
Modular Basic Action Theories
Yilan Gu

Dept. of Computer Science
University of Toronto

10 King’s College Road
Toronto, ON, M5S 3G4, Canada

Email: yilan@cs.toronto.edu

Mikhail Soutchanski
Department of Computer Science

Ryerson University
245 Church Street, ENG281

Toronto, ON, M5B 2K3, Canada
Email: mes@scs.ryerson.ca

Abstract

In this paper we design a representation that allows writ-
ing more compact and modular basic action theories, than
it is currently possible. Moreover, such representation also
provides formal foundations for reasoning about actions in
OpenCyc by using Reiter’s basic action theory formalism.
Keywords: common sense knowledge, reasoning about ac-
tions, situation calculus

Introduction
The situation calculus (SC) is a well known and popular log-
ical theory for reasoning about events and actions. There
are several different formulations of SC. According to John
McCarthy the history is the following: “(McCarthy 1959)
proposed mathematical logic as a tool for representing facts
about the consequences of actions and using logical reason-
ing to plan sequences of actions that would achieve goals.
Situation calculus as a formalism was proposed in (Mc-
Carthy 1963) and elaborated in (McCarthy & Hayes 1969).
The name situation calculus was first used in (McCarthy &
Hayes 1969) but wasn’t defined there. (McCarthy 1986) pro-
posed to solve the frame and qualification problems by cir-
cumscription, but the proposed solution to the frame prob-
lem was incorrect. (Shanahan 1997) and (Reiter 2001) de-
scribe several situation calculus formalisms and give ref-
erences” (see the footnote 4 in (McCarthy 2002)). In this
paper we would like to concentrate on basic action theo-
ries (BAT) introduced in (Reiter 2001), in particular, on pre-
condition and successor state axioms proposed by Reiter to
solve (sometimes) the frame problem. The motivation for
our paper is twofold. Our first motivation comes from the
intention to design a representation that allows writing more
compact and modular BAT, than it is currently possible, and
also BAT that will be easier to elaborate and expand to new
domains. BAT are logical theories of a certain syntactic form
that have several desirable theoretical properties. For exam-
ple, two important problems, the task of reasoning whether a
given sequence of actions can be executed (the executability
problem) and the task of determining whether a certain SC
formula is true in the situation resulting from performing an
executable sequence of actions (the projection problem), can
be conveniently formulated using BAT and reduced using re-
gression to the first-order logic (FOL) entailment problem in
the theory of the initial situation (together with unique name
axioms). However, BAT have not been designed to support
other forms of reasoning, e.g., taxonomic reasoning about
objects and actions. Essentially, these theories are “flat” and
do not provide representation for hierarchies of actions or
objects. This can lead to potential difficulties if one intends

to use BAT for the purposes of large scale formalization of
reasoning about actions on the commonsense level, when
potentially arbitrary actions and objects have to be repre-
sented. To the best of our knowledge, all BAT constructed
so far are relatively small, include less than 100 axioms, and
it is not clear how the task of scaling up the axiomatizations
using BAT can be undertaken. Intuitively, many events and
actions have different degrees of generality: the action of
driving a car from home to an office is specialization of the
action of transportation using a vehicle, that is in its turn
specialization of the action of moving a thing from one lo-
cation to another. Our intention in this paper is to represent
hierarchies between actions and objects explicitly and use
them in new hierarchical BAT. However, we would like to
show that our new hierarchical BAT can be potentially ex-
panded into “flat” Reiter’s BAT and consequently, they are
conservative extensions of Reiter’s BAT: every entailment
from Reiter’s BAT remains entailment in hierarchical BAT.
Our second motivation comes from experience with Open-
Cyc (Matuszek et al. 2006; Cycorp 2002): the open source
version of the Cyc technology, the world’s largest general
knowledge base and commonsense reasoning engine. Open-
Cyc has extensive taxonomies for things, and elaborated, but
unsystematic taxonomies for events and actions. In addition,
(Parmar 2001) observes that Cyc does not follow the tradi-
tion of representing precondition and effects of actions using
SC. In particular, there are some predicates in Cyc to rep-
resent preconditions (e.g., preconditionFor-Props)
and effects of actions (e.g., effectOfAction-Props
and effectOfActionIf-Props), there are also a few
planning-related predicates (e.g., methodForAction,
sufficientFor-Props, planForTask) but there
is no explicit mechanism for solving the frame problem, for
solving executability and projection problems using regres-
sion, and, to the best of our knowledge, there is no formal
specification for implementing reasoning about actions in
OpenCyc. The second goal of this paper is to provide formal
semantics for reasoning about actions in OpenCyc by using
Reiter’s BAT.

