Linkoping Electronic Articles in
Computer and Information Science

Vol. 3(1998): nr 18

Foundations for the Situation
Calculus

Hector Levesque, Fiora Pirri, and Ray Reiter

Linkoping University Electronic Press
Linkoping, Sweden

http: /www.ep.liu.se/ea/cis/1998/018/

Published on December 22, 1998 by
Linkoping Unwersity Electronic Press

581 83 Linkoping, Sweden

Link6ping Electronic Articles in
Computer and Information Science
ISSN 1401-9841

Series editor: Erik Sandewall

(©1998 Hector Levesque, Fiora Pirri, and Ray Reiter
Typeset by the author using INTRX
Formatted using étendu style

Recommended citation:
<Author>. <Title>. Linkoping Electronic Articles in
Computer and Information Science, Vol. 3(1998): nr 18.
http: /www.ep.liu.se/ea/cis/1998/018/. December 22, 1998.

This URL will also contain a link to the author’s home page.

The publishers will keep this article on-line on the Internet
(or its possible replacement network in the future)
for a period of 25 years from the date of publication,
barring exceptional circumstances as described separately.

The on-line availability of the article implies
a permanent permission for anyone to read the article on-line,
to print out single copies of it, and to use it unchanged
for any non-commercial research and educational purpose,
mcluding making copies for classroom use.
This permission can not be revoked by subsequent
transfers of copyright. All other uses of the article are
conditional on the consent of the copyright owner.

The publication of the article on the date stated above
mcluded also the production of a limited number of copies
on paper, which were archived in Swedish university libraries
like all other written works published in Sweden.

The publisher has taken technical and administrative measures
to assure that the on-line version of the article will be
permanently accessible using the URL stated above,
unchanged, and permanently equal to the archived printed copies
at least until the expiration of the publication period.

For additional information about the Linkoping University
Electronic Press and its procedures for publication and for
assurance of document integrity, please refer to
its WWW home page: http: Jwww.ep.liu.se/

or by conventional mail to the address stated above.

Abstract

This article gives the logical foundations for the situations-as-histories vari-
ant of the situation calculus, focusing on the following items:

The language of the situation calculus.

Foundational axioms for the domain of situations.

Axioms for an underlying domain theory.

The syntax and semantics of the logic programminglanguage GOLOG.
e Axioms for knowledge and sensing actions.

e lEssential metatheoretic results about the situation calculus.

Authors’ addresses

Hector Levesque
Department of Computer Science
University of Toronto

Toronto, Canada M5S 1A4
hector@ai.toronto.edu

Fiora Pirri

Dipartimento di Informatica e Sistemistica
Universita degli Studi di Roma “La Sapienza”
Via Salaria 113, 00198 Roma, Italy
pirri@assi.dis.uniromal.it

Ray Reiter

Department of Computer Science
University of Toronto

Toronto, Canada M5S 1A4
reiter@ai.toronto.edu

1 Introduction

The situation calculus (McCarthy [17]) has long been a staple of Al research,
but only recently have there been attempts to carefully axiomatize it. The
variant described here has evolved in response to the needs of the Cognitive
Robotics Project at the University of Toronto, and its foundations are now
sufficiently developed to be gathered in one place. That is what this paper
sets out to do.

The principal intuition captured by our axioms is that situations are
histories — finite sequences of primitive actions — and we provide a binary
constructor do(a, s) denoting the action sequence obtained from the history
s by adding action a to it. Other intuitions are certainly possible about the
nature of situations. McCarthy and Hayes [19] saw them as ”snapshots” of a
world. For the purposes of representing narratives, McCarthy and Costello
[18] wish to express that any number of actions may occur between a situa-
tion and its ”successor”, and therefore they do not appeal to a constructor
like do.

The axioms and supporting metatheory presented in this paper have
provided foundations for a wide range of practical work in modeling dynami-
cal systems, including planning (Green [6], Levesque [14]), control (Levesque
et al [15], De Giacomo et al [4]), simulation (Kelley [10]), database updates
(Reiter [27], Bertossi et al [2]), diagnosis of dynamical systems (Mcllraith
[20]), and agent programming and robotics (Jenkin et al [9], Lespérance et

al [13], Burgard et al [3], Shapiro et al [31], Reiter [29]).

