledge base, if the controller wants to use some macro-actions that

are not in the base, he or she will call a program built in the agent to compute and

add the information of the new macro-actions into the static part of the knowledge base

before using them; otherwise, the controller can use the existing macro-actions directly.

4.3.1 The Algorithm

Suppose the controller has provided the description of the basic action theories D together

with declarations of nature’s choices and probabilities prob0 for an uncertainty system

M . Notice that the initial knowledge base of macro-actions for M is empty, since there

is no macro-action being declared yet. We claim that the declaration of macro-actions in

the knowledge base is not opaque to the controller, i.e., the controller can easily retrieve

how many macro-actions have been declared in current base and how they are defined. If

the controller thinks it is necessary to introduce new macro-actions, it is the controller’s

duty to give the names and corresponding bodies of the new macro-actions.

The knowledge base developer kbDeveloper(list, base) is a program used by the agent

to compute and add information into static part of knowledge base base for new macro-

actions in list provided by the controller. The detailed algorithm of the developer

kbDeveloper(list, base) is as follows:

The Algorithm of Developing a Knowledge Base(Static Parts)

1. Let n1 be the number satisfying currentMaxLength(n1), i.e. we update

currentMaxLength everytime we call this program.

2. Let n2 be the maximal length of the macro-actions in list.

3. (adding declarations of new macro-actions)

Insert declarations of new macro-actions in list into knowledge base and current

program.
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4. (adding the successor state axioms)

If n2 ≤ n1, then go to next step;

else, do following step:

for i = n1 + 1 to n2 do

(1) for every relational fluent F (~x, s), compute R?[F (~x, do(a1; · · · ; ai, s))] and

get result φF,i(~x, a1, · · · , ai, s) for some φF,i uniform in s and insert formula

F (~x, do(a1; · · · ; ai, s)) ≡ φF,i(~x, a1, · · · , ai, s)

into the knowledge base and the front of current program;

(2) similarly, compute R?[f(~x, do(a1; · · · ; ai, s)) = y] for every functional fluent

f(~x, s) and get result φf,i(~x, y, a1, · · · , ai, s) for some φf,i uniform in s and

insert formula

f(~x, do(a1; · · · ; ai, s)) = y ≡ φf,i(~x, y, a1, · · · , ai, s)

into the knowledge base and the front of current program.

5. (adding the extended action preconditions for nature’s choices of new macro-

actions)

For every macro-action α given in list do

for j = 2 to seqLength(α) do

compute R∗[Poss(A(~t), s)] for every deterministic sequential actions A(~t) satisfy-

ing that choiceMac(α,A(~t)) and seqLengh(A(~t)) = j to get the result ΠA(~t, s); if

it is not equal to false, then insert formula

Poss(A(~t), s) ≡ ΠA(~t, s)

into the knowledge base and the front of current program.
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6. gather facts localChoice(α, L) for every α in list and insert them into the knowl-

edge base and current program.

7. (adding probMac0 for nature’s choices of new macro-actions)

For every macro-action α given in list do

for every A(~t) in L satisfying localChoice(α, L), compute probMac0(A(~t), α, s)

recursively according to the definition of formula (4.6) as follows:

If seqLength(A(~t)) = 1, then

probMac0(A(~t), α, s) = fA(~t, s),

where fA(~t, s) = prob0(A(~t), α[1], s),

else if A(~t) = A1;A2; · · · ;An (n > 1) and we have computed

probMac0(A1;A2; · · · ;An−1, α, s) = y1 ≡ f ′(~t, y1, s)

where f ′ is uniform in s, then

probMac0(A(~t), α, s) = y ≡ y = y1 ∗ y2 ∧ f
′(~t, y1, s) ∧ fAn

(~t, y2, s),

where fAn
(~t, y2, s) is obtained by computing R∗[y2 = W ] in which W is

the equivalent formula of prob0(An, α[n], do(A1;A2; · · · ;An−1, s)) according to

the definition of prob0. We therefore get an equivalent formula f(~t, y, s) of

probMac0(A(~t), α, s) = y uniform in s, and then insert probMac0(A(~t), α, s) =

y ≡ f(~t, y, s) into the knowledge base and current program.

The reason for using extended regression operator is obvious. For example, to compute

the regression result of F (~x, do(a1; a2; · · · ; an, s)) (n > 1) given all the formulas of (4.3)

and (4.4) for a1; a2; · · · ; an−1 exist, we only need two steps by using operator R∗, but

need n steps by using operator R.
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4.3.2 Implementation and Experiment

We implement the algorithm in Prolog which is the language that we are used to imple-

ment Golog and stGolog of the action theory.

First thing we need to do is that to choose a proper structure to represent deterministic

sequential actions. Notice that the structure “list” in Prolog is similar to definition of log

and easy to deal with; moreover, we never used this structure before in the implementa-

tion of uncertainty system therefore should not cause conflict. Hence, in implementation

of the work in this paper, we will use lists to represent the nature’s choices of macro-

actions, and always use form do([a1, a2, · · · , an], s) (n ≥ 1) to represent the situation

do(a1; a2; · · · ; an, s). Second, because we need to compute those extended axioms by us-

ing regression, the controller needs to provide the successor state axioms, precondition

axioms and probabilities prob0 in the form of Atom <=> Expression. For example, in

the system of robot climbing stairs, controller provides the following assertions:

Action Precondition and Successor State Axioms for the Developer

poss(liftTill(H),S) <=> barycenter(supporting,S).

poss(malfunc(H),S) <=> barycenter(supporting,S).

poss(forwLowLegS,S) <=> -mainToCurr(wrongPos,S) & -footOnGround(main,S).

poss(forwLowLegF,S) <=> -mainToCurr(wrongPos,S) & -footOnGround(main,S).

poss(stepDownS(L),S) <=> -footOnGround(L,S) & overNewStair(L,S).

poss(stepDownF(L),S) <=> -footOnGround(L,S) & overNewStair(L,S).

poss(moveBarycenterS(L),S) <=> footOnGround(L,S).

poss(moveBarycenterF(L),S) <=> footOnGround(L,S).

poss(straightLeg,S) <=> -straightMain(S) & footOnGround(main,S) &

barycenter(main,S).

poss(forwSupLegS,S) <=> barycenter(main,S) & straightMain(S).
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poss(forwSupLegF,S) <=> barycenter(main,S) & straightMain(S).

straightMain(do([A],S)) <=> A = straightLeg v

straightMain(S) & -(A = liftTill(H)).

barycenter(L,do([A],S)) <=> A = moveBarycenterS(L) v

barycenter(L,S) & -(A = moveBarycenterS(L1) & -(L=L1)).

footOnGround(L,do([A],S)) <=> A = stepDownS(L) v

footOnGround(L,S) & (L = main & -(A = liftTill(H)) v

L = supporting & -(A = straightLeg)).

overNewStair(L,do([A],S)) <=> A = forwLowLegS & L = main v

A = forwSupLegS & L = supporting v

overNewStair(L,S) & -(A = stepDownS(L)).

mainToCurr(H,do([A],S)) <=> A = malfunc(H1) & H = wrongPos v

A = liftTill(H) v A = stepDownS(main) & H = 0 v

mainToCurr(wrongPos,S) & H = wrongPos v

mainToCurr(H,S) & -(H = wrongPos) & -(A= malfunc(H1)) &

-(A = liftTill(H1) & -(H = H1)) & -(A = stepDownS(main)).

% Probabilities

prob0(liftTill(H),liftUpperLeg(H),S,Pr) <=> Pr is 100/(H+100).

prob0(malfunc(H),liftUpperLeg(H),S,Pr) <=> Pr is H/(H+100).

prob0(forwLowLegS,forwLowLeg,S,Pr) <=> mainToCurr(H,S) & Pr is 80/(H+80).

prob0(forwLowLegF,forwLowLeg,S,Pr) <=> mainToCurr(H,S) & Pr is H/(H+80).

prob0(stepDownS(L),stepDown(L),S,Pr) <=> Pr = 0.9.

prob0(stepDownF(L),stepDown(L),S,Pr) <=> Pr = 0.1.

prob0(moveBarycenterS(L),moveBarycenter(L),S,Pr) <=> Pr = 0.8.

prob0(moveBarycenterF(L),moveBarycenter(L),S,Pr) <=> Pr = 0.2.

prob0(straightLeg,straightLeg,S,Pr) <=> Pr = 1.0.

prob0(forwSupLegS,forwSupLeg,S,Pr) <=> Pr = 0.8.
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prob0(forwSupLegF,forwSupLeg,S,Pr) <=> Pr = 0.2.

Notice that in the successor state axioms, we modify do(A,S) to be do([A],S), which can

make the agent realize that A is variable of primitive action instead of a general variable

which may cause mistakes during regression.

Besides these assertions, the user also needs to provide the declarations of the na-

ture’s choices of stochastic actions as of form choice(a,C):- C=a1;C=a2;· · · ;C=am.

Moreover, according to the algorithm, we need to gather all the fluents and construct

new head of the extended successor state axioms. Notice that there is an existing term

restoreSitArg(F,S,F[S]) ([28] Chapter6.3.2) introduced in the very beginning of the

implementation of Golog meaning that the result of restoring the situation S to the

situation-suppressed fluent atom F is F[S]. We always have a collection of clauses of such

form for all the fluents in the system. We therefore can use this collection to help us

find all fluents we need to work on as well as to generate the head of the new extended

successor state axioms for different situations do([A1, A2, · · · , An], S). Hence, the aspects

described above are all the clauses we need to provide for generating a new knowledge

base (static part) for an uncertainty system. If we have had a knowledge base (static

part) for the system and want to extend it with new macro-actions, we also need to pro-

vide all the extended successor state axioms in it for the purpose of avoiding duplication

and of saving time. Notice that we will use files to store descriptions of the systems and

the knowledge base (static part), therefore, the assertions of these rules can be done by

simply loading the corresponding files.

There is another problem we need to take care of. Since later we would rather to use

Prolog clause form, Head:- Body, for the systems and knowledge base in the application,

which is different from the form, Head <=> Body, we need for regression, hence we here

desire to use two files, say base1 and base2, to store the knowledge base (static part).
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In base1 we keep the declarations of the macro-actions and the extended successor state

axioms in the form of Head <=> Body. When we need to the extend knowledge base

(static part) by calling the developer, base1 will be loaded. Moreover, in case that some

nature’s choice of the macro-actions is also other macro-action’s nature’s choice and we

do not want to compute the extended action precondition for it again, we introduce

a predicate computedBefore(L) to collect the deterministic sequence A for which we

have computed Poss(A, S) in every round of calling kbDeveloper into L and store it in

base1, therefore avoid duplication later when we call kbDeveloper again for extending this

system’s knowledge base. In base2, all the components of knowledge base (static part)

we declared in Section 4.1 are stored in the form of Head:- Body, and during application

this file will be loaded in stead of base1. As a sequence, our kbDeveloper is modified from

two arguments to be three arguments as kbDeveloper(List, Base1,Base2) where List is a

list of new macro-actions in the Prolog list form [name,body].

During the implementation, we break the algorithm into three parts: the main pro-

cedure, the regression procedures and the printing procedures (cf. Figure 4.2). And, the

detailed program for kbDeveloper/3 can be found in Appendix C. Most of the clauses

in the program are self-explained. Only a few of them need some explanation as follows:

• quant(Head,Body,L): find quantified variables in the rules, which are actually the

different variables in the body of the rule from the variables in the head.

• genNew(V,N,New): if N is a number, then New is a list of N different strings with

prefix V; else if N and V are lists, New is a list of new strings such that the ith

element has a prefix if the ith element of V and is different from all the variables in

N.

After having the program, we take a look at the experiment on the example of robot

climbing stairs. Suppose the description of system provided by the controller is saved as

file baseClimb, the program of the developer is named developer, the knowledge base for

development and later extension of knowledge base (as base1 above) is named climbBase1



Chapter 4. Developing the Knowledge Base for Macro-actions 55

(output declaration of Macro-actions)

currentMaxLength(N1)

newMaxLength(L,N2)

YesNo

Begin

printing precedures

(add preconditions to Base2 and

localPossProb(L,Base2)
(add localChoice(L) and probMac0  

of nature’s choices into Base2)

addPoss(L,Base1,Base2)

Finish

outputMac(L,Base1,Base2)

N2 =< N1

addSSA(N1,N2,Base1,Base2)
(add extended successor state axioms by

calling regression and printing precedures)

call procedures

Figure 4.2: The Flow Chart of the Implementation of kbDeveloper(L,Base1,Base2) 

to next step

rename/4

regress/2

simplify/2

regression

fact of computedBefore/1 to Base1)

(output "computedBefore(_)")

printMacro/2

printLocal/2 (output "localChoice(_)")

printRule/2

printApp/2 (output "_ :- _" rules)

(output "_ <=> _" rules)

(output "macro(_,_)")

printComputed/2

and the other knowledge base for later application (as base2 above) is named climbBase2

(initially, these two files might be empty, or even don’t exist). By executing programs as

follows,
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Example of Developing the Knowledge Base(Static Part)

[eclipse 1]: [developer,baseClimb].

developer compiled traceable 65668 bytes in 0.00 seconds

baseClimb compiled traceable 11400 bytes in 0.00 seconds

yes.

