
Model Checking Meets Theorem Proving:
a Situation Calculus Based Approach

Yilan Gu
Dept. of Computer Science

University of Toronto
yilan@cs.toronto.edu

Iluju Kiringa
SITE

University of Ottawa
kiringa@site.uottawa.ca

Abstract

To reason about properties of reactive programs, one
may usually follow either an operational or a deductive
approach. In this paper, we propose representing the
classical model checking approach of Clarke and Emer-
son in the situation calculus. Doing so, we propose an
approach that merges the operational and the deduc-
tive approaches into one single framework by translat-
ing Kripke models that represent system specifications
into theories formulated in the situation calculus and
by recasting CTL as a sublanguage of the calculus.

Introduction
The importance of long running, nondeterministic con-
current programs has been emphasized over the past
two and half decades since Pnueli proposed using tem-
poral logic for reasoning about them (Pnueli 1977).
These, also called reactive systems, as opposed to se-
quential transformational programs, show ideally non-
terminating behaviors (Clarke, Grumberg, & Peled
1999). Their mathematical properties are usually de-
fined using either the operational or the deductive ap-
proach. In the operational approach, programs are
viewed as generator of computations. Given a program,
all the computations associated with it can be gener-
ated once by an interpreter, or incrementally by specify-
ing a transition relation that holds between consecutive
states of the computation of the program. In summary,
the operational semantics is based on the structure of
the given program (Plotkin 1981). In the deductive ap-
proach, programs are viewed as specifying a set of com-
putations about which some statements can be proven.
Dynamic logic (Harel, Tiuryn, & Kozen 2000), Hoare’s
systems (Hoare 1969), and the situation calculus (Mc-
Carthy 1963; Reiter 2001) are examples of formalisms
used in this approach.

The semantics of concurrent programs is described
in either approaches in terms of infinite behaviors, also
called computations. A behavior is a sequence of states
that a program moves through while executing. The be-
haviors are all the possible interleavings of the “atomic”
steps of the subprograms running in parallel; that is,
given a concurrent program P composed of subpro-
grams P1, P2, . . . , Pn, where the Pis, 1 ≤ i ≤ n, are

sequential programs running in parallel, its execution is
usually modeled by nondeterministically executing the
atomic steps for each Pi, 1 ≤ i ≤ n, in an arbitrary or-
der. So if P is in a state sk, it nondeterministically goes
to the next state sk+1 by executing an arbitrary atomic
step of any of its subprograms Pi. This procedure is
repeated infinitely, or at least indefinitely.

Linear and branching temporal logics are the most
commonly used languages for describing computations.
The model checking problem (MC) can be defined as
follows: Given (1) a reactive system S represented as
a finite-state structure which generates computations,
and (2) a temporal logic formula P specifying a prop-
erty of S, find whether S satisfies P. There are suc-
cessful algorithmic solutions of MC. As an example, in
(Clarke & Sistla 1986), Kripke Structures are used to
represent the reactive system and Computational Tree
Logic (CTL), a branching time temporal logic, is used
to represent properties of the system.

In this paper, we propose representing the classical
MC approach of (Clarke & Sistla 1986) in the situation
calculus. Our approach merges both the operational
and the deductive approaches into a single framework
by translating Kripke models into theories of the situ-
ation calculus and by recasting CTL as a sublanguage
of the same calculus. This approach can be labeled as
deductive-operational in the sense of (Pnueli 1981); that
is, it deals with computations arising during program
execution and, at the same time, allows us to deduc-
tively reason about those computations in the logic of
the situation calculus.

In (De Giacomo, Ternovskaia, & Reiter 1997), it is
argued that, for non-terminating programs, one needs
to rely on a transition semantics, in which one allows
for interpreting and quantifying over parts of programs
and their executions. In this paper, we show that an
evaluation semantics in which one allows for interpret-
ing whole programs is possible for non-terminating pro-
grams.

The paper is organized as follows. In the next section,
we introduce the situation calculus, and the classical
model of concurrent systems in terms of Kripke struc-
tures. Then we give an effective method for translating
a Kripke structure to a basic action theory. Next, we

show how CTL properties are specified in the situation
calculus and treat the model checking of action theories
within our framework. This is followed by the presen-
tation of an an example which illustrates our approach
of model checking in the situation calculus. Finally,
we conclude the paper and indicate avenues for future
work.

Preliminaries

The Situation Calculus
The situation calculus (McCarthy 1963; Reiter 2001)
is a many-sorted second order language with equal-
ity specifically designed for representing dynamically
changing world. We consider a version of the situation
calculus with three sorts for actions (A), situations (S),
and objects (O) other than the first two. Actions are
first order terms consisting of a 0−ary action function
symbols corresponding to the transitions of the finite
state structures. Situations are first order terms de-
noting a sequence of actions. They are represented us-
ing a binary function symbol do: do(α, s) denotes the
sequence resulting from adding the action α to the se-
quence s. The constant S0 (initial situation) denotes
the empty sequence []. In modeling systems, situations
will correspond to computations. Objects constitute
a catch-all sort representing everything else depending
on the domain of application.

