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Abstract

In this paper, we focus on the problem of modeling
autonomous agents that perform similar strategies
repeatedly in the same local situations in a stochas-
tic system. We introduce the concept of macro-
action into the situation calculus, extend the basic
action theories and the regression operator, and de-
velop a knowledge base for macro-actions so that
the agent can remember certain details and later
“recall” them when the agent performs the macro-
actions in the same local situations again, thereby
saving computational time.

1 Introduction
The situation calculus (SitCal) [McCarthy, 1963; Reiter,
2001] is a predicate logical language used to describe au-
tonomous agents acting in a dynamic system. After solving
the frame problem in the SitCal [Reiter, 1991], research on
the applications of this language and further extensions of the
language are now a very active area in artificial intelligence.

As we know, in the real world, people often meet with un-
predictable situations. So it is rational to require autonomous
agents to deal with stochastic outcomes of actions. Hence,
from the late 1990s, based on the study of logic with prob-
ability [Bacchus, 1990] and the SitCal, researchers began to
work on high-level programming for robots acting in stochas-
tic systems. From different points of view, they offer sev-
eral formalisms, including stGolog [Reiter, 2001], dtGolog
[Boutilier et al., 2000], etc.

The reasoning mechanism involved in former work is only
based on primitive actions. For instance, by using the stGolog
interpreter, we can determine how probable some state is after
an agent performs a plan consisting of stochastic actions. The
computation of probabilities and reasoning about effects of
actions after executing the plan is reduced to reasoning about
primitive actions by applying regression operator the is de-
fined for primitive actions only [Reiter, 2001]. Even if this
plan involves much repetition of sub-strategies, regression
still needs to be performed step by step, which is inefficient
and can be avoided. Often an autonomous agent works in a
similar environment and is asked to solve similar problems,
which involves lots of repetition in actions and outcomes. For

example, if we ask a robotic agent to climb hundreds of con-
tinuous same-height stairs, it can be viewed as that the agent
repeats a certain sequence of actions at the same local situa-
tion hundreds of times provided that we can reset the agent’s
situation to be some local initial situation whenever malfunc-
tions occur. In this paper, we consider certain combinations
of stochastic actions as a whole, called macro-actions, pre-
process its properties, and later reuse the outcomes to save
computational time. In fact, recently researchers proposed
some related research. Greenwald [Greenwald, 1995] argued
that it is reasonable to avoid reasoning in detail all the time
when dealing with stochastic systems that must take time-
critical actions. Castillo and Wrobel [Peña Castillo and Wro-
bel, 2002] proposed macro-operators in multirelational learn-
ing to reduce search space.

2 The Situation Calculus, Golog and StGolog
The basic ingredients of the language of the situation calcu-
lus Lsc includes actions, situations, objects and fluents. Ac-
tions are first-order terms representing actions in a dynamic
world. Situations are first-order terms which denote possi-
ble world histories. A distinguished constant S0 are used to
denote the initial situation, and function do(a, s) denotes the
situation that results from performing action a in situation s.
In fact, every situation corresponds to a sequence of actions.
Moreover, binary relation s < s′ represents that s is a proper
sub-history of s′. Objects are a catch-all sort representing for
everything else depending on the domain of application. Flu-
ents are predicates and functions whose values may vary from
situation to situation. By convention, the last argument of a
fluent is a situation. do([a1, · · · , an], s) is an abbreviation of
do(an, do(· · · , do(a1, s) · · · )) and [a1, · · · , an] is called a log.

A basic action theory D is a set of axioms represented in
Lsc with following five classes of axioms to model actions
and their effects in a given dynamic system.