[eclipse 2]: kbDeveloper([[stepMain(H),liftUpperLeg(H):forwLowLeg:

stepDown(main):moveBarycenter(main):straightLeg],[stepSupp,

forwSupLeg:stepDown(supporting):moveBarycenter(supporting)]],

climbBase1,climbBase2).

/cs/ai/eclipse/lib/lists.pl compiled traceable 8200 bytes in 0.01 seconds

/cs/ai/eclipse/lib/sorts.pl compiled traceable 5420 bytes in 0.01 seconds

/cs/ai/eclipse/lib/strings.pl compiled traceable 6024 bytes in 0.01 seconds

H = H More? (;)

no (more) solution.

we developed the knowledge base (static part). Opening climbBase1 and climbBase2, we

observe that they include the exact clauses we expected. For example, we have

overNewStair(_113, do([_144, _143], _1881)) <=> _143 = forwLowLegS

& _113 = main v _143 = forwSupLegS & _113 = supporting v

(_144 = forwLowLegS & _113 = main v _144 = forwSupLegS &

_113 = supporting v overNewStair(_113, _1881) & -(_144 =

stepDownS(_113))) & -(_143 = stepDownS(_113)).
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in climbBase1 which is one of the extended successor state axioms we expected theoreti-

cally.

Simplification of the formulas is not easy to deal with during implementation. Be-

cause, for example, theoretically we can simplify any clause C1 ∨C2 ∨ · · · ∨Cn to be true

whenever Ci = p and Cj = ¬p for some i, j ∈ {1, 2, · · · , n} and atom p. During imple-

mentation, it will consume too much computing time if we want to do such a thorough

simplification provided that the original formulas are not formal, which is not worthy.

Therefore, on one hand, we try our best to simply the formula as much as possible; on

the other hand, we do not want to consume too much time. Hence, we only did partial

simplification, the detailed rules can be found in Appendix C(in regression part).



Chapter 5

The Reuse of the Macro-actions

After having the knowledge base(static part) for macro-actions, we are now interested in

the applications: how we introduce macro-actions into high-level programs, how we keep

dynamic part of the knowledge base and how we reuse the existing knowledge. Moreover,

we will observe the benefit as well as limitation of using macro-actions.

5.1 An Interpreter over Macro-actions: macGolog

As with stGolog, one important use of specified probabilistic domain is in determining

how probable some state of affairs will be after an agent performs a stGolog-like program

– macGolog program. The macGolog programs are constructed from stochastic actions

and macro-actions together with the Golog program constructors sequence, tests, while

loops, conditionals and procedures.

5.1.1 Extending stGolog with Macro-actions

Similar to the stGolog interpreter, we want to specify an interpreter for sequence of com-

binations of stochastic actions and macro-actions without changing the function of the

58
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stGolog interpreter. Our new interpreter, macDo, expects a sequence α1;α2; · · · ;αn;nil,

where every αi is a stochastic action or a macro-action with body ∆i, and nil is a dummy

symbol indicating the end of the sequence. The reason that nil is needed is same as the

one for stDo. We define this interpreter as follows:

macDo(nil, p, s, s′)
def
= s = s′ ∧ p = 1.

Associate the sequence operator to the right:

macDo((α; β); γ, p, s, s′)
def
= macDo(α; (β; γ), p, s, s′).

Whenever α is a stochastic action, the definition of macDo is same as stDo:

macDo(α; β, p, s, s′)
def
=

¬(∃a)[choice(α, a) ∧ Poss(a, s)] ∧ s = s′ ∧ p = 1 ∨

(∃a).choice(α, a) ∧ Poss(a, s) ∧

(∃p′).macDo(β, p′, do(a, s), s′) ∧ p = prob0(a, α, s) ∗ p
′. (5.1)

Notice that we use prob0(a, α, s) instead of prob(a, α, s) in the stGolog interpreter, which

gives us the same result, since the definition of prob(a, α, s) is

prob(a, α, s) = p ≡ Poss(a, s) ∧ p = prob0(a, α, s) ∨ ¬Poss(a, s) ∧ p = 0,

hence, we have

Poss(a, s) ∧ p = prob(a, α, s) ∗ p′ ≡ Poss(a, s) ∧ p = prob0(a, α, s) ∗ p
′. (5.2)

Now consider that α is a macro-action and we have had developed the static part’s
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information for it in the knowledge, then

macDo(α; β, p, s, s′)
def
=

¬(∃a)[choice(α[1], a) ∧ Poss(a, s)] ∧ s′ = s ∧ p = 1 ∨

(∃c).c ∈ maxPoss(α, s) ∧ (∃p1).p1 = probMac0(c, α, s) ∧

[shorter(c, α) ∧ p = p1 ∧ s′ = do(c, s) ∨

¬shorter(c, α) ∧macDo(β, p2, do(c, s), s
′) ∧ p = p1 ∗ p2]. (5.3)

where shorter(a, b) ≡ seqLength(a) < seqLength(b) for some deterministic sequential

action a and some macro-action(either name or body) b. Moreover, up till now, although

we gave the definition of maxPoss(α, s), we still did not discuss how to generate it and

keep it as fact maxPossBase(L, α, s) practically. The following describes how we develop

and retrieve the dynamic part of the knowledge base maxPoss(α, s) for macro-action α

in some situation s:

c ∈ maxPoss(α, s)
def
=

if there exists fact maxPossBase(L, α, s) in the knowledge base for some L,

then c ∈ L (i.e., element c can be retrieved from base maxPossBase);

else call the fact localChoice(α, V ) for some list V, compute list maxposs0(V, s),

assert the fact maxPossBase(maxposs0(V, s), α, s) and c ∈ maxposs0(V, s), (5.4)

where V is a list of possible nature’s choices of α according to the definition of localChoice,

and maxposs0(V, s) is a list obtained as for any element a,

a ∈ maxposs0(V, s) iff

a ∈ V ∧ Poss(a, s) ∧ ¬(∃c)[c ∈ V ∧ Poss(c, s) ∧ realPrefix(a, c)] (5.5)

in which realPrefix(a, c) is true iff a is a prefix of c and a 6= c. It is easy to see that the

definition of maxPoss(α, s) has the same content as the original definition in Chapter 3.
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Lemma 5.1 The following are satisfied according to our definition of macDo:

(5-1) For any situation s,

macDo(α;nil, p, s, s′) ≡ stDo(α;nil, p, s, s′)

if α is a sequence of stochastic actions; and,

(5-2) for any situation s, let α be a sequence of stochastic actions, β be a macro-

action with the body ∆ (including the special case that there is no actions

before β, i.e., sequence α doesn’t exist), and γ be a sequence of combinations

of stochastic actions and macro-actions followed by nil (including the special

case that γ = nil), we have

macDo(α; β; γ, p, s, s′) ≡ macDo(α; ∆; γ, p, s, s′).

Proof: (1) To property (5-1), it is directly from the definition of macDo(5.1) and the

result(5.2) when α is stochastic action.

(2) The proof of property (5-2) for the general case that α is a finite sequence of stochastic

actions is similar to the case that α is a stochastic action, therefore, we present the proof

for α is a stochastic action only.

If there is no primitive action a satisfying that choice(α, a) ∧ Poss(a, s), then

macDo(α; β; γ, p, s, s′) ≡ p = 1 ∧ s = s′ ≡ macDo(α; ∆; γ, p, s, s′);

otherwise, to prove

macDo(α; β; γ, p, s, s′) ≡ macDo(α; ∆; γ, p, s, s′)

is equivalent to prove for every primitive action a satisfying that choice(α, a)∧Poss(a, s),

macDo(β; γ, p′, do(a, s), s′) ≡ macDo(∆; γ, p′, do(a, s), s′).

There are three cases for any deterministic sequential action c:
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(a) If ¬(∃c)[choice(β[1], c) ∧ Poss(c, do(a, s))], then

macDo(β; γ, p′, do(a, s), s′) ≡ s′ = do(a, s)∧p′ = 1 ≡ macDo(∆; γ, p′, do(a, s), s′).

(b) If (∃c).c ∈ maxPoss(β, do(a, s)) ∧ ¬shorter(c, β), then according to the def-

inition of macPoss, we have Poss(c, do(a, s)) ∧ (∧mi=1choice(∆[i], c[i])) where

(m = seqLength(∆)) and therefore, for such c,

macDo(β; γ, p′, do(a, s), s′)

≡ (∃p1).p1 = probMac0(c, β, do(a, s))∧

macDo(γ, p2, do(c, do(a, s)), s′) ∧ p′ = p1 ∗ p2

≡ (∃p1).p1 = prob0(c[1], β[1], do(a, s)) ∗ · · · ∗ prob0(c[m], β[m],

do(c[1]; · · · ; c[m−1], do(a, s))∧macDo(γ, p2, do(c, do(a, s)), s′)∧p′ = p1∗p2

≡ macDo(∆; γ, p′, do(a, s), s′)

according to do(A1;A2; · · · ;An, s) = do(An, · · · , do(A1, s) · · · ) and the definition

of macDo.

(c) If (∃c).c ∈ maxPoss(β, do(a, s))∧ shorter(c, β), for such c, let t = seqLength(c),

and we have Poss(c, do(a, s)) ∧ (∧ti=1choice(∆[i], c[i])) and ¬(∃d)[choice(∆[t +

1], d) ∧ Poss(d, do(c, do(a, s)))], therefore, for such c,

macDo(β; γ, p′, do(a, s), s′)

≡ p′ = probMac0(c, β, do(a, s)) ∧ s′ = do(c, do(a, s))

≡ p′ = prob0(c[1], β[1], do(a, s)) ∗ · · · ∗ prob0(c[m], β[m],

do(c[1]; · · · ; c[m− 1], do(a, s)) ∧ s′ = do(c, do(a, s))

≡ macDo(∆[1]; · · · ; ∆[t]; ∆[t + 1] : nil, p′, do(a, s), s′)

≡ macDo(∆; γ, p′, do(a, s), s′)

according to do(A1;A2; · · · ;An, s) = do(An, · · · , do(A1, s) · · · ) and the definition

of macDo.

Hence, we proved property (5-2). �

We therefore can get following properties:
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Theorem 5.2 For any situation s and any sequence α1;α2; · · · ;αn where every αi is

either stochastic action or macro-action with body ∆i, we have

macDo(α1;α2; · · · ;αn;nil, p, s, s
′) ≡ stDo(β1; β2; · · · ; βn;nil, p, s, s

′),

where every βi either is αi if αi is a stochastic action, or is ∆i if αi is a macro-action.

Proof: According to property (5-2), we have

macDo(α1;α2; · · · ;αn;nil, p, s, s
′) ≡ macDo(β1; β2; · · · ; βn;nil, p, s, s

′),

by replacing the macro-actions with their bodies from left to right and according to

property (5-1), we have

macDo(β1; β2; · · · ; βn;nil, p, s, s
′) ≡ stDo(β1; β2; · · · ; βn;nil, p, s, s

′),

therefore, our theorem is proved. �

This property indicates that although we extend the interpreter with macro-actions,

we didn’t change the function of the stGolog interpreter. So what’s the advantage for

using knowledge base? It is for the purpose of saving computational time, which will be

discussed later.

5.1.2 Generating the Dynamic Part of the Knowledge Base

Our purpose of developing the dynamic part of the knowledge base is to keep necessary

sets of maxPoss for macro-actions in some particular situations for the sake of reuse.

Imagining the example of robot climbing stairs with macro-actions stepMain(h) and

stepSupp, we are interested in the robot climbing (legal) stairs repeatedly from the local

initial situations which are same as S0, and suppose we keep the set of maximal possible

choices maxPoss(stepMain(15), S0) and the set maxPoss(stepSupp, do([liftT ill(15),

forwLowLegS, stepDownS(main), moveBarycenterS(main), straightLeg], S0)). When
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the controller calls procedure(3.5) climbing(15) again, the robot can directly retrieve

these information without re-computation. During the first time of calling procedure(3.5)

climbing(15), we can use command assert/1 to help us achieve above description of keep-

ing information of maxPoss/2 for macro-actions on object instance in certain situations

as facts maxPossBase/3 . Similarly, if we have macro-action(3.6) climbStair(h) instead

of macro-actions stepMain(h) and stepSupp, we will save maxPoss(climbStair(15), S0).