2 The Language of the Situation Calculus

The following description is taken from Pirri and Reiter [24]. Lgiteatc is a
second order language with equality. It has three disjoint sorts: action for
actions, situation for situations, and a catch-all sort object for everything else
depending on the domain of application. Apart from the standard alphabet
of logical symbols — we use A, = and 3, with the usual definitions of a full
set of connectives and quantifiers — L;4.q1 has the following alphabet:

e Countably infinitely many individual variable symbols of each sort.
We shall use s and a, with subscripts and superscripts, for variables
of sort situation and action, respectively. We normally use lower case
roman letters other than a,s, with subscripts and superscripts for
variables of sort object. In addition, because Lg;icqie 18 second order,
its alphabet includes countably infinitely many predicate variables of
all arities.

e Two function symbols of sort situation:

1. A constant symbol Sy, denoting the initial situation.

2. A binary function symbol do : action x situation — situation.
The intended interpretation is that do(a, s) denotes the succes-
sor situation resulting from performing action a in situation s.

e A binary predicate symbol C: situation X situation, defining an order-
ing relation on situations. The intended interpretation of situations
is as action histories, in which case s T s’ means that s is a proper
subhistory of s'.

A binary predicate symbol Poss : action x situation. The intended
interpretation of Poss(a, s) is that it is possible to perform the action
a in situation s.

e For each n > 0, countably infinitely many predicate symbols with ar-
ity n, and sorts (actionUobject)”. These are used to denote situation
independent relations like

human(John), primeNumber(n),
moving Action(run(person, locl, loc2)), ete.

For each n > 0, countably infinitely many function symbols of sort
(actionUobject)” — object. These are used to denote situation inde-
pendent functions like

sqrt(x), height(MtFEverest), agent(run(person, locl, loc2)), ete.

e For each n > 0, a finite or countably infinite number of function
symbols of sort (action Uobject)” — action. These are called action
functions, and are used to denote actions like pickup(x), move(A, B),
etc. In most applications, there will be just finitely many action
functions, but we allow the possibility of an infinite number of them.

Notice that we distinguish between function symbols taking values
of sort object and those — the action functions — taking values of
sort action. In what follows, the latter will be distinguished by the
requirement that they be axiomatized in a particular way by what we
shall call action precondition arioms.

e For each n > 0, a finite or countably infinite number of predicate
symbols with arity n + 1, and sorts (action U object)” x situation.
These predicate symbols are called relational fluents. In most ap-
plications, there will be just finitely many relational fluents, but we
do not preclude the possibility of an infinite number of them. These
are used to denote situation dependent relations like ontable(z, s),
husband(Mary, John, s), etc. Notice that relational fluents take just

one argument of sort situation, and this is always its last argument.

e For each n > 0, a finite or countably infinite number of function
symbols of sort (actionUobject)” x situation — actionUobject. These
function symbols are called functional fluents. In most applications,
there will be just finitely many functional fluents, but we do not
preclude the possibility of an infinite number of them. These are
used to denote situation dependent functions like

age(Mary, s), primeM inister(Italy, s), etec.

Notice that functional fluents take just one argument of sort situation,
and this is always its last argument.

Notice that only two function symbols of Ls;¢caic — So and do — are permitted
to take values in sort situation.

3 Foundational Axioms for Situations

Here, we focus on the domain of situations. The primary intuition about
situations that we wish to capture axiomatically 1s that they are finite se-
quences of actions. We want also to be able to say that a certain sequence of
actions 1s a subsequence of another. To formalize these desiderata, we adopt

the following four foundational axioms for the situation calculus, taken from

[24].1

do(ay,s1) = do(az, s2) D a; = az A'sy = sa, (1)
(VP).P(So) A (Va, s)[P(s) D P(do(a, s))] D (Vs)P(s). (2)

Axiom (1) is a unique names axiom for situations; two situations are
the same iff they are the same sequence of actions. Two situations S; and
Ss may be different, yet assign the same truth values to all fluents. So a
situation in the version of the situation calculus presented here must not be
identified with the set of fluents that hold in that situation, i.e with a state.
The proper way to understand a situation is as a history, namely, a sequence
of actions; two situations are equal iff they denote identical histories. The
second axiom (2) is second order induction on situations. The importance
of induction for the situation calculus is described by Reiter [26].

