
Link�oping Electronic Articles inComputer and Information ScienceVol. 3(1998): nr 18

Link�oping University Electronic PressLink�oping, Swedenhttp://www.ep.liu.se/ea/cis/1998/018/

Foundations for the SituationCalculusHector Levesque, Fiora Pirri, and Ray Reiter

Published on December 22, 1998 byLink�oping University Electronic Press581 83 Link�oping, SwedenLink�oping Electronic Articles inComputer and Information ScienceISSN 1401-9841Series editor: Erik Sandewallc1998 Hector Levesque, Fiora Pirri, and Ray ReiterTypeset by the author using LaTEXFormatted using �etendu styleRecommended citation:<Author>. <Title>. Link�oping Electronic Articles inComputer and Information Science, Vol. 3(1998): nr 18.http://www.ep.liu.se/ea/cis/1998/018/. December 22, 1998.This URL will also contain a link to the author's home page.The publishers will keep this article on-line on the Internet(or its possible replacement network in the future)for a period of 25 years from the date of publication,barring exceptional circumstances as described separately.The on-line availability of the article impliesa permanent permission for anyone to read the article on-line,to print out single copies of it, and to use it unchangedfor any non-commercial research and educational purpose,including making copies for classroom use.This permission can not be revoked by subsequenttransfers of copyright. All other uses of the article areconditional on the consent of the copyright owner.The publication of the article on the date stated aboveincluded also the production of a limited number of copieson paper, which were archived in Swedish university librarieslike all other written works published in Sweden.The publisher has taken technical and administrative measuresto assure that the on-line version of the article will bepermanently accessible using the URL stated above,unchanged, and permanently equal to the archived printed copiesat least until the expiration of the publication period.For additional information about the Link�oping UniversityElectronic Press and its procedures for publication and forassurance of document integrity, please refer toits WWW home page: http://www.ep.liu.se/or by conventional mail to the address stated above.

AbstractThis article gives the logical foundations for the situations-as-histories vari-ant of the situation calculus, focusing on the following items:� The language of the situation calculus.� Foundational axioms for the domain of situations.� Axioms for an underlying domain theory.� The syntax and semantics of the logic programming language GOLOG.� Axioms for knowledge and sensing actions.� Essential metatheoretic results about the situation calculus.Authors' addressesHector LevesqueDepartment of Computer ScienceUniversity of TorontoToronto, Canada M5S 1A4hector@ai.toronto.eduFiora PirriDipartimento di Informatica e SistemisticaUniversit�a degli Studi di Roma \La Sapienza"Via Salaria 113, 00198 Roma, Italypirri@assi.dis.uniroma1.itRay ReiterDepartment of Computer ScienceUniversity of TorontoToronto, Canada M5S 1A4reiter@ai.toronto.edu

11 IntroductionThe situation calculus (McCarthy [17]) has long been a staple of AI research,but only recently have there been attempts to carefully axiomatize it. Thevariant described here has evolved in response to the needs of the CognitiveRobotics Project at the University of Toronto, and its foundations are nowsu�ciently developed to be gathered in one place. That is what this papersets out to do.The principal intuition captured by our axioms is that situations arehistories { �nite sequences of primitive actions { and we provide a binaryconstructor do(a; s) denoting the action sequence obtained from the historys by adding action a to it. Other intuitions are certainly possible about thenature of situations. McCarthy and Hayes [19] saw them as "snapshots" of aworld. For the purposes of representing narratives, McCarthy and Costello[18] wish to express that any number of actions may occur between a situa-tion and its "successor", and therefore they do not appeal to a constructorlike do.The axioms and supporting metatheory presented in this paper haveprovided foundations for a wide range of practical work in modeling dynami-cal systems, including planning (Green [6], Levesque [14]), control (Levesqueet al [15], De Giacomo et al [4]), simulation (Kelley [10]), database updates(Reiter [27], Bertossi et al [2]), diagnosis of dynamical systems (McIlraith[20]), and agent programming and robotics (Jenkin et al [9], Lesp�erance etal [13], Burgard et al [3], Shapiro et al [31], Reiter [29]).2 The Language of the Situation CalculusThe following description is taken from Pirri and Reiter [24]. Lsitcalc is asecond order language with equality. It has three disjoint sorts: action foractions, situation for situations, and a catch-all sort object for everything elsedepending on the domain of application. Apart from the standard alphabetof logical symbols { we use ^, : and 9, with the usual de�nitions of a fullset of connectives and quanti�ers { Lsitcalc has the following alphabet:� Countably in�nitely many individual variable symbols of each sort.We shall use s and a, with subscripts and superscripts, for variablesof sort situation and action, respectively. We normally use lower caseroman letters other than a; s, with subscripts and superscripts forvariables of sort object. In addition, because Lsitcalc is second order,its alphabet includes countably in�nitely many predicate variables ofall arities.� Two function symbols of sort situation:1. A constant symbol S0, denoting the initial situation.2. A binary function symbol do : action � situation ! situation.The intended interpretation is that do(a; s) denotes the succes-sor situation resulting from performing action a in situation s.� A binary predicate symbol<: situation�situation, de�ning an order-ing relation on situations. The intended interpretation of situationsis as action histories, in which case s < s0 means that s is a propersubhistory of s0.