The rest of this paper is structured as follows. First, we
review background (SC and representation of events and ac-
tions in OpenCyc). Then we propose a new representation
that helps to design modular BAT. We prove that this new
representation has the same desirable logical properties as
the Reiter’s BAT. Then, we briefly discuss related work and
future research.

The Situation Calculus
All dialects of the SC Lsc include three disjoint sorts (ac-
tions, situations and objects). Actions are FO terms consist-



ing of an action function symbol and its arguments. Actions
change the world. Situations are FO terms which denote
possible world histories. A distinguished constant S0 is used
to denote the initial situation, and function do(a, s) denotes
the situation that results from performing action a in situa-
tion s. Every situation corresponds uniquely to a sequence
of actions. Moreover, notation s′ � s means that either sit-
uation s′ is a subsequence of situation s or s = s′.1 Objects
are FO terms other than actions and situations that depend
on the domain of application. Fluents are relations or func-
tions whose values may vary from one situation to the next.
Normally, a fluent is denoted by a predicate or function sym-
bol whose last argument has the sort situation. For example,
F (~x, do([α1, · · · , αn], S0) represents a relational fluent in
the situation do(αn, do(· · · , do(α1, S0) · · · ) resulting from
execution of ground action terms α1, · · · , αn in S0. We do
not consider functional fluents in this paper.

The SC includes the distinguished predicatePoss(a, s) to
characterize actions a that are possible to execute in s. For
any first order SC formula φ and a term s of sort situation,
we say φ is a formula uniform in s iff it does not mention the
predicates Poss or ≺, it does not quantify over variables of
sort situation, it does not mention equality on situations, and
whenever it mentions a term of sort situation in the situation
argument position of a fluent, then that term is s (see (Reiter
2001)).

A basic action theory (BAT) D in the SC is a set of
axioms written in Lsc with the following five classes of
axioms to model actions and their effects (Reiter 2001).
Action precondition axioms Dap: For each action func-
tion A(~x), there is one axiom of the form Poss(A(~x), s) ≡

ΠA(~x, s). ΠA(~x, s) is a formula uniform in s with free
variables among ~x and s, which characterizes the precondi-
tions of action A. Successor state axioms Dss: For each
relational fluent F (~x, s), there is one axiom of the form
F (~x, do(a, s)) ≡ ΦF (~x, a, s), where ΦF (~x, a, s) is a for-
mula uniform in s with free variables among ~x, a and s. The
successor state axiom (SSA) for fluent F completely char-
acterizes the value of fluent F in the next situation do(a, s)
in terms of the current situation s. Initial theory DS0

: It
is a set of FO formulas whose only situation term is S0. It
specifies the values of all fluents in the initial state. It also
describes all the facts that are not changeable by any actions
in the domain. Unique name axioms for actions Duna:
Includes axioms specifying that two actions are different if
their action names are different, and identical actions have
identical arguments. Foundational axioms for situations
Σ: The axioms for situations which characterize the basic
properties of situations. These axioms are domain indepen-
dent. They are included in the axiomatization of any dy-
namic system in the SC (see (Reiter 2001) for details).

