
Binary Clause Reasoning in QBF

Horst Samulowitz1 and Fahiem Bacchus1

Department of Computer Science, University Of Toronto,?

Toronto, Ontario, Canada
[horst|fbacchus]@cs.toronto.edu

Abstract. Binary clause reasoning has found some successful applications in
SAT, and it is natural to investigate its use in various extensions of SAT. In this
paper we investigate the use of binary clause reasoning in the context of solving
Quantified Boolean Formulas (QBF). We develop a DPLL based QBF solver that
employs extended binary clause reasoning (hyper-binary resolution) to infer new
binary clauses both before and during search. These binary clauses are used to
discover additional forced literals, as well as to perform equality reduction. Both
of these transformations simplify the theory by removing one of its variables.
When applied during DPLL search this stronger inference can offer significant
decreases in the size of the search tree, but it can also be costly to apply. We are
able to show empirically that despite the extra costs, binary clause reasoning can
improve our ability to solve QBF.

1 Introduction
DPLL based SAT solvers standardly employ only unit propagation during search. Unit
propagation has the advantage that it can be very efficiently implemented, but at the
same time it is relatively limited in its inferential power. The more powerful inferential
mechanism of reasoning with binary clauses has been investigated in [1, 2]. In partic-
ular, Bacchus [2] demonstrated that by using a rule of hyper-binary resolution, which
allows the binary clause subtheory to be clashed against its non-binary counterpart, bi-
nary clause reasoning can be very effective in pruning the size of the search space. It can
also be dramatically effective in decreasing the time required to solve SAT problems,
but not always.

The difficulty arises from the extra time required to perform binary clause reasoning,
which tends to scale non-linearly with the size of the SAT theory. Hence, on very large
SAT formulas, binary clause reasoning is often not cost effective. QBF instances, on
the other hand, are generally much smaller than SAT instances. First, QBF allows a
much more compact representation of many problems, so problems that would be very
large in SAT can be quite small when represented in QBF. Second, QBF is in practice a
much harder problem than SAT, so it is unlikely that “solvable” instances will ever be as
large as solvable SAT instances. This makes the application of extensive binary clause
reasoning more attractive on QBF instances, since such reasoning is more efficient on
smaller theories.

In this paper we investigate using binary clause reasoning with QBF. We find that
our intuition that such reasoning might be useful for QBF to be empirically true. How-

? This research was supported by the Canadian Government through their NSERC program.

2 Horst Samulowitz and Fahiem Bacchus

ever, we also find that there are a number of issues arising from the use of such rea-
soning. First, there are some issues involved in employing such reasoning soundly in a
QBF setting. We describe these issues and show how they can be resolved. Second we
have found that such reasoning does not universally yield an improvement. Instead one
has to be careful about when and where one employs such reasoning.

We have found that binary clause reasoning to be almost universally useful prior to
search when used in a QBF preprocessor (akin to the SAT preprocessor of [3]), and we
present a more detailed description of preprocessing in [4]. To study the dynamic use of
binary clause reasoning during search we have implemented a QBF solver that performs
binary clause reasoning at every node of the search tree. Our empirical results indicate
that binary clause reasoning can be effective when used dynamically. However, it is not
as uniformly effective as it is in a preprocessor context. We provide some insights as to
when it can be most useful applied dynamically.

In the rest of the paper we first provide some background, then we discuss how
binary clause reasoning can be soundly employed in QBF. We then demonstrate that
binary clause reasoning is effective in improving our ability to solve QBF instances. Part
of that improvement actually occurs prior to search, and we briefly discuss our findings
on this point. These empirical observations lead to the development of a preprocessor
for QBF that we describe in [4]. Then we investigate the dynamic use of binary clause
reasoning, and show that it also can be effective in the dynamically, but not universally
so. Our overall conclusion is that binary clause reasoning does have an important role to
play in solving QBF but that further investigation is required to isolate more precisely
where it can be most effectively applied.

2 Background

2.1 QBF
A quantified boolean formula (QBF) has the form Q.F , where F is a propositional
formula expressed in CNF and Q is a sequence of quantified variables (∀x or ∃x). We
require that no variable appear twice in Q, that F contains no free variables, and that
Q contains no extra or redundant variables.

A quantifier block qb of Q is a maximal contiguous subsequence of Q where
every variable in qb has the same quantifier type. We order the quantifier blocks by
their sequence of appearance in Q: qb1 ≤ qb2 iff qb1 is equal to or appears before qb2

in Q. Each variable x in F appears in some quantifier block qb(x), and the ordering of
the quantifier blocks imposes a partial order on the variables. For two variables x and y
we say that x ≤q y iff qb(x) ≤ qb(y). The variables in the same quantifier block are
unordered. We also say that x is universal (existential) if its quantifier in Q is ∀ (∃).

For example, ∃e1e2.∀u1u2.∃e3e4.(e1,¬e2, u2, e4)∧(¬u1,¬e3) is a QBF with Q =
∃e1e2.∀u1u2.∃e3e4 and F = (e1,¬e2, u2, e4) ∧ (¬u1,¬e3). The quantifier blocks in
order are ∃e1e2, ∀u1u2, and ∃e3e4, the ui variables are universal while the ei variables
are existential, and e1 ≤q e2 <q u1 ≤q u2 <q e3 ≤q e4.