Action precondition axioms Dap: For each action func-
tion A(~x), there is one axiom of the form Poss(A(~x), s) ≡
ΠA(~x, s). ΠA(~x, s) is a formula with free variables among ~x
and s, which characterizes the preconditions of action A.
Successor state axioms Dss: For each relational fluent
F (~x, s), there is a sentence in Lsc of form F (~x, do(a, s)) ≡
ΦF (~x, a, s), where ΦF (~x, a, s) is a formula with free vari-
ables among ~x, a and s, Similarly, a successor state ax-



iom for a functional fluent f(~x, s) is a formula of form
f(~x, do(a, s)) = y ≡ Φf (~x, y, a, s). The successor state
axiom for fluent F (respectively, f ) completely characterizes
the value of fluent F (respectively, f ) in the next situation
do(a, s) in terms of the current situation s.
Initial database, denoted as DS0

: It is a set of first-order
sentences whose only situation term is S0; it specifies the ini-
tial problem state.
The rest two classes Fundamental axioms Df and Unique
name axioms Duna are mechanical and assumed to be true.

Regression is a central computational mechanism that
forms the basis for automated reasoning in the situation cal-
culus [Pednault, 1994; Reiter, 2001]. Reiter et al. give a re-
cursive definition of a regression operator R on regressable1

formula. Roughly speaking, the regression of a formula φ
through an action a is a formula φ′ that holds prior to a being
performed iff φ holds after a. Successor state axioms support
regression in a natural way.

In a stochastic system, stochastic actions are introduced.
The outcomes of a stochastic action are nature’s choices, i.e.,
not under the control of the robot. We characterize this by:
choice(α, a)

def
= a = A1 ∨ a = A2 ∨ · · · ∨ a = An,

where α is a stochastic action and Ai’s are primitive actions.
The axioms in D are presented for each Ai. The probability
of each outcome of a stochastic action is presented as well.
We require that whenever one of nature’s action’s precondi-
tions is false, the action will have zero probability, i.e.,
prob(a, β, s) = p

def
=

choice(β, a) ∧ Poss(a, s) ∧ p = prob0(a, β, s)∨
[¬choice(β, a) ∨ ¬Poss(a, s)] ∧ p = 0.

Here, prob0(a, β, s) is provided by the controllers. It is ax-
iomatizer’s responsibility to ensure that a proper probability
distribution has been defined while formalizing a probabilis-
tic domain in Lsc. One needs to verify two properties:
(a) Poss(Ai, s) ⊃ prob0(Ai, α, s) > 0, i = 1, 2, . . . , k;
(b) Poss(A1, s)∨ · · · ∨Poss(Ak, s) ⊃

� k
i=1 prob(Ai, α, s) = 1

for any stochastic action α and its nature’s choices Ai.
Based on above extensions, new programs, named stGolog

programs [Reiter, 2001] are constructed from stochastic ac-
tions together with the Golog [Levesque et al., 1997] program
constructors: sequence α;β – do action α followed by action
β; test action p? – test the truth value of expression p in the
current situation; conditionals if-then-else and while loops;
and procedures, including recursion. stGolog programs do
not involve any form of nondeterminism: neither the nonde-
terministic choice of two actions, nor the π operator are al-
lowed. Moreover, a dummy symbol nil is introduced into a
sequence indicating the end of the sequence, which is another
difference from Golog sequence. The stGolog interpreter is
developed via stDo(α, p, s, s′) meaning that agent performs
stGolog program (or actions) α at the situation s, and ends

1A formula W of Lsc is regressable iff (1) every term of sort
situation in W has the syntactic form do([α1, · · · , αn], S0); (2) for
every atom of the form Poss(α, σ) in W , α has the syntactic form
A(t1, · · · , tn) for some n-ary function symbol A of Lsc; and (3)W
does not quantify over situations, and does not mention the relation
symbols “<” or “=” between terms of situation sort.

at situation s′ with probability p. With the help of stDo, the
probability that some situation-suppressed sentence ψ will be
true after executing stGolog program γis defined: if D stands
for the basic action theory,

probF (ψ,γ)
def
=

�
{(p,σ)D|=stDo(γ:nil,p,S0,σ)∧ψ(σ)} p.

3 Introducing Macro-actions
Often agents meet similar local situations, work on similar
tasks and repeat the same strategies.