Suppose that D = Duna ∪ DS0
∪ Dap ∪ Dss ∪ Σ

is a BAT, α1, · · · , αn is a sequence of ground ac-
tion terms, and G(s) is a uniform formula with one
free variable s. One of the most important reason-
ing tasks in the SC is the projection problem, that is,

1Reiter (Reiter 2001) uses the notation s′ v s, but we use s′ �
s to avoid confusion with the inclusion relation <.

to determine whether D |= G(do([α1, · · · , αn], S0)).
Another basic reasoning task is the executabil-
ity problem. Let executable(do([α1, · · · , αn], S0))
be an abbreviation of the formula Poss(α1, S0) ∧
Vn

i=2
Poss(αi, do([α1, · · · , αi−1], S0)). Then, the

executability problem is to determine whether
D |= executable(do([α1, · · · , αn], S0)). Planning
and high-level program execution are two important settings
where the executability and projection problems arise natu-
rally. Regression is a central computational mechanism that
forms the basis for automated solution to the executability
and projection tasks in the SC (Reiter 2001). A recursive
definition of the regression operator R on any regressable
formula φ is given in (Reiter 2001); we use notation R[φ]
to denote the formula that results from eliminating Poss
atoms in favor of their definitions as given by action pre-
condition axioms and replacing fluent atoms about do(α, s)
by logically equivalent expressions about s as given by
SSAs repeatedly until it cannot make such replacement any
further. The regression theorem (Reiter 2001) shows that
one can reduce the evaluation of a regressable formula W
to a FO theorem proving task in the initial theory together
with unique names axioms for actions:

D |= W iff DS0
∪ Duna |= R[W ].

This fact is the key result in SC. It demonstrates that an ex-
ecutability or a projection task can be reduced to a theorem
proving task that does not use precondition, successor state,
and foundational axioms. This is one of the reasons why the
SC provides a natural and easy way to representation and
reasoning about dynamic systems.

Open Cyc
In Cyc, there is the collection Action that is a subclass
of Event. Actions are events that are required to have do-
ers. Cyc uses around 37,000 different event types to describe
what happens in the world. Many events in Cyc are repre-
sented using Davidsonian representations (Davidson 1967):
events are described by the assertion that there exists a par-
ticular event of a given type, by the roles that other individ-
ual things play in that event, and by the fillers of those roles.
ActorSlot in CYC is a collection of binary predicates to
express relationships between an event and the participants
in it. They are also known in other systems as participants
roles, deep cases or thematic relations. Actor slots are ar-
ranged in a hierarchy.

Modular BAT
The SC and BAT are able to specify the evolution of dy-
namic systems in a very natural way. However, in practice
it is not easy to specify a dynamic system with very large
number of actions. If a system involves hundreds or even
thousands of actions, it will be difficult to specify BAT.

To deal with this problem, we propose to classify events
and actions hierarchically similar to the representations
in Cyc. In the following, each action function symbol
A(x1, · · · , xn) is used to represent an event that could possi-
bly change states of a dynamic system. For example, action
move(o, l1, l2) represents the event that object o was moved
from l1 to l2. We introduce the following predicates.



Notation 1 (a) Predicate argType(x, t) is used to repre-
sent that the argument x has type t, where types are object
variables or constants. For any types t1 and t2,

t1 v t2
def
= (∀x, a). argType(x, t2) ⊃ argType(x, t1).

(b) Predicate actorSlot(slotName, a, y) is used to repre-
sent that argument y in action a has a relation slotName
with action a. For any actorSlot names l1 and l2,

l1 v l2
def
= (∀a, x). actorSlot(l2, a, x) ⊃ actorSlot(l1, a, x).

Intuitively, we can say that t1 (l1, respectively) is a special-
ization of t2 (l2, respectively).

For each action function A(~x) we consider here, ev-
ery argument xi belongs to a certain type Ti and has cer-
tain relationship Li with the action that is expressed using
actorSlot:

∧m
i=1

(actorSlot(Li, A(~x), xi) ∧ argType(xi, Ti)),

where variable vector ~x = 〈x1, · · · , xm〉. For each action
function we provide an axiom of this syntactic form and we
denote this class of axioms as A. Since the axioms in A are
static facts, that is, they are situation independent, they will
be included in the initial KB DS0

. Moreover, we also require
the axioms in A to satisfy the following intuitive property2:

actorSlot(l1, a1, x1) ∧ actorSlot(l2, a2, x2)∧
argType(x1, t1) ∧ argType(x2, t2)∧

l1 v l2 ⊃ t1 v t2.