The restriction of a formula Q.F by a literal ` (denoted by Q.F |`) is the new
formula Q′.F ′ where F ′ is F with all clauses containing ` removed and ¯̀, the negation
of `, removed from all remaining clauses, and Q′ is Q with the variable of ` and its
quantifier removed. For example,

(
∀xz.∃y.(ȳ, x, z) ∧ (x̄, y)

)
|x̄ = ∀z.∃y(ȳ, z).

Binary Clauses in QBF 3

Semantics. A SAT model Ms of a CNF formula F is a truth assignment π to the
variables of F that satisfies every clause in F . In contrast a QBF model (Q-model)
Mq of a quantified formula Q.F is a tree of truth assignments in which the root is the
empty truth assignment, and every node n assigns a truth value to a variable of F not yet
assigned by one of n’s ancestors. The tree Mq is subject to the following conditions:
1. For every node n in Mq, n has a sibling if and only if it assigns a truth value to a

universal variable x. In this case it has exactly one sibling that assigns the opposite
truth value to x. Nodes assigning existentials have no siblings.

2. Every path π in Mq (π is the sequence of truth assignments made from the root to
a leaf of Mq) must assign the variables in an order that respects <q . That is, if n
assigns x and one of n’s ancestors assigns y then we must have that y ≤q x.

3. Every path π in Mq must be a SAT model of F .
Thus a Q-model has a path for every possible setting of the universal variables of Q,
and each of these paths is a ≤q ordered SAT model of F . We say that Q.F is QSAT iff
it has a Q-model. The QBF problem is to determine whether or not Q.F is QSAT.

A more standard way of defining QSAT is the recursive definition: (1) ∀xQ.F is
QSAT iff both Q.F |x and Q.F |x̄ are, and (2) ∃xQ.F is QSAT iff at least one of Q.F |x
and Q.F |x̄ is. By removing the quantified variables one by one, in ≤q order, we arrive
at either a QBF with an empty clause in its body F (which is not QSAT) or a QBF with
an empty body F (which is QSAT). These two definitions are provably equivalent.

The advantage of our “tree-of-models” definition is that it makes the following ob-
servations more apparent.
A. If F ′ has the same satisfying assignments (SAT models) as F then Q.F will have

the same satisfying models (Q-models) as Q.F ′. Proof: Mq is a Q-model of Q.F
iff each path in Mq is a SAT model of F iff each path is a SAT model of F ′ iff
Mq is a Q-model of Q.F ′. This observation allows us to transform F with any
model preserving SAT transformation. Note that the transformation must be model
preserving, i.e., it must preserve all SAT models of F . Simply preserving whether
or not F is SAT is not sufficient.

B. A Q-model preserving (but not SAT model preserving) transformation that can be
performed on Q.F is universal reduction (UR) [5]. A universal variable u is called
a tailing universal in a clause c if for every existential variable e ∈ c we have that
e <q u. The universal reduction of a clause c is the process of removing all tailing
universals from c. UR preserves the set of Q-models. This can be seen by observing
that any path in a Q-model must satisfy the universally reduction of every clause in
the theory: if it doesn’t then another path of the Q-model will falsify c contradicting
the fact that it is a Q-model.

2.2 Hyper-Binary Resolution and Equality Reduction

Now we recall the techniques for binary clause reasoning in SAT first presented in [2, 3].
We first define the hyper-binary resolution (HypBinRes) rule of inference that generates
new binary unit clauses.

Definition 1 (HypBinRes). Given a single n-ary clause c = (l1, l2, ..., ln), D a subset
of c, and the set of binary clauses {(`, l̄)|l ∈ D}, infer the new clause b = (c−D)∪{`}
if b is either binary or unary.

4 Horst Samulowitz and Fahiem Bacchus

For example, from (a, b, c, d), (h, ā), (h, c̄) and (h, d̄), we infer the new binary clause
(h, b), similarly from (a, b, c) and (b, ā) the rule generates (b, c). The rule also covers
the standard case of resolving two binary clauses (from (l1, l2) and (l̄1, `) infer (`, l2))
and it can generate unit clauses (e.g., from {(l1, `), (l̄1, `)} we infer (`, `) ≡ (`)). Hyp-
BinRes is a hyper-resolution step because it collapses in one step a sequence of ordinary
resolution steps.

The advantage of HypBinRes inference is that it does not blow up the theory (it
can only add binary or unary clauses to the theory) and it can discover a lot of new
unit clauses. These unit clauses can then be used to simplify the formula by doing
unit propagation which in turn might allow more applications of HypBinRes. Applying
HypBinRes and unit propagation until closure (i.e., until nothing new can be inferred)
uncovers all failed literals. That is, in the resulting reduced theory there will be no literal
` such that forcing ` to be true followed by unit propagation results in a contradiction.
This and other results about HypBinRes are proved in the above references.

In addition to uncovering unit clauses we can use the binary clauses to perform
equality reductions. In particular, if we have two clauses (x̄, y) and (x, ȳ) we can replace
all instances of y in the formula by x (and ȳ by x̄) or all instances of x by y. This might
result in some tautological clauses which can be removed, and some clauses which are
reduced in length because of duplicate literals. Such reductions might enable further
HypBinRes inferences.

Taken together HypBinRes and equality reduction (HypBinRes+eq) can significantly
reduce a SAT formula removing many of its variables and clauses. Such inference can
be applied prior to search in a preprocessor, and as shown in [3] this can yield sig-
nificant reductions in the number of variables and clauses in a theory. One can also
incrementally maintain HypBinRes+eq closure during search as it is done in [2].