But, only using assert/1 command keeps very narrow knowledge, i.e. only for macro-

actions on particular object instance and situation instances. Thinking of stairs of height

15 and 17, if we perform macro-action stepMain(15) and stepMain(17) respectively in

the local initial situation S0, we will get the same set of maxPoss regardless the difference

of objects 15 and 17. Therefore, we are considering extend maxPossBase(L, α(~x), S)

for situation instance S and macro-action α(~x) with variable parameters ~x, so that

maxPossBase(L, α(~x), S) represents a uniform fact for certain class of objects.

Without loss of generality, any system which can described in the situation calculus

can have an equivalent description in the situation calculus satisfying the following con-

dition: for every atomic sentence, definition of procedure or definition of macro-action,

if it has augments that are same as the arguments of some primitive action function,

then these augments have the same relative order both in the atomic sentence and in

the action function. For example, suppose that in a system we have atomic sentence

F (y1, y2, y3, s) and action functions a(x1, x2) and b(x) and that according to the basic

action theory we know that y1 (respectively, y3, y2) represents the same object with aug-

ment x1 (respectively, x2, x), then the relative order of y1 and y3 (respectively, of y2) are

same as the order of x1 and x2 (respectively, of x). Given any system D satisfying above

condition, we give the following definition of ob-class for D.

Definition 5.3 Given a system D = DS0
∪ Dap ∪ Dss, suppose that the set of objects in

D is L and the set of objects appearing in the Dap ∪ Dss is L1,

(1) every object O in L1 is a 1-ary ob-class,
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(2) for any objects O1 and O2 in set L\L1 (can be the same object), we say that

O1 and O2 are in the same 1-ary ob-class iff for every relational sentence

F (x1, x2, · · · , xm) (including fluent and non-fluent) in DS0
where m ≥ 1, we

interpret any augment xi (i = 1, 2, · · · , m) with O1 and O2 respectively, it is

true that either both of O1 and 2 do not belong to the domain of xi, or the

two interpreted sentences return the same truth value (i.e., both of the sentences

F (x1, x2, · · · , O1, · · · , xm) and F (x1, x2, · · · , O2, · · · , xm) are either unsatisfiable,

satisfiable, or tautological).

For any n-ary (n > 1) object vectors O1 = (O1
1, · · · , O

n
1 ), O2 = (O1

2, · · · , O
n
2 ) ∈ Ln, we

say that O1 and O2 are in the same n-ary ob-class iff the following two conditions are

satisfied:

(I) for every i (1 ≤ i ≤ n), Oi
1 and Oi

2 are in the same 1-ary ob-class and

(II) for every relational sentence F (x1, x2, · · · , xm) (including fluent and non-fluent)

in DS0
where m ≥ n, we interpret any n ordered augments xi1 , xi2 , · · · , xin (i1 <

i2 < · · · < in) in F with O1 and O2 respectively, it is true that either both

of O1 and O2 do not belong to the domain of this sequence of augments, or

the two interpreted sentences return the same truth value (i.e., both are either

unsatisfiable, satisfiable, or tautological).

Suppose we defined an macro-action α(y1, y2, · · · , yn) with body a1(y(1,1), · · · , y(1,1t)); · · · ;

am(y(m,1), · · · , y(m,mt)) where every (i, j) (1 ≤ i ≤ m, 1 ≤ j ≤ it) is a natural num-

ber in [1..n] and (i, 1) < (i, 2) < · · · < (i, it) for every i, we say object vectors O1 =

(O1
1, O

2
1, · · · , O

n
1 ), O2 = (O1

2, O
2
2, · · · , O

n
2 ) ∈ Ln are in the same ob-class for macro-action

α iff O1 and O2 are both in the domain of (y1, y2, · · · , yn), and (O
(i,1)
1 , O

(i,2)
1 , · · · , O(i,it)

1 )

and (O
(i,1)
2 , O

(i,2)
2 , · · · , O(i,it)

2 ) are in the same it-ary ob-class for every i.

For instance, in the example of robot climbing stairs, we have

L = {wrongPos,main, supporting} ∪ {r|r is a non-negative real number},

and L1 = {wrongPos,main, supporting},
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the set of 1-ary ob-classes is

{{wrongPos}, {main}, {supporting}, {r|r ∈ R ∧ 0 < r < 20}, {r|r ∈ R ∧ r ≥ 20}, {0}}.

And as an example, all the numbers greater than 0 and less than 20 are in the same

ob-class for macro-action stepMain(h).

Lemma 5.4 Given a system D described in the situation calculus, suppose object vectors

O1 and O2 are in the same n-ary ob-class, then for any S0-regressable relational formula

F (x1, x2, · · · , xn) in L′
sc, either both O1 and O2 are not in the domain of F ’s arguments,

or both of them are in the domain and if we interpret the variables with O1 and O2

respectively, the formula returns the same truth value.

Proof: We can prove it by induction on the longest number m of primitive actions for

the situations from S0 in F .

Base Case: m ≤ 1, i.e., S0 is the only situation in F (if any), then according to the

definition of n-ary ob-class, it is true for all sentences in DS0
. Moreover, if F is of

Poss atom, R∗[F ] is a formula composed of fluent or non-fluent atoms with first order

connectives, therefore, it is easy to prove the proposition is true using induction on the

length of R∗[F ], again since F ≡ R∗[F ], it is also true for F . Therefore, for general F ,

according to F ≡ R∗[F ] and the definition of the syntactic form of the formulas in L′
sc,

it is easy to see the proposition is true.

Induction Step: Suppose this proposition is true for all 1 ≤ j < m, now we are going

to prove it for m, notice that R∗[F (x1, x2, · · · , xn)] = ψF (x1, x2, · · · , xn) is a formula

uniform in S0, therefore according to the hypothesis and F ≡ R∗[F ] the proposition is

true for m.

Hence, we proved the proposition for all m ∈ N . �

Therefore, according to above Lemma and the definition of ob-class, we can get the

following theorem:

Theorem 5.5 Given a system D described in the situation calculus, suppose we have
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a macro-action α(y1, y2, · · · , yn) and situation instance S beginning from S0, i.e. S =

do([A1, · · · , An], S0), then for any object vectors O1 and O2 which are in the same ob-class

for α, we have

maxPoss(α(O1), S) = maxPoss(α(O2), S).

Therefore, we can extend the maxPossBase of macro-actions in any situation in-

stance from particular objects to ob-classes by renaming the objects in the macro-action

with new variables, so that reduce the scales of the dynamic part of the knowledge base.

We hereby demand that it is the controller’s responsibility to provide objects in the same

ob-class for macro-actions. If we need to work on objects in different ob-classes, we

need to erase the former dynamic part of the knowledge base. We certainly can some-

how retract the rules, but right now, to make our lifer easier, we only need to quit the

running system and reload it again, since we use assert/1 command to keep the informa-

tion of maxPoss. The practical implementation of the interpreter can be seen the next

subsection.

5.1.3 The macGolog Interpreter

Other descriptions of macDo are same as stDo on other Golog constructors, therefore

the full macGolog interpreter is as follows:

An macGolog (Macro-action Golog) Interpreter

macDo(nil,1,S,S):- !.

macDo(A : B,P,S1,S2) :- stochastic(A), !, % A is a stochastic action

(not (choice(A,C), poss(C,S1)), !, % Program can’t continue.

S2 = S1, P = 1 ; % Create a leaf.
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% once is an Eclipse Prolog built-in. once(G) succeeds the first time

% G succeeds, and never tries again under backtracking. We use it here

% to prevent macDo from generating the same leaf situation more than

% once, when poss has multiple solutions.

choice(A,C), once(poss(C,S1)), prob0(C,A,S1,P1),

macDo(B,P2,do([C],S1),S2), P is P1 * P2 ).

macDo(A : B,P,S1,S2) :- macro(A,A1:A2), !, % A is a macro-action

(not (choice(A1,C), poss(C,S1)), !, % Program can’t continue.

S2 = S1, P = 1 ; % Create a leaf.

maxposs(C,A,S1), probMac0(C,A,S1,P1),

(shorter(C,A1:A2),

P is P1, S2=do(C,S1); % Program can’t continue.

not shorter(C,A1:A2),

macDo(B,P2,do(C,S1),S2), P is P1 * P2)).

macDo((A : B) : C,P,S1,S2) :- macDo(A : (B : C),P,S1,S2).

macDo(?(T) : A,P,S1,S2) :- holds(T,S1), !, macDo(A,P,S1,S2) ;

S2 = S1, P = 1. % Program can’t continue.

% Create a leaf.

macDo(if(T,A,B) : C,P,S1,S2) :- holds(T,S1), !, macDo(A : C,P,S1,S2) ;

macDo(B : C,P,S1,S2).

macDo(A : B,P,S1,S2) :- proc(A,C), macDo(C : B,P,S1,S2).

macDo(while(T,A) : B,P,S1,S2) :- holds(T,S1), !,

macDo(A : while(T,A) : B,P,S1,S2) ;

macDo(B,P,S1,S2).

% shorter(C,A): list C is shorter than macro-action A

shorter([_],_:_):- !.

shorter([_|T], _:A2):- shorter(T,A2).
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% maxposs(C,A,S): C is an element of maxPoss(A,S)

maxposs(C,A,S):-

maxPossBase(List,A,S),!, % If we’ve computed local optimal results

member(C,List); % before, retrieve it from database

not maxPossBase(List,A,S),!, % otherwise, computed "maxposs" according

localChoice(A,V), % to the definition, and save the solution

maxposs0(List,V,S), % by asserting new rule "maxPossBase" to

generalize(A,List,A1,List1), % generate the knowledge base(dynamic part).

asserta(maxPossBase(List1,A1,S)), !,

member(C,List).

% maxposs0(L,A,S): L is the set of maxPoss(A,S)

maxposs0([],[],_).

maxposs0([C|T1],[C|T],S):- once(poss(C,S)), !,

removeSub(C,T,L1), maxposs0(T1,L1,S).

maxposs0(T1,[C|T],S):- not poss(C,S), !, maxposs0(T1,T,S).

% removeSub(C,T,T1):remove every prefix of C in T.

removeSub(_,[],[]):- !.

removeSub(C,[A|T],[A|T1]):- not append(A,_,C), !, removeSub(C,T,T1).

removeSub(C,[A|T],T1):- append(A,_,C), !, removeSub(C,T,T1).

% generalize(A,List,A1,List1): replace objects in A and List with variables

% to get A and List, hence generalize the usage of knowledge to ob-class

generalize(A,List,A1,List1):-

A =.. [_|P], generalize0(P,A,List,A1,List1).

generalize0([],A,List,A,List):- !.

generalize0([H|T],A,List,A1,List1):-
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generalize1(H,_,A,List,A0,List0),

generalize0(T,A0,List0,A1,List1).

generalize1(H,G,A,List,A0,List0):-

sub(H,G,A,A0), sub_list(H,G,List,List0).

poss([A],S):- poss(A,S), !.

stochastic(A) :- choice(A,N), !.

maxPossBase([],nil,_). % special database to avoid no def. of "maxPossBase"

macro(nil,nil). % special database to avoid no def. of macro

% sub(Name,New,Term1,Term2): Term2 is Term1 with Name replaced by New.

sub(X1,X2,T1,T2) :- var(T1), T2 = T1.

sub(X1,X2,T1,T2) :- not var(T1), T1 = X1, T2 = X2.

sub(X1,X2,T1,T2) :- not T1 = X1, T1 =..[F|L1], sub_list(X1,X2,L1,L2),

T2 =..[F|L2].

sub_list(X1,X2,[],[]).

sub_list(X1,X2,[T1|L1],[T2|L2]) :- sub(X1,X2,T1,T2), sub_list(X1,X2,L1,L2).

% The holds predicate implements the revised Lloyd-Topor

% transformations on test conditions.

holds(P & Q,S) :- holds(P,S), holds(Q,S).

holds(P v Q,S) :- holds(P,S); holds(Q,S).

holds(P => Q,S) :- holds(-P v Q,S).

holds(P <=> Q,S) :- holds((P => Q) & (Q => P),S).

holds(-(-P),S) :- holds(P,S).

holds(-(P & Q),S) :- holds(-P v -Q,S).

holds(-(P v Q),S) :- holds(-P & -Q,S).
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holds(-(P => Q),S) :- holds(-(-P v Q),S).

holds(-(P <=> Q),S) :- holds(-((P => Q) & (Q => P)),S).

holds(-all(V,P),S) :- holds(some(V,-P),S).

holds(-some(V,P),S) :- not holds(some(V,P),S). /* negation */

holds(-P,S) :- isAtom(P), not holds(P,S). /* by failure */

holds(all(V,P),S) :- holds(-some(V,-P),S).

holds(some(V,P),S) :- sub(V,_,P,P1), holds(P1,S).

holds(A,S) :- restoreSitArg(A,S,F), F ;

not restoreSitArg(A,S,F), isAtom(A), A.

isAtom(A) :- not (A = -W ; A = (W1 & W2) ; A = (W1 => W2) ;

A = (W1 <=> W2) ; A = (W1 v W2) ; A = some(X,W) ; A = all(X,W)).