The following is a simple example.
Example 1 Consider an actionmove(o, l1, l2) which repre-
sents an event of moving object o from l1 to l2, then

actorSlot(ObjectMoving,move(o, l1, l2), o)∧
argType(o,MovableObject)∧
actorSlot(Origin,move(o, l1, l2), l1)∧
argType(l1, Location)∧
actorSlot(Destination,move(o, l1, l2), l2)∧
argType(l2, Location)

will be included in the initial KB.

Definition 1 An action diagram is defined by a finite set of
axioms H in which each axiom is of the form

specialization(A1(~x), A2(~y)) ≡ φ(~x, ~y) (1)

for any vectors of object variables ~x and ~y, where
A1, A2 are action function symbols, the predicate
specialization(a1, a2) represents that action a1 is a
direct specialization of action a2 (action a2 is a direct
generalization of a1), and φ(~x, ~y) is a situation-free FO
formula (that can be >, but that cannot be equivalent to ⊥)
with all free variables (if any) among 〈~x, ~y〉. Also, H needs
to satisfy the following axioms

specialization(a1, a2) ∧ actorSlot(l1, a1, x) ∧

actorSlot(l2, a2, x) ⊃ l1 v l2;

specialization(a1, a2) ⊃ (∀s.Poss(a1, s)⊃Poss(a2, s)).

2All free variables are universally quantified at front.

Given any action diagram H, we say that a directed graph
G = 〈V,E〉 is a digraph of H when V = {A1, · · · , An},
where all Ai’s are distinct action function symbols that oc-
cur in at least one axiom in H and a directed edgeAk → Aj

belongs to edge set E iff there is an axiom of the form
specialization(Aj(~x), Ak(~y)) ≡ φ(~x, ~y) in H. When the
digraph G of H is acyclic, i.e., there is no directed loop in
G, then we call H an acyclic action diagram. In this paper,
we will only consider acyclic action diagrams. Note that if
each action in the digraph of an acyclic action diagram has
only one parent (single inheritance case), then the digraph
is actually a forest, but in a more general case, there are ac-
tions that have several parents (multiple inheritance case), as
shown in Example 2.

Example 2 In this example we show that actions in H may
have different number of arguments. Consider an action
travel(p, o, d), representing an event that person p travels
from origin o to destination d. It can be considered as a di-
rect specialization of move – person p moves from location
o to location d:

specialization( travel(p, o, d),move(p, o, d) ).

Consider an action drive(p, v, o, d), representing that a
person p drives a vehicle v from origin o to destination d. It
can be considered as a direct specialization of action travel
– person p travels from location o to location d:

specialization( drive(p, v, o, d), travel(p, o, d) ).

It is also a direct specialization of action move – vehicle v
moves from location o to location d:

specialization( drive(p, v, o, d),move(v, o, d) ).

Consider an action enter(p, door), representing that per-
son p enters a door door. It can be considered as a direct
specialization of action move(p, o, d) iff the origin o is the
outside of the door and the destination d is the inside of the
door, or vice versa:

specialization( enter(p, door),move(p, o, d) ) ≡
( outside(o, door) ∧ inside(d, door)∨
outside(d, door) ∧ inside(o, door) ),

where predicate outside(o, r) (inside(d, r), respectively) is
true iff o (d, respectively) is the location that is outside (in-
side, respectively) of r.

Because in general case we need to consider a direct spe-
cialization of a direct specialization of an action, we define
(distant) specializations using the predicate isA.

Definition 2 The predicate isA(a1, a2) represents that ac-
tion a1 is a specialization of action a2 and is defined as a
reflexive-transitive closure of specialization:

isA(a1, a2) ≡ (∀P ).{(∀v)[P (v, v)] ∧

(∀v, v′)[specialization(v, v′) ⊃ P (v, v′)] ∧

(∀v, v′, v′′)[specialization(v, v′) ∧ P (v′, v′′) ⊃ P (v, v′′)]}

⊃ P (a1, a2) (2)



We denote the set of axioms including Axiom (2)and all ax-
ioms in an action diagram H as H? and call it the action
hierarchy (of H).