To maintain HypBinRes+eq closure during search we must trigger the HypBinRes
inference step incrementally. It would be too expensive to continually search exhaus-
tively for possible new applications of HypBinRes. During search the formula is re-
stricted by literals that we choose to make true, or that are forced by unit propagation.
This gives rise to only two different opportunities for additional applications of Hyp-
BinRes. First, if a k-ary clause is reduced to a binary clause the new binary clause
might enable new HypBinRes steps. Second, when k-ary clauses are reduced in size it
is possible that a previously existing set of binary clauses can generate an HypBinRes
inference that was not available on the longer clause. For example, if we have the n-ary
clauses (h, d̄, x) (a, b, c, d) and the binary clauses (h, ā), (h, c̄) no HypBinRes inference
is possible. A new HypBinRes inference could be applied if either we make x false gen-
erating a new binary clause (h, d̄), or if we make d false reducing the clause (a, b, c, d)
to (a, b, c) against which the existing binary clauses can be resolved. The dynamic Hyp-
BinRes solver described in [2] kept track of these two types of situations, testing only
these situations for new possible HypBinRes steps.

2.3 Hyper-Binary Resolution and Equality Reduction in QBF
There are two problems with employing HypBinRes+eq in the context of QBF. First, it
is not sound for QBF unless some additional restrictions are applied. Second, it misses
out on some important additional inferences that can be achieved through universal
reduction. We elaborate on these two issues.

Binary Clauses in QBF 5

Given a QBF Q.F applying HypBinRes+eq and unit propagation to F results in a
formula F ′. However, the new QBF formula Q′.F ′ might not be Q-equivalent to Q.F
(where Q′ is Q with all variables not in F ′ removed), so this straightforward approach
to using HypBinRes is not sound. The problem here is that F ′ does not have exactly the
same SAT models as F so condition A above does not apply. In particular, the models
of F ′ do not make assignments to variables that have been removed by unit propagation
and equivalence reduction. Hence, a Q-model of Q′.F ′ might not be extendable to a Q-
model of Q.F . For example, if a universal variable in F was forced, then Q′.F ′ might
be QSAT, but Q.F is not—no Q-model of Q.F can exist since no path that sets the
forced universal to its opposite value can be a SAT model of F .

Making unit propagation sound for QBF is quite simple. In particular, unit propa-
gation only causes a problem when a universal variable is forced. We can deal with this
by regarding the unit propagation of a universal variable as the derivation of a failure
(i.e., the derivation of an empty clause).

Making equality reduction sound for QBF is a bit more subtle. Consider a formula
F in which we have the two clauses (x, ȳ) and (x̄, y). Since every path in any Q-
model satisfies F , this means that along any path x and y must have the same truth
value. However, in order to soundly replace all instances of one of these variables by
the other in F , we must respect the quantifier ordering. In particular, if x <q y then
we must replace y by x. We call this <q -preferred equality reduction. It would be
unsound to do the replacement in the other direction. For example, say that x appears
in quantifier block 3 while y appears in quantifier block 5 with both x and y being
existential. The binary clauses above will enforce the constraint that along any path
of any Q-model once x is assigned y must get the same value. In particular, y will be
invariant as we change the assignments to the universal variables in quantifier block
4. This constraint will continue to hold if we replace y by x in all of the clauses of
F . However, if we perform the opposite replacement, we would be able to make y
vary as we vary the assignments to the universal variables in block 4: i.e., the opposite
replacement would weaken the theory perhaps changing the formula’s Q-SAT status.
The same reasoning holds if x is universal and y is existential. However, if y is universal
the two binary clauses imply that we will never have the freedom to assign y both of its
values irrespective of the assignment of x. That is, in this case the QBF is UNQSAT,
and we can again treat this case as if the empty clause has been derived.

These considerations suffice to make HypBinRes+eq sound for QBF. However, they
remain weaker than they should be. To achieve more powerful inference we must take
into account universal reduction. In particular, we can apply the following modification
of HypBinRes that “folds” UR into the inference rule.

Definition 2 (HypBinRes+UR). Given a single n-ary clause c = (l1, l2, ..., ln), D a
subset of c, and the set of binary clauses {(`, l̄)|l ∈ D}, infer the universal reduction of
the clause (c−D) ∪ {`} if this reduction is either binary or unary.

For example, from (u1, e3, u4, e5, u6, e7), (e2, ē7), (e2, ē5) and (e2, ē3) we infer the
new binary clause (u1, e2) when u1 ≤q e2 ≤q e3 ≤q u4 ≤q e5 ≤q u6 ≤q e7. This ex-
ample also shows that HypBinRes+UR is able to derive clauses that HypBinRes cannot.
Since clearly HypBinRes+UR can derive anything HypBinRes can, HypBinRes+UR is
a more powerful rule of inference. It should be noted that UR cannot be applied after

6 Horst Samulowitz and Fahiem Bacchus

2clsQ(Q.F,Level)

if F contains an [empty clause/is empty]
Compute a new [clause/cube] and backtrack level btL by [conflict/solution] analysis
return([FALSE/TRUE], btL)

Pick a variable v from the outermost quantifier block
for ` ∈ {v, v̄}

Q′.F ′ = Q.F |` reduced by HypBinRes+UR, equality reduction, unit propagation,
and universal reduction

(Succ, btL) = 2clsQ(Q′.F ′,Level + 1)
if btL < Level return(Succ, btL)

if v is [universal/existential]
Compute new [cube/clause] from the [cubes/clauses] learned from v and v̄ by resolution
Compute backtrack level btL from new [cube/clause]
return([TRUE/FALSE], btL)

Fig. 1. 2clsQ Algorithm. Invoked with original QBF and Level=1. Returns (TRUE, 0) indicating
QSAT or (FALSE, 0) indicating UNQSAT.