2� A binary predicate symbol Poss : action � situation. The intendedinterpretation of Poss(a; s) is that it is possible to perform the actiona in situation s.� For each n � 0, countably in�nitely many predicate symbols with ar-ity n, and sorts (action[object)n. These are used to denote situationindependent relations likehuman(John), primeNumber(n),movingAction(run(person; loc1; loc2)), etc.� For each n � 0, countably in�nitely many function symbols of sort(action[object)n ! object: These are used to denote situation inde-pendent functions likesqrt(x), height(MtEverest), agent(run(person; loc1; loc2)), etc.� For each n � 0, a �nite or countably in�nite number of functionsymbols of sort (action [object)n ! action. These are called actionfunctions, and are used to denote actions like pickup(x), move(A;B),etc. In most applications, there will be just �nitely many actionfunctions, but we allow the possibility of an in�nite number of them.Notice that we distinguish between function symbols taking valuesof sort object and those { the action functions { taking values ofsort action. In what follows, the latter will be distinguished by therequirement that they be axiomatized in a particular way by what weshall call action precondition axioms.� For each n � 0, a �nite or countably in�nite number of predicatesymbols with arity n + 1, and sorts (action [object)n � situation.These predicate symbols are called relational uents. In most ap-plications, there will be just �nitely many relational uents, but wedo not preclude the possibility of an in�nite number of them. Theseare used to denote situation dependent relations like ontable(x; s),husband(Mary; John; s), etc. Notice that relational uents take justone argument of sort situation, and this is always its last argument.� For each n � 0, a �nite or countably in�nite number of functionsymbols of sort (action[object)n�situation ! action[object. Thesefunction symbols are called functional uents. In most applications,there will be just �nitely many functional uents, but we do notpreclude the possibility of an in�nite number of them. These areused to denote situation dependent functions likeage(Mary; s), primeMinister(Italy; s), etc.Notice that functional uents take just one argument of sort situation,and this is always its last argument.Notice that only two function symbols of Lsitcalc { S0 and do { are permittedto take values in sort situation.3 Foundational Axioms for SituationsHere, we focus on the domain of situations. The primary intuition aboutsituations that we wish to capture axiomatically is that they are �nite se-quences of actions. We want also to be able to say that a certain sequence ofactions is a subsequence of another. To formalize these desiderata, we adopt

3the following four foundational axioms for the situation calculus, taken from[24].1 do(a1; s1) = do(a2; s2) � a1 = a2 ^ s1 = s2; (1)(8P):P (S0) ^ (8a; s)[P (s) � P (do(a; s))] � (8s)P (s): (2)Axiom (1) is a unique names axiom for situations; two situations arethe same i� they are the same sequence of actions. Two situations S1 andS2 may be di�erent, yet assign the same truth values to all uents. So asituation in the version of the situation calculus presented here must not beidenti�ed with the set of uents that hold in that situation, i.e with a state.The proper way to understand a situation is as a history, namely, a sequenceof actions; two situations are equal i� they denote identical histories. Thesecond axiom (2) is second order induction on situations. The importanceof induction for the situation calculus is described by Reiter [26].There are two more axioms::s < S0; (3)s < do(a; s0) � s v s0: (4)Here s v s0 is an abbreviation for s < s0 _ s = s0. The relation < providesan ordering relation on situations. Intuitively, s < s0 means that the actionsequence s0 can be obtained from the sequence s by adding one or moreactions to the front of s.2The above four axioms are domain independent. They provide the basicproperties of situations in any domain speci�c axiomatization of particularuents and actions. Henceforth, we shall call them �.33.1 Time, Processes and Concurrency in the SituationCalculusAs presented above, the foundational axioms for situations provide a purelyqualitative notion of time whose only temporal concept is sequential actionoccurrence: An action occurs before or after another within a situation.There is no way of expressing that an action occurs at a particular time, orthat two or more actions occur concurrently. While we do not present themhere, it is possible to extend these axioms for situations to accommodatetime and concurrency. See, for example, Pinto [23] and Reiter [28], andfor a discussion of how to model processes in the situation calculus usinginterleaving concurrency, see Reiter [29].1In what follows, lower case Roman characters will denote variables in formulas.Moreover, free variables will always be implicitly universally prenex quanti�ed.2Readers familiar with the programming language LISP will have noticed thatin the situation calculus, the constant S0 is just like NIL, and do acts like cons.Situations are simply lists of primitive actions. For example, the situation termdo(C; do(B;do(A;S0))) is simply an alternative syntax for the LISP list (C B A)(= cons(C;cons(B;cons(A;nil)))). Notice that to obtain the action history cor-responding to this term, namely the performance of action A, followed by B,followed by C, we read this list from right to left. Therefore, when one readssituation terms from right to left, the relation s < s0 means that situation s is aproper subhistory of the situation s0. The situation calculus induction axiom (2)is simply the induction principle for lists: If the empty list has property P and if,whenever list s has property P so does cons(a;s), then all lists have property P .3These foundational axioms are simpler than those presented by Reiter [27] andothers. These earlier axiomatizations for the situation calculus are all derivablefrom the four axioms given here.

44 Domain Axioms and Basic Theoriesof ActionsOur concern here is with axiomatizations for actions and their e�ects thathave a particular syntactic form. These are called basic action theories, andwe next describe these.De�nition 4.1 The Uniform FormulasLet � be a term of sort situation. The terms of Lsitcalc uniform in � arethe smallest set of terms such that:1. Any term that does not mention a term of sort situation is uniformin �.2. � is uniform in �.3. If g is an n-ary function symbol other than do and S0, and t1; : : : ; tnare terms uniform in � whose sorts are appropriate for g, theng(t1; : : : ; tn) is a term uniform in �.The formulas of Lsitcalc uniform in � are the smallest set of formulas suchthat:1. If t1 and t2 are terms of the same sort object or action, and if theyare both uniform in �, then t1 = t2 is a formula uniform in �.2. When P is an n-ary predicate symbol of Lsitcalc, other than Poss and<, and t1; : : : ; tn are terms uniform in � whose sorts are appropriatefor P , then P (t1; : : : ; tn) is a formula uniform in �.3. Whenever U1; U2 are formulas uniform in �, so are :U1, U1 ^ U2and (9v)U1 provided v is an individual variable, and it is not of sortsituation.Thus, a formula of Lsitcalc is uniform in � i� it is �rst order, it doesnot mention the predicates Poss or <, it does not quantify over variablesof sort situation, it does not mention equality on situations, and wheneverit mentions a term of sort situation in the situation argument position of auent, then that term is �.De�nition 4.2 Action Precondition AxiomAn action precondition axiom of Lsitcalc is a sentence of the form:Poss(A(x1; : : : ; xn); s) � �A(x1; : : : ; xn; s);where A is an n-ary action function symbol, and �A(x1; � � � ; xn; s) is aformula that is uniform in s and whose free variables are amongx1; : : : ; xn; s:For example, in a blocks world, we might typically have:Poss(pickup(x); s) � (8y):holding(y; s) ^ :heavy(x; s):The uniformity requirement on �A ensures that the preconditions forthe executability of the action A(x1; : : : ; xn) are determined only by thecurrent situation s, not by any other situation.