Definition 3 An action hierarchy H∗ is acyclic iff it sat-
isfies the following condition: isA(A1(~x1), A2(~y1)) ∧
isA(A2(~y2), A1(~x2)) ⊃ A1(~x3) = A2(~y3) for all action
functions A1, A2.

In the sequel, we consider only acyclic hierarchies H∗. Note
that this condition is more general than antisymmetry of isA
predicate. One can easily prove that H∗ is acyclic according
to Def. 3 if the digraph of the action diagram H is acyclic.

The following theorem specifies that the action hierar-
chies satisfy the same intuitively clear taxonomic properties
as the predicate specialization.

Theorem 1 Given an acyclic action hierarchy H?, for any
action terms a1, a2, object variable x and situation argu-
ment s,
isA(a1, a2) ∧ actorSlot(l1, a1, x) ∧ actorSlot(l2, a2, x)

⊃ l1 v l2;

isA(a1, a2) ⊃ (∀s.Poss(a1, s) ⊃ Poss(a2, s)).

Proof: Follows from Def. 1, Def. 2 and Def. 3 using induc-
tion, but proof is omitted because of lack of space.

Moreover, the following lemma will be convenient later.

Lemma 1 Given any acyclic action hierarchy H?, for any
action functionsA′(~x) andA(~y) with distinct free variables
~x and ~y, A′(~x) is a specialization of A(~y) iff φA′,A(~x, ~y),
for some situation-free FO formula φA′,A (including > and
⊥) over object variables whose free variables are at most
among 〈~x, ~y〉. That is,

isA(A′(~x), A(~y)) ≡ φA′,A(~x, ~y).

Moreover, such φA1,A2
can be found in finitely many steps.

Proof: Let G = 〈V,E〉 be the digraph of the given acyclic
diagram H, and let max(A,A′) be the maximum of the
lengths of all the distinct paths from A to A′ in G. We
prove the following property P (n) for any natural num-
ber n: ”For any action function symbol A,A′ such that
max(A,A′) = n, n ≤ |V |, and for any distinct free vari-
ables ~x, ~y, isA(A′(~x), A(~y)) ≡ φA′,A(~x, ~y) for some FO
formula φA′,A (including > and ⊥) with object variables (if
any) at most among 〈~x, ~y〉”. We prove P (n) by using com-
plete induction.
Base case: P (0), max(A,A′) = 0, two sub-cases.
Case 1: A = A′, since isA is reflexive

isA(A′(~x), A(~y)) ≡ A′(~x) = A(~y) ≡
∧|~x|

i=1
xi = yi (by UNA).

Case 2: A 6= A′, and since max(A,A′) = 0 this means
there is no specialization path between A and A′ at all,
then isA(A′(~x), A(~y)) ≡ ⊥.
Inductive step: Assume that P (j) is true for all j < n, we
prove P (n), where n > 0. Consider any action function
symbols A,A′ such that max(A,A′) = n, where n ≤ |V |.
Since G is acyclic, hence each path from A to A′ has no
repetitions of the action nodes. Since n > 0, collect all

those parents of A′ in G, say {A1, · · · , At}, which are
specializations of A and Ai 6= A for each i (i.e., there is a
path from A to each of Ai). Then we have
isA(A′(~x), A(~y)) ≡

∨t
i=1

(∃~xi)
[specialization(A′(~x), Ai(~xi)) ∧ isA(Ai(~xi), A(~y))]

By the induction hypothesis, since max(A,Ai)=n–1, for
each i, we have isA(Ai(~xi), A(~y))≡φAi ,A(~xi, ~y) for some
FO formula φAi,A. In H, we have axioms such that for each
i there is a FO formula φA′,Ai

specialization(A′(~x), Ai(~xi)) ≡ φA′,Ai
(~x, ~xi).

Therefore, let a required FO formula be

φA′,A(~x, ~y) =
∨t

i=1
(∃~xi)[φA′,Ai

(~x, ~xi) ∧ φAi,A(~xi, ~y)],

then P (n) is proved. Notice that n ≤ |V |; hence such FO
formula can always be obtained in finitely many steps.