HypBinRes as HypBinRes can only generate binary clauses. Instead UR must be folded
into the HypBinRes rule as we have specified here.

Interestingly, once we add UR to HypBinRes many of the issues we had with sound-
ness automatically resolve themselves, and we obtain the following result:

PROPOSITION 1 Let F ′ be the result of applying HypBinRes+UR, unit propagation,
UR (i.e., UR outside of HypBinRes as well as inside), and <q preferred equality reduc-
tion to F until closure. Then the Q-models of Q′.F ′ are in 1-1 correspondence with the
Q-models of Q.F .

The only further constraint is that UR must be applied prior to unit propagation. In
particular, if we have a unit clause containing a single universal variable, we should not
unit propagate that universal. Rather we should immediately apply UR to obtain the
empty clause.

As an example of how applying UR resolves some of the soundness issues men-
tioned above, consider the case where we have the two binary clauses (x, ȳ) and (x̄, y)
with x <q y. As pointed out above, when y is universal we have an immediate failure.
In fact, applying universal reduction detects this failure: after UR we obtain the two
clauses (x) and (x̄) which immediately resolve to the empty clause. Hence, this propo-
sition tells us that we can apply HypBinRes+UR+eq in QBF quite cleanly: we simply
have to restrict equality reduction to respect the quantifier ordering and give precedence
to UR over unit propagation.

3 2clsQ
We have implemented HypBinRes+UR+eq in a DPLL based QBF solver by modify-
ing the 2clsEq SAT solver [2]. The resulting QBF solver, 2clsQ, performs HypBin-
Res+UR+eq reasoning at every node of the search tree. An abstract outline of its algo-
rithm is shown in Figure 1. The following changes were made to the 2clsEq SAT solver
to make it into a QBF solver. First, branching had to be constrained so that the quantifier
ordering is respected. Second, equality reduction had to be modified so that it respects
the quantifier ordering. In the 2clsEq implementation an entire set of variables could

Binary Clauses in QBF 7

be detected to be equivalent at once, so we must pick a variable v from the outermost
quantifier block among that set and then replace all of the other variables with v.

Third, we had to modify the code that tested for possible new applications of Hyp-
BinRes to account for universal reduction. When a new binary clause (x, y) is generated
we can continue to test all clauses containing x̄ as well as all clauses containing ȳ to see
if this new binary clause triggers any new applications of HypBinRes+UR. For example,
if x̄ ∈ c, we determine the set S of other literals ` ∈ c that can be resolved away from c
by binary clauses of the form (y, ¯̀). Then we check if c−S can be universally reduced
to a clause of length 2 or less. The other trigger for new applications of HypBinRes oc-
curs when a k-ary clause has been reduced in size, as discussed above. Unfortunately,
this situation is relatively expensive to extend to HypBinRes+UR. With just HypBinRes
when a clause c has just been reduced in size to length i, we only need to look for a
literal x such that there are i−1 binary clauses (x, ¯̀) with ` ∈ c. From these clauses we
can then infer a new binary clause (x, y), where y ∈ c is the single literal not covered in
the set of clauses (x, ¯̀). This can be accomplished relatively efficiently by first taking
any two literals of c, l1 and l2 and examining the set of literals L = {y| either (y, l̄1)
or (y, l̄2) exists}. We then know that any literal x satisfying the above condition must
be in L—any such literal must have a binary clause with one of l̄1 or l̄2—and we can
restrict our attention to the literals in L.

Unfortunately, this strategy for limiting the set of literals to examine for potential
new HypBinRes steps against a clause breaks down when we move to HypBinRes+UR.
For example, consider the clauses c = (e1, u1, u2, u3, e2, u4, u5, e3), (e, ē2), (e, ē3)
with e <q e1 <q u1, u2, u3 <q e2 <q u4, u5 <q e3. We can infer the new binary
clause (e1, e) by applying HypBinRes+UR. In this case, the literal e has only two binary
clauses that can resolve against c, and so it does not fall into the set L defined above.
Hence, it is not possible to limit our attention to the literals in L. It is still possible to
detect all possible HypBinRes+UR inferences available from c in polynomial time, but
it becomes more expensive to do so. Hence, in our implementation we do only a partial,
and cheaper, test for new HypBinRes+UR inference on k-ary clauses that have been
reduced in size. That is, we do not achieve HypBinRes+UR closure in 2clsQ.

Fourth, the algorithm employs both conflict and solution analysis for learning new
clauses and solution cubes. Since literals can be forced from an extensive combination
of binary clause reasoning and equality reduction, it was very difficult to implement 1-
UIP clause learning. Instead, 2clsQ learns ‘all decision clauses’ [6]. The learned clauses
are used to enhance unit propagation. However, we do not perform HypBinRes+UR or
equality reduction against them as this appears to be too expensive. Solution analysis
(cube learning) is done in the manner introduced in [6, 7]. The learned cubes are also
used to prune branches in the search. In particular, when a universal variable is set this
might trigger a cube making search below that setting unnecessary.

Finally, we modified the original 2clsEq branching heuristics to take into account
the varying nature of QBF search. In our implementation we combined two branching
heuristics in the following way. Whenever 2clsQ encounters a conflict we try to gen-
erate more conflicts by branching on variables that cause the largest number of unit
propagations (under HypBinRes this number is equal to the number of binary clauses
the variable appears in). On the other hand when 2clsQ finds a solution we try to gen-

8 Horst Samulowitz and Fahiem Bacchus

erate more solutions by branching on variables that will satisfy the most clauses. Thus
the branching heuristic switches dependent on what “mode” the search is in.