5De�nition 4.3 Successor State Axiom1. A successor state axiom for an (n + 1)-ary relational uent F is asentence of Lsitcalc of the form:F (x1; : : : ; xn; do(a; s)) � �F (x1; : : : ; xn; a; s); (5)where �F (x1; : : : ; xn; a; s) is a formula uniform in s, all of whose freevariables are among a; s; x1; : : : ; xn: An example of such an axiom,taken from [25], is:broken(x; do(a; s)) �(9r)fa = drop(r; x)^fragile(x; s)g_ (9b)fa = explode(b)^nexto(b; x; s)g _broken(x; s) ^ :(9r)a = repair(r; x):This says that x will be broken in the successor situation do(a; s) i� xwas fragile in s and the action taking us to the successor situation wassomeone (r) dropping x, or the action was some bomb b exploding,and b was next to x, or x was already broken, and the action was notsomeone repairing x.As for action precondition axioms, the uniformity of �F guaranteesthat the truth value of F (x1; : : : ; xn; do(a; s)) in the successor situa-tion do(a; s) is determined entirely by the current situation s, and notby any other situation. In systems and control theory, this is oftencalled the Markov property.2. A successor state axiom for an (n + 1)-ary functional uent f is asentence of Lsitcalc of the form:f(x1; : : : ; xn; do(a; s)) = y � �f (x1; : : : ; xn; y; a; s);where �f (x1; : : : ; xn; y; a; s) is a formula uniform in s, all of whosefree variables are among x1; : : : ; xn; y; a; s: A blocks world exampleis: height(x; do(a; s)) = y � a = moveToTable(x) ^ y = 1 _(9z; h)(a = move(x; z) ^ height(z; s) = h ^ y = h+ 1) _height(x; s) = y^a 6= moveToTable(x)^:(9z)a = move(x; z):As for relational uents, the uniformity of �f in the successor stateaxioms for functional uents guarantees the Markov property: Thevalue of a functional uent in a successor situation is determined en-tirely by properties of the current situation, and not by any othersituation.Following earlier ideas of Pednault [22], Haas [7] and Schubert [30], Reiter[25] shows how to solve the frame problem for deterministic actions.4 Theresulting solution yields axioms with exactly the syntactic form of successorstate axioms.Basic Action Theories Henceforth, we shall consider theories D ofLsitcalc of the following forms:D = � [Dss [Dap [Duna [DS0where,4This solution does not take rami�cation constraints into account, but see[16, 20, 23] for possible ways to do this, while preserving the successor stateaxiom approach.

6� � are the foundational axioms for situations.� Dss is a set of successor state axioms for functional and relationaluents, one for each such uent of the language Lsitcalc.� Dap is a set of action precondition axioms, one for each action functionsymbol of Lsitcalc.� Duna is the set of unique names axioms for all action function symbolsof Lsitcalc.� DS0 is a set of �rst order sentences that are uniform in S0. Thus, nosentence of DS0 quanti�es over situations, or mentions Poss, < or thefunction symbol do, so that S0 is the only term of sort situation men-tioned by these sentences. DS0 will function as the initial theory ofthe world (i.e. the one we start o� with, before any actions have been\executed"). Often, we shall call DS0 the initial database. The initialdatabase may (and often will) contain sentences mentioning no situ-ation term at all, for example, unique names axioms for individuals,like John 6=Mary, or \timeless" facts like isMountain(MtEverest),or dog(x) � mammal(x).De�nition 4.4 A basic action theory is any collection of axioms D of theabove form that also satis�es the following functional uent consistencyproperty:Whenever f is a functional uent whose successor state axiom in Dss isf(~x; do(a; s)) = y � �f (~x; y; a; s);thenDuna [DS0 j= (8a; s):(8~x):(9y)�f (~x; y; a; s) ^[(8y; y0):�f (~x; y; a; s) ^ �f (~x; y0; a; s) � y = y0]:This consistency property provides a su�cient condition for preventinga source of inconsistency in f 's successor state axiom. It says that the con-ditions de�ning f 's value in the next situation do(a; s), namely �f , actuallyde�ne a value for f , and that this value is unique.5 Metatheory for the Situation CalculusHere we present some fundamental logical properties of basic action theories.These are described more fully, with accompanying proofs, in [24]5.1 Relative Satis�abilityBasic action theories enjoy an important relative satis�ability property:Theorem 1 A basic action theory D is satis�able i� Duna [DS0 is.5.2 �-ReductionFor the purposes of automating deduction in the situation calculus, thefoundational axioms � are problematic, especially the induction axiom. Ac-cordingly, it would be desirable to characterize broad classes of sentenceswhose proofs need never appeal to induction, or even better, can addition-ally ignore some of the other axioms of �, or best of all, need never appealto any of the foundational axioms �. The main result along these lines isthe following:

7Theorem 2 (�-Reduction Theorem)Suppose that D = � [Dss [Dap [Duna [DS0 is a basic action theory.Suppose further that is a �rst order sentence of Lsitcalc whose prenexnormal form has the form~Q1(9s1)~Q2(9s2) � � � (9sn)~Qn�; n � 0;where s1; : : : ; sn are variables of sort situation, � is quanti�er free, andeach ~Qi is a sequence of zero or more quanti�ers over variables of sortaction [object. Then,1. D j= i� D � fInductiong j= .Here, D�fInductiong is D without the second order induction axiom.2. If does not mention the predicate symbol <,D j= i� �= [Dss [Dap [Duna [DS0 j= :Here, �= consists of the foundational axiom (1) together with thefollowing sentence:S0 6= do(a; s):3. If does not mention the predicate symbol < and it does not mentionan equality atom over terms of sort situation,D j= i� Dss [Dap [Duna [DS0 j= :5.3 RegressionRegression is perhaps the single most important theorem-proving mecha-nism for the situation calculus; it provides a sytematic way to establishthat a basic action theory entails a so-called regressable sentence.De�nition 5.1 The Regressable Sentences. A regressable sentence ofthe situation calculus is a �rst order sentence W of Lsitcalc such that Wdoes not quantify over situations, and such that for every atom of the formPoss(�; �) mentioned by W , � has the form A(t1; : : : ; tn) for some n-aryaction function symbol A of Lsitcalc.The essence of a regressable sentence is that each of its situation terms isrooted at S0, and therefore, one can tell, by inspection of such a term,exactly how many actions it involves. It is not necessary to be able totell what those actions are, just how many there are. In addition, when aregressable sentence mentions a Poss atom, we can tell, by inspection ofthat atom, exactly what is the action function symbol occurring in its �rstargument position, for example, that it is a move action.The intuition underlying regression is this: Suppose we want to provethat a regressable sentence W is entailed by some basic action theory. Sup-pose further that W mentions a relational uent atom F (~t; do(�; �)), whereF 's successor state axiom is F (~x; do(a; s)) � �F (~x; a; s). Then we can eas-ily determine a logically equivalent sentence W 0 by substituting �F (~t; �; �)for F (~t; do(�; �)) in W . After we do so, the uent atom F (~t; do(�; �)), in-volving the complex situation term do(�; �), has been eliminated from Win favour of �F (~t; �; �), and this involves the simpler situation term �. Inthis sense, W 0 is \closer" to the initial situation S0 than was W . Moreover,this operation can be repeated until the resulting goal formula mentionsonly the situation term S0, after which, intuitively, it should be su�cient toestablish this resulting goal using only the sentences of the initial database.Regression is a mechanism that repeatedly performs the above reduction

8starting with a goal W , ultimately obtaining a logically equivalent goal W0whose only situation term is S0. We have only indicated how regressionworks by reducing relational uent atoms in W ; there is an analogous wayof reducing functional uent terms.The full de�nition of the regression operator R is rather lengthy, mainlybecause functional uents introduce certain complications, and we omit ithere. See [24] for details. The principal result for regression is the following:Theorem 3 (Soundness and Completeness of Regression)Suppose W is a regressable sentence of Lsitcalc and D is a basic theory ofactions. Then,1. R[W] is a sentence uniform in S0.2. D j=W i� DS0 [Duna j= R[W]:This result shows how, using regression, one can reduce the problemof proving a regressable sentence in a basic action theory to an entailmentproblem relative to the initial database and the unique names axioms foractions. The foundational axioms � of the situation calculus are not re-quired for establishing this entailment. The action precondition and succes-sor state axioms are also not required; their e�ects have been compiled intothe regressed formula. Regression is the central computational mechanismunderlying implementations of the logic programming language GOLOG,and we now turn to this.6 GOLOGGOLOG is a situation calculus-based logic programming language for im-plementing complex behaviours for dynamical systems. The language was�rst introduced in [12, 15], and was described there without pinning downall its formal details. Here, we present the syntax and logical foundationsfor the language, most of which is taken from Pirri and Reiter [24].6.1 The Syntax of GOLOG ProgramsFor the purposes of specifying the syntax of the programming languageGOLOG, we require a language that is just like Lsitcalc, except it suppressesall references to situations.De�nition 6.1 Situation-Suppressed Terms and FormulasThe situation-suppressed terms obtained from Lsitcalc are inductively de-�ned by:1. Any variable of Lsitcalc of sort action or object is a situation-suppressedterm.2. If f is an (n + 1)-ary functional uent of Lsitcalc, and t1; : : : ; tn aresituation-suppressed terms of sorts appropriate for the �rst n argu-ments of f , then f(t1; : : : ; tn) is a situation-suppressed term.3. If g is an m-ary non-functional uent symbol of Lsitcalc other than S0or do, and t1; : : : ; tm are situation-suppressed terms of sorts appropri-ate for the arguments of g, then g(t1; : : : ; tm) is a situation-suppressedterm.

9The situation-suppressed formulas obtained from Lsitcalc are inductively de-�ned by:1. Whenever t and t0 are situation-suppressed terms of the same sort,then t = t0 is a situation-suppressed formula. Because situation-suppressed terms are never of sort situation, the situation-suppressedformulas never mention an equality atom between terms of sort situ-ation.2. When t is a situation-suppressed term of sort action, then Poss(t) isa situation-suppressed formula.3. When F is an (n + 1)-ary relational uent symbol of Lsitcalc andt1; : : : ; tn are situation-suppressed terms of sorts appropriate for the�rst n arguments of F , then F (t1; : : : ; tn) is a situation-suppressedformula.4. When P is anm-ary non-uent predicate symbol of Lsitcalc other than<, and t1; : : : ; tm are situation-suppressed terms of sorts appropriatefor the arguments of P , then P (t1; : : : ; tm) is a situation-suppressedformula.5. When � and are situation-suppressed formulas, so are :� and �^ .When v is a variable of Lsitcalc of sort action or object, then (9v)� isa situation-suppressed formula.Therefore, situation-suppressed formulas are �rst order, never quantify oversituations, never mention <, nor do they ever mention terms of sort situa-tion.We can now describe the syntax of GOLOG programs:hprogrami ::= hprimitive actioni jhtest conditioni? j(hprogrami; hprogrami) j(hprogrami j hprogrami) j(�x)hprogrami jhprocedure calli j(proc P1 (~v1) hprogrami endProc ;...proc Pn (~vn) hprogrami endProc ;hprogrami)Here,1. hprimitive actioni is a situation-suppressed term of sort action.2. htest conditioni is a situation-suppressed formula.3. In (�x)hprogrami, x must be a variable of Lsitcalc of sort action orobject.4. hprocedure calli must have the syntactic form P (t1; : : : ; tn), where Pis an (n+2)-ary predicate variable of Lsitcalc whose �rst n argumentsare not of sort situation, and whose last two arguments are of sortsituation. Moreover, t1; : : : ; tn must be situation-suppressed termswhose sorts are appropriate for the �rst n arguments of P .5. In a procedure declaration proc P (~v) hprogrami endProc, P mustbe an (n+2)-ary predicate variable of Lsitcalc whose �rst n argumentsare not of sort situation, and whose last two arguments are of sort