Example 3 Continue with Example 2, for any ac-
tion functions A1(~x) and A2(~y) in the example,
most of the FO formulas φA1,A2

(~x, ~y) equivalent to
isA(A1(~x), A2(~y)) are straightforward (either >, or ⊥
or the same as the axioms of specialization), except of
isA(drive(p, v, o, d),move(obj, orig, dest)) with free
variables p, v, o, d, obj, orig, dest. By using Def. 2 and the
axioms given in Example 2, we have

specialization(drive(p, v, o, d),move(obj, orig, dest)) ⊃
isA(drive(p, v, o, d),move(obj, orig, dest)), and
specialization(drive(p, v, o, d), travel(p, o, d)) ∧

specialization(travel(p, o, d),move(obj, orig, dest)) ⊃
isA(drive(p, v, o, d),move(obj, orig, dest)),

and there are no other non-equivalent axioms for drive and
move. Hence,
isA(drive(p, v, o, d),move(obj, orig, dest))

≡ specialization(drive(p, v, o, d),move(obj, orig, dest))∨
specialization(drive(p, v, o, d), travel(p, o, d))∧
specialization(travel(p, o, d),move(obj, orig, dest))

≡ v = obj ∧ o = orig ∧ d = dest ∨
p = obj ∧ o = orig ∧ d = dest,

which can be simplified as: for any variables p, v, o, d, obj,

isA(drive(p, v, o, d),move(obj, o, d)) ≡ p = obj∨v = obj.

Now, we provide a more compact way to specify the basic
action theory (BAT) based on a given hierarchy of actions.
For later convenience, we will call such a modified BAT as
a hierarchical BAT and denote it as DH . Moreover,

DH = H? ∪ DH
ap ∪ DH

ss ∪ DS0
∪ Σ ∪ Duna,

where H? is the action hierarchy specified for the given dy-
namic system, DH

ap (DH
ss, respectively) is the new class of

action precondition axioms (the new class of successor state
axioms, respectively) specified based on the action hierar-
chy. First, DH

ap includes an action precondition axiom repre-
sented as follows.

Poss(a, s) ≡

h
∨

i=0

πi(a, s) (3)



where h ≥ 0 and each πi(a, s) has the syntactic form
∃~xi. isA(a,Ai(~xi)) ∧

(

ni
∧

j=0

¬(∃ ~yij)isA(a,Aij( ~yij)))∧φi(~xi, s) (4)

When ni = 0, the conjunction does not exist. All clauses
in the RHS of Eq. (3) are exclusive to each other and each
clause of the form (4) has the meaning that whenever a is a
specialization of action Ai(~xi) and it is not a specialization
of some other actions Aij( ~yij), then the precondition of a is
an uniform (domain dependent) formula φi(~xi, s).

The syntactic form of successor state axioms in DH
ss is

also different. For each fluent, the change of its truth value
is now determined not by each action individually, as it is
in Reiter’s Dss, but it is determined by whole classes of ac-
tions. In general, the new syntactic form of SSA of a rela-
tional fluent F is as follows.

F (~x, do(a, s))≡
∨

i

ψ+

i (~x, a, s) ∨ F (~x, s)∧¬(
∨

i

ψ−
i (~x, a, s)), (5)

where each formula ψ+

i (~x, a, s) (ψ−
i (~x, a, s), respectively)

specifies a positive effect (negative effect, respectively) with
certain conditions on fluent F and has the following format

∃~z′.isA(a, Ai(~yi))∧
`

nî

l=0

¬(∃ ~yil)isA(a,Ail( ~yil))
´

∧

(

mî

j=0

actorSlot(Lj , a, zj) ∧ argType(zj, Tj)) ∧ γ(~x, ~z′, s), (6)

where ~yi ( ~yil, respectively) are all variables in action term
Ai (in action term Ail, respectively) and some of these vari-
ables can be the same as variables in ~x; each variable zj is
an object argument of an action term that can be substituted
for a, and zj is either the same as an object variable in ~x
or ~y, or is a new variable, ~z′ = ~yi ∪ {z1, · · · , zmi