There are two more axioms:

—s C So, (3)
sC do(a,s)=sCs. (4)

Here s C s’ is an abbreviation for s C s’ Vs = s'. The relation C provides
an ordering relation on situations. Intuitively, s C s’ means that the action
sequence s’ can be obtained from the sequence s by adding one or more
actions to the front of s.?

The above four axioms are domain independent. They provide the basic
properties of situations in any domain specific axiomatization of particular
fluents and actions. Henceforth, we shall call them .3

3.1 Time, Processes and Concurrency in the Situation
Calculus

As presented above, the foundational axioms for situations provide a purely
qualitative notion of time whose only temporal concept is sequential action
occurrence: An action occurs before or after another within a situation.
There is no way of expressing that an action occurs at a particular time, or
that two or more actions occur concurrently. While we do not present them
here, it is possible to extend these axioms for situations to accommodate
time and concurrency. See, for example, Pinto [23] and Reiter [28], and
for a discussion of how to model processes in the situation calculus using
interleaving concurrency, see Reiter [29].

'In what follows, lower case Roman characters will denote variables in formulas.
Moreover, free variables will always be implicitly universally prenex quantified.

?Readers familiar with the programming language LISP will have noticed that
in the situation calculus, the constant So is just like NIL, and do acts like cons.
Situations are simply lists of primitive actions. For example, the situation term
do(C,do(B,do(A, Sp))) is simply an alternative syntax for the LISP list (C' B A)
(= cons(C, cons(B, cons(A,nil)))). Notice that to obtain the action history cor-
responding to this term, namely the performance of action A, followed by B,
followed by €', we read this list from right to left. Therefore, when one reads
situation terms from right to left, the relation s C s’ means that situation s is a
proper subhistory of the situation s’. The situation calculus induction axiom (2)
is simply the induction principle for lists: If the empty list has property P and if,
whenever list s has property P so does cons(a, s), then all lists have property P.

®These foundational axioms are simpler than those presented by Reiter [27] and
others. These earlier axiomatizations for the situation calculus are all derivable
from the four axioms given here.

4 Domain Axioms and Basic Theories
of Actions

Our concern here 1s with axiomatizations for actions and their effects that
have a particular syntactic form. These are called basic action theories, and
we next describe these.

Definition 4.1 The Uniform Formulas
Let o be a term of sort situation. The terms of Lyiicaie uniform in o are
the smallest set of terms such that:

1. Any term that does not mention a term of sort situation is uniform
in o.

2. o is uniform in o.

3. If g 1s an n-ary function symbol other than do and Sy, and ¢1,...,¢,
are terms uniform in ¢ whose sorts are appropriate for ¢, then
g(t1,...,ty) is a term uniform in o.

The formulas of Lg;teqic uniform in o are the smallest set of formulas such
that:

1. If t; and ¢, are terms of the same sort object or action, and if they
are both uniform in o, then t; = 5 is a formula uniform in o.

2. When P is an n-ary predicate symbol of L;¢cqic, other than Poss and
C, and tq,...,t, are terms uniform in ¢ whose sorts are appropriate
for P, then P(ty,...,1,) is a formula uniform in o.

3. Whenever Uy, Us are formulas uniform in o, so are =U;, U A Us
and (Fv)U; provided v is an individual variable, and it is not of sort
sttuation.

Thus, a formula of Lg;teq1. 18 uniform in o iff it is first order, it does
not mention the predicates Poss or C, it does not quantify over variables
of sort situation, 1t does not mention equality on situations, and whenever
it mentions a term of sort situation in the situation argument position of a
fluent, then that term is o.

Definition 4.2 Action Precondition Axiom
An action precondition axiom of Lg;teqic 1S a sentence of the form:

Poss(A(x1,...,2n),8) = Malz1,...,20,8),

where A is an n-ary action function symbol, and T4(zy, -, 2,,s) is a
formula that is uniform in s and whose free variables are among x1, ..., z,, s.