According to Theorem 5.2, Theorem 5.5, the announcement that the controller won’t

operate on different ob-class objects under the same dynamic knowledge base, and that we

have the same description of macDo for the constructors tests, while loops, conditionals

and procedures as of stDo, by using induction proof, we can easily get

Theorem 5.6 For any situation s and any macGolog program α,

macDo(α;nil, p, s, s′) ≡ stDo(β;nil, p, s, s′)

for some number p and situation s′, where β is a stGolog program obtained by replacing

every macro-action in α with its body.

This is exactly what we mean not changing the function of the stGolog interpreter.

We also can define the probabilities that some situation-suppressed sentence ψ will be

true after executing a macGolog program γ:

probF (ψ, γ)
def
=

∑

{(p,σ)|D|=macDo(γ;nil,p,S0,σ)∧ψ[σ]}

p. (5.6)
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Here, D stands for the background basic action theory. Notice that this definition is

same as the definition given in the stGolog. The implementation is straightforward and

we name the following file as macProbF.

Probabilities for macGolog Programs

probF(F,Prog,Prob) :- findall(P,

S^(macDo(Prog : nil,P,s0,S), once(holds(F,S))),

PS),

addNumbers(PS,Prob).

addNumbers([],0.0).

addNumbers([N | Ns],Sum) :- addNumbers(Ns,Sum1), Sum is Sum1 + N.

5.2 The Experiments and Discussion

5.2.1 The Experiment of the correctness

We continue to consider the example of robot climbing stairs, and suppose we have com-

puted the knowledge base (static part) as climbBase2 given in Chapter 4.3, the macGolog

interpreter is saved as file macGolog, the complete specification of robot climbing stairs

in Prolog clauses is saved as file climb (cf. Appendix D and notice its different forms from

file baseClimb in previous chapter). We now compute some probabilities after loading

all these files. Since we would like the extended axioms to have higher priorities, we will

load climbBase2 before climb.

Computing Probabilities for macGolog Programs

[eclipse 1]: [macGolog,climbBase2,climb,macProbF].
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macGolg compiled optimized 17132 bytes in 0.00 seconds

climbBase2 compiled optimized 99508 bytes in 0.03 seconds

climb compiled optimized 11496 bytes in 0.00 seconds

macProbF compiled optimized 804 bytes in 0.00 seconds

yes.

[eclipse 2]: macDo(?(legalStair(15)):stepMain(15):stepSupp:nil,P,s0,S).

/cs/ai/eclipse/lib/lists.pl compiled optimized 7628 bytes in 0.00 seconds

P = 0.130434781

S = do([malfunc(15)], s0) More? (;)

P = 0.303685099

S = do([forwSupLegS, stepDownS(supporting), moveBarycenterS(supporting)],

do([liftTill(15), forwLowLegS, stepDownS(main), moveBarycenterS(main),

straightLeg], s0)) More? (;)

P = 0.0759212747

S = do([forwSupLegS, stepDownS(supporting), moveBarycenterF(supporting)],

do([liftTill(15), forwLowLegS, stepDownS(main), moveBarycenterS(main),

straightLeg], s0)) More? (;)

P = 0.0421784893

S = do([forwSupLegS, stepDownF(supporting)], do([liftTill(15), forwLowLegS,

stepDownS(main), moveBarycenterS(main), straightLeg], s0)) More? (;)

P = 0.105446219

S = do([forwSupLegF], do([liftTill(15), forwLowLegS, stepDownS(main),

moveBarycenterS(main), straightLeg], s0)) More? (;)
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P = 0.131807774

S = do([liftTill(15), forwLowLegS, stepDownS(main), moveBarycenterF(main)],

s0) More? (;)

P = 0.0732265413

S = do([liftTill(15), forwLowLegS, stepDownF(main)], s0) More? (;)

P = 0.137299761

S = do([liftTill(15), forwLowLegF], s0) More? (;)

no (more) solution.

[eclipse 3]: probF(true,stepMain(15):stepSupp,P).

P = 0.999999881 More? (;)

no (more) solution.

[eclipse 4]: macDo(stepMain(17):forwSupLeg:nil,P,s0,S).

P = 0.145299152

S = do([malfunc(17)], s0) More? (;)

P = 0.406027

S = do([forwSupLegS], do([liftTill(17), forwLowLegS, stepDownS(main),

moveBarycenterS(main), straightLeg], s0)) More? (;)

P = 0.101506747

S = do([forwSupLegF], do([liftTill(17), forwLowLegS, stepDownS(main),

moveBarycenterS(main), straightLeg], s0)) More? (;)
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P = 0.126883432

S = do([liftTill(17), forwLowLegS, stepDownS(main),

moveBarycenterF(main)], s0) More? (;)

P = 0.0704907924

S = do([liftTill(17), forwLowLegS, stepDownF(main)], s0) More? (;)

P = 0.149792925

S = do([liftTill(17), forwLowLegF], s0) More? (;)

no (more) solution.

[eclipse 5]: probF(overNewStair(main),stepMain(17):forwSupLeg,P).

P = 0.0704907924 More? (;)

no (more) solution.

We also ran these examples under stGolog interpreter by replacing the macro-actions

with their bodies and viewing them as stGolog programs. We get the same probabilities

in the same situations. As to the example, we can see that our macGolog interpreter

works well and has the same function as the stGolog interpreter. But what is the benefit

of using the macGolog interpreter over macro-actions? As we discussed before, we are

focusing on the class of problems that we expect the agent to perform the same (or

even part of the same) strategies or programs repeatedly when it is in the same local

environment as we discussed in Chapter 3.1. For instance, in above robot climbing stairs

example, if we perform the climbing(h) procedure repeatedly for legal stairs of height h

provided that the controller can reset the robot’s status to be same as initial situation (we
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call it local initial situation) when malfunction occurs after performing the climbing(h)

procedure or that there is no malfunction occurs, i.e., the robot performs the climbing(h)

procedure successfully, it will ”forget” what it performed, (might somehow count the

stairs first, which is not necessary), and reset its own situation to be the local initial

situation. If we use the stGolog interpreter to compute the probabilities of the outcomes

every time the agent calls the climbing(h) procedure in the local initial situation, then

one branch of the following computational tree (e.g. Figure 5.1) is always gone through

step by step, which is time-consuming.

If we introduce macro-actions stepMain(h) and stepSupp as (3.3) and (3.4) in Chapter 3,

then procedure climbing(h) can be represented as (3.5). By using macGolog interpreter

to get the probabilities of the deterministic performance every time the agent calls the

climbing(h) for legal stairs of height h in the local initial situation, except the first time in

which we need to compute all the probabilities step by step and the computational tree

looks like Figure 5.1. Other times when we recall the procedure in the local situation,

the computational tree of probabilistic outcomes looks like Figure 5.2, even can be as

shorter as the following tree (c.f Figure 5.3) if the stair of height H(instant number) has

been climbed before.

If we consider to define macro-action as climbStair(h)(3.6) in chapter 3, the recall

of procedure(3.7) climbing(h) for any stairs of legal height would have even shorter

outcome tree (only with 2 steps). Therefore, regardless the scales of the knowledge base,

the computational time of reusing macro-actions is smaller than not using macro-actions.
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straightMain, barycenter(supporting),
footOnGround(l), 

liftTill(15)malfunc(15)

footOnGround(main), footOnGround(supporting),

straightMain, barycenter(supporting)

forwLowLegS

footOnGround(main), footOnGround(supporting),

straightMain, barycenter(supporting)
footOnGround(main), footOnGround(supporting),

overNewStare(main)
straightMain, barycenter(supporting),

footOnGround(main), footOnGround(supporting),

straightMain, barycenter(supporting),
overNewStare(main)

 footOnGround(l),

stepDownS(main)stepDownF(main) straightMain, barycenter(supporting)

straightMain, barycenter(supporting)

 footOnGround(l),

 footOnGround(l),

moveBarycenterS(main)
moveBarycenterF(main) straightMain, barycenter(main)

footOnGround(main),  footOnGround(supporting),

straightMain, barycenter(main)

straightLeg

forwSupLegFforwSupLegS

footOnGround(main),  footOnGround(supporting),

straightMain, barycenter(main)
footOnGround(main),  footOnGround(supporting),

straightMain, barycenter(main),

 footOnGround(l),

straightMain, barycenter(main)

moveBarycenterS(supporting) moveBarycenterF(supporting)
footOnGround(main),  footOnGround(supporting),

straightMain, barycenter(main),

 footOnGround(l)

straightMain, barycenter(supporting),

 footOnGround(l)

straightMain, barycenter(main),

0.13 0.87

forwLowLegF
0.16

0.84

0.1 0.9

0.2
0.8

0.8 0.2

stepDownS(supporting)
0.9

0.1
stepDownF(supporting)

0.8 0.2

1.0
straightMain, barycenter(supporting),

footOnGround(l) (l=main, or l=supporting)
0 )(Root: the initial situation S

overNewStair(l),mainToCurr(0),

?(legalStair(15)):yes

overNewStair(l),mainToCurr(wrongPos)

overNewStair(l),mainToCurr(15),

overNewStair(l),mainToCurr(15),

overNewStair(supporting),mainToCurr(15),

overNewStair(supporting),mainToCurr(15),

overNewStair(l),mainToCurr(0),

overNewStair(l),mainToCurr(15),

overNewStair(l),mainToCurr(0),

overNewStair(l),mainToCurr(0),

overNewStair(supporting)

overNewStair(l),mainToCurr(0),

overNewStair(l),mainToCurr(0),

overNewStair(supporting)

overNewStair(l),mainToCurr(0),overNewStair(l),mainToCurr(0),

overNewStair(main),mainToCurr(0),

overNewStair(main),mainToCurr(0),
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straightMain, barycenter(supporting),
footOnGround(l), 

footOnGround(main), footOnGround(supporting),

straightMain, barycenter(supporting)

footOnGround(main), footOnGround(supporting),

straightMain, barycenter(supporting),

straightMain, barycenter(supporting)

 footOnGround(l),

footOnGround(main),  footOnGround(supporting),

straightMain, barycenter(main)

forwSupLegFforwSupLegS

footOnGround(main),  footOnGround(supporting),

straightMain, barycenter(main)
footOnGround(main),  footOnGround(supporting),

overNewStare(supporting)
straightMain, barycenter(main),

 footOnGround(l),

straightMain, barycenter(main)

moveBarycenterS(supporting) moveBarycenterF(supporting)
footOnGround(main),  footOnGround(supporting),

straightMain, barycenter(main),

 footOnGround(l)

straightMain, barycenter(supporting),

 footOnGround(l)

straightMain, barycenter(main),

0.8 0.2

stepDownS(supporting)
0.9

0.1
stepDownF(supporting)

0.8 0.2

1.0

straightMain, barycenter(supporting),

footOnGround(l) (l=main, or l=supporting)

forwLowLegS,[liftTill(h),
stepDownS(main),
moveBarycenterS(main), straightLeg]

forwLowLegS,[liftTill(h),
stepDownS(main),
moveBarycenterF(main)]

forwLowLegS,[liftTill(h),
stepDownF(main)][liftTill(h), forwLowLegF]

malfunc(h)
h/(h+100)

100h/(h+100)(h+80) 800/(h+100)(h+80)

1440/(h+100)(h+80)

5760/(h+100)(h+80)

(Root: the initial situation So)

overNewStair(l),mainToCurr(0), overNewStair(l),mainToCurr(0),

overNewStair(l),mainToCurr(0),

overNewStair(supporting)

overNewStair(main),mainToCurr(0),

overNewStair(l),mainToCurr(0),

overNewStair(l),mainToCurr(0),

overNewStair(l),mainToCurr(h),

overNewStair(main)

overNewStair(l),mainToCurr(h),

overNewStair(l),mainToCurr(wrongPos)