4 Empirical Results
To evaluate the empirical effect of binary clause reasoning we considered all of the
non-random benchmark instances from QBFLib (2005) [8] (508 instances in total). We
discarded the instances from the benchmark families von Neumann and Z since these
can all be solved very quickly by any state of the art QBF solver (less than 10 sec. for the
entire suite of instances). We also discarded the instances in benchmark families Uclid,
Jmc, and Jmc-squaring. None of these instances can be solved within a time bound of
5,000 seconds by any of the QBF solvers we tested. This left us with 465 instances from
18 different benchmark families. We tested all of these instances.

We tested 2clsQ [9] along with five other state of the art QBF solvers Quaffle [7]
(version as of Feb. 2005), Quantor [10] (version as of 2004), Qube (release 1.3) [11],
Skizzo [12] (release 0.82) and SQBF [13]. Quaffle, Qube and SQBF are based on
search, whereas Quantor is based on variable elimination. Skizzo uses mainly a com-
bination of variable elimination and search, but it also applies a variety of other kinds
of reasoning on the symbolic and the ground representations of the instances.1 All tests
were run on a Pentium 4 3.60GHz CPU with 6GB of memory. The time limit for each
run of any of the solvers was set to 5,000 seconds.

Table 1 shows the performance of 2clsQ and the other five solvers on the 465 prob-
lem instances we tested. The table is broken down by benchmark family as the structural
properties of the families can be quite distinct. This structural distinctions are reflected
in fact that the “best” solver for each family varies widely, where we measure best by
the success rate of the solver on that families’ instances breaking ties by CPU time
consumed. By this measurement 2clsQ is best on 3 families, which is better than any
other search based solver (Quaffle, Qube, and SQBF), but not as good as Skizzo which
is best on 8 families. Another comparison is to examine the average success rate over
all benchmark families, shown in the final row of the table. A high average displays
fairly robust performance across structurally distinct instances. On this measure 2clsQ
is again superior to the other search based solvers with an average success rate of 58%,
higher than any of the other search based solvers, but again not as good as Skizzo or
Quantor. In terms of CPU time, the search based solvers are roughly comparable over
their solvable instances, but both Quantor and Skizzo are notably faster.

Our first results lead to the following conclusions. Binary clause reasoning improves
search based solvers, but the non-search solver Quantor and the mixture of search and
variable elimination employed in Skizzo often have superior performance. The superior
performance of Skizzo indicates that mixing search and variable elimination (as done by
Skizzo) is very effective. We also observe that both Quantor and Skizzo are still inferior
to some search based solver on 43% of the families. Furthermore, if we examine those
cases where a solver is able to achieve a strictly higher success rate than any other solver
(indicating that it can solve some instances not solvable by any of the other solvers),

1 Skizzo also employs some binary clause reasoning and equality reduction. But hyper binary
resolution is not used, non-binary clauses are not involved in the inference steps ([12] incor-
rectly claims that hyper-binary resolution is used).

Binary Clauses in QBF 9

Benchmark
Families

2clsQ Quaffle Qube SQBF Quantor Skizzo

(# instances) Succ.
%

time Succ.
%

time Succ.
%

time Succ.
%

time Succ.
%

time Succ.
%

time

ADDER (16) 44% 5,267 13% 1 19% 72 13% 3 25% 25 50% 955

adder (16) 19% 0 44% 5 44% 0 38% 2,677 25% 30 44% 454

Blocks (16) 50% 46 75% 1,284 69% 1,774 75% 2,043 100% 308 69% 2,068

C (24) 21% 16 21% 5,356 8% 4 17% 4,741 21% 140 25% 1,070

Chain (12) 100% 0 67% 6,075 83% 4,990 58% 4,192 100% 0 100% 1

Connect (60) 100% 7 70% 254 75% 7,013 67% 0 67% 14 68% 802

Counter (24) 33% 4,319 38% 5 33% 2 38% 9 50% 217 54% 1,035

EV-Pursuer(38) 26% 2,836 26% 1,963 18% 4,401 32% 4,759 3% 74 29% 1,450

FlipFlop (10) 100% 4 100% 0 100% 1 80% 5,027 100% 3,260 100% 6

K (107) 35% 20,575 35% 18,451 37% 25,397 33% 5,563 64% 3,855 88% 2,081

Lut (5) 100% 19 100% 1 100% 3 100% 1,246 100% 3 100% 9

Mutex (7) 43% 22 29% 43 43% 64 43% 1 43% 0 100% 1

Qshifter (6) 33% 59 17% 0 33% 29 33% 1,108 100% 26 100% 8

S (52) 8% 9 2% 0 4% 401 2% 1 25% 910 27% 643

Szymanski (12) 67% 2,741 0% 0 8% 0 8% 1,203 25% 7 41% 1,147

TOILET (8) 75% 528 75% 61 63% 496 100% 1,308 100% 4,135 100% 1

toilet (38) 84% 47 97% 115 100% 58 97% 395 100% 684 100% 84

Tree (14) 100% 296 100% 37 100% 0 93% 1,051 100% 0 100% 0

Summary 58% 36,793 50% 33,653 52% 44,708 51% 35,326 64% 10,432 71% 11,817

Table 1: Percentage of each Benchmark family solved and time taken for solved instances in
CPU seconds (5,000 sec. consumed by each unsolved instances is not counted). For each family
the solver with highest success rate is show in bold, where ties are broken by time required
to solve these instances. The summary line shows the average success rate over all benchmark
families and the total time taken (on solved instances only).

we see that 2clsQ achieves this on 2 families, Quaffle on zero, Qube on zero, SQBF on
one, Quantor on one, and Skizzo on 6 families. Thus we conclude that binary clause
reasoning as embodied in 2clsQ has some potential in increasing our ability to solve
QBF (as to the techniques embedded in SQBF, Quantor, and Skizzo).