For example, in a blocks world, we might typically have:

Poss(pickup(x), s) = (Vy)-holding(y, s) A —heavy(x, s).

The uniformity requirement on II4 ensures that the preconditions for
the executability of the action A(z1,...,®,) are determined only by the
current situation s, not by any other situation.

Definition 4.3 Successor State Axiom

1. A successor state axiom for an (n + 1)-ary relational fluent F' is a
sentence of Lg;10q1. of the form:

F(xy,...,en,do(a,s)) = @p(xy, ..., 2,a,s), (5)
where ®p(x1,...,25,a,s) is a formula uniform in s, all of whose free
variables are among a, s, ®1,...,2,. An example of such an axiom,

taken from [25], is:

broken(xz,do(a,s)) =
(Fr){a = drop(r, 2) A fragile(z,s)} V (3b){a = explode(b) A
nexto(b,x,s)} V
broken(x,s) A —=(Ir)a = repair(r, z).

This says that z will be broken in the successor situation do(a, s) iff »
was fragile in s and the action taking us to the successor situation was
someone () dropping z, or the action was some bomb b exploding,
and b was next to x, or ¥ was already broken, and the action was not
sommeone repairing .

As for action precondition axioms, the uniformity of ®r guarantees
that the truth value of F'(#1,...,2,,do(a, s)) in the successor situa-
tion do(a, s) is determined entirely by the current situation s, and not
by any other situation. In systems and control theory, this is often
called the Markov property.

2. A successor state axiom for an (n + 1)-ary functional fluent f is a
sentence of Lg;10q1. of the form:

f(l‘l,...,l‘n,dO(a,S)) =y = ¢f(x1a"'axnayaaa5)a

where ¢¢(21,..., 25,9, a,s) is a formula uniform in s, all of whose
free variables are among x1,...,2,,y,a,s. A blocks world example
is:

height(z,do(a,s)) =y = a = moveToTable(z) Ny=1V
(3z, h)(a = move(x, z) A height(z,s) =hAy=h+1) V
height(xz,s) = yAa # moveT oTable(x)A—(3z)a = move(z, z).
As for relational fluents, the uniformity of ¢; in the successor state
axioms for functional fluents guarantees the Markov property: The
value of a functional fluent in a successor situation is determined en-

tirely by properties of the current situation, and not by any other
situation.

Following earlier ideas of Pednault [22], Haas [7] and Schubert [30], Reiter
[25] shows how to solve the frame problem for deterministic actions.* The
resulting solution yields axioms with exactly the syntactic form of successor
state axioms.

Basic Action Theories Henceforth, we shall consider theories D of
Lsiteale of the following forms:

D =S UD,, UD4sp UDyna UDs,

where,

*This solution does not take ramification constraints into account, but see
[16, 20, 23] for possible ways to do this, while preserving the successor state
axiom approach.

¥ are the foundational axioms for situations.

D,s 1s a set of successor state axioms for functional and relational
fluents, one for each such fluent of the language L itcaic-

e D,y is aset of action precondition axioms, one for each action function
symbol of Litcate.

Dunq 1s the set of unique names axioms for all action function symbols
of Esitcalc~

Ds, 18 a set of first order sentences that are uniform in Sy. Thus, no
sentence of Dg, quantifies over situations, or mentions Poss, C or the
function symbol do, so that Sy is the only term of sort situation men-
tioned by these sentences. Dg, will function as the initial theory of
the world (i.e. the one we start off with, before any actions have been
“executed”). Often, we shall call Dg, the initial database. The initial
database may (and often will) contain sentences mentioning no situ-
ation term at all, for example, unique names axioms for individuals,
like John # Mary, or “timeless” facts like is M ountain(MtEverest),
or dog(x) D mammal(z).

Definition 4.4 A basic action theory is any collection of axioms D of the
above form that also satisfies the following functional fluent consistency
property:

Whenever f is a functional fluent whose successor state axiom in D;; is

f(f’ dO(a’S)) =Yy= ¢f(fa yaaas)a
then

Duna UDSD ': (Va,s) () (Ely)¢ (fa y,a,s)
(Vy,)05 (Z,y,a,5) Nos(E,y,a,5) Dy =y].