?(legalStair(h)):yes

overNewStair(l),mainToCurr(0),

overNewStair(supporting),mainToCurr(h),

overNewStair(main),mainToCurr(0),
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straightMain, barycenter(supporting),
footOnGround(l), 

footOnGround(main), footOnGround(supporting),

straightMain, barycenter(supporting)

footOnGround(main), footOnGround(supporting),

straightMain, barycenter(supporting),
overNewStare(main)

straightMain, barycenter(supporting)

 footOnGround(l),

footOnGround(main),  footOnGround(supporting),

straightMain, barycenter(main)

 footOnGround(l)

straightMain, barycenter(supporting), straightMain, barycenter(main),

[forwSupLegF]
0.2

footOnGround(main),  footOnGround(supporting),

straightMain, barycenter(main),

overNewStare(supporting)

footOnGround(main),  footOnGround(supporting),

straightMain, barycenter(main)

[forwSupLegS,stepDownF(supporting)]

stepDowndS(supporting),
moveBarycenterF(supporting)]

[forwSupLegS,stepDowndS(supporting),
moveBarycenterS(supporting)]

[forwSupLegS,

 footOnGround(l)

0.576

0.144 0.08

1.0

moveBarycenterS(main),straightLeg]

[liftTill(15),
stepDownS(main),

forwLowLegS,

0.53

forwLowLegS,[liftTill(15),
stepDownS(main),
moveBarycenterF(main)]

0.13

forwLowLegS,[liftTill(15),
stepDownF(main)]

0.07

[liftTill(15), forwLowLegF]
0.14

[malfunc(15)]
0.13

straightMain, barycenter(supporting),

footOnGround(l) (l=main, or l=supporting)
(Root: the initial situation So)

overNewStair(l),mainToCurr(0), overNewStair(l),mainToCurr(0), overNewStair(main),mainToCurr(0),

overNewStair(l),mainToCurr(0),

overNewStair(l),mainToCurr(0),

overNewStair(l),mainToCurr(15),

overNewStair(supporting),mainToCurr(15),

overNewStair(l),mainToCurr(15),

overNewStair(l),mainToCurr(wrongPos)

?(legalStair(15)):yes

overNewStair(l),mainToCurr(0),
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5.2.2 Experiments of Comparison

But, in practice, the scales of the knowledge base will affect the computational time.

To make detailed observation and discussion, we did different tests for different cases of

whether or not using macro-actions, and how to define macro-actions over the various

environments of whether the stairs’ heights change frequently. To make our life easier, in

the experiments we did not describe the behaviors of the step-in by the controller or the

reset actions by the robot, but only abstracted them to be simply resetting the situation

to S0 after calling the climbing procedure every time, because currently we only want to

concentrate on checking if the reuse of macro-actions really saves time in a long run.

We denote procedure(3.5) climbing(h) defined with two macro-actions as Exp.1, de-

note procedure(3.7) climbing(h) defined with one macro-action as Exp.2 supposing that

we’ve developed the static parts of the knowledge bases for Exp.1 and Exp.2 respectively,

and denote procedure(3.1) climbing(h) running under the stGolog interpreter as Exp.3.

By the way, comparing with the time of reusing macro-actions, the time of developing

static part is fixed and much smaller. For instance, in the example of Robot Climbing

Stairs it only takes CPU time 0.01 seconds to obtain climbBase1 and climbBase2 for

macro-actions (3.3) and (3.4), suppose we will reuse these two macro-actions for n times,

we have limn→∞
0.01
n

= 0. Therefore, we will ignore it and concentrate on the exper-

iments of applications of using and reusing macro-actions. Notice that the definition

probF could gather all the possible outcomes for a program, therefore, we used it to do

the tests. For the purpose of simulating the frequency of the change of the stairs’ heights,

we gave following five tests:

Five Tests in Prolog

% test1: All N stairs are of the same height.

test1(N,T):- cputime(T1), test0(N), cputime(T2), T is T2-T1.
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test0(0):-!.

test0(N):- N>0, !, probF(true, climbing(15), _), N1 is N-1, test0(N1).

% test2: There are at most 10 different heights for the N stairs.

test2(N,T):- cputime(T1), test02(N), cputime(T2), T is T2-T1.

test02(0):-!.

test02(N):- N>0, !, mod(N,10, H), H1 is H+10,

probF(true, climbing(H1), _), N1 is N-1, test02(N1).

% test3: There are at most 50 different heights for the N stairs.

test3(N,T):- cputime(T1), test03(N), cputime(T2), T is T2-T1.

test03(0):-!.

test03(N):- N>0, !, mod(N,50, H), H1 is 5+H/4,

probF(true, climbing(H1), _), N1 is N-1, test03(N1).

% test4: There are at most 800 different heights for the N stairs.

test4(N,T):- cputime(T1), test04(N), cputime(T2), T is T2-T1.

test04(0):-!.

test04(N):- N>0, !, mod(N,800, H), H1 is 1+H/50,

probF(true, climbing(H1), _), N1 is N-1, test04(N1).

% test5: The N stairs’ heights are random, i.e., they might be all different.

test5(N,T):- cputime(T1), test05(N), cputime(T2), T is T2-T1.

test05(0):-!.

test05(N):- N>0, !, frandom(H), H1 is H*20,

probF(true, climbing(H1), _), N1 is N-1, test05(N1).

Clearly, from test suit test1 to test suit test5 the change of the stairs’ heights becomes
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more and more frequently. We run procedure Exp.1 (Exp.2 and Exp.3 respectively) on

each of the five test suits for values of N from 100 to 2000 with a step-size of 100 and

repeat it five times for every value of N to get the CPU time T for each trial. The CPU

times presented in the following Table 5.1 (respectively, Table 5.2 and Table 5.3) are the

average over the five distinct trials (to reduce the measurement error) with unit second:

N test1 test2 test3 test4 test5

100 0.050 0.066 0.116 0.184 0.188

200 0.106 0.112 0.168 0.416 0.402

300 0.148 0.162 0.216 0.688 0.678

400 0.198 0.200 0.276 1.024 0.992

500 0.238 0.258 0.318 1.376 1.372

600 0.270 0.296 0.380 1.866 1.810

700 0.326 0.340 0.436 2.354 2.286

800 0.378 0.382 0.464 2.910 2.802

900 0.430 0.424 0.516 3.098 3.404

1000 0.466 0.470 0.572 3.374 4.028

1100 0.514 0.514 0.620 3.586 4.704

1200 0.578 0.560 0.674 3.806 5.496

1300 0.582 0.614 0.718 3.898 6.274

1400 0.626 0.648 0.778 4.078 7.164

1500 0.682 0.716 0.838 4.198 8.144

1600 0.728 0.736 0.904 4.312 9.006

1700 0.742 0.774 0.942 4.532 10.174

1800 0.800 0.848 0.968 4.640 11.104

1900 0.856 0.876 1.050 4.740 12.272

2000 0.912 0.918 1.092 4.882 13.508

Table 5.1: Experiment Results of Computational Time for Exp.1
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N test1 test2 test3 test4 test5

100 0.078 0.078 0.084 0.080 0.078

200 0.138 0.136 0.142 0.146 0.146

300 0.200 0.210 0.204 0.210 0.208

400 0.270 0.270 0.272 0.282 0.274

500 0.330 0.344 0.340 0.340 0.338

600 0.390 0.400 0.402 0.406 0.398

700 0.458 0.464 0.470 0.470 0.466

800 0.520 0.528 0.538 0.530 0.536

900 0.588 0.588 0.600 0.600 0.594

1000 0.654 0.656 0.658 0.660 0.664

1100 0.726 0.720 0.726 0.722 0.722

1200 0.774 0.792 0.788 0.794 0.790

1300 0.846 0.848 0.856 0.862 0.854

1400 0.908 0.910 0.932 0.922 0.924

1500 0.968 0.967 0.984 0.984 0.980

1600 1.034 1.038 1.058 1.058 1.048

1700 1.098 1.102 1.116 1.114 1.108

1800 1.164 1.182 1.170 1.182 1.180

1900 1.232 1.228 1.266 1.254 1.250

2000 1.304 1.292 1.340 1.318 1.300

Table 5.2: Experiment Results of Computational Time for Exp.2
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N test1 test2 test3 test4 test5

100 0.105 0.092 0.090 0.094 0.094

200 0.202 0.176 0.182 0.178 0.182

300 0.280 0.266 0.268 0.266 0.268

400 0.378 0.342 0.356 0.350 0.360

500 0.468 0.440 0.438 0.434 0.450

600 0.550 0.520 0.530 0.520 0.532

700 0.638 0.618 0.616 0.612 0.624

800 0.754 0.694 0.700 0.688 0.698

900 0.820 0.790 0.770 0.780 0.798

1000 0.926 0.902 0.868 0.874 0.876

1100 1.048 0.986 0.962 0.968 0.968

1200 1.078 1.068 1.046 1.044 1.038

1300 1.164 1.130 1.144 1.124 1.154

1400 1.344 1.222 1.192 1.224 1.244

1500 1.406 1.316 1.292 1.332 1.330

1600 1.484 1.402 1.384 1.376 1.398

1700 1.526 1.550 1.476 1.486 1.498

1800 1.606 1.610 1.562 1.618 1.592

1900 1.742 1.684 1.642 1.650 1.646

2000 1.798 1.726 1.760 1.714 1.758

Table 5.3: Experiment Results of Computational Time for Exp.3

First of all, we look at the three tables separately. In Table 5.1, the computational

time grows pretty stable for test1, test2 and test3 fromN = 100 toN = 2000, but for test4

and test5, the computational time grows very fast. The reason is that the stairs’ heights

change very often and the agent itself can only recognize exactly the same situation for
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macro-actions, therefore, for the similar situations like

do([liftT ill(h), forwLowLegS, stepDownS(main), moveBarycenterS(main),

straightLeg], s0) (5.7)

when h changes, the agent has to develop and store the new maxPossBase for macro-

action stepSupp in the situation instance. Hence, the more the different values of h have,

the bigger the dynamic part of the knowledge base is, and the larger the time is to be

consumed on finding all the possibilities of outcomes. In Table 5.2, we observed that

the increasing of the computational time is very stable and almost the same for the five

tests, that is to say, the change of the stair height doesn’t affect the computational time.

Analyzing the macro-action for procedure(3.7) climbing(h), we found that since for all

the legal stairs’ heights, they are in the same ob-class for macro-action climbStair(h),

therefore, in the dynamic part of its knowledge base, the agent only need to keep one

fact of maxPossBase for macro-action climbStair(h) in the situation S0 and this part

won’t change with the changing of height h. In Table 5.3, since there is no knowledge

base at all for the stGolog, the changing of the stairs’ heights certainly won’t affect the

computational time at all.

Secondly, we compare the three tables vertically. It is easy to see that the results in

Exp.2 is always better than in Exp.3 for every test, and Exp.1 has much better results

than both Exp.2 and Exp.3 for test1, test2 and test3 when N becomes larger. The reason

is that for the first three tests, we don’t change the stairs’ heights very often and moreover

the relative frequency of the change of the stairs’ heights to the number of the stairs N

becomes even smaller when N becomes larger. But for test4 and test5, Exp.2 and Exp.3

have much better results than Exp.1. The reason is very clear – the growth of the size

of the dynamic part of the knowledge base consumes the time tremendously. Therefore,

when the stair’s height h changes very often, either Exp.2 or Exp.3 would be a better

choice.
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At last, comparing the three tables horizontally, especially for test1, test2 and test3,

it is easy to see Exp.1 is a better choice. Analyzing the reason why Exp.2 is not as

competitive as Exp.1 for the former three tests, we find that the maximal length of

the macro-actions in Exp.1 is much shorter than that of the macro-actions in Exp.2.

According to the development of the static part of a knowledge base, Exp.1 contains

much less extended successor state axioms, therefore has smaller static part. Hence,

when the dynamic part of the knowledge base is relatively stable, we would prefer to

define short macro-actions.

5.2.3 Summary: the Benefits and the Limitations

After above discussion, we can clearly see the computational benefit of using macro-

actions. Moreover, we somehow make the agent have some “memories”, therefore can

keep its “experience”. The limitations of using macro-actions, especially under our cur-

rent implementation, the duty of the controllers becomes heavier. It is the controller’s

responsibility to choose proper macro-actions and to make sure to change the dynamic

part of the knowledge base when objects of different ob-classes for certain macro-actions

occur. Finally, up till now, the agent can not be aware of similar local situations like

(5.7) for different h’s, to which the reuse of the macro-actions might also can be extended

in our imagination. This limitations might open a door for part of our future work.



Chapter 6

Conclusions and Future Work

To make the autonomous agents perform more and more intelligently is always a goal for

the AI researchers. In this paper, under the background of uncertainty systems, we intro-

duced a concept of macro-action based on the existing complex Golog sequential action

constructor, extended the basic action theories with macro-actions, defined an extended

regression operator to help us to develop the knowledge base for the macro-actions in

advance and later use the saved knowledges in application. Therefore, we somehow par-

tially simulate the behaviors that the agents can learn knowledge in advance, keep the

experience and later retrieve the existing experience when they meet the same situation.