4.1 Dynamic Binary Clause Reasoning

In SAT it was observed that binary clause reasoning could be very beneficial even when
done prior to search, in a preprocessing phase [3]. Hence, a natural question was to
investigate the difference between dynamic and static (i.e., before search) application
of binary clause reasoning. As part of that investigation we constructed a QBF prepro-
cessor that applies HypBinRes+UR+eq to simplify a QBF instance. We found that this
yielded a very consistent speedup for all of the other QBF solvers, and we describe
those results in more detail in [4].

Without getting into the details of our preprocessor results, we can still use our pre-
processor to throw light on the effect of dynamic binary clause reasoning. In particular,
we are interested in the question of how much of 2clsQ’s benefits accrue from the dy-
namic application of binary clause reasoning. Is utilizing binary clause reasoning solely
in a preprocessor sufficient, or is it also useful to use such reasoning dynamically during

10 Horst Samulowitz and Fahiem Bacchus

Benchmark
Families

2clsQ Quaffle Qube SQBF Quantor Skizzo

(# instances) Succ.
%

time Succ.
%

time Succ.
%

time Succ.
%

time Succ.
%

time Succ.
%

time

ADDER (16) 44% 5,267 13% 1 19% 26 13% 1 25% 26 50% 792

adder (16) 19% 0 44% 4 44% 1 38% 1,546 25% 27 44% 550

Blocks (16) 50% 46 88% 1,025 69% 242 82% 3,434 100% 79 88% 11

C (24) 21% 16 25% 4,947 21% 683 25% 20 29% 5,189 29% 1,483

Chain (12) 100% 0 100% 0 100% 0 100% 0 100% 0 100% 0

Connect (60) 100% 7 100% 7 100% 7 100% 7 100% 7 100% 7

Counter (24) 33% 4,319 38% 5 33% 1 38% 20 50% 141 54% 731

EV-Pursuer(38) 26% 2,836 26% 1,961 18% 2,537 32% 4,508 5% 4,809 39% 5,753

FlipFlop (10) 100% 4 100% 4 100% 4 100% 4 100% 4 100% 4

K (107) 35% 20,575 36% 21,446 42% 30,606 35% 12,859 83% 6,898 91% 5,333

Lut (5) 100% 19 100% 1 100% 6 100% 66 100% 3 100% 9

Mutex (7) 43% 22 29% 49 43% 71 43% 6 43% 1 100% 100

Qshifter (6) 33% 59 17% 0 33% 29 33% 2,103 100% 29 100% 8

S (52) 8% 9 8% 9 10% 452 8% 9 31% 1,538 37% 1,538

Szymanski (12) 67% 2,741 0% 0 25% 199 0% 0 25% 109 75% 4,680

TOILET (8) 75% 528 75% 84 63% 325 100% 621 100% 3 100% 3

toilet (38) 84% 47 97% 221 100% 90 97% 3,061 100% 243 100% 50

Tree (14) 100% 296 100% 8 100% 1 93% 1,251 100% 0 100% 0

Summary 58% 36,793 55% 29,772 56% 35,281 57% 29,518 69% 19,108 81% 23,895

Table 2: Experiments from Table 1 repeated except that the other solvers are supplied with
instances preprocessed by binary clause reasoning. Again unsolved instances consumed 5,000
sec., and for each family the solver with highest success rate is show in bold, where ties are
broken by time required to solve these instances. The summary line shows the average success
rate over all benchmark families and the total time taken (on solved instances only).

search? To answer this question we compare the performance of 2clsQ with the other
solvers on preprocessed instances. By using the preprocessed instances, 2clsQ’s only
“advantage” over the other solvers is its dynamic application of binary clause reasoning.
Our results are shown in Table 2.

These results show that a significant part of the gains achieved from binary clause
reasoning occurs statically prior to search. In terms of average success rate, 2clsQ still
at 58% is now closer in performance to the other search based solvers all of which
have gained, and still inferior to Quantor and Skizzo which have gained significantly
from binary clause preprocessing. We also see that two of the families where 2clsQ was
achieving superior performance, Chain and Connect, have been so reduced by prepro-
cessing that all solvers now achieve similar performance on them. In fact, all instances
of Connect are completely solved by preprocessing, and all instances of Chain are re-
duced to simple SAT problems by preprocessing.

Nevertheless, the results do show that dynamic binary clause reasoning improves
the efficiency of search in QBF solvers. In particular, 2clsQ remains more effective
than other other purely search based solvers even when the effect of inference prior to
search is factored out. The question now is whether or not these improvements to search
are useful, given the effectiveness of variable elimination used by Quantor and Skizzo.

Binary Clauses in QBF 11

4.2 Filtering out instances best solved by variable elimination

To address this question we look more closely at how effective dynamic binary clause
reasoning is on instances that are more suitably solved by search. In particular, it does
not really matter much if (dynamic) binary clause reasoning improves the efficiency of
solving by search instances that are more easily solved by variable elimination.