We shall have a finite number of unary predicates
called fluents which represent properties with truth
values varying from state to state. Fluents are denoted
by predicate symbols with argument a situation term.
In a Reader-Writer example given below (Example 1),
state1(s) is a relational fluent, meaning that the system
is in state w1 after performing the sequence of opera-
tions in the computation s. In addition to the fluents,
we shall have a finite number of ground situation inde-
pendent predicates. For example, we will use ground
binary predicate trans(I, J) to represent a transition
form state wI to wJ of the system being modeled.

The language also includes special predicates Poss,
and @; Poss(a, s) means that the action a is possible
in the situation s, and s @ s′ states that the situation
s′ is reachable from s by performing some sequence of
actions. In system modeling terms, s @ s′ means that s
is a proper subcomputation of the computation s′. The
predicate @ will be useful in formulating properties of
systems. We call this fragment of the situation calculus
L0

0. In general, we can define fragments Lj
i, where

i (j) is the maximum number of arguments of sort O
that an action function (fluent predicate) may have.

Axiomatizing a Domain Theory

A domain theory is axiomatized in the situation calcu-
lus with four classes of axioms which constitute a basic
action theory (BAT – More details in (Pirri & Reiter
1999)):1

1There are also unique names axioms which guarantee
that primitive actions of the domain are pairwise unequal.

Foundational axioms for situations (Df). These
guarantee an infinite tree structure for the situations,
and are the same for all BATs.

Action precondition axioms (Dap). There is
one for each action function A, with syntactic form
Poss(A, s) ≡ ΠA(s). Here, ΠA(s) is a formula with free
variable s. These characterize the preconditions for do-
ing action A in the situation s.

In the Reader-Writer example, the following states that
it is possible for the system to move from state 1 to
state 2 relative to the system computation s iff there is
a transition from state 1 to state 2, and as a result of
performing the actions in that computation, the system
is in state 1.

Poss(tr1,2, s) ≡ trans(1, 2) ∧ state1(s).

Successor state axioms (Dss). There is one
for each relational fluent F (s), with syntactic form
F (do(a, s)) ≡ ΦF (a, s), where ΦF (a, s) is a formula
with free variables among a and s. These characterize
the truth values of the fluent F in the next situation
do(a, s) in terms of the current situation s, and they
embody a solution to the frame problem for determin-
istic actions (Reiter 2001).

In the Reader-Writer example, the following states that
the system will be in the state 1 relative to the com-
putation do(a, s) iff the last system operation a in the
computation was tr4,1 or tr6,1, or it was already in state
1 relative to the computation s, and a does not lead the
system to another state.

state1(do(a, s)) ≡ a = tr4,1 ∨ a = tr6,1∨

state1(s) ∧ a 6= tr1,2 ∧ a 6= tr1,3.

Initial database (DS0
). This is a set of first order sen-

tences whose only situation term is S0; it specifies the
initial state of the domain, in our case, the initial sys-
tem state. Notice that while these initial system axioms
specify a complete initial system state (as is normal for
reactive systems), this is not a requirement of the theory
we are presenting. Therefore our account could, for ex-
ample, accommodate incomplete initial system states.

Notations
We now introduce further notations used later in the
paper. Suppose D is a basic action theory. Further-
more, suppose that UA = {A1, . . . , Ak} is the (finite)
set of actions of D, UA

∗ is the set of action sequences,
and F = {F1, . . . , Fn} is the (finite) set of fluents of
D, and V = {0, 1} is a set of labels denoting the truth
values. Then ~v0 = 〈v01

, . . . , v0n
〉 denotes the vector

of initial truth values of fluents of D, where v0j
with

1 ≤ j ≤ n is the initial value of fluent Fj , and ci(α)
specifies whether the fluent Fi holds in the situation
represented by the action sequence α; ci is called the
characteristic function (Ternovskaia 1999) of fluent Fi.

Checking a Situation Calculus System
Let D be a background situation calculus axiomatiza-
tion for some reactive system, as described above, and

let Q(s) be a situation calculus formula – a property –
with one free situation variable s.

Let S = do(αn, do(αn−1, · · · , do(α1, S0) · · ·)) be a
situation term that mentions no free variables. We treat
this as a system computation, and define the answer to
Q relative to this computation to be “yes” iff D |= Q(S).
The answer is “no” iff D |= ¬Q(S). So on this defini-
tion, model checking is performed relative to a system
computation, and, in the most general setting, it is a
theorem-proving task. In particular, the executability
problem is to check whether D |= executable(S), where

executable(s) =df (∀a, s′).do(a, s′) v s′ ⊃ Poss(a, s′).

It is important to notice the following property of ba-
sic action theories formulated in the language of Sub-
section ”The Situation Calculus”.