For implementation of developing the static part of a knowledge base, a program named

developer was established. We also gave an interpreter named macGolog which was mod-

ified from the stGolog interpreter on the purpose of using and reusing the macro-actions

with their knowledge base for a system. We discussed the advantages and limitations

of introducing macro-actions into uncertainty systems, and concluded that the reuse of

macro-actions can bring us computational benefit under the condition that the agent is

in an environment that it needs to perform similar works in same local situations.

We certainly must mention the fountainhead of the idea of introducing macro-actions.

This idea is adopted from using and reusing local policies [8] in solving the hybrid Markov

87
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Decision Processes(hybrid MDPs)[8, 13, 21, 32] in the decision-making theory. Although

we did not have chance to go that far to try to solve hybrid MDPs in high-level pro-

gramming language yet, the researchers have begun their work on solving the MDPs and

first-order MDPs in the situation calculus [4, 3].

There are many aspects remain open and are interesting to pursue in the near future.

1. There are several things can be improved during our implementation of using and

reusing of macro-actions. First of all, we only assume that the agent can somehow

switch to the local initial situations, and in the experiments we achieved this only

by reseting the situations according to the controller’s commands. To make the

modeled systems more practical and more expressive, we may consider describing

the exogenous interrupt actions by the controllers, or we may can set sensors for

the autonomous agents so that they can switch the situations themselves once they

sense some particular signals. Second, since we only focus on local situations, the

agent will “forget” its former choices and performance of deterministic actions when

the situation is reset. In later work, we may consider to somehow keep the former

histories, therefore, we can also have global information and histories of reusing

macro-actions if the agent or the controllers would prefer to.

2. As we discussed in previous chapter, the agent can only recognize the exact situ-

ations for reusing macro-action on the objects in same ob-class. And we observed

that the situations like (5.7) for different h are very similar (actually can be viewed

as local initial situations for macro-action stepSupp). In the future, we would like

to do research on how to make the robot aware of these kinds of similar situations,

so that we can reduce the size of the dynamic part of the knowledge base. Moreover,

the solving of this question may even lead to the solutions of keeping the global

histories of re-performing macGolog programs.

3. We also mentioned that our idea is adopted from the using of local policies in solving
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hybrid MDPs. On the other hand, we are interested in studying the common and

different characters of macro-actions in the this paper and the local policies in the

MDPs, and consider the possibilities of solving hybrid MDPs by using the high-level

programming languages like the situation calculus.
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Appendix A

The following represents the stGolog interpreter given in [28] Chapter 12.

An stGolog Interpreter

:- set_flag(print_depth,100).

:- nodbgcomp.

:- dynamic(proc/2). % Compiler directives. Be sure

:- set_flag(all_dynamic, on). % that you load this file first!

:- op(800, xfy, [&]). % Conjunction

:- op(850, xfy, [v]). % Disjunction

:- op(870, xfy, [=>]). % Implication

:- op(880,xfy, [<=>]). % Equivalence

:- op(950, xfy, [:]). % Action sequence

stDo(nil,1,S,S).

stDo(A : B,P,S1,S2) :- stochastic(A),

(not (choice(A,C), poss(C,S1)), !, % Program can’t continue.

S2 = S1, P = 1 ; % Create a leaf.

% once is an Eclipse Prolog built-in. once(G) succeeds the first time

% G succeeds, and never tries again under backtracking. We use it here

% to prevent stDo from generating the same leaf situation more than
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% once, when poss has multiple solutions.

choice(A,C), once(poss(C,S1)), prob(C,A,S1,P1),

stDo(B,P2,do(C,S1),S2), P is P1 * P2 ).

stDo((A : B) : C,P,S1,S2) :- stDo(A : (B : C),P,S1,S2).

stDo(?(T) : A,P,S1,S2) :- holds(T,S1), !, stDo(A,P,S1,S2) ;

S2 = S1, P = 1. % Program can’t continue.

% Create a leaf.

stDo(if(T,A,B) : C,P,S1,S2) :- holds(T,S1), !, stDo(A : C,P,S1,S2) ;

stDo(B : C,P,S1,S2).

stDo(A : B,P,S1,S2) :- proc(A,C), stDo(C : B,P,S1,S2).

stDo(while(T,A) : B,P,S1,S2) :- holds(T,S1), !,

stDo(A : while(T,A) : B,P,S1,S2) ;

stDo(B,P,S1,S2).

prob(C,A,S,P) :- choice(A,C), poss(C,S), !, prob0(C,A,S,P) ; P = 0.0 .

stochastic(A) :- choice(A,N), !.

sub(X1,X2,T1,T2) :- var(T1), T2 = T1.

sub(X1,X2,T1,T2) :- not var(T1), T1 = X1, T2 = X2.

sub(X1,X2,T1,T2) :- not T1 = X1, T1 =..[F|L1], sub_list(X1,X2,L1,L2),

T2 =..[F|L2].

sub_list(X1,X2,[],[]).

sub_list(X1,X2,[T1|L1],[T2|L2]) :- sub(X1,X2,T1,T2), sub_list(X1,X2,L1,L2).

/* The holds predicate implements the revised Lloyd-Topor

transformations on test conditions. */

holds(P & Q,S) :- holds(P,S), holds(Q,S).
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holds(P v Q,S) :- holds(P,S); holds(Q,S).

holds(P => Q,S) :- holds(-P v Q,S).

holds(P <=> Q,S) :- holds((P => Q) & (Q => P),S).

holds(-(-P),S) :- holds(P,S).

holds(-(P & Q),S) :- holds(-P v -Q,S).

holds(-(P v Q),S) :- holds(-P & -Q,S).

holds(-(P => Q),S) :- holds(-(-P v Q),S).

holds(-(P <=> Q),S) :- holds(-((P => Q) & (Q => P)),S).

holds(-all(V,P),S) :- holds(some(V,-P),S).

holds(-some(V,P),S) :- not holds(some(V,P),S). /* Negation */

holds(-P,S) :- isAtom(P), not holds(P,S). /* by failure */

holds(all(V,P),S) :- holds(-some(V,-P),S).

holds(some(V,P),S) :- sub(V,_,P,P1), holds(P1,S).

/* The following clause treats the holds predicate for non fluents, including

Prolog system predicates. For this to work properly, the Golog programmer

must provide, for all fluents, a clause giving the result of restoring

situation arguments to situation-suppressed terms, for example:

restoreSitArg(ontable(X),S,ontable(X,S)). */

holds(A,S) :- restoreSitArg(A,S,F), F ;

not restoreSitArg(A,S,F), isAtom(A), A.

isAtom(A) :- not (A = -W ; A = (W1 & W2) ; A = (W1 => W2) ;

A = (W1 <=> W2) ; A = (W1 v W2) ; A = some(X,W) ; A = all(X,W)).

restoreSitArg(poss(A),S,poss(A,S)).



Appendix B

Since the concept of uniform ([28] Definition 4.4.1) appears in the literature frequently,

to make it easy for the readers, we present the definition in this appendix, and also give

sample proof that the regression of s-regressable formula is uniform in s.

Definition Uniform Formulas ([28] Definition 4.4.1)

Let σ be a term of sort situation. Inductively define the concept of a term of Lsc that is

uniform in σ as follows:

1. Any term that does not mention a term of sort situation is uniform in σ.

2. If g is an n-ary non-fluent function symbol, and t1, · · · , tn are terms that are

uniform in σ and whose sorts are appropriate for g, then g(t1, · · · , tn) is uniform

in σ.

3. If f is an (n + 1)-ary functional fluent symbol, and t1, · · · , tn are terms that are

uniform in σ and whose sorts are appropriate for f , then f(t1, · · · , tn, σ) is uniform

in σ.

The formulas of Lsc that are uniform in σ are inductively defined by:

1. Any formula that does not mention a term of sort situation is uniform in σ.

2. When F is an (n + 1)-ary relational fluent symbol, and t1, · · · , tn are terms that

are uniform in σ and whose sorts are appropriate for F , then F (t1, · · · , tn, σ) is

uniform in σ.

3. If U1 and U2 are formulas uniform in σ, so are ¬U1, U1 ∧U2 and (∃v)U1 provided

that v is a variable not of sort situation.

98



Appendix B. 99

Property 1. Suppose s is either S0 or a variable of sort situation and the regression

operator R is defined as Definition 3.6 in Chapter 3, for any s-regressable formula W in

Lsc, we have R[W ] is a formula uniform in s.

Proof: It can be proved by induction on the maximal length n of all the logs [a1, a2, · · · , am]

satisfying do([a1, a2, · · · , am], s) in formula W (since n is the maximal length, we have

m ≤ n).

Base Case: n = 0, i.e. s is the only term of sort situation (if any) in W , then according

to the definition of R, R[W ] = W which is definitely uniform in s.

Induction Steps: Let k be some arbitrary natural number, and suppose the proposition

is true for all n such that 0 ≤ n ≤ k, now we are going to prove it is true for n = k + 1.

According to the recursive definition of R when W is not atomic, it is sufficient to

prove the proposition for atoms that include logs of length n = k + 1, since for all

other atoms that include logs no longer than k, their regression results are uniform in s

according to the hypothesis. Atoms that include logs of length n = k+ 1 appear to have

three cases:

(a) the atom is a relational fluent F (~x, do([a1, a2, · · · , ak+1], s));

(b) the atom is a functional fluent g(~x, do([a1, a2, · · · , ak+1], s)); or

(c) the atom is of form Poss(~x, do([a1, · · · , ak+1], s)).

For case (a), suppose F ’s successor state axiom in Dss be

F (~t, do(a, s1)) ≡ ΦF (~t, a, s1) .

Without loss of generality, assume that all quantifiers (if any) of ΦF (~t, a, s1) have had

their quantified variables renamed to be distinct from the free variables (if any) of

F (~x, do([a1, a2, · · · , ak+1], s)). Then

R[F (~x, do([a1, a2, · · · , ak+1], s))]

= R[ΦF (~x, ak+1, do([a1, a2, · · · , ak], s))]

= Φ′
F (~x, s) for some Φ′

F ,

where Φ′
F (~x, s) is uniform in s according to the hypothesis. for the other two cases, the

proof is similar according to the definition of R.
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Therefore, we proved for any s-regressable formula W in Lsc, R[W ] is uniform in s.

�

Similarly, we can prove following property for the extended operator R∗ by using

induction proof.

Property 2. Suppose s is either S0 or a variable of sort situation, the regression operator

R∗ is defined as Definition 4.2 in Chapter 4, for any s-regressable formula W in L′
sc, we

have R∗[W ] is a formula uniform in s.
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The following represents the implementation of the developer of the knowledge base(static

part) in Prolog.

The Developer in Prolog

% We assume that only variable S is used for representing current situation

% in this program, and S is not used for other attribution

:- set_flag(print_depth,100).

:- set_flag(all_dynamic, on).

:- op(900,xfy,[==>]). % Simplification Rules.

:- op(800, xfy, [&]). % Conjunction

:- op(850, xfy, [v]). % Disjunction

:- op(870, xfy, [=>]). % Implication

:- op(880,xfy, [<=>]). % Equivalence

:- op(950, xfy, [:]). % Action sequence

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%% The Following part includes the main program of developer
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kbDeveloper(L,File1,File2):-

currentMaxLength(N1), % get current maximal length of macro-actions

newMaxLength(L, N2), % get the maximal length of new macro-actions

outputMac(L, File1, File2),

(N1 < N2, 1 < N1, !,

addSSA(N1,N2,File1,File2); % add new extended successor state axioms

N1 < N2, N1 =< 1, !,

addSSA(1,N2,File1,File2);

N1 >= N2, !),

addPoss(L,File1,File2), % add new extended preconditions

localPossProb(L,File2). % add new localChoice and probMac_0

currentMaxLength(N):- setof(M, A^B^(macro(A,B),seqLength(B,M)), MS),

maxElement(MS,N).

maxElement([A],A):- number(A), !.

maxElement([A,B|T],N):- A >= B, !, N=A;

A < B, reverse([A,B|T],T1),maxElement(T1,N).

newMaxLength(L, N):- setof(M, A^B^(member([A,B],L),seqLength(B,M)), MS),

maxElement(MS,N).