Example 1 Consider a robot with a main leg and a support-
ing leg spleg is asked to climb stairs (Figure 1). Climbing
a stair can be viewed as performing a sequence of stochastic
actions successfully after checking the stair height h is capa-
ble of climbing: the robot lifts its main leg’s upper part to
height h, moves the main leg’s lower part forward, puts the
foot down, moves its barycenter to main leg, straightens it
, then moves its leg spleg forward, puts the foot down, and
finally moves it barycenter back to leg spleg.

(ready)(0) (1)liftUperleg(h)

(ready again)
(5)straightMain (6)forwSupLeg (7)stepDown(spleg)

(2)forwLowLeg (3)stepDown(main) (4)mvBaryct(main)

(8)mvBaryct(spleg)

Figure 1: Action Decomposition of Robot Climbing Stairs

Provided that the controller can step in and reset the agent
if a malfunction occurs, we can view the procedure of climb-
ing n stairs as the procedure of repeatedly climbing one stair
in same local situation n times. By using stGolog to reason
about the probability of every possible outcomes of the pro-
cedure of a robot climbing hundreds of stairs, we need to per-
form regression step by step for every primitive action. Now,
we expect that the agent can have some “memory” to save
the intermediate results of climbing one stair, and later will
“recall” the information, and therefore will perform climb-
ing actions without “thinking” step by step again. To achieve
this, our intuitive idea is to combine certain complex actions
together, and the agents will compute and save its information
in advance and later reuse it.

We focus on sequential action constructors and construct
macro-action by sequence of stochastic actions in this pa-
per. The rationale is that finite sequence of stochastic ac-
tions’ characters is easy to be traced, and we can easily and
formally develop extended axioms for sequential actions as
shown next.

3.1 The Extended Action Theory
Definition 1 (s-regressable formula)
Suppose s is either the initial situationS0 or a variable of sort
situation. A formulaW of Lsc is called s-regressable for s iff
(1) every term of sort situation mentioned by W has the form



do([a1, · · · , an], s) for some n ≥ 0; (2) other conditions are
same as the 2nd and 3rd conditions in footnote 1.

Notice that a regressable formula defined in [Reiter, 2001] is
same as a S0-regressable formula.2 Naturally, we then can
extend the regression operator R to an s-regressable formula
W for some situation s.

Now we return to discuss how we can extend the axioms in
a basic action theory and the probability axioms for macro-
actions. Notice that the body of a macro-action is a se-
quence of actions, and its deterministic choices should also
be sequential. Since performing a deterministic sequence
in a particular situation ends up at a unique situation, we
extend the notation do(a, s) where a is of sort action to
do(a1; · · · ; an, s) (n ≥ 1) for primitive actions a1, · · · , an,
indicating the situation after executing deterministic sequen-
tial action a1; · · · ; an in the situation s. The purpose is to
distinguish it from log and for later convenience.

Suppose there is a sequential action A = A1; · · · ;An, where
each Ai is primitive deterministic action. The precondition
axiom Poss(A, s), meaning that it is possible to perform se-
quential action A in the situation s, can be extended as fol-
lows: Poss(A, s) is the given axiom in Dap if A is primitive;
otherwise
Poss(A, s)

def
= R[Poss(A1, s)∧

(∧ni=2Poss(Ai, do([A1, · · · , Ai−1], s)))],
which is a formula uniform in s, i.e., s is the only term of sort
situation (if any) mentioned by the formula.

Given a = a1; · · · ; an, where each ai is a variable of sort
action, the successor state axiom of every relational fluent
F (~x, do(a, s)) and of every functional fluent f(~x, do(a, s))
can be extended as follows:
If n = 1, axiom F (~x, do(a, s)) ≡ φF (~x, a, s) (respectively,
f(~x, do(a, s)) = y ≡ φf (~x, y, a, s)) is the given successor state
axiom in D; otherwise,
F (~x, do(a, s))

def
= R[F (~x, do([a1, · · · , an], s))]

= ψF (~x, a1, · · · , an, s) for some ψF uniform in s,

f(~x, do(a, s)) = y
def
= R[f(~x, do([a1, · · · , an], s)) = y]

= ψf (~x, y, a1, · · · , an, s) for some ψf uniform in s.