We examined those instances that would be solved very quickly by variable elim-
ination, and to factor out the effect of binary clause reasoning prior to search we first
preprocessed these instances. In particular, we found that a large number of instances
(approximately 285) could be solved by Quantor after preprocessing in 25 seconds or
less. In fact Quantor and Skizzo are obtaining a significant head start in their average
success rate over the search base solvers from these “easy” instances.

After filtering out these instances a number of benchmark families were completely
eliminated. That is, all of their instances were best suited for variable elimination af-
ter preprocessing. This left us with the benchmark families Adder, adder, C, Connect,
Counter, EV-Pursue, K, Mutex, S, Toilet and Szymanski. However, even among these
families several instances were eliminated as being easy. In this analysis we also elim-
inated all instances that could not be solved by any of the solvers as such instances are
not useful when comparing solvers. In total we ended up with 72 instances remaining
in 10 different benchmark families.

Table 3: Solver performance on “non-easy” preprocessed instances (i.e.,
instances that could not be solved in 25 seconds by Quantor after prepro-
cessing. Uniquely solved instances shown in bold.

Family Instance 2clsQ Quaffle Qube SQBF Quantor Skizzo

ADDER Adder2-4-c 0 - 26 - - 111

Adder2-6-c 7 - - - - -

Adder2-8-s - - - - - 12

Adder2-8-c 16 - - - - -

Adder2-10-s - - - - - 437

Adder2-10-c 3,812 - - - - -

Adder2-12-s - - - - - 230

Adder2-12-c 1,432 - - - - -

adder adder-8-sat - - - - - 12

adder-8-unsat - 0 0 0 - -

adder-10-unsat - 0 0 935 - -

adder-12-sat - - - - - 314

adder-12-unsat - 0 0 191 - -

adder-14-unsat - 0 0 419 - -

adder-16-unsat 0 2 0 - - -

C C6288-10-1-1-out - - - - - 1,436

C880-10-1-1-inp 1 4 3 3 905 23

Counter counter-16 - - - - - 721

counter-r-8 - - - - 60 1

Continued on next page

12 Horst Samulowitz and Fahiem Bacchus

Table 3—continued from previous page

Family Instance 2clsQ Quaffle Qube SQBF Quantor Skizzo

counter-re-8 - - - - 79 3

EV-Pursue ev-pr-4x4-5-3-1-lg 1 1 0 1 82 24

ev-pr-4x4-5-3-1-s - - - - - 6

ev-pr-4x4-7-3-1-lg 17 3 16 1 - 1,469

ev-pr-4x4-7-3-1-s - - - - - 973

ev-pr-4x4-9-3-1-lg 180 65 2,174 2 - -

ev-pr-4x4-9-3-1-s - - - - - 1,679

ev-pr-4x4-11-3-1-lg 390 990 - 3 - -

ev-pr-4x4-13-3-1-lg - - - 4 - -

ev-pr-4x4-15-3-1-lg - - - 5 - -

ev-pr-4x4-17-3-1-lg - - - 7 - -

ev-pr-6x6-5-5-1-2-lg 4 5 2 24 - 2

ev-pr-6x6-5-5-1-2-s - - - - - 258

ev-pr-6x6-7-5-1-2-lg 60 67 44 172 - 2

ev-pr-6x6-7-5-1-2-s - - - - - 462

ev-pr-6x6-9-5-1-2-lg 823 784 - 3,708 - 235

ev-pr-6x6-11-5-1-2-s - - - - - 606

ev-pr-8x8-5-7-1-2-lg 3 2 3 2 4,727 3

ev-pr-8x8-7-7-1-2-lg 68 9 298 578 - 8

ev-pr-8x8-9-7-1-2-lg 1,292 34 - - - 12

ev-pr-8x8-11-7-1-2-lg - - - - - 18

K k-branch-n-4 141 - 93 1,190 - 12

k-branch-n-8 - - - - - 40

k-branch-p-4 1,858 389 20 147 32 0

k-branch-p-8 - - - - - 0

k-branch-p-12 - - - - - 52

k-d4-n-8 - - - - - 0

k-d4-n-12 - - - - - 0

k-d4-n-16 - - - - - 0

k-d4-n-20 - - - - - 1

k-d4-n-21 - - - - - 1

k-lin-n-20 1,493 - 1,370 - 66 74

k-lin-n-21 1,511 - 1,593 - 82 87

k-ph-n-16 287 261 4,729 4,334 198 198

k-ph-n-20 2,636 2,204 - - 1,790 1,806

k-ph-n-21 4,254 3,668 - - 2,950 2,977

k-ph-p-12 - - - - 1,689 -

Mutex mutex-16s - - - - - 1

mutex-32s - - - - - 9

mutex-64s - - - - - 22

mutex-128s - - - - - 70

S s499-d4-s - - - - 228 107

Continued on next page

Binary Clauses in QBF 13

Table 3—continued from previous page

Family Instance 2clsQ Quaffle Qube SQBF Quantor Skizzo

s499-d8-s - - - - - 1,878

s641-d2-s - - - - 294 18

s713-d2-s - - - - 448 29

s820-d2-s - - - - 429 33

s3330-d2-s - - - - 107 11

Szymanski szymanski-12-s 221 - - - 105 1,183

szymanski-14-s 677 - - - - 954

szymanski-16-s 1,780 - - - - 1,992

szymanski-18-s - - - - - 373

Toilet toilet-a-10-01.16 - 59 37 - 103 32

toilet-c-10-01.16 - 72 46 655 110 9

Solved Instances 27 21 22 20 20 57

Total time on solved instances 23,238 11,884 10,628 13,019 14,534 21,252

Number of Uniquely solved
Instances

3 0 0 3 1 22

In Table 3 we show the results of the solvers on these remaining preprocessed instances.
In the table a ’-’ is used to indicate that the particular solver could not solve the instances
within a 5,000 CPU second time bound. These results show that dynamic binary clause
reasoning as performed in 2clsQ is effective on these harder instances. 2clsQ solves
more of these instances than any other solver (27) except Skizzo. We also see that
Quantor (i.e., pure variable elimination with 20 solved instances is less effective on
these remaining instances than the improved search achieved by dynamic binary clause
reasoning in 2clsQ. We also see that Skizzo, with its combination of search and variable