% addSSA(N1,N2,File1,File2): compute the new extended successor state

% axioms for actions from length N1+1 to N2, and record the results

% into File1 and File2.

addSSA(N1,N2,File1,File2):- N0 is N1+1, addSSA0(N0, N2, R),

printRule(R,File1), printApp(R,File2).

addSSA0(N1,N2,R):- genNum(N1,N2,List),



Appendix C. 103

setof(F, B^C^restoreSitArg(F,B,C),FS), addSSA1(List,FS,R).

genNum(N,N,[N]):- !.

genNum(N1,N2,[N1|T]):- N1<N2, !, N3 is N1+1, genNum(N3,N2,T).

addSSA1([],_,[]):- !.

addSSA1([N|T], Fluents, R):- genNew(’A’,N,Actions),

addSSA2(Fluents, Actions, R0), addSSA1(T, Fluents, R1),

append(R1,R0,R).

addSSA2([],_,[]):- !.

addSSA2([F|T],Actions,[R1|T1]):- regression(F,Actions,R1),

addSSA2(T,Actions,T1).

% addPoss(L,File1, File2): add extend precondition axioms for new sequences of

% deterministic actions; moreover, record the list of deterministic sequences,

% whose extended precondition axioms has been recorded into File2, into File1

% so that we can avoid duplication later while calling developer again.

addPoss(L,File1,File2):- addPoss0(L,Result1, Result2),

removeFalse(Result1,Result3), printApp(Result3,File2),

(not Result2 = [], !, printComputed(Result2,File1); Result2 = [], !).

removeFalse([],[]):- ! .

removeFalse([[_,false]|T],T1):- removeFalse(T,T1).

removeFalse([[A,B]|T],[[A,B]|T1]):- not B = false, !, removeFalse(T,T1).

addPoss0([],[],[]):- !.

addPoss0([[_,B]|T],R1,R2):- addPoss0(T,L1,M1), extPoss(B,L2,M2),

append(L2,L1,R1), append(M2,M1,R2).

extPoss(B,R1,R2):- setof(Act,

N^(choiceMac(B,Act),seqLength(B,N),length(Act,N)), List),

extPoss0(List,R1,R2).
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extPoss0([],[],[]):- !.

extPoss0([H|T],R1,R2):- extPoss1([],H,L1,M1), extPoss0(T,L2,M2),

append(L1,L2,R1), append(M1,M2,R2).

extPoss1(_,[],[],[]):- !.

extPoss1(A,[H|T],R1,R2):- A=[], !, append(A,[H],A1),

extPoss1(A1,T,R1,R2).

extPoss1(A,[H|T],R1,R2):- not A=[], append(A,[H],A1),

computedBefore(List), % If poss(A1,S) has computed before

member(A1,List), !, % this time of calling developer,

regression(A1,A,H,_), % don’t record the regression result

extPoss1(A1,T,R1,R2). % into File2.

extPoss1(A,[H|T],R1,R2):- not A=[], append(A,[H],A1),

poss(A1,_) <=> _ , !, % If poss(A1,S) has computed this time for

extPoss1(A1,T,R1,R2). % other macro-actions, don’t compute again.

extPoss1(A,[H|T],[D|L1],[A1|M1]):- not A=[], append(A,[H],A1),

not (computedBefore(List), member(A1,List);

poss(A1,_) <=> _ ), !, % Otherwise,

regression(A1,A,H,D), extPoss1(A1,T,L1,M1). % compute and record.

% localPossProb(L,File2): gather the deterministic choices of macro-action

% which is possible at situation S, compute regression results for macProb0,

% and output to database File2.

localPossProb(L,File2):- localPossProb0(L,Result1,Result2),

printLocal(Result1,File2), printApp(Result2,File2).

localPossProb0([],[],[]):- !.

localPossProb0([[N,B]|T], [[N,AS1]|L1],R):- localPossProb0(T,L1,R1),
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setof(A, S^(choiceMac(B,A),once((length(A,1); not poss(A,S) <=> false))),

AS),

reverse(AS,AS1), % make list arranged from longest to shortest

macProbAction0(AS,N,R2), append(R2,R1,R).

macProbAction0([],_,[]):- !.

macProbAction0([A|T],N,[R|T1]):- regression(probMac0(A,N,S,Pr), R),

macProbAction0(T,N,T1).

% recursive definition of choiceMac, to check whether a sequence of

% deterministic actions is a nature’s choice of certain macro-action.

choiceMac(A1:A2,[C1|C2]):- choice(A1,C1), choiceMac(A2,C2).

choiceMac(A:_,[C]):- choice(A,C).

choiceMac(A,[C]):- choice(A,C).

% compute the length of macro-action,

seqLength(A,1) :- not A =.. [:|_], !.

seqLength(_:B,N) :- seqLength(B,N1), N is N1+1.

% special database to avoid no definitions of "macro" and "computedBefore"

% at initial situation.

macro(nil, nil).

computedBefore([]).

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%% regression procedures

regression(F,A,[F1,R]):- restoreSitArg(F,do(A,S),F1),
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lastElement(A,M1), formerActions(M0,[M1],A),

restoreSitArg(F,do([M1],do(M0,S)),F2),

regress1(F2,R), asserta((F1 <=> R)). % for extended successor state

regression(F,[F,R]):- regress2(F,R). % for probabilities probMac_0

regression(A1,A,H,[poss(A1,S),D1]):- % for extended preconditions

regress1(poss(H,do(A,S)), C1),

(length(A,1), !, member(M,A), poss(M,S) <=> R1;

not length(A,1), !, poss(A,S) <=> R1),

(R1 = true, !, D1 = true;

R1 = false, !, D1 = false;

not (R1 = true; R1 = false), !,simplify(R1 & C1, D1)),

asserta((poss(A1,S) <=> D1)).

lastElement([E],E):- !.

lastElement([_|B],E):-lastElement(B,E).

formerActions(A,B,C):- append(A,B,C).

regress2(probMac0([C],A,S,Pr),R):- length([C],1), !, getAction(A,1,A1),

regress1(prob0(C,A1,S,Pr),R), asserta(probMac0([C],A,S,Pr) <=> R).

regress2(probMac0(C,A,S,Pr),R):- length(C,N), N>1, !,

lastElement(C,C1), formerActions(C2,[C1],C),

getAction(A,N,AN), probMac0(C2,A,S,Pr1) <=> R1,

regress1(prob0(C1,AN,do(C2,S),Pr2), R2),

simplify(R1 & R2 & (Pr is Pr1 * Pr2),R),

asserta(probMac0(C,A,S,Pr) <=> R).

% get the Nth primitive action E in a sequence of actions A
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getAction(A,N,E):- macro(A,B), !, getStochastic(B,N,E).

getAction(A:B,N,E):- getStochastic(A:B,N,E).

getStochastic(E:_,1,E):- !.

getStochastic(E,1,E):- not E =.. [:|_], !.

getStochastic(_:E2,N,E):- N>1, !, N1 is N-1,

getStochastic(E2,N1,E).

% regress1(A,R): for term A, if A atom, and of form f(...,do(...,S)),

% we will find out the rule whose head matches A,

% and we will rename the quantified variable in the rule,

% then get the equivalent formula for A and

% do regression on the equivalent formula to get R.

regress1(A,R):-

matching(A,Head), Head <=> Body, quant(Head, Body,LV12),

term_variables(A, LA), sameVar(LV12, LA, LV2),

(LV2=[], !, A <=> Body1;

not LV2=[], !, term_variables([A,Body],LV1),

genNew(LV2,LV1,New), % generate new variables

rename(LV2,New,Body,BodyR),

retract(Head <=> Body), asserta(Head <=> BodyR), A <=> Body1),

simplify(Body1,Body2), regress(Body2,R).

sameVar(_, [], []):- !.

sameVar(A,[M|T],[M|T1]):- not newVar(M,A), !, sameVar(A,T,T1).

sameVar(A,[M|T],T1):- newVar(M,A), !, sameVar(A,T,T1).
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regress(P & Q, R) :- regress(P,R1),

(R1 = false, R = false, !; regress(Q,R2), simplify(R1 & R2,R)).

regress(P v Q, R) :- regress(P,R1),

(R1 = true, R = true, !; regress(Q,R2), simplify(R1 v R2,R)).

regress(-P,R) :- regress(P,R1), simplify(-R1,R).

regress(A,R):- isAtom(A), not onlyS(A), A <=> _, !, regress1(A,R).

regress(A,R):- isAtom(A), (not A <=> _ ; onlyS(A)), !, R = A.

isAtom(A) :- not (A = -W; A = (W1 & W2); A = (W1 => W2);

A = (W1 <=> W2); A = (W1 v W2); A = some(X,W); A = all(X,W)).

% onlyS(A): last augment of term A is current situation S.

onlyS(A):- functor(A,_,N), N>0, !, arg(N,A,Sit),

get_var_info(Sit,name, R), R = ’S’.

% find the head of the rule which matches A

matching(A,Head):- functor(A,F,M),

findall(B, W^( B <=> W, functor(B,F,M), matching0(A,B)), BS),

member(Head, BS).

matching0(A,D):- A =.. [F|[B1|_]],

(not F = prob0, not F = poss, !,

numActions(A,N),numActions(D,N);

(F = prob0;F = poss), !,

D =..[F|[B2|_]], functor(B1,F1,M1), functor(B2,F1,M1)).

numActions(A,N):- A =.. [_|B], reverse(B,[M|_]), M =.. [do,T,_], length(T,N).

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% notice that in rule Head <=> Body, variables which appear in Body,
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% but not in Head, are quantified,

% quant(Head,Body,LV): LV is the list of quantified variables.

quant(Head,Body,LV):- term_variables(Head,V1),

term_variables(Body,V2),

diff(V2,V1,LV).

% diff(A,B,C): C = A-B

diff(L,[],L):- !.

diff(A,[A1|T],L):- newVar(A1,A), !, diff(A,T,L).

diff(A,[A1|T],L):- not newVar(A1,A), !,

removeElement(A1,A,B), diff(B,T,L).

removeElement(_,[],[]):- !.

removeElement(A1,[A|B],T):- get_var_info(A1, name, R1),

get_var_info(A, name, R1), removeElement(A1,B,T).

removeElement(A1,[A|B],[A|T]):- get_var_info(A1, name, R1),

not get_var_info(A, name, R1), removeElement(A1,B,T).

newVar(A,[]):- var(A), !.

newVar(A,[B|T]):- get_var_info(B, name, R2), get_var_info(A, name, R1),

not R1=R2, !, newVar(A,T).

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% rename(Names,News,Term1,Term2): Term2 is Term1 with Names

% replaced by corresponding News.

rename([],[],A, A):- !.

rename([X|T1],[Y|T2],A,B):- sub0(X,Y,A,B1), rename(T1,T2,B1,B).
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% sub0(Name,New,Term1,Term2): Term2 is Term1 with Name replaced by New.

sub0(X1,_,T1,T1) :- var(T1), not var(X1).

sub0(X1,_,T1,T1) :- var(T1), var(X1), get_var_info(X1, name, R1),

not get_var_info(T1, name, R1).

sub0(X1,X2,T1,X2) :- var(T1), var(X1), get_var_info(X1, name, R1),

get_var_info(T1, name, R1).

sub0(X1,X2,T1,T2) :- not var(T1), not var(X1), T1 = X1, T2 = X2.

sub0(X1,X2,T1,T2) :- not var(T1), not var(X1),

not T1 = X1, T1 =..[F|L1], sub_list(X1,X2,L1,L2),

T2 =..[F|L2].

sub0(X1,X2,T1,T2) :- not var(T1), var(X1), T1 =..[F|L1],

sub_list(X1,X2,L1,L2),T2 =..[F|L2].

sub_list(_,_,[],[]).

sub_list(X1,X2,[T1|L1],[T2|L2]) :- sub0(X1,X2,T1,T2), sub_list(X1,X2,L1,L2).

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% simplify formulas.

simplify(-(-W),S) :- simplify(W,S), !.

simplify(W1 & W2,S) :- simplify(W1,S1), simplify(W2,S2),

simplify1(S1 & S2,S), !.

simplify(W1 v W2,S) :- simplify(W1,S1), simplify(W2,S2),

simplify1(S1 v S2,S), !.

simplify(-W,S) :- simplify(W,S1), simplify1(-S1,S), !.

simplify(A,S) :- simplify1(A,S).

simplify1(W,Simp) :- W ==> Simp, !.

simplify1(W,W).
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% Simplification Rules.

true & P ==> P. P & true ==> P. false & _ ==> false.

_ & false ==> false. true v _ ==> true. _ v true ==> true.

false v P ==> P. P v false ==> P. -true ==> false.

-false ==> true.

X v - Y ==> true :- not var(X), not var(Y), X == Y.

- X v Y ==> true :- not var(X), not var(Y), X == Y.

X & - Y ==> false :- not var(X), not var(Y), X == Y.

- X & Y ==> false :- not var(X), not var(Y), X == Y.

X & Y ==> X :- not var(X), not var(Y), X == Y.