We can extend the probability function prob for a determin-
istic sequential action A = A1; · · · ;Am and stochastic se-
quential action α = α1; · · · ;αn, denoted as probMac:
probMac(A,α, s) = p

def
= choiceMac(α, A) ∧ Poss(A, s)

∧p = prob0(A1, α1, s) ∗ prob0(A2, α2, do(A1, s)) ∗ · · ·
∗prob0(Am, αm, do([A1, · · · , Am−1], s))

∨(¬choiceMac(α, A) ∨ ¬Poss(A, s)) ∧ p = 0,
in which we define predicate choiceMac as follows:
choiceMac(α, a)

def
= a ∈ {A1;A2; · · · ;Am |

m ∈ N ∧ 1 ≤ m ≤ n ∧ (∧mi=1choice(αi, Ai)},
and say that A is a nature’s choice for α if choiceMac(α,A)
is true. In fact, choiceMac is an extension of choice and
probMac is an extension of prob.

To specify an appropriate probabilistic domain for a
stochastic system, we need to verify that a proper probabil-
ity distribution has been defined. Here, we can easily prove

2Similarly, we can also give an extended definition, called s-
prime functional fluent, to the prime functional fluent [Reiter, 2001].

several properties for the definition of probMac as follows.

Theorem 1 Let α = α1;α2; · · · ;αn be a stochastic sequen-
tial action, and A be a deterministic sequential action satis-
fying that choiceMac(α,A) ≡ true. Suppose properties (a)
and (b) in Section 2 have been verified, then

1. All probabilities for deterministic sequential actions are
bounded by 0 and 1: (∀a, ~x, s).0 ≤ probMac(a, α, s) ≤ 1.

2. All non-outcomes of α have probability 0:
(∀a, ~x, s).¬choiceMac(α, a) ⊃ probMac(a, α, s) = 0.

3. Nature’s choices are possible iff they have non-zero prob-
ability, (∀~x, s).P oss(A, s) ≡ probMac(A,α, s) > 0.

Definition 2 For any situation s and stochastic sequential
action α = α1; · · · ;αn, we define the set maxPoss(α, s)

maxPoss(α, s)
def
= {A = A1; · · · ;Am|choiceMac(α, A)

∧Poss(A, s) ∧ (m = seqLength(α) ∨m < seqLength(α)
∧((∀a).choice(αm+1, a) ⊃ ¬Poss(A; a, s)))},

where function seqLength(a) represents the length of a.

Intuitively, set maxPoss(α, s) is a collection of the maximal
possible executable choices of α in the situation s. We prove
the following intuitive property by using complete induction.

Theorem 2 In the probabilistic domain specified properly
satisfying conditions (a) and (b) in Section 2, for any stochas-
tic sequential action α = α1; · · · ;αn, we have
∨(A = A1; · · · ;An ∧ choiceMac(α, A) ∧ Poss(A, s)) ⊃�

A∈maxPoss(α,s) probMac(A,α, s) = 1.

Up to now, everything works properly for sequential ac-
tions, and it is reasonable for us to consider that the macro-
action can be of the form of sequential stochastic actions. To
distinguish macro-actions from normal complex actions so
that agents can recognize them, we introduce terms macro
and endmacro such that

macro pname α1;α2; · · · ;αn endmacro,
where n ≥ 2 and αi(1 ≤ i ≤ n) are stochastic actions,
meaning that the sequential action α1;α2; · · · ;αn is treated
as a macro-action named pname. The definition of predicates
introduced above for stochastic sequences can also be used
for the name of macro-actions. In the sequel, we denote lan-
guage Lsc with the notation extensions do(a1; · · · ; an, s) and
predicate Poss(A1; · · · ;An, s) as language L′

sc. Similar to
Definition 1, the concept of s-regressable formulas can also
be defined for formulas in L′

sc.

3.2 The Knowledge Base for Macro-actions
The purpose of having a knowledge base for macro-actions is
that an autonomous agent can reuse local information about
macro-actions when it repeats the same procedures or strate-
gies which are composed of macro-actions and other complex
actions under the same state of the environment at different
times.