elimination remains by far the most effective approach on these remaining instances
with 57 instances solved.

Finally, if we look at the number of uniquely solved instances we see that both
2clsQ and SQBF can solve 3 instances not solvable by any other solver. These include
instances that to the best our knowledge have never been solved before, e.g.,‘Adder2-
10-c’ and ‘Adder2-12-c’. These two solver embed techniques for improving search,
and we see that these techniques can be useful for improving our ability to solve QBF.
Skizzo can 20 instances not solvable by any other solver, so we see that combining
variable elimination and search appears to be the most powerful current technique for
solving QBF. However, the search employed by Skizzo does not include the innovations
of SQBF or 2clsQ. Hence, our results point to at least one direction for building a QBF
solver superior to any that currently exists.

It is also worth noting that 2clsQ and SQBF implement many of the techniques of
Quaffle and Qube, so it is hardly surprising that all of the instances solved by these
two solvers are also solved by some other search based solver. This does not detract
from the techniques pioneered in these solvers, like clause and cube learning, which are
essential for search based solvers. The uniquely solved instances speaks instead to the
value of the new techniques utilized in other solvers: variable elimination in Quantor,
binary clause reasoning in 2clsQ, SAT solving lookahead in SQBF, and the mixture of
variable elimination and search in Skizzo. The data indicates that these new techniques
all have some value in improving our ability to solve QBF.

14 Horst Samulowitz and Fahiem Bacchus

5 Conclusion
Our main conclusion is that extended binary clause reasoning is effective for QBF. If
used prior to search in a preprocessor it is able to speed up both search based and
variable elimination based solvers, as shown in [4]. Our empirical results also show
that such reasoning can also be useful in a dynamic context, and that certain problem
instances can be solved with such reasoning that do not seem to be otherwise solvable.

However, although our empirical results identify binary clause reasoning as being
useful techniques for solving QBF, understanding more clearly how to best to combine
this reasoning with other kinds of inference, especially variable elimination, remains an
open question. In future work we plan to investigate this question more fully to see if
we can find ways of applying binary clause reasoning in a more focused manner that
can cooperate with other kinds of inference.

References

1. Van Gelder, A., Tsuji, Y.K.: Satisfiability testing with more reasoning and less guessing. In
Johnson, D., Trick, M., eds.: Cliques, Coloring and Satisfiability. Volume 26 of DIMACS
Series. American Mathematical Society (1996) 559–586

2. Bacchus, F.: Enhancing davis putnam with extended binary clause reasoning. In: Eighteenth
national conference on Artificial intelligence. (2002) 613–619

3. Bacchus, F., Winter, J.: Effective preprocessing with hyper-resolution and equality reduction.
In: Sixth International Conference on Theory and Applications of Satisfiability Testing (SAT
2003), Lecture Notes in Computer Science 2919. (2003) 341–355

4. Samulowitz, H., Davies, J., Bacchus, F.: Preprocessing QBF. Submitted to CP (2006)
5. Büning, H.K., Karpinski, M., Flügel, A.: Resolution for quantified boolean formulas. Inf.

Comput. 117 (1995) 12–18
6. Zhang, L., Madigan, C.F., Moskewicz, M.W., Malik, S.: Efficient conflict driven learning

in a Boolean satisfiability solver. In: International Conference on Computer-Aided Design
(ICCAD’01). (2001) 279–285

7. Zhang, L., Malik, S.: Towards symmetric treatment of conflicts and satisfaction in quan-
tified boolean satisfiability solver. In: Principles and Practice of Constraint Programming
(CP2002). (2002) 185–199

8. Giunchiglia, E., Narizzano, M., Tacchella, A.: Quantified Boolean Formulas satisfiability
library (QBFLIB) (2001) http://www.qbflib.org/.

9. Samulowitz, H., Bacchus, F.: QBF Solver 2clsQ (2006) available at
http://www.cs.toronto.edu/˜fbacchus/sat.html.

10. Biere, A.: Resolve and expand. In: Seventh International Conference on Theory and Appli-
cations of Satisfiability Testing (SAT). (2004) 238–246

11. Giunchiglia, E., Narizzano, M., Tacchella, A.: QUBE: A system for deciding quantified
boolean formulas satisfiability. In: International Joint Conference on Automated Reasoning
(IJCAR). (2001) 364–369

12. Benedetti, M.: skizzo: a QBF decision procedure based on propositional skolemization and
symbolic reasoning. Technical Report TR04-11-03 (2004)

13. Samulowitz, H., Bacchus, F.: Using SAT in QBF. In: Principles and Practice
of Constraint Programming, Springer-Verlag, New York (2005) 578–592 available at
http://www.cs.toronto.edu/˜fbacchus/sat.html.