X v Y ==> X :- not var(X), not var(Y), X == Y.

X = Y ==> true :- not var(X), not var(Y), matchWith(X,Y).

X = Y ==> false :- not var(X), not var(Y), not X=Y.

matchWith(X,Y):- var(X), not var(Y),!, fail.

matchWith(X,Y):- not var(X), var(Y), Y = X, !.

matchWith(X,Y):- var(X), var(Y), Y = X, !.

matchWith(X,Y):- not var(X), not var(Y), !,

X =.. [F|L1], Y=.. [F|L2], match_list(L1,L2).

match_list([],[]).

match_list([A1|B1],[A2|B2]):- matchWith(A1,A2),match_list(B1,B2).

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% we always use file "variables" to be the temporary files to help us to

% generate new variables we need

genNew(V,N,L):- genVarFile(V,N), getVarFile(L), delete(variables).

genVarFile(V,N):-
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(number(N), !, gensym(V,N,T);

not number(N), !, gensym0(V,N,T)),

flaten(T,T1),open(variables,write, Stream),

printf(Stream, "newVar(%w).", [T1]), close(Stream).

% gensym(V,N,T): generate list of strings with prefix V

% followed by n, n=1,2,...,N

gensym(_,0,[]):- !.

gensym(V,N,R):- N>0, N1 is N-1, gensym(V,N1,T),

concat_atom([V,N],A), append(T,[A],R).

% gensym0(A,B,T): every element in T is a string with exact one prefix

% in A, and all elements in T are different from variables in B.

gensym0([],_,[]):- !.

gensym0([A|T1], B, [A1|T2]):- get_var_info(A, name, R),

initializeVarCount, genEle(R,B,A1), gensym0(T1, B, T2).

genEle(A,B,A1):- getval(varCount,N), concat_atom([A,N],T),

(not haveSameName(T,B), !, A1=T;

haveSameName(T,B), !, incrementVarCount, genEle(A,B,A1)).

initializeVarCount:- setval(varCount,0).

incrementVarCount:- incval(varCount).

haveSameName(A,[B|_]):- get_var_info(B,name,A), !.

haveSameName(A,[B|T]):- not get_var_info(B,name,A), haveSameName(A,T).

% make [’A’,’B’] look like ’A,B’

flaten([],A):- A=’’,!.
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flaten([A|B],T):-

length([A|B], N), N=1,!, flaten(B,T1),concat_atom([A,T1],T).

flaten([A|B],T):-

length([A|B], N), N>1,!, flaten(B,T1),concat_atom([A,’,’,T1],T).

getVarFile(L):- getFromFile(L1), getVar(L1,L).

getFromFile(L):- open(variables, read, Stream),

readvar(Stream,_,L), close(Stream).

% getVar(L1,L): L1 is a list of elements of form [A|B],

% where A is name of variable B, L is lists of B’s

getVar([],[]):- !.

getVar([[_|B]|T1],[B|T]):- var(B), getVar(T1,T).

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% various of output and printing procedures

% add new macro-actions

outputMac(L, File1, File2):- printMacro(L,File1),

printMacro(L,File2), assertMacro(L).

assertMacro([]).

assertMacro([[Name,Body]|T]):- not macro(Name,Body), !,

assert(macro(Name,Body)), assertMacro(T).

printMacro(L,File):- open(File, append, Stream),

printMacro0(Stream,L), close(Stream).
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printMacro0(Stream,[]):- nl(Stream), !.

printMacro0(Stream,[[Name,Body]|T]):-

nl(Stream), printf(Stream, "macro(%w,%w).", [Name,Body]),

nl(Stream), printMacro0(Stream, T).

% printComputed(L,File): print fact computedBefore(L) into File

printComputed(L,File):- open(File, append, Stream),

nl(Stream), printf(Stream, "computedBefore(%w).", [L]),

nl(Stream), close(Stream).

% printLocal(L,File): print ‘‘localChoice’’ to File

printLocal(L,File):- open(File, append, Stream),

printLocal0(Stream,L), close(Stream).

printLocal0(Stream,[]):- nl(Stream), !.

printLocal0(Stream,[[Name,Body]|T]):- nl(Stream),

printf(Stream, "localChoice(%w,%w).", [Name,Body]),

nl(Stream), printLocal0(Stream, T).

% printRule(T,Tempbase): output new rules to file Tempbase which

% is a file save the extended successor state axiom in form of

% H <=> W, and this Tempbase helps the program "developer" to g

% enerate new results for new macro-action.

printRule(T,Tempbase):- open(Tempbase, append, Stream),

printall0(Stream, T), close(Stream).

printall0(_,[]):- !.

printall0(Stream,[[Head, Body]|T]):-
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nl(Stream), writeclause(Stream, (Head <=> Body)),

nl(Stream), printall0(Stream,T).

% printApp(L,Appbase): output new rules to file Appbase which

% is a file save the extended axioms in clause form, and this

% Appbase is used in application for data reuse.

printApp(L,Appbase):- open(Appbase,append,Stream),

printall1(Stream,L), close(Stream).

printall1(Stream,[]):- nl(Stream), !.

printall1(Stream,[[Head, Body]|Tail]):-

nl(Stream), term_string(Head,Head1),

printf(Stream, "%w :- ", [Head1]),

printSentence(Stream,Body), printf(Stream, ".",[]),

nl(Stream), printall1(Stream,Tail).

printSentence(Stream, W):- isAtom(W), !, term_string(W,W1),

printf(Stream, " %w ",[W1]).

printSentence(Stream, -W):- isAtom(W), !, term_string(W,W1),

printf(Stream, "%s", ["not "]), printf(Stream, " %w ",[W1]).

printSentence(Stream, -W):- not isAtom(W), !,

printf(Stream, "%s", ["not ("]), printSentence(Stream, W),

printf(Stream, "%s", [") "]).

printSentence(Stream, W1 & W2):- not isLiteral(W1), not isLiteral(W2), !,

printf(Stream, "%s", [" ("]), printSentence(Stream,W1),

printf(Stream, "%s", ["), ("]), printSentence(Stream,W2),
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printf(Stream, "%s", [") "]).

printSentence(Stream, W1 & W2):- isLiteral(W1), not isLiteral(W2), !,

printSentence(Stream,W1), printf(Stream, "%s", [", ("]),

printSentence(Stream,W2), printf(Stream, "%s", [") "]).

printSentence(Stream, W1 & W2):- not isLiteral(W1), isLiteral(W2), !,

printf(Stream, "%s", [" ("]), printSentence(Stream,W1),

printf(Stream, "%s", ["), "]), printSentence(Stream,W2).

printSentence(Stream, W1 & W2):- isLiteral(W1), isLiteral(W2), !,

printSentence(Stream,W1), printf(Stream, "%s", [", "]),

printSentence(Stream,W2).

printSentence(Stream, W1 v W2):- not isLiteral(W1), not isLiteral(W2), !,

printf(Stream, "%s", [" ("]), printSentence(Stream,W1),

printf(Stream, "%s", ["); ("]), printSentence(Stream,W2),

printf(Stream, "%s", [") "]).

printSentence(Stream, W1 v W2):- isLiteral(W1), not isLiteral(W2), !,

printSentence(Stream,W1), printf(Stream, "%s", ["; ("]),

printSentence(Stream,W2), printf(Stream, "%s", [") "]).

printSentence(Stream, W1 v W2):- not isLiteral(W1), isLiteral(W2), !,

printf(Stream, "%s", [" ("]), printSentence(Stream,W1),

printf(Stream, "%s", ["); "]), printSentence(Stream,W2).

printSentence(Stream, W1 v W2):- isLiteral(W1), isLiteral(W2), !,

printf(Stream, "%s", [" "]), printSentence(Stream,W1),

printf(Stream, "%s", ["; "]), printSentence(Stream,W2).

isLiteral(W):- isAtom(W), !.

isLiteral(-W):- isAtom(W), !.
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The following represents the complete interpretation of the example of robot climbing

stairs in Prolog for the macGolog interpreter. The only difference from the original one

in the stGolog is that we modify do(A, S) to be do([A], S).

Robot Climbing Stairs in Prolog for the macGolog

% Declare nature’s choices

choice(liftUpperLeg(H),C):- C = liftTill(H); C = malfunc(H).

choice(forwLowLeg, C):- C = forwLowLegS; C = forwLowLegF.

choice(stepDown(L), C):- C = stepDownS(L); C = stepDownF(L).

choice(moveBarycenter(L), C):- C = moveBarycenterS(L); C = moveBarycenterF(L).

choice(straightLeg, C):- C = straightLeg.

choice(forwSupLeg, C):- C = forwSupLegS; C = forwSupLegF.

% Action precondition and successor state axioms

poss(liftTill(H),S) :- barycenter(supporting,S).

poss(malfunc(H),S) :- barycenter(supporting,S).

poss(forwLowLegS,S) :- not mainToCurr(wrongPos,S), not footOnGround(main,S).

poss(forwLowLegF,S) :- not mainToCurr(wrongPos,S), not footOnGround(main,S).

poss(stepDownS(L),S) :- not footOnGround(L,S), overNewStair(L,S).

poss(stepDownF(L),S) :- not footOnGround(L,S), overNewStair(L,S).
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poss(moveBarycenterS(L),S) :- footOnGround(L,S).

poss(moveBarycenterF(L),S) :- footOnGround(L,S).

poss(straightLeg,S) :- not straightMain(S), footOnGround(main,S),

barycenter(main,S).

poss(forwSupLegS,S):- barycenter(main,S), straightMain(S).

poss(forwSupLegF,S):- barycenter(main,S), straightMain(S).

straightMain(do([A],S)):- A = straightLeg;

straightMain(S), not A = liftTill(H).

barycenter(L,do([A],S)):- A = moveBarycenterS(L);

barycenter(L,S), not (A = moveBarycenterS(L1), not L=L1).

footOnGround(L,do([A],S)):- A = stepDownS(L);

footOnGround(L,S), (L = main, not A = liftTill(H);

L = supporting, not A = straightLeg).

overNewStair(L,do([A],S)):- A = forwSupLegS, L = supporting;

A = forwLowLegS, L = main; overNewStair(L,S), not A = stepDownS(L).

mainToCurr(H,do([A],S)):- A = liftTill(H);

A = malfunc(H1), H = wrongPos; A = stepDownS(main), H = 0;

mainToCurr(wrongPos,S), H = wrongPos; mainToCurr(H,S),

not H = wrongPos, not A= malfunc(H1), not A = stepDownS(main),

not (A = liftTill(H1), not H = H1).

% Probabilities

prob0(liftTill(H),liftUpperLeg(H),S,Pr):- Pr is 100/(H+100).

prob0(malfunc(H),liftUpperLeg(H),S,Pr):- Pr is H/(H+100).

prob0(forwLowLegS,forwLowLeg,S,Pr):- mainToCurr(H,S), Pr is 80/(H+80).

prob0(forwLowLegF,forwLowLeg,S,Pr):- mainToCurr(H,S), Pr is H/(H+80).

prob0(stepDownS(L),stepDown(L),S,Pr):- Pr = 0.9.

prob0(stepDownF(L),stepDown(L),S,Pr):- Pr = 0.1.

prob0(moveBarycenterS(L),moveBarycenter(L),S,Pr):- Pr = 0.8.
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prob0(moveBarycenterF(L),moveBarycenter(L),S,Pr):- Pr = 0.2.

prob0(straightLeg,straightLeg,S,Pr):- Pr = 1.0.

prob0(forwSupLegS,forwSupLeg,S,Pr):- Pr = 0.8.

prob0(forwSupLegF,forwSupLeg,S,Pr):- Pr = 0.2.

restoreSitArg(straightMain,S,straightMain(S)).

restoreSitArg(barycenter(L),S,barycenter(L,S)).

restoreSitArg(footOnGround(L),S,footOnGround(L,S)).

restoreSitArg(overNewStair(L),S,overNewStair(L,S)).

restoreSitArg(mainToCurr(H),S,mainToCurr(H,S)).

primitive_action(liftTill(_)).

primitive_action(malfunc(_)).

primitive_action(forwLowLegS).

primitive_action(forwLowLegF).

primitive_action(stepDownS(_)).

primitive_action(stepDownF(_)).

primitive_action(moveBarycenterS(_)).

primitive_action(moveBarycenterF(_)).

primitive_action(straightLeg).

primitive_action(forwSupLegS).

primitive_action(forwSupLegF).

% Initial Database

straightMain(s0). mainToCurr(0,s0).

barycenter(supporting,s0).

footOnGround(L,s0):- L = main; L=supporting.

overNewStair(L,s0):- fail.

legalStair(H):- number(H), 0<H, H<20.