Suppose we have specified D and probabilities prob0 for
a stochastic system. We will develop a knowledge base for
macro-actions introduced by controllers. As designed, the
knowledge base is composed as follows:



Definitions of macro-actions with their proper syntactic
form. Moreover, a function currentMaxLength is used to
denote the maximal length of all the macro-actions in cur-
rent knowledge base before new macro-actions are added.
Initially, when the knowledge base is empty, we have the
fact currentMaxLength = 0; when new macro-actions are
added, the value n will be updated.

Extended axioms including the following three sub-groups:

a. The Extended Successor State Axioms for Fluents as dis-
cussed in Section 3.2 for every fluent in D.

b. The Extended Precondition Axioms for nature’s choices
of macro-actions as discussed in Section 3.2. Since later
we will implement the knowledge base in Prolog, by the
closed world assumption (CWA) [Reiter, 1978], we need
not keep those Poss(A1; · · · ;Am, s)’s that are equiva-
lent to false after regression and simplification.

c. The Extended Probabilities. To achieve the goal of reusing
useful results of macro-actions rather than recomputing
them, we prefer to save the regression results for the def-
inition of probMac(A,α, s).

3-ary predicate maxPossBase facts such that
maxPossBase(List,α, S) ≡ List = maxPoss(α,S)

for some macro-action α and situation instance S. These
facts, maxPossBase(List, α, S), depend on particular sit-
uations, therefore are related to the initial database and pro-
grams. They will be generated during execution and will
disappear when the controller reloads new initial database.
Therefore, we call this the dynamic part, and its generation is
embedded into the application interpreters. We call the for-
mer two components as the static part.

3.3 An Extended Regression Operator
To help us develop the knowledge base formally and later
reuse the extended axioms in the base, a new regression oper-
ator R? is defined on s-regressable formulae in L′

sc, where s
is either S0 or a variable of sort situation. Roughly speaking,
R? is an extension of R, and its aim is to try to use exist-
ing extended axioms first during regression, which therefore
might save us computational steps.

Definition 3 (extended regression operator)
(1) If W = Poss(α(~t), σ) where α(~t) is a sequence of
deterministic actions of length n and σ is of sort situation,
and there is (extended) precondition axiom of the form
Poss(α(~x), s1) ≡ Πα(~x, s1), then3 R?[W ] = R?[Πα(~t, σ)];
otherwise, we have3

R?[W ] = R?[Poss(α1(~t1); · · · ;αn−1( ~tn−1), σ)∧
Poss(αn(~tn), do((α1(~t1); · · · ;αn−1( ~tn−1), σ))].

(2) If W is an s-regressable atom, but not a Poss atom,
there are three possibilities:
(a) s is the only situation-sort term (if any) mentioned by
W , then R?[W ] = W .

3Without loss of generality, for any two first-order formulas in
L′
sc, we can always assume that all quantifiers (if any) of one for-

mula have had their quantified variables renamed to be distinct from
the free variables (if any) of the other.

(b) If W mentions a term of the form g(~t, do(α′, σ′)) for
some functional fluent g, α′ = α′

1; · · · ;α′
n for some n > 0

and every α′

i is of sort action, and σ′ is of sort situation.
g(~t, do(α′, σ′)) mentions a s-prime functional fluent term of
form f(~r, do(α, σ)) where α = α1; · · · ;αm for some m > 0.
If there is axiom of the form f(~x, do(a1; · · · ; am, s1)) =

y ≡ ψf (~x, y, a1, · · · , am, s1) in the knowledge base, then3

R?[W ] = R?[(∃y).ψf (~r, y, α1, · · · , αm, σ) ∧W |
f(~r,do(α,σ))
y ];

otherwise, suppose f(~x, do(a, s1)) = y ≡ φf (~x, y, a, s1) is in
Dss, then3 let σ1 = do(α1; · · · ;αm−1, σ) and
R?[W ] = R?[(∃y).φf (~r, y, αm, σ1) ∧W |f(~r,do(α,σ))

y ].
Here y is a variable not occurring free in W,~r, α or σ.
(c) W is a relational fluent atom of form F (~t, do(α, σ))
where α = α1; · · · ;αn for n > 0 and every αi is of sort
action, and σ is of sort situation. If there is axiom of
form F (~x, do(a1; · · · ; an, s1)) ≡ ψF (~x, a1, · · · , an, s1) in the
knowledge base, then3 R?[W ] = R?[ψF (~t, α1, · · · , αn, σ)];
otherwise, F (~x, do(a, s1)) ≡ ΦF (~x, a, s1) is in Dss, then3