10situation. Moreover, ~v must be variables of Lsitcalc whose sorts areappropriate for the �rst n arguments of P .Notice that GOLOG provides for arbitrary nesting of blocks with proceduredeclarations local to their block. Other control structures, e.g. conditionalsand while loops, can be de�ned in terms of the above constructs:if htest conditioni then hprogram1i else hprogram2i def=htest conditioni? ; hprogram1i j :htest conditioni? ; hprogram2iTo de�ne while loops, �rst introduce a nondeterministic iteration operator�, where hprogrami� means do hprogrami 0 or more times:hprogrami� def= proc P () true? j [hprogrami ; P ()] endProc ; P ()Then while loops can be de�ned in terms of the � operator:while htest conditioni do hprogrami endWhile def=[htest conditioni? ; hprogrami]� ; :htest conditioni?Just as conventional Algol-like programming languages never explicitlyrefer to the state of their computation, GOLOG programs never explicitlymention situations, hence the emphasis above on situation-suppressed termsand formulas. In de�ning the semantics of such programs, these situationsare taken into account, as we now describe.6.2 The Semantics of GOLOGDe�nition 6.2 Restoring Suppressed Situation ArgumentsWhenever t is a situation-suppressed term and � is a term of Lsitcalc of sortsituation, t[�] denotes that term of Lsitcalc obtained by restoring the term �as the situation argument to all of the functional uents terms mentioned byt. In addition, whenever � is a situation-suppressed formula, �[�] denotesthat formula of Lsitcalc obtained by restoring the term � as the situationargument to all of the functional uent terms and all of the relational uentatoms mentioned by �.Next, we de�ne an abbreviation Do(�; �; �0), where � is a program ex-pression, and � and �0 are terms of sort situation. Do(�; �; �0) should beviewed as a macro that expands into a second order situation calculus for-mula; moreover, that formula says that situation �0 can be reached fromsituation � by executing some sequence of actions speci�ed by �. Note thatour programs may be nondeterministic, that is, may have multiple execu-tions terminating in di�erent situations.Do is de�ned inductively on the structure of its �rst argument as follows:1. Primitive actions: When � is a situation-suppressed term of sortaction, Do(�; �; �0) def= Poss(�[�]; �) ^ �0 = do(�[�]; �):2. Test actions: When � is a situation-suppressed formula,Do(�?; �; �0) def= �[�]^ � = �0:3. Sequence:Do(�1; �2; �; �0) def= (9s):Do(�1; �; s) ^ Do(�2; s; �0):

114. Nondeterministic choice of two actions:Do(�1 j �2; �; �0) def= Do(�1; �; �0) _ Do(�2; �; �0):5. Nondeterministic choice of action arguments:Do((�x) �; �; �0) def= (9x)Do(�; �; �0):6. Procedure calls: For any predicate variable P of arity n+2 whose �rstn arguments are not of sort situation, and whose last two argumentsare of sort situation:Do(P (t1; : : : ; tn); �; �0) def= P (t1[�]; : : : ; tn[�]; �; �0):7. Blocks with local procedure declarations:Do(fproc P1 (~v1) �1 endProc ; � � � ;proc Pn (~vn) �n endProc ; �0g; �; �0)def= (8P1; : : : ; Pn):[n̂i=1(8s; s0; ~vi):Do(�i; s; s0) � Pi(~vi; s; s0)]� Do(�0; �; �0):Notice that in the de�nition for procedure calls, the actual parameters (ti)are �rst evaluated with respect to the current situation � (ti[�]) beforepassing them to the procedure P , so GOLOG's procedure invocation is callby value.Except for procedures, the above macro approach to de�ning the seman-tics of GOLOG draws considerably from dynamic logic [5]. In e�ect, it rei�esas situations in the object language of the situation calculus, the possibleworlds with which the semantics of dynamic logic is de�ned. The macro de�-nition for GOLOG procedures corresponds to the more usual Scott-Stracheyleast �xed-point de�nition in standard programming language semantics [32].With the above de�nition of Do(�; �; �0) in hand, we are in a positionto de�ne what we mean by the evaluation of a GOLOG program.6.3 The Evaluation of GOLOG ProgramsDe�nition 6.3 Proper GOLOG ProgramA GOLOG program � is proper i� s and s0 are the only free variables (in-dividual or predicate) mentioned in Do(�; s; s0): In other words, for eachindividual variable x mentioned in �, x lies in the scope of (8x) or (9x) ina test condition of �, or x is mentioned in the scope of a nondeterminis-tic choice operator (� x). Moreover, for every procedure call P (t1; : : : ; tn)mentioned in �, the second order variable P is bound in � by a proceduredeclaration for P in some block surrounding the procedure call.A proper GOLOG program is evaluated relative to a background basictheory of actions specifying a particular application domain. Speci�cally, ifD is such a basic action theory, and � is a proper GOLOG program, thenthe evaluation of � relative to D is de�ned to be the task of establishing thefollowing entailment:D j= (9s)Do(�; S0 ; s):Any binding for the existentially quanti�ed variable s obtained as a sidee�ect of such a proof constitutes an execution trace of �. In this respect,