Theorem 1 The basic action theories formulated in
the fragment L0

0 of the situation calculus are decidable.
That is, suppose D is a BAT, and φ is a formula, all of
which are formulated in L0

0; then there is an algorithm
for establishing whether D |= φ.

Proof (outline):
Similar to the idea in This is a corollary of Theorem 3
in (Ternovskaia 1999) that shows decidability for a sim-
ilar fragment of the situation calculus, but where there
are no situation independent predicates. The proof
there is now augmented by showing that adding finitely
many ground situation independent predicates does not
change the nature of the automata constructed for D
and φ. �

GOLOG

GOLOG (Levesque et al. 1997) is a situation calculus-
based programming language for defining complex ac-
tions in terms of a set of primitive actions axiomatized
in the situation calculus according to Subsection ”Ax-
iomatizing a Domain Theory”. It has control structures
found in most Algol-like languages, augmented by some
nonstandard structures: Sequence (α ; β: Do action α,
followed by action β); Test actions (p?: Test the truth
value of expression p in the current situation); Nonde-
terministic action choice (α | β: Do α or β); Nonde-
terministic choice of arguments ((π x)α: Nondetermin-
istically pick a value for x, and for that value of x, do
action α); Conditionals (if-then-else) and while loops;
and Procedures, including recursion.

The following is a GOLOG procedure that executes
an sequence of n randomly picked actions which are
possible:

proc execActions(n)

n = 0? |

n > 0? ; (π a)[Poss(a)? ; a]; execActions(n− 1)

endProc .

The semantics of GOLOG programs is defined by
macro-expansion, using a ternary relationDo (Levesque

et al. 1997); Do(P, s, s′) is an abbreviation for a situa-
tion calculus formula which intuitively means that s′ is
one of the situations reached by evaluating the GOLOG
program P, beginning in situation s. In the reactive sys-
tem setting, any binding for s′ represents the system
computation that results from executing P, beginning
in the system state defined by the computation s.

Concurrent Systems

Concurrent reactive systems are semantically character-
ized by transition systems (Wolper 1998; Clarke, Grum-
berg, & Peled 1999). Usually, the latter are modeled by
Kripke structures (Clarke, Grumberg, & Peled 1999)
which we now introduce.

Definition 1 (Kripke structure) A finite Kripke
structure is a quintuple K = (P,W,R,w0, L) where

• P is a finite set of atomic propositions;

• W is a finite set of states;

• R ⊆W ×W is a total (transition) relation;

• w0 is an initial state;

• L : W → 2P maps each w ∈ W to the set {p ∈ P | |=w

p}.

Definition 2 (Behavior) Suppose K =
(P,W,R,w0, L) is a Kripke structure. Then a
behavior σ of K is a function from N , a subset of the
natural numbers, to W such that:

• N = {0, 1, .., n} for some natural number n ∈ N, or
N is the set of natural numbers;

• σ(0) = w0;

• ∀i ≥ 0 (σ(i), σ(i+ 1)) ∈ R.

If N equals the set N of natural numbers, then σ is
called an infinite behavior.

Example 1 Consider a concurrent system – denoted
by RW – consisting of a Reader process, numbered 1,
and a Writer process, numbered 2 (Emerson & Trefler
1999). We define RW as follows. Each of these
processes can be in three states: Non-Trying, Trying,
and Critical Section. These are thus subscripted
accordingly: Ni, Ti, and Ci refer the Non-Trying,
Trying, and Critical Section states of Process i.
Process 1 may enter its critical section only when
Process 2 is in its Non-trying section, and Process
2 may enter its critical section only when Process 1
is in its Non-Trying or Trying states. Figure 1 is a
Kripke structure representing all the reachable states
of the RW system. Formally, we have the following:
P = {N1, N2, T1, T2, C1, C2}; W = {w0, · · · , w7};
R = {(w0, w1), (w0, w2), (w1, w3), (w1, w4), (w2, w4), (w2, w5),
(w3,w0),(w3,w6),(w4,w7),(w5,w0),(w5,w7),(w6,w2),(w7,w1)};
the initial state w0; and L(w0) = {N1, N2}, L(w1) =
{T1, N2}, L(w2) = {N1, T2}, L(w3) = {C1, N2}, L(w4) =
{T1, T2}, L(w5) = {N1, C2}, L(w6) = {C1, T2}, L(w7) =
{T1, C2}.

N N1 2

N1 2
N1 T2T

C1 N2 T1 T2 C2

T1 C2C1 T2

N1

w

w w

w w w

w w

0

1 2

3 4 5

6 7

Figure 1: Reader-Writer transition system

One may unwind a Kripke structure into an infinite tree
that is rooted in w0. Such trees are called computational
trees.

Definition 3 (Computational Tree) Suppose K =
(P,W,R,w0, L) is a Kripke structure. Then the
(infinite) computational tree CTK of K is the set
{σ1, σ2, . . .} of all (infinite) behaviors of K; that is,

• for each i = 1, 2, . . ., σi is a function from N to W ;

• σi(0) = w0 for all i = 1, 2, . . .;

• ∀j > 0, i ≥ 0 (σj(i), σj(i+ 1)) ∈ R.