} − ~x,
and γ(~x, ~z′, s) is an uniform formula that has ~x, ~z′, s at most
as its free variables. According to this axiom, every action
term that is a specialization of Ai, but is not a specialization
of some other action terms Ail will have (either positive or
negative) effect on a fluent F if this action term has actor
slots Lj and the corresponding object arguments have types
Tj explicitly mentioned in a SSA. Note that action terms can
be underspecified in the sense that only required actor slots
and types can be mentioned in the axiom, but actions that
have effect on F might have also other actior slots (and their
object arguments can have also other types), in addition to
those which occur in the SSA above. Thus, (6) specifies
classes of action terms that can have effect on a fluent.

Similarly, we can specify the SSA for each functional flu-
ent, say f , using classes of actions instead of individual ac-
tions. Let DH

ss be the collection of the SSAs for all relational
and function fluents.

Other classes of axioms such as initial KB DS0
(which

includes the class of axioms A as discussed above), the
foundational axioms Σ and unique name axioms for actions
Duna have the same formats as in (Reiter 2001).

We can prove the following lemmas.

Lemma 2 For the precondition axiom class DH
ap, there ex-

ists a set of precondition axioms of the form of Reiter’s basic
action theory (Reiter 2001), say Dap, such that Dap specifies
the precondition for each action function symbol and Dap is
equivalent to DH

ap: for each action term A and any situation
term S,

DH |= Poss(A,S) iff D |= Poss(A,S).

Proof: Notice that DH
ap only includes one axiom and it is of

the form Eq. (3), it specifies the precondition for any action
a. Consider each action function symbol A with free vari-
able ~x as its argument, i.e., A(~x), without loss of generality,
we assume that ~x are new variables never used in Eq. (3).
We substitute a with A(~x) and get
Poss(A(~x), s) ≡

∨h
i=0

∃~xi.isA(A(~x), Ai(~xi))∧
(
∧ni

j=0
¬(∃ ~yij)isA(A(~x), Aij( ~yij))

)

∧φi(~xi, s).
By Lemma 1, for each Ai (Aij , respectively), there exists a
FO formula, say φA,Ai

(φA,Aij
, respectively) such that

isA(A(~x), Ai(~xi)) ≡ φA,Ai
(~x, ~xi)

isA(A(~x), Aij( ~yij)) ≡ φA,Aij
(~x, ~yij),

respectively. Therefore we have
Poss(A(~x), s) ≡

∨h
i=0

∃~xi.φA,Ai
(~x, ~xi)∧

[
∧ni

j=0
¬(∃ ~yij)φA,Aij

(~x, ~yij)]∧φi(~xi, s).

Let Dap be the collection of all the axioms obtained above
for each action symbol, and it is easy to see that Dap is of
the form described in (Reiter 2001). To prove the statement
in the opposite direction, note that DH

ap specifies the precon-
ditions for all actions and no more, where the worst case
happens when all Ai (i = 1..h) in the RHS of Eq. (3) enu-
merate each and every action function symbol. Therefore, it
is easy to see DH

ap is equivalent to Dap according to the way
how we obtain Dap as the above.

Note that DH
ap can be more succinct than Dap, because

DH
ap deals with classes of actions instead of individual ac-

tions.

Lemma 3 For a DH
ss, there exists an equivalent class Dss

of SSAs of the syntactic form given in Reiter’s basic action
theory (Reiter 2001): i.e., for each predicate fluent F

DH |= F (~x, do(a, s)) ≡ φF (~x, a, s)
(for each function fluent f , DH |= f(~x, do(a, s)) = y ≡
φf (~x, y, a, s), respectively), iff there exists an uniform for-
mula φ′F (~x, a, s) (φ′f (~x, y, a, s), respectively) such that it
has the syntactic form allowed in Reiter’s BAT and

D |= F (~x, do(a, s)) ≡ φ′F (~x, a, s)
(D |= f(~x, do(a, s))=y ≡ φ′

f (~x, y, a, s), respectively).