12the evaluation of a GOLOG program is much like that of a Prolog goalstatement, in the sense that both are evaluated by a theorem-prover for thepurposes of obtaining bindings to existentially quanti�ed variables of thetheorem. Of course, in the case of GOLOG, this theorem-proving task ismuch more daunting, because in general, (9s)Do(�; S0 ; s) stands for a verycomplicated second order sentence of Lsitcalc, and moreover, D includesa second order induction axiom. However, GOLOG enjoys a strong �-Reduction property that somewhat simpli�es this task, as we now describe.6.4 �-Elimination for GOLOGAs de�ned above, a GOLOG program is evaluated relative to a basic actiontheory D. One can prove [24] that for this purpose, the foundational axiomsfor situations contained in D are not needed:Theorem 4 (�-Elimination Theorem for GOLOG)Suppose that D = � [Dss [Dap [Duna [DS0 is a basic action theory andthat � is a proper GOLOG program. Then,D j= (9s)Do(�; S0 ; s) i� Dss [Dap [Duna [DS0 j= (9s)Do(�; S0 ; s):7 Sensing and KnowledgeTo talk about knowledge explicitly in the language of the situation calculus,we followMoore [21] and suppose that there are situations other than S0 andits successors that serve as epistemic alternatives to the \real" situations.A uent is considered to be known in a situation s if it holds in all theepistemic alternatives to s. To allow knowledge to change as the result ofperforming actions, we imagine that certain actions return sensing results(here taken to be binary). What is known in a situation s will be fullydetermined by what was known initially, the actions that led to situations, and the sensing results of those actions. The material in this section isadapted from Lakemeyer and Levesque [11].The language of the epistemic situation calculus Le is Lsitcalc augmentedby two new distinguished symbols: K0, a unary predicate over situations,and SF (a; s), a binary predicate over actions and situations. Informally,K0(s) holds when s is an epistemic alternative to S0, and SF (a; s) holdswhen action a returns binary sensing result 1 in situation s.The foundational axioms for Le describe the augmented set of situations.First, for any situation term �, let Init(�) be the abbreviationInit(�) def= (8s; a): � 6= do(a; s):where a and s do not appear in �. The �rst axiom isdo(a1; s1) = do(a2; s2) � a1 = a2 ^ s1 = s2;just as it was in �, and(8P) f(8s)[Init(s) � P (s)] ^ (8s; a):P (s) � P (do(a; s))g � (8s):P (s);which is similar to its counterpart in �, stating that all situations are suc-cessors of some initial one. Next, we need axioms that de�ne the < relation:Init(s0) � :s < s0;

13which is an analogue of the one in �, ands < do(a; s0) � s v s0;which is unchanged. Next, we need to say that S0 and K0 are initial situa-tions: Init(S0) ^ (8s):K0(s) � Init(s):Finally, we need to characterize the set of initial situations. To ensure thatnothing need be known about the uents initially, we insist that there beinitial situations (to serve as possible epistemic alternatives) for all combi-nations of uent values. To keep things simple here, let us assume that thereare only �nitely many relational uents F1; : : : ; Fn 2 Le, and no functionaluents. We then use the following abbreviation:FV (P1; : : : ; Pn; Pn+1; Pn+2; s) def=Vni=1(8~xi)[Fi(~xi; s) � Pi(~xi)]^ (8a)[Poss(a; s) � Pn+1(a)] ^ (8a)[SF (a; s) � Pn+2(a)]:The next foundational axiom is then(8~P)(9s): Init(s) ^FV (~P ; s):This is a variant of the existence of situations axiom �rst introduced byBaker [1]. For some applications it will be desirable to have additional ini-tial situations where actions produce arbitrary e�ects [11]. Here, we simplyassume that actions satisfy the successor state axioms in all epistemic alter-natives, and hence we state that there are no additional initial situations.So the �nal foundational axiom is(8s1; s2): Init(s1) ^ Init(s2) ^ (s1 6= s2) �(9~P):FV (~P; s1) ^ :FV (~P; s2):We refer to these seven foundational axioms as �e.To characterize what is known, we need two new categories of axioms:De�nition 7.1 Sensed Fluent AxiomA sensed uent axiom of Le for an action A is a sentence of the form:SF (A(x1; : : : ; xn); s) � �A(x1; : : : ; xn; s);where A is an n-ary action function symbol, and �A(x1; : : : ; xn; s) is aformula that is uniform in s and whose free variables are amongx1; : : : ; xn; s:These axioms are used to characterize the conditions under which the actionreturns the binary value 1. For example, in a 1-dimensional robotics domain,we might haveSF (checkBumper; s) � (9x): robotPos(x; s) ^ x < 3:5as a way of saying that a bumper sensor on the robot returns 1 when therobot gets within 3.5 units of a wall located at the origin. Actions that donot involve any sensing can be assumed to always return 1, and hence the� would be TRUE.

14De�nition 7.2 Initial Knowledge AxiomAn initial knowledge axiom of Le is a sentence of the form:K0(s) � �(s);where �(s) is a formula that is uniform in s, and whose only free variableis s.Axioms of this type are used to characterize the epistemic alternatives toS0. For example, in the 1-dimensional robotics world, we might haveK0(s) � (9x): x < 10 ^ (8y): robotPos(y; s) � x = y:as a way of saying that all the robot knows initially is that it is no furtherthan 10 units away from the wall.Given these, a knowledge-action theory De is of the following form:De = �e [Dss [Dap [Duna [DS0 [Dsf [DK0where, �e is the new set of foundational axioms, Dss, Dap, Duna, and DS0are as before, Dsf is a set of sensed uent axioms, one for each actionfunction symbol, and DK0 is an initial knowledge axiom.With such a theory in hand, we can now explain what it means to knowa formula in an arbitrary situation by using two abbreviations. First, wehave K(�1; �2) def= (8P) [: : : � P (�1; �2)]where the ellipsis stands for the universal closure offInit(s2) ^ K0(s1) � P (s1; s2)g ^fP (s1; s2) ^ [Poss(a; s1) � Poss(a; s2)] ^[SF (a; s1) � SF (a; s2)] � P (do(a; s1); do(a; s2))g.The formulaK(s0; s) can be read as saying that s0 is an epistemic alter-native to situation s. It is not hard to show that as a binary relation, K isrequired to be transitive and Euclidean:Theorem 5 The closure of the following two formulas is logically valid:1. K(s2; s1) ^K(s3; s2) � K(s3; s1)2. K(s2; s1) ^K(s3; s1) � K(s3; s2)With respect to knowledge, this means that we are imagining an agentthat has positive and negative introspection [8]. The above de�nition ofK also inductively speci�es the epistemic alternatives after performing anysequence of actions:Theorem 6 The closure of the following two formulas is logically valid:1. K(s0; S0) � K0(s0);2. K(s0; do(a; s)) � (9s00): s0 = do(a; s00) ^K(s00; s) ^[Poss(a; s00) � Poss(a; s)] ^ [SF (a; s00) � SF (a; s)].