The top tree in Figure 2 shows the infinite computa-
tional tree of the RW system depicted in Figure 1. Thus
any path starting in the root of the computational tree
represents a behavior of the Kripke structure.

Translating Concurrent Systems into

BATs

Recall that the foundational axioms guarantee the in-
finite tree structure of the situation calculus. We shall
translate Kripke structures to the situation calculus by
relating the idea of computational tree to the situation
calculus tree of situations. More precisely, the Kripke
structure will be translated into a BAT such that the
computational tree of the Kripke structure is repre-
sented as a subtree obtained from the tree of situations
by pruning away paths that are not executable.

In order to relate Kripke structures to BATs, we need
to define a situation tree like model for a BAT D; that
model is precisely a tree of situations constrained ap-
propriately using the successor state axioms and action
precondition axioms of D.

Definition 4 (Canonical Structure)2 Suppose D =
2This definition is similar to the notion of k-ary n-labeled

situation tree associated with a BAT defined in (Ternovskaia
1999).

Df ∪ Dap ∪ Dss ∪ DS0
is a BAT. Then a structure M

is a canonical structure for D iff it is a pair (D,LD),
where

• D ⊆ UA
∗ is the domain of M, satisfying the following

property: if an action sequence α is in D then any
prefix α′ of α (i.e., α = α′α′′ for some α′′ ∈ UA

∗) is
in D;

• LD is a labeling function D → V n such that LD([]) =
~v0 and LD(α) = 〈c1(α), . . . , cn(α)〉 ∈ V n.

Here, ~v0 is the initial vector of fluent values, and ci
is the characteristic function of fluent Fi.

Notice that in the definition above, the pair (D,LD) is
in fact a situation tree constrained using the BAT D.
The domain D is the set of nodes of the tree; and for
any sequence α and 1 ≤ j ≤ k, αAj is the j-th son
of the node α labeled by value vector LD(α). Figure 2
shows a canonical structure for the RW system depicted
in Figure 1. The labeling tri,j of the edges denotes an
action corresponding to the transition (Si, Sj) ∈ R. De-
tails of the BAT underlying this tree will be clearer in
Section ”An Example”. It suffices here to mention that
〈N1, N2, T1, T2, C1, C2〉 is the vector of fluents describ-
ing the properties of the system. The vector ~v0 of initial
values for the root of the situation tree is 〈1, 1, 0, 0, 0, 0〉,
and the vectors labeling the other nodes of the tree de-
pend on the characteristic functions of each fluent.

Now, we show how to effectively construct a basic
action theory from a given Kripke structure.

Theorem 2 Suppose K = (P,W,R,w0, L) is a Kripke
structure. Then one can effectively construct a BAT
DK whose canonical structure M is obtained from the
computational tree CTK of K such that

K has CTK iff |=M DK.

Proof:
Let DK = Df ∪Dss ∪Dap ∪DS0

be the following BAT.

Fluents: for each p ∈ P , introduce a fluent p(s); for
each state wi ∈W , introduce a fluent statei(s).

Actions: for each transition (wi, wj) ∈ R where
wi, wj ∈W , introduce an action tri,j .

Initial database (DS0
): Whenever p ∈ L(w0), in-

troduce the axiom p(S0), otherwise introduce ¬p(S0);
introduce axiom state0(S0) and, for all wi 6= w0, in-
troduce axioms ¬statei(S0). We also need to intro-
duce finitely many non-fluent predicates tr(i, j) where
0 ≤ i, j < |W |, such that trans(i, j) is true if and only
if (wi, wj) ∈ R.

Action precondition axioms (Dap): for each transi-
tion tri,j , we have the axiom

Poss(tri,j , s) ≡ trans(i, j) ∧ statei(s).

Successor state axioms (Dss): For every i, 0 ≤ i <
|W |,

5

2

2,4tr 2,5

5,05,7tr4,74,73,63,0

6,2

1,3

tr trtr

tr

trtr

<1,1,0,0,0,0><0,0,1,0,0,1><0,0,1,0,0,1><0,0,1,0,0,1><0,0,0,1,1,0><1,1,0,0,0,0>

The canonical structure:

trtr

<1,0,0,0,0,1><0,0,1,1,0,0><0,0,1,1,0,0><0,1,0,0,1,0>

<1,0,0,1,0,0><0,1,0,1,0,0>

<1,1,0,0,0,0>

The computational tree:

21111221

077760

443

1

0

w wwwww ww

wwwww w

w

wwww

w

w

<0,1,0,1,0,0> <1,0,0,1,0,0> <1,0,0,1,0,0> <0,1,0,1,0,0> <0,1,0,1,0,0> <0,1,0,1,0,0> <0,1,0,1,0,0> <1,0,0,1,0,0>

tr0,1

tr0,1

tr0,2

tr0,2 tr7,1
tr7,1 tr0,2tr0,1tr7,1

tr1,4

Figure 2: Computation tree and canonical structure of the RW system

statei(do(a, s)) ≡
∨|W |

j=1
a = trj,i ∨

statei(s) ∧
∧|W |

j=1
a 6= tri,j .