R?[W ] = R?[ΦF (~t, αn, σ1)], where σ1 = do(α1; · · · ;αn−1, σ).
(3) For non-atomic formulas, regression is defined induc-
tively as follows: R?[¬W ] = ¬R?[W ], R?[W1 ∧ W2] =
R?[W1] ∧R?[W2], and R?[(∃x)W ] = (∃x)R?[W ].

Because regression repeatedly substitutes logically equivalent
formulas for atoms, what the operator delivers will be logi-
cally equivalent with what it starts with, i.e.,

Theorem 3 Suppose W is a s-regressable sentence of L′

sc

for some situation s that mentions no functional fluents, and
D is a basic theory of actions. Then R?[W ] is a sentence
uniform in s. Moreover,

D |= W ≡ R?[W ].

According to above theorem and Theorem 4.5.1, Theorem
4.5.2 in [Reiter, 2001], we also have the following properties:

Theorem 4 SupposeW is a regressable sentence of Lsc that
mentions no functional fluents, and D is a basic theory of
actions. Then

(1) D |= R[W ] ≡ R?[W ];
(2) D |= W iff DS0

∪ Duna |= R?[W ].

Moreover, notice that do(a1; · · · ; an, s) represents the same
situation as do([a1, · · · , an], s) for deterministic actions.
Hence, for any S0-regressable formula W1 in L′

sc, there is
a regressable formula W2 equivalent to W1 obtained by re-
placing any Poss(A, σ) in W1 with equivalent

Poss(A1, σ) ∧ · · · ∧ Poss(An, do([A1, · · · , An−1], σ))
whereA = A1; · · · ;An and replacing any do(a1; · · · ; an, σ)
in W1 with do([a1, · · · , an], σ). We call W2 as the equal for-
mula of W1 in Lsc, and it is easy to see that

Theorem 5 SupposeW1 is a S0-regressable sentence of L′

sc

that mentions no functional fluents, W2 is the equal formula
of W1 in Lsc, and D is a basic theory of actions. Then

D |= W2 iff DS0
∪ Duna |= R?[W1].



These mean that our regression operator R? can perform
more broadly, but still, it can achieve the same functions as
the original operator R.

By using R?, we designed an recursive algorithm for
agents so that the agents can develop or expand the static
part of the knowledge base for macro-actions in advance
by calling this program. The reason for using R? is ob-
vious. For example, to compute the regression result of
F (~x, do(a1; · · · ; an, s))(n > 1) given that all the extended
successor state axioms for a1; · · · ; an−1 have been computed
and stored, we only need 2 steps by using R?, while need n
steps by using R. Finally, we implemented this algorithm
in Prolog as a program kbDeveloper(list,KB), which is run
by the agents when the controller demands to add the new
macro-actions given in list into knowledge base KB. KB is a
Prolog-program form file. We also performed successful ex-
periments on a few stochastic systems including Example 1.

4 The Reuse of the Macro-actions

Our ultimate aim in defining macro-actions and developing
knowledge base for them is to reuse the intermediate infor-
mation. We specify an interpreter macGolog which takes
programs composed of macro-actions and normal complex
actions without changing the functions of stGolog interpreter.