This consistency property provides a sufficient condition for preventing
a source of inconsistency in f’s successor state axiom. It says that the con-
ditions defining f’s value in the next situation do(a, s), namely ¢, actually
define a value for f, and that this value is unique.

5 Metatheory for the Situation Calculus

Here we present some fundamental logical properties of basic action theories.
These are described more fully, with accompanying proofs, in [24]

5.1 Relative Satisfiability

Basic action theories enjoy an important relative satisfiability property:

Theorem 1 A basic aclion theory D s satisfiable iff Dyna U Ds, 1s.

5.2 Y-Reduction

For the purposes of automating deduction in the situation calculus, the
foundational axioms ¥ are problematic, especially the induction axiom. Ac-
cordingly, it would be desirable to characterize broad classes of sentences
whose proofs need never appeal to induction, or even better, can addition-
ally ignore some of the other axioms of X, or best of all, need never appeal
to any of the foundational axioms . The main result along these lines is
the following:

Theorem 2 (X-Reduction Theorem)

Suppose that D = X U Dy UDgp U Dyng UDg, @5 a basic action theory.
Suppose further that o is a first order sentence of Lgiicqic whose prenex
normal form has the form

Q1(351)Q2(3s2) - - - (Fsn)Qno, n >0,
where sy1,...,8, are variables of sort situation, ¢ is quantifier free, and
each @Q; s a sequence of zero or more quantifiers over variables of sort
action U object. Then,

1. D=v iff D— {Induction} = 1.

Here, D—{Induction} is D without the second order induction axiom.

2. If ¢ does not mention the predicate symbol C,
DEY iff T=UDssUDyp UDyna UDs, .

Here, ¥— consists of the foundational axiom (1) together with the
following sentence:

Sy # do(a,).

3. If1 does not mention the predicate symbol C and it does not mention
an equality atom over terms of sort situation,

D¢ iff Dy UDapUDunaUDs, = .

5.3 Regression

Regression is perhaps the single most important theorem-proving mecha-
nism for the situation calculus; 1t provides a sytematic way to establish
that a basic action theory entails a so-called regressable sentence.

Definition 5.1 The Regressable Sentences. A regressable sentence of
the situation calculus is a first order sentence W of Lg;ieq1. such that W
does not quantify over situations, and such that for every atom of the form
Poss(a, o) mentioned by W, « has the form A(ty,...,t,) for some n-ary
action function symbol A of Lgieaic.

The essence of a regressable sentence is that each of its situation terms is
rooted at Sy, and therefore, one can tell, by inspection of such a term,
exactly how many actions it involves. It is not necessary to be able to
tell what those actions are, just how many there are. In addition, when a
regressable sentence mentions a Poss atom, we can tell, by inspection of
that atom, exactly what is the action function symbol occurring in its first
argument position, for example, that it is a move action.

The intuition underlying regression is this: Suppose we want to prove
that a regressable sentence W is entailed by some basic action theory. Sup-
pose further that 7 mentions a relational fluent atom F(f, do(«, 0)), where
F’s successor state axiom is F'(Z, do(a, s)) = ®p(Z, a,s). Then we can eas-
ily determine a logically equivalent sentence W' by substituting <I>F(t_: a,0)
for F(t_: do(e,0)) in W. After we do so, the fluent atom F(t_: do(e, o)), in-
volving the complex situation term do(«, o), has been eliminated from W
in favour of ®p (t_; a,0), and this involves the simpler situation term o. In
this sense, W’ is “closer” to the initial situation Sy than was 1. Moreover,
this operation can be repeated until the resulting goal formula mentions
only the situation term Sy, after which, intuitively, it should be sufficient to
establish this resulting goal using only the sentences of the initial database.
Regression is a mechanism that repeatedly performs the above reduction

starting with a goal W ultimately obtaining a logically equivalent goal Wy
whose only situation term is Sy. We have only indicated how regression
works by reducing relational fluent atoms in W; there is an analogous way
of reducing functional fluent terms.