15So for an initial situation like S0, s0 is an epistemic alternative only whenK0(s0) holds; for a non-initial situation do(a; s), an epistemic alternative isof the form do(a; s00) where s00 is an alternative to s, and where s and s00agree on Poss and SF .If we were to consider the formula K(|; s) as a uent, we can see thatthe second part of the above theorem amounts to a successor state theoremfor K, as it shows how to obtain the value of K(|; do(a; s)) as a functionof K(|; s) and other properties of a and s. Because we de�ne knowledgein terms of K below, this means we have provided a solution to the frameproblem for knowledge: a complete speci�cation of how knowledge changesas the result of performing any action.Finally, we have the abbreviationKnows(�; �) def= (8s): K(s; �) � �[s]where � is a situation-suppressed formula and � is any term of sort situation.This says that � is known in situation � if it comes out true at all epistemicalternatives to �. Here for simplicity, we are requiring � to be situation-suppressed; a more elaborate account would allow us to express knowledgeabout knowledge and other formulas where the � mentions situations.To see how this would work in practice, imagine that we have an actiontheory De for the 1-dimensional robotics world that includes the two axiomsabove and(8z): robotPos(z; S0) � z = 4:0saying that the actual position of the robot is 4.0 units away from the wall,as well as a successor state axiom for robotPos saying that it is only a�ectedby a move action:(8z): robotPos(z; do(move(x); s)) � robotPos(z + x; s):Then, letting WallClose(�) stand for the abbreviation(9x): x < 3:5 ^ (8y): robotPos(y; �) � x = y:we get the following as logical consequences of De::Knows(WallClose; S0):Knows(:WallClose; S0):Knows(WallClose; do(move(�1); S0)):Knows(:WallClose; do(move(�1); S0))Knows(WallClose; do(checkBumper; do(move(�1); S0)))Knows(WallClose; do(move(�1); do(checkBumper; do(move(�1); S0)))):Knows(WallClose; do(move(1); do(checkBumper; do(move(�1); S0)))):Knows(:WallClose; do(move(1); do(checkBumper; do(move(�1); S0)))).AcknowledgmentsAs described here, the formal foundations of the situation calculus haveevolved over a number of years, and we gratefully acknowledge the con-tributions of the present, emeritus and honorary members of the Univer-sity of Toronto Cognitive Robotics Group: Alfredo Gabaldon, GiuseppeDe Giacomo, Todd Kelley, Sam Kaufman, Iluju Kiringai, Gerhard Lake-meyer, Yves Lesp�erance, Fangzhen Lin, Je� Lloyd, Sheila McIlraith, DanielMarcu, Javier Pinto, Shane Ruman, Richard Scherl, Steven Shapiro, Misha

16Soutchanski and Eugenia Ternovskaia. We wish also to thank our researchsponsors: Agenzia Spaziale Italiana, the National Science and Engineer-ing Research Council of Canada, the Canadian Institute for Robotics andIntelligent Systems, and the Centre for Information Technology of Ontario.References[1] A. Baker. A simple solution to the Yale shooting problem. In R. Brach-man, H.J. Levesque, and R. Reiter, editors, Proceedings of the FirstInternational Conference on Principles of Knowledge Representationand Reasoning (KR'89), pages 11{20. Morgan Kaufmann Publishers,San Francisco, CA, 1989.[2] L. Bertossi, M. Arenas, and C. Ferretti. SCDBR: An automated rea-soner for speci�cations of database updates. Journal of Intelligent In-formation Systems, 1997. To appear.[3] W. Burgard, A.B. Cremers, D. Fox, D. H�ahnel, G. Lakemeyer,D. Schultz, W. Steiner, and S. Thrun. The interactive museum tour-guide robot. In Proceedings of the National Conference on Arti�cialIntelligence (AAAI'98), pages 11{18. AAAI Press/MIT Press, 1998.[4] G. De Giacomo, Y. Lesp�erance, and H.J. Levesque. Reasoning aboutconcurrent execution, prioritized interrupts, and exogenous actions inthe situation calculus. In Proceedings of the Fourteenth InternationalJoint Conference on Arti�cial Intelligence, pages 1221{1226, Nagoya,Japan, 1997.[5] R. Goldblatt. Logics of Time and Computation. CSLI Lecture NotesNo. 7. Center for the Study of Language and Information, StanfordUnivers ity, Stanford, CA, 2nd edition, 1987.[6] C.C. Green. Theorem proving by resolution as a basis for question-answering systems. In B. Meltzer and D. Michie, editors, MachineIntelligence 4, pages 183{205. American Elsevier, New York, 1969.[7] A. R. Haas. The case for domain-speci�c frame axioms. In F. M. Brown,editor, The frame problem in arti�cial intelligence. Proceedings of the1987 workshop, pages 343{348, Los Altos, California, 1987. MorganKaufmann Publishers, San Francisco, CA.[8] J.Y. Halpern and Y.O. Moses. A guide to completeness and complexityfor modal logics of knowledge and belief. Arti�cial Intelligence, 54:319{379, 1992.[9] M. Jenkin, Y. Lesp�erance, H.J. Levesque, F. Lin, J. Lloyd, D. Marcu,R. Reiter, R.B. Scherl, and K. Tam. A logical approach to portablehigh-level robot programming. In Proceedings of the Tenth AustralianJoint Conference on Arti�cial Intelligence (AI'97), Perth, Australia,1997. Invited paper.[10] T.G. Kelley. Modeling complex systems in the situation calculus: Acase study using the Dagstuhl steam boiler problem. In L.C. Aiello,J. Doyle, and S.C. Shapiro, editors, Principles of Knowledge Represen-tation and Reasoning: Proceedings of the Fifth International Confer-ence (KR'96), pages 26{37. Morgan Kaufmann Publishers, San Fran-cisco, CA, 1996.