Our new interpreter, macDo, expects a sequence
α1; · · · ;αn;nil, where every αi is a stochastic action or a
macro-action with body ∆i, and nil is a dummy symbol in-
dicating the end of the sequence, and is defined as follows:
macDo(nil, p, s, s′)

def
= s = s′ ∧ p = 1;

macDo((α; β); γ, p, s, s′)
def
= macDo(α; (β; γ), p, s, s′);

if α is a macro-action and we have had developed the static
part of the knowledge base, then
macDo(α; β, p, s, s′)

def
=

¬(∃a)[choiceMac(α, a) ∧ Poss(a, s)] ∧ s′ = s ∧ p = 1∨
(∃c).c ∈ maxPoss(α, s) ∧ (∃p1).p1 = probMac0(c, α, s)∧
[shorter(c, α) ∧ p = p1 ∧ s′ = do(c, s)∨
¬shorter(c, α) ∧macDo(β, p2, do(c, s), s

′) ∧ p = p1 ∗ p2],

where shorter(a, b) ≡ seqLength(a) < seqLength(b); other-
wise, if α is a stochastic action,macDo works same as stDo:
macDo(α; β, p, s, s′)

def
=

¬(∃a)[choice(α, a) ∧ Poss(a, s)] ∧ s = s′ ∧ p = 1∨
(∃a).choice(α, a) ∧ Poss(a, s)∧
(∃p′).macDo(β, p′, do(a, s), s′) ∧ p = prob0(a, α, s) ∗ p

′.

Although we gave the definition of maxPoss(α, s), we
still did not discuss how to practically generate it and keep
it as a fact maxPossBase(L, α, s) which forms the dy-
namic part of the knowledge base. The following describes a
simple way: if maxPossBase(L, α, s) is in the knowledge
base, then checking c ∈ maxPoss(α, s) is same as check-
ing c ∈ L; else, we will compute list V, L such that V =
{A|choiceMac(α, A) ∧ Poss(A, s)} and L = {A|Poss(A, s) ∧
¬(∃A1)[A1 ∈ V ∧Poss(A1, s)∧ realPrefix(A,A1)} in which
realP refix(a, c) means a is a prefix of c and a 6= c, then
assert the fact maxPossBase(L, α, s) into system, and now
checking c ∈ maxPoss(α, s) is same as checking c ∈ L.

According to our definition of macDo, we have:

Lemma 1

1. For any situation s and a sequence of stochastic actions
α,
macDo(α;nil, p, s, s′) ≡ stDo(α; nil, p, s, s′);

2. for any situation s, α be a sequence of stochastic ac-
tions, β be a macro-action with the body ∆ (including
the special case that there is no actions before β), and γ
be a sequence of combinations of stochastic actions and
macro-actions followed by nil ( including special case
γ = nil), then
macDo(α; β; γ, p, s, s′) ≡ macDo(α; ∆; γ, p, s, s′).

Theorem 6 For any situation s and any sequence α =
α1; · · · ;αn where every αi is either a stochastic action or
a macro-action with body ∆i, we have
macDo(α;nil, p, s, s′) ≡ stDo(β1; · · · ; βn;nil, p, s, s

′),

where every βi either is αi if αi is a stochastic action, or is
∆i if αi is a macro-action.

Theorem 6 is proved by induction. It indicates that although
we extend the interpreter with macro-actions, the function of
the interpreter stays the same. So, what’s the advantage of
using macro-actions? It is all for the purpose of saving com-
putational time, which will been seen later.

Other descriptions of macDo for ?, if-then-else and while
are same as stDo. We implemented the macGolog interpreter
in Prolog and applied it successfully. Similar to stGolog,
we also can define the probabilities probF (ψ, γ) that some
situation-suppressed sentence ψ will be true after executing a
macGolog program γ simply by replacing stDo to bemacDo
in the Definition of probF given in Section 2.

5 Computational Benefit – An Example
We discuss the advantage of introducing macro-actions by
illustrating Example 1. Suppose the controller has given the
description of the basic theory D for this system, and would
like to consider the following procedure:
proc climbing(h) (P-1)
?(legalStair(h)); liftUpperLeg(h); forwLowLeg;
stepDown(main);mvBaryct(main); straightLeg;
forwSupLeg; stepDown(spleg);mvBaryct(spleg);
endproc

meaning after checking a stair of height h is capable
of climbing, the robot performs a sequence of stochas-
tic actions to climb the stair. In the above body of
procedure (P-1), we can define the sequence from
liftUpperLeg(h) to straightLeg as macro-action
stepMain(h) and the sequence from forwSupLeg to
mvBaryct(spleg) as macro-action stepSupp. Then, (P-1)
can be redefined to procedure (P-2) with body changed to
?(legalStair(h)); stepMain(h); stepSupp. Similarly, we
also can define the sequence from liftUpperLeg(h) to
mvBaryct(spleg) as one macro-action climbStair(h), and
(P-1) is redefined as procedure (P-3) with body changed to
?(legalStair(h)); climbStair(h).