Proof: Since the proof for predicate fluents and func-
tional fluents are almost the same, we will provide the
proof for predicate fluents only. Assume that the given
dynamic system includes k action functions in total, say
A1(~v1), · · · , Ak(~vk). For each predicate fluent F , assume
that the SSA of F (~x) in DH is of the form Eq. (5), then we
substitute a with each action function, say Ai(~vi) (without
loss of generality, we assume that variables in ~vi are all new
variables never used in Eq. (5)). By using Lemma 1, similar
to the proof of Lemma 2 (replacing isA for any two action
functions with an equivalent FO formula), we obtain an ax-
iom of the form



F (~x, do(Ai(~vi), s))≡ψ
+

i (~x,~vi, s)∨F (~x, s)∧¬ψ−
i (~x,~vi, s).

Whenever ψ+

i (~x,~vi, s) (ψ−
i (~x,~vi, s), respectively) is con-

sistent, Ai(~vi) has positive effect (negative effect) on F un-
der such condition. Therefore, the equivalent SSA of F in
the classical basic action theory of (Reiter 2001) can be con-
structed as
F (~x, do(a, s)) ≡ [

∨k
i=0

(∃~vi)(a=Ai(~vi) ∧ ψ
+

i (~x,~vi, s))]∨

F (~x, s) ∧ ¬[
∨k

i=0
(∃~vi)(a=Ai(~vi) ∧ ψ

−
i (~x,~vi, s))].

Notice that the above equation can be simplified by remov-
ing inconsistent formulas. Hence the lemma is proved.

We then have the following important property:

Theorem 2 For each DH , there exists an equivalent D of
the format given in (Reiter 2001), where equivalence means
that for any FO regressable sentence W ,

DH |= W iff D |= W.

Proof: Use Lemma 2 and Lemma 3.
The definition of the regression operator and the regress-

able sentences in DH are all the same as in (Reiter 2001),
and similar to the regression theorem (Reiter 2001), we have

DH |= W iff DS0
∪ H∗ ∪ Duna |= R[W ]

for any regressable sentenceW . Let E
[

R[W ]
]

be the opera-
tor that eliminates all occurrences (if any) of the isA(A′, A)
predicate in R[W ] in favor of the corresponding FO formu-
las φA′,A that exist according to Lemma 1.

Theorem 3 For each DH and for any FO regressable sen-
tence W , DH |= W iff DS0

∪ H ∪ Duna |= E
[

R[W ]
]

.

The theorem is important because DS0
∪ H∗ ∪ Duna (and

hence DH ) include second-order axioms of the definition
of the predicate isA. However, all occurrences of isA in
sentence R[W ] can be replaced by FO sentences in finitely
many steps according to the Lemma 1. Consequently, one
can use regression (extended with the oprator E , as above)
in our modular BAT to reduce projection and executability
problems to theorem proving in FOL only.

Discussion and Future Work
There are a few papers with similar motivation that we
would like to mention. (Erdogan & Lifschitz 2006) and
(Lifschitz & Ren 2006) consider modular theories in the ac-
tion representation language C+, and address the problem
of the development of libraries of reusable, general-purpose
knowledge components (that is formulated in (Barker,
Porter, & Clark 2001)), but do not consider the situation
calculus. It also remains unclear whether their approach
can handle hierarchies of actions. Eyal Amir (Amir 2000)
proposes and studies an object oriented version of the situ-
ation calculus, but he investigates representation that is sig-
nificantly different from our approach and considers neither
taxonomies of actions nor BAT. Yolanda Gil (Gil 2005) re-
views implemented systems that benefited from integration
of planning and description logics (DL) for the purposes of
representing taxonomies of objects, actions, plans and goals.
However, in our paper we would like to take advantage of the
well know fact that many description logics (in particular, all
DL systems consider in her paper) are syntactic fragment of
FOL (Borgida 1996), and for this reason we use FOL syntax

only. (Aitken 2005) discuss possible integration of the situ-
ation calculus based Process Specification Language (PSL)
and CYC, but his paper concentrates on implementation is-
sues and does not explore formal foundations for reasoning
about actions in CYC.
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