For every p ∈ P , suppose Wp = {wi| |=wi
p}. Then,

p(s) ≡
∨

wi∈Wp

statei(s).

Hence we could easily get the successor state axiom for
p(s).

Now we show that K has CTK iff |=M DK.
Suppose K has CTK. Then the proof proceeds by
constructing the canonical structure corresponding to
CTK. It is easy to show that the BAT constructed
above is satisfiable in this canonical structure.

Suppose |=M DK and D ⊆ UA
∗. Then LD([]) = ~v0

specifies the root of CTK by telling exactly which fluent
of the form state0 is true and which other fluents are
true in the state w0 of the Kripke structure K. Further-
more, LD(ωAj) = 〈c1(w), . . . , cn(w)〉 ∈ V n determines
the fluent values in situation ωAj by telling which flu-
ent of the form statei is true and which other fluents are
true in the state w of K corresponding to the execution
of the transitions encoded in ωAj . Thus each path in
M starting in [] yields a corresponding path in CTK.
�

Model Checking

CTL

The temporal logics that are used for specifying prop-
erties in MC are subsets of the logic CTL∗ (Clarke
& Sistla 1986) which expresses a branching time logic
by extending linear time temporal logic with behavior
quantifiers. The logic CTL is the smallest set of formu-
las inductively defined as follows.

Situation formulas

– true and false are atomic situation formulas, as
well as are p and ¬p for all p ∈ P .

– If φ and ψ are situation formulas, then φ∧ψ and φ∨ψ
are situation formulas.

– If φ is a behavior formula, then Aφ (“φ holds for all
behaviors”) and Eφ (“φ holds for some behavior”) are
situation formulas.

Behavior formulas

– If φ and ψ are situation formulas, then Xφ (“next
time φ”), and φUψ (“φ until ψ”) are behavior formu-
las.

Moreover, Fφ (“φ holds at some future state on a
behavior”) and Gφ (“φ holds at all future states on a
behavior”) for behavior formula φ abbreviate trueUφ
and ¬F¬φ respectively.

Semantics

Here, we semantically characterize CTL formulas by
translating them to formulas of the decidable fragment
of the situation calculus described in Subsection ”The
Situation Calculus”. CTL formulas are interpreted over
Kripke structures. We shall denote the suffix of the
behavior σ = S0, s1, s2, . . . that starts at situation sj

by σj . Given a Kripke structure K = (P,W,R,w0, L),
by Theorem 2 we first get a BAT DK corresponding
to K. We then introduce the notation φ[s] to denote
the situation calculus formula obtained from a given
expression φ by restoring the situation argument s in
all the fluents occurring in φ. Finally, we view a CTL
formula (Op φ)[s] as a macro defined in the situation
calculus as follows:

p[s] =df

∨

wi∈Wp

statei(s), where p is an atomic

proposition and Wp = {w| |=w p},

(¬φ)[s] =df ¬ φ[s]

(φ1 ∧ φ2)[s] =df φ1[s] ∧ φ2[s],

EXφ[s] =df (∃a).P oss(a, s) ∧ φ[do(a, s)],

A(ψ1Uψ2)[s] =df (∀s′).succ∗(s, s′) ∧ ψ2[s
′] ⊃

(∀s′′).s v s′′ @ s′ ⊃ ψ1[s
′′],

E(ψ1Uψ2)[s] =df (∃s′).succ∗(s, s′) ∧ ψ2[s
′]∧

(∀s′′).s v s′′ @ s′ ⊃ ψ1[s
′′].

Here, succ∗(s, s′) is defined as follows:

succ∗(s, s′) =df s v s′ ∧ executable(s′),

meaning that s′ is a subsequent situation of s and s′ is
executable. Further operators are defined in terms of
those above:

(φ1 ∨ φ2)[s] =df ¬(¬φ1 ∧ ¬φ2)[s],

(φ1 ⊃ φ2)[s] =df (¬φ1 ∨ φ2)[s],

AXφ[s] =df (¬EX¬φ)[s],

EFφ[s] =df E(trueUφ)[s],

AFφ[s] =df A(trueUφ)[s],

EGφ[s] =df (¬AF¬φ)[s],

AGφ[s] =df (¬EF¬φ)[s].

Usually, the semantics of CTL is given in terms of sit-
uations (states) and behavior (paths) formulas (Clarke
& Sistla 1986). We can introduce this distinction here
by viewing the situations in the situation formulas as
“snapshots” of the world and those in behavior formu-
las as “histories”. For later convenience, given CTL
formula φ we will always denote the corresponding se-
mantic formula of φ at any situation s as Qφ(s).