The full definition of the regression operator R is rather lengthy, mainly
because functional fluents introduce certain complications, and we omit it
here. See [24] for details. The principal result for regression is the following:

Theorem 3 (Soundness and Completeness of Regression)
Suppose W is a regressable sentence of Lsitcaie and D is a basic theory of
actions. Then,

1. R[W] is a sentence uniform in Sp.

2. DEW iff Ds, UDyna E RIW].

This result shows how, using regression, one can reduce the problem
of proving a regressable sentence in a basic action theory to an entailment
problem relative to the initial database and the unique names axioms for
actions. The foundational axioms ¥ of the situation calculus are not re-
quired for establishing this entailment. The action precondition and succes-
sor state axioms are also not required; their effects have been compiled into
the regressed formula. Regression is the central computational mechanism
underlying implementations of the logic programming language GOLOG,
and we now turn to this.

6 GOLOG

GOLOG 1is a situation calculus-based logic programming language for im-
plementing complex behaviours for dynamical systems. The language was
first introduced in [12; 15], and was described there without pinning down
all its formal details. Here, we present the syntax and logical foundations
for the language, most of which is taken from Pirri and Reiter [24].

6.1 The Syntax of GOLOG Programs

For the purposes of specifying the syntax of the programming language
GOLOG, we require a language that is just like L;1cq1c, except it suppresses
all references to situations.

Definition 6.1 Situation-Suppressed Terms and Formulas
The situation-suppressed terms obtained from Lg;teqi. are inductively de-

fined by:

1. Any variable of L;1cq1. of sort action or object is a situation-suppressed
term.

2. If f is an (n 4 1)-ary functional fluent of Lgteqre, and t1,..., ¢, are
situation-suppressed terms of sorts appropriate for the first n argu-
ments of f, then f(¢1,...,t,) is a situation-suppressed term.

3. If g 1s an m-ary non-functional fluent symbol of L;¢cq1- other than Sy
or do, and 1, .. .,t,, are sttuation-suppressed terms of sorts appropri-
ate for the arguments of g, then g(¢1,...,1s) is a situation-suppressed
term.

The situation-suppressed formulas obtained from L;¢cq1- are inductively de-

fined by:

1.

Whenever ¢ and t' are situation-suppressed terms of the same sort,
then ¢ = t' is a situation-suppressed formula. Because situation-
suppressed terms are never of sort situation, the situation-suppressed
formulas never mention an equality atom between terms of sort sifu-
ation.

When ? is a situation-suppressed term of sort action, then Poss(t) is
a situation-suppressed formula.

When F'is an (n + 1)-ary relational fluent symbol of Litcq1. and

t1,...,1, are situation-suppressed terms of sorts appropriate for the
first n arguments of F', then F(¢1,...,%,) is a situation-suppressed
formula.

When P is an m-ary non-fluent predicate symbol of L;¢cq1. other than

C, and ty,...,t,, are situation-suppressed terms of sorts appropriate
for the arguments of P, then P(t1,...,1y) is a situation-suppressed
formula.

When ¢ and v are situation-suppressed formulas, so are =¢ and ¢ A .
When v is a variable of Lyitcq1c of sort action or object, then (Jv)é is
a situation-suppressed formula.

Therefore, situation-suppressed formulas are first order, never quantify over
situations, never mention C, nor do they ever mention terms of sort situa-

tion.

We can now describe the syntax of GOLOG programs:

(program) = (primitive action) |

Here,

(test condition)? |

({program); (program)) |
({program) | {program)) |
(mx){program) |

(procedure call) |

(proc Py (¥1) (program) endProc ;

proc P, (¥,) {(program) endProc ;
(program))

(primitive action) is a situation-suppressed term of sort action.

(test condition) is a situation-suppressed formula.

. In (wa){program), x must be a variable of Lyiicq1c of sort action or

object.

(procedure call) must have the syntactic form P(tq,...,%,), where P
is an (n+2)-ary predicate variable of L;1cq whose first n arguments
are not of sort situation, and whose last two arguments are of sort
situation. Moreover, tq,...,t, must be situation-suppressed terms
whose sorts are appropriate for the first n arguments of P.