17[11] G. Lakemeyer and H. Levesque. AOL: a logic of acting, sensing, know-ing, and only knowing. In Proc. of KR-98, Sixth International Confer-ence on Principles of Knowledge Representation and Reasoning, pages316{327, June 1998.[12] Y. Lesp�erance, H.J. Levesque, F. Lin, D. Marcu, R. Reiter, andR. Scherl. A logical approach to high-level robot programming { aprogress report. In Control of the Physical World by Intelligent Sys-tems, Working Notes of the 1994 AAAI Fall Symp., 1994.[13] Y. Lesp�erance, H.J. Levesque, and R. Reiter. A situation calcu-lus approach to modeling and programming agents. In A. Rao andM. Wooldridge, editors, Foundations and Theories of Rational Agency,1997. In press.[14] H.J. Levesque. What is planning in the presence of sensing? In Proceed-ings of the National Conference on Arti�cial Intelligence (AAAI'96),pages 1139{1146, 1996.[15] H.J. Levesque, R. Reiter, Y. Lesp�erance, F. Lin, and R. Scherl.GOLOG: a logic programming language for dynamic domains. J. ofLogic Programming, Special Issue on Actions, 31(1-3):59{83, 1997.[16] F. Lin and R. Reiter. State constraints revisited. J. of Logic andComputation, special issue on actions and processes, 4:655{678, 1994.[17] J. McCarthy. Situations, actions and causal laws. Technical report,Stanford University, 1963. Reprinted in Semantic Information Process-ing (M. Minsky ed.), MIT Press, Cambridge, Mass., 1968, pp. 410-417.[18] J. McCarthy and T. Costello. Combining narratives. In A.G. Cohn andL.K. Schubert, editors, Principles of Knowledge Representation andReasoning: Proceedings of the Sixth International Conference (KR'98),pages 48{59. Morgan Kaufmann Publishers, San Francisco, CA, 1998.[19] J. McCarthy and P. Hayes. Some philosophical problems from thestandpoint of arti�cial intelligence. In B. Meltzer and D. Michie, ed-itors, Machine Intelligence 4, pages 463{502. Edinburgh UniversityPress, Edinburgh, Scotland, 1969.[20] S. A. McIlraith. Towards a Formal Account of Diagnostic ProblemSolving. PhD thesis, Department of Computer Science, University ofToronto, Toronto, Ontario, Canada, 1997.[21] R.C. Moore. A formal theory of knowledge and action. In Jerry B.Hobbs and Robert C. Moore, editors, Formal Theories of the Com-monsense World, chapter 9, pages 319{358. Ablex Publishing Corp.,Norwood, New Jersey, 1985.[22] E.P.D. Pednault. ADL: Exploring the middle ground between STRIPSand the situation calculus. In R.J. Brachman, H. Levesque, andR. Reiter, editors, Proceedings of the First International Conference onPrinciples of Knowledge Representation and Reasoning (KR'89), pages324{332. Morgan Kaufmann Publishers, San Francisco, CA, 1989.[23] J.A. Pinto. Temporal Reasoning in the Situation Calculus. PhD thesis,University of Toronto, Department of Computer Science, 1994.[24] F. Pirri and R. Reiter. Some contributions to the metatheory of thesituation calculus. Journal of the ACM, 1999. To appear.http://www.cs.toronto.edu/~cogrobo/.

18[25] R. Reiter. The frame problem in the situation calculus: a simplesolution (sometimes) and a completeness result for goal regression.In Vladimir Lifschitz, editor, Arti�cial Intelligence and MathematicalTheory of Computation: Papers in Honor of John McCarthy, pages359{380. Academic Press, San Diego, CA, 1991.[26] R. Reiter. Proving properties of states in the situation calculus. Arti-�cial Intelligence, 64:337{351, 1993.[27] R. Reiter. On specifying database updates. Journal of Logic Program-ming, 25:25{91, 1995.[28] R. Reiter. Natural actions, concurrency and continuous time in thesituation calculus. In L.C. Aiello, J. Doyle, and S.C. Shapiro, editors,Principles of Knowledge Representation and Reasoning: Proceedingsof the Fifth International Conference (KR'96), pages 2{13. MorganKaufmann Publishers, San Francisco, CA, 1996.[29] R. Reiter. Sequential, temporal GOLOG. In A.G. Cohn and L.K. Schu-bert, editors, Principles of Knowledge Representation and Reasoning:Proceedings of the Sixth International Conference (KR'98), pages 547{556. Morgan Kaufmann Publishers, San Francisco, CA, 1998.[30] L.K. Schubert. Monotonic solution of the frame problem in the situa-tion calculus: an e�cient method for worlds with fully speci�ed actions.In H.E. Kyberg, R.P. Loui, and G.N. Carlson, editors, Knowledge Rep-resentation and Defeasible Reasoning, pages 23{67. Kluwer AcademicPress, 1990.[31] S. Shapiro, Y. Lesp�erance, and H.J. Levesque. Goals and rationalaction in the situation calculus { a preliminary report. In WorkingNotes of the AAAI Fall Symposium on Rational Agency: Concepts,Theories, Models and Applications, Cambridge, MA, 1995.[32] J.E. Stoy. Denotational Semantics. MIT Press, 1977.