Checking Properties

Above, we have defined the semantics of CTL formu-
las in terms of a translation of these formulas into
formulas of a decidable fragment of the situation cal-
culus. Now, we define the model checking task in

terms of a logical entailment. Given a Kripke structure
K = (P,W,R,w0, L) and a CTL formula φ, we first
construct a BAT DK using the algorithm in the proof
of Theorem 2. We then construct a situation calculus
formula Qφ(s) corresponding to φ using the method de-
scribed in Subsection ”Semantics”. All these construc-
tions are done in polynomial time and yield axioms and
formulas that are polynomial in the size of both K and
φ. Now model checking the system K against the prop-
erty φ for initial state w0 amounts to establishing the
entailment

DK |= Qφ(S0).

In (De Giacomo, Ternovskaia, & Reiter 1997), dynamic
properties of reactive systems are expressed by using
the transition semantics and second order formulas ex-
pressing least and greatest fix-point properties. Here,
following (Clarke, Grumberg, & Peled 1999), we specify
properties by using transition relation R of the Kripke
structure representing a reactive system and second
order formulas expressing least and greatest fix-point
properties. We use the following theorem from (Clarke,
Grumberg, & Peled 1999) reformulated in the situation
calculus to that end:

Theorem 3 Suppose that K is a Kripke structure and
that we identify each CTL formula φ with the set
{s | K, s |= φ} ⊆ 2SK . Then each of the basic CTL
operators may be characterized as a least or greatest
fix-point of an appropriate predicate transformer in the
following way:

EFφ[s] ≡ µZ .[φ[s] ∨EX(Z)[s]],

AFφ[s] ≡ µZ .[φ[s] ∨ AX(Z)[s]],

EGφ[s] ≡ νZ .[φ[s] ∧ EX(Z)[s]],

AGφ[s] ≡ νZ .[φ[s] ∧ AX(Z)[s]],

A(φ1Uφ2)[s] ≡ µZ .[φ2[s] ∨ φ1[s] ∧ AX(Z)[s]],

E(φ1Uφ2)[s] ≡ µZ .[φ2[s] ∨ φ1[s] ∧ EX(Z)[s]].

An Example
Now, we effectively construct a BAT from the Kripke
structure of Figure 1 representing the RW system.

Actions: tr0,1, tr0,2, tr1,3, tr1,4, tr2,4, tr2,5, tr3,0,
tr3,6, tr4,7, tr5,0, tr6,2, tr7,1.

Fluents: T1(s), T2(s), N1(s), N2(s), C1(s), C2(s),
state0(s), state1(s), state2(s), state3(s), state4(s),
state5(s), state6(s), state7(s).

Initial database:

N1(S0) ∧N2(S0) ∧ ¬T1(S0) ∧ ¬T2(S0) ∧ ¬C1(S0)∧

¬C2(S0) ∧ trans(0, 1) ∧ trans(0, 2) ∧ trans(1, 3)∧

trans(1, 4) ∧ trans(2, 4) ∧ trans(2, 5) ∧ trans(3, 0)∧

trans(3, 6) ∧ trans(4, 7) ∧ trans(5, 0) ∧ trans(5, 7)∧

trans(6, 2) ∧ trans(7, 1) ∧ state0(S0) ∧ ¬state1(S0)∧

¬state2(S0) ∧ ¬state3(S0) ∧ ¬state4(S0)∧

¬state5(S0) ∧ ¬state6(S0) ∧ ¬state7(S0).

Action precondition axioms:

Poss(tr0,1, s) ≡ trans(0, 1) ∧ state0(s),

P oss(tr0,2, s) ≡ trans(0, 2) ∧ state0(s),

P oss(tr1,3, s) ≡ trans(1, 3) ∧ state1(s),

P oss(tr1,4, s) ≡ trans(1, 4) ∧ state1(s),

P oss(tr2,4, s) ≡ trans(2, 4) ∧ state2(s),

P oss(tr2,5, s) ≡ trans(2, 5) ∧ state2(s),

P oss(tr3,0, s) ≡ trans(3, 0) ∧ state3(s),

P oss(tr3,6, s) ≡ trans(3, 6) ∧ state3(s),

P oss(tr4,7, s) ≡ trans(4, 7) ∧ state4(s),

P oss(tr5,0, s) ≡ trans(5, 0) ∧ state5(s),

P oss(tr6,2, s) ≡ trans(6, 2) ∧ state6(s),

P oss(tr7,1, s) ≡ trans(7, 1) ∧ state7(s).