Compared to the time saved by reusing macro-actions, the
time of developing the knowledge base (static part) for re-
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Figure 2: Computational Trees

stricted length macro-actions is fixed and negligible. There-
fore, we will ignore the time consumed by developing the
knowledge base and concentrate on the experiments of appli-
cations of using and reusing macro-actions.

Provided that we will call these procedures (P-1), (P-2) and
(P-3) repeatedly at the same local initial situation where the
robot’s status is ready in front of a stair shown in Figure 1, the
outcome trees without or with macro-actions look like in Fig-
ure 2. Theoretically, regardless the time for searching knowl-
edge base, the longer the macro-action is, the shorter the com-
putational time should be. Because with macro-actions the
computational trees are shorter, i.e., the computing steps are
less. Ideally, it is nearly t

n
comparing to the time t consumed

without macro-actions, where n is the maximal length of the
macro-actions in the base.

But, in practice, the size of the knowledge base will affect
the computational time, especially under our current prelim-
inary implementation [Gu, 2003]. We did different tests for
different cases of whether or not to use macro-actions over
various environments, the stairs’ heights change frequently.
We considered three cases: (P-1) running under stGolog de-
noted as Exp.1 and (P-2) (respectively, (P-3)) running un-
der macGolog denoted as Exp.2 (respectively, Exp.3). The
knowledge bases respectively for Exp.2 and Exp.3 have been
obtained by running kbdeveloper. We performed four tests
for each case. For each test, the number of stairs N varies
from 100 to 2000, and from Test 1 to Test 4 the change of the
stairs’ heights becomes more and more frequent. The CPU
time with unit second is an average of ten distinct trials (to
reduce the measurement error). The experimental results are
shown in Figure 3.

Although searching the knowledge base takes time, we
still can get computational benefit by choosing proper macro-
actions under different environments. Moreover, we some-
how make the agent have “memories”, therefore can keep its
“experience”. The limitations, especially under our current
implementation, are that, first, the duty of the controllers be-
comes heavier (it is the controller’s responsibility to choose
proper macro-actions); second, the agent may not be aware
of similar local situations fully by itself, which causes unex-
pected database redundancy when we keep the dynamic part
of the knowledge base. For example, in Exp.2, the agent did
not aware that do(stepMain(h), S0) is also a class of similar
local situations for all legal height h. We think this should not
be difficult to fix later.

6 Conclusion and Future Work
In the context of stochastic systems, we introduced macro-
actions based on the Golog sequential action constructor,
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Figure 3: Experimental Results of Robot Climbing Stairs

extended the basic action theories, defined an extended re-
gression operator to help us develop the knowledge base for
macro-actions and reuse the saved information. Therefore,
we partially simulate the behaviors that agents keep interme-
diate knowledge and later retrieve for computational benefit.

Actually, we think macGolog (the modified stGolog) is not
a very appropriate application of reusing macro-actions, since
it needs to keep almost all the intermediate information of
macro-actions, which did not fully show the benefit of reusing
macro-actions. Notice that macro-action is more like a re-
stricted type of local policy for some local Markov decision
process (MDP). In the future, we want to loosen the struc-
ture of the macro-action, study its characters, optimize the
structure of the knowledge base and make it more condensed.
Moreover, we want to design a more proper interpreter for
reusing macro-action in decision-making, say, maybe a modi-
fied dtGolog involving macro-action. In another word, our ul-
timate goal is high-level control, allowing agents to explicitly
make optimal or nearly optimal choices more efficiently by
reusing local optimal solutions of macro-actions in decision-
theoretic planning.
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