Successor state axioms:

state0(do(a, s)) ≡ a = tr3,0 ∨ a = tr5,0∨

state0(s) ∧ a 6= tr0,1 ∧ a 6= tr0,2,

state1(do(a, s)) ≡ a = tr0,1 ∨ a = tr7,1∨

state1(s) ∧ a 6= tr1,3 ∧ a 6= tr1,4,

state2(do(a, s)) ≡ a = tr0,2 ∨ a = tr6,2∨

state2(s) ∧ a 6= tr2,4 ∧ a 6= tr2,5,

state3(do(a, s)) ≡ a = tr1,3∨

state3(s) ∧ a 6= tr3,0 ∧ a 6= tr3,6,

state4(do(a, s)) ≡ a = tr1,4 ∨ a = tr2,4∨

state4(s) ∧ a 6= tr4,7,

state5(do(a, s)) ≡ a = tr2,5∨

state5(s) ∧ a 6= tr5,0 ∧ a 6= tr5,7,

state6(do(a, s)) ≡ a = tr3,6∨

state6(s) ∧ a 6= tr6,2,

state7(do(a, s)) ≡ a = tr4,7 ∧ a = tr5,7∨

state7(s) ∧ a 6= tr7,1.

Abbreviations:

T1(s) ≡ state1(s) ∨ state4(s) ∨ state7(s),

T2(s) ≡ state2(s) ∨ state4(s) ∨ state6(s),

N1(s) ≡ state0(s) ∨ state2(s) ∨ state5(s),

N2(s) ≡ state0(s) ∨ state1(s) ∨ state3(s),

C1(s) ≡ state3(s) ∨ state6(s),

C2(s) ≡ state5(s) ∨ state7(s).

Simulation

To generate finite sequences of actions of the given
concurrent system DK and check if property Qφ(S0) is
satisfied , we solve the following deduction task:

DK |= (∃s).Do(execActions(N), S0, s) ∧Qφ(S0),

where N is a constant natural number and
execActions(N) is the GOLOG procedure defined in
the section on GOLOG.

To generate non-terminating sequences of actions and
check if DK |= Qφ(S0), we solve the following deduction
task:

DK |= checkCTL(φ),

where abbreviation checkCTL(φ) represents a sentence
obtained by replacing all the predicate succ∗(s, s′) in
Qφ(S0) by

∃δ.T rans∗(execActions, s, δ, s′),

and execActions is the following GOLOG procedure
that infinitely generates transitions of the system at
random.

proc execActions

while true (π a)[Poss(a)?; a]; endWhile

endProc .

T rans∗(execActions, s, δ, s′) represents the execution
of (non-terminating) GOLOG program execActions
starting from situation s and getting to situation s′ with
program δ remained. The detailed semantics of Trans∗

is given in (De Giacomo, Ternovskaia, & Reiter 1997).
For example, to check CTL formula whether A(ψ1Uψ2)
holds for concurrent system K, we are to solve whether

DK |= (∀s).(∃δ).T rans∗(execActions, S0, δ, s) ∧
ψ2[s] ⊃ (∀s′).(s′ @ s ⊃ ψ1[s

′]).

Sample Properties

Some simple properties of the RW system expressed
in CTL are: EG(N2 ⊃ EX N2), AG(N2 ⊃ EF C2),
EG(¬C1 ∧ ¬C2), EF (C1 ∧ C2), etc. By restoring the
situation argument s, these properties can be viewed
as macros defined in the situation calculus, which still
match the intuitive semantics of the CTL formulas. For
instance,

(EG(N2 ⊃ EX N2))[s]

≡ (¬AF (N2 ∧ ¬EX N2))[s]

≡ ¬A(trueU(N2 ∧ ¬EX N2))[s]

≡ ¬(∀s′).succ∗(s, s′) ∧ (N2 ∧ ¬EX N2)[s
′]

⊃ (∀s′′).s v s′′ @ s′ ⊃ true[s′′]

≡ (∃s′).succ∗(s, s′) ∧N2(s
′) ⊃ (EX N2)[s]

≡ (∃s′).succ∗(s, s′) ∧N2(s
′) ⊃

(∃s′′).succ(s′, s′′) ∧N2(s
′′).

(AG(N2 ⊃ EF C2))[s]

≡ (¬EF (N2 ∧ ¬EF C2))[s]

≡ (¬E(trueU(N2 ∧ ¬EF C2))[s]

≡ ¬(∃s′).succ∗(s, s′) ∧N2(s
′) ∧ (¬EF C2)[s

′]

≡ (∀s′).succ∗(s, s′) ∧N2(s
′) ⊃ (E(trueUC2))[s

′]

≡ (∀s′).succ∗(s, s′) ∧N2(s
′) ⊃

(∃s′′).succ∗(s′, s′′) ∧ C2(s
′′).

Discussion

Ours can be considered as a symbolic model checking
approach without BDDs, similar to the approach de-
scribed in (Biere et al. 1999). In fact we show how to
reduce model checking to entailment in a decidable sub-
set of the situation calculus. An early work heading in
this direction is reported in (Rajan, Shankar, & Srivas
1995); unfortunately, lack of technical detail does not
allow a comparison with our approach.

Notice that (Reiter 2001) gives an implementation
technique for BATs such as the one of Section ”An
Example”. This technique justifies a straightforward
translation of the BATs to a form suitable for a Prolog
implementation. This technique could be applied here.
This would amount to implementing a predicate, e.g.
checkCTL(φ), where φ is a CTL formula, for checking
whether the BAT entails Qφ(S0). The same technique
could be used to simulate the system modeled by the
BAT. Since CTL properties involve the predicate @,
any interpreter for checking these properties will nec-
essarily be non-Markovian (Gabaldon 2002) meaning
that effects of actions are explained by taking into ac-
count all past situations. All this however remains to
be accounted for.

A perceived advantage of our framework is the rich-
ness of the situation calculus which is more expressive
than branching time temporal logic (Pinto 1994). A
systematic study of fragments richer than the one con-
sidered in this paper remains to be undertaken. It re-
mains also to see how our framework can be turned
into a practical tool using well-known automata theo-
retic semantics for the situation calculus in the style of
(Vardi & Wolper 1986).

The fragment L0
0 is powerful enough to express rel-

atively realistic systems. In general however, we can
define fragments Lj

i, with increasing indexes i and j.

What is the exact expressive power of L0
0? What

do we gain in expressive power with the fragments
Lj

i, i = 1, 2, · · · , j = 1, 2, · · · ? All these questions
are worth pursuing.

References

Biere, A.; Cimatti, A.; Clarke, E.; and Zhu, Y. 1999.
Symbolic model checking without bdds. In Proceed-
ings of TACAS/ETAPS’99, 193–207. Berlin: Springer
Verlag.

Clarke, E.M. Emerson, E., and Sistla, A. 1986. Au-
tomatic verification of finite-state concurrent systems
using temporal logic specifications. ACM Transactions
on Programming Languages and Systems 8:244–263.

Clarke, E.; Grumberg, O.; and Peled, D. 1999. Model
Checking. Cambridge, MA: MIT Press.

De Giacomo, G.; Ternovskaia, E.; and Reiter, R. 1997.
Non-terminating processes in the situation calculus.
AAAI’97 Workshop.

Emerson, E., and Trefler, R. 1999. From asymmetry
to full symmetry: New techniques for symmetry re-

duction in model checking. In Pierre, L., and Kropf,
T., eds., Correct Hardware Design and Verification
Methods. Proceedings of the 10th IFIP WG, 142–156.
Springer Verlag. LNC 1703.

Gabaldon, A. 2002. Non-markovian control in the
situation calculus. In Eighteenth national conference
on Artificial intelligence, 519–524. Menlo Park, CA,
USA: American Association for Artificial Intelligence.

Harel, D.; Tiuryn, J.; and Kozen, D. 2000. Dynamic
Logic. Cambridge, MA, USA: MIT Press.

Hoare, C. A. R. 1969. An axiomatic basis for computer
programming. Commun. ACM 12(10):576–580.

Levesque, H.; Reiter, R.; Lespérance, Y.; Lin, F.; and
Scherl, R. 1997. Golog: A logic programming lan-
guage for dynamic domains. J. of Logic Programming,
Special Issue on Actions 31(1-3):59–83.

McCarthy, J. 1963. Situations, actions and causal
laws. Technical report, Stanford University.

Pinto, J. 1994. Temporal Reasoning in the Situation
Calculus. Ph.D. Dissertation, Department of Com-
puter Science, University of Toronto, Toronto.

Pirri, F., and Reiter, R. 1999. Some contributions to
the metatheory of the situation calculus. Journal of
the ACM 46(3):325–364.

Plotkin, G. 1981. A structural approach to operational
semantics, tr-daimi-fn 19. Technical report, Comp.
Science Dpt., Aarhus University.

Pnueli, A. 1977. The temporal logic of programs. In
Proceedings of the 18th IEEE Symposium on founda-
tions of Computer Science, 46–57. IEEE Computer
Society.

Pnueli, A. 1981. A temporal logic of concurrent pro-
grams. Theoretical Computer Science 13:45–60.

Rajan, S.; Shankar, N.; and Srivas, M. 1995. An
integration of model checking with automated proof
checking. In Wolper, P., ed., Proceedings of the 7th
International Conference on Computer Aided Verifi-
cation, 84–97. Springer Verlag. LNC 939.

Reiter, R. 2001. Knowledge in Action: Logical Foun-
dations for Describing and Implementing Dynamical
Systems. Cambridge: MIT Press.

Ternovskaia, E. 1999. Automata theory for reason-
ing about actions. In Proceedings of the Sixteenth In-
ternational Joint Conference on Artificial Intelligence,
153–158.

Vardi, M., and Wolper, P. 1986. An automata-
theoretic approach to automatic program verification.
In Proceedings of the First Annual Symposium on
Logic in Computer Science. IEEE Computer Society
Press.

Wolper, P. 1998. The algorithmic verifica-
tion of reactive systems. 1998 francqui chair lec-
tures given at the fundp (namur). Lecture Notes,
http://www.montefiore.ulg.ac.be/˜pw/cours/.