In a procedure declaration proc P (%) (program) endProc, P must
be an (n+2)-ary predicate variable of £;1cq1c Whose first n arguments
are not of sort situation, and whose last two arguments are of sort

10

sttuation. Moreover, ¥ must be variables of Lg;teq;. Whose sorts are
appropriate for the first n arguments of P.

Notice that GOLOG provides for arbitrary nesting of blocks with procedure
declarations local to their block. Other control structures, e.g. conditionals
and while loops, can be defined in terms of the above constructs:

if (test condition) then (programl) else {program?2) =

(test condition)? ; {programl) | —(test condition)? ; (program?2)

To define while loops, first introduce a nondeterministic iteration operator
*

, where {(program)* means do {(program) 0 or more times:
(program)* = proc P() true? | [{program); P()] endProc; P()

*

Then while loops can be defined in terms of the * operator:

while (test condition) do (program) endWhile =

[(test condition)? ; (program)]*; —(test condition)?

Just as conventional Algol-like programming languages never explicitly
refer to the state of their computation, GOLOG programs never explicitly
mention situations, hence the emphasis above on situation-suppressed terms
and formulas. In defining the semantics of such programs, these situations
are taken into account, as we now describe.

6.2 The Semantics of GOLOG

Definition 6.2 Restoring Suppressed Situation Arguments
Whenever £ is a situation-suppressed term and o is a term of L;;cq1. of sort
sttuation, t[o] denotes that term of Lg;4cq1. obtained by restoring the term o
as the situation argument to all of the functional fluents terms mentioned by
t. In addition, whenever ¢ is a situation-suppressed formula, ¢[o] denotes
that formula of Ls;4cq1c obtained by restoring the term ¢ as the situation
argument to all of the functional fluent terms and all of the relational fluent
atoms mentioned by ¢.

Next, we define an abbreviation Do(8, o, '), where § is a program ex-
pression, and ¢ and ¢ are terms of sort situation. Do(8,c,0’) should be
viewed as a macro that expands into a second order situation calculus for-
mula; moreover, that formula says that situation o' can be reached from
situation o by erecuting some sequence of actions specified by 6. Note that
our programs may be nondeterministic, that is, may have multiple execu-
tions terminating in different situations.

Do is defined inductively on the structure of its first argument as follows:

1. Primitive actions: When « is a situation-suppressed term of sort
action,
Do(a,0,0") =2 Poss(alo], o) Ao’ = do(afo], o).
2. Test actions: When ¢ is a situation-suppressed formula,

Do(¢?,0,0") e [e]Ae =o'

3. Sequence:

Do(61;62,0,0") = (3s).Do(61,0,5) A Do(ba,s,d’).

11

4. Nondeterministic choice of two actions:
Do(81 | b2,0,0") e Do(81,0,0") V Do(8s,0,0).

5. Nondetermunistic choice of action arguments:

Do((mz) 8,0,0") = (3z) Do(é,0,0").
6. Procedure calls: For any predicate variable P of arity n+2 whose first
n arguments are not of sort situation, and whose last two arguments
are of sort situation:

Do(P(t1,... tn), 0,0V < P(ti[o], ... tu[0], 0,).

7. Blocks with local procedure declarations:

Do({proc Py (%) 61 endProc ; - - ;
proc P, (¥,) 6, endProc ; 6}, 0,0")

(PPN 8 5).Do(si, 5, 5') D Pi(T s,)]

i=1
D Do(8y,0,0").

Notice that in the definition for procedure calls, the actual parameters (¢;)
are first evaluated with respect to the current situation o (#;[o]) before
passing them to the procedure P, so GOLOG’s procedure invocation is call
by value.

Except for procedures, the above macro approach to defining the seman-
tics of GOLOG draws considerably from dynamic logic [5]. In effect, it reifies
as situations in the object language of the situation calculus, the possible
worlds with which the semantics of dynamic logic is defined. The macro defi-
nition for GOLOG procedures corresponds to the more usual Scott-Strachey
least fized-point definition in standard programming language semantics [32].

With the above definition of Do(8, o, ¢') in hand, we are in a position
to define what we mean by the evaluation of a GOLOG program.

6.3 The Evaluation of GOLOG Programs

Definition 6.3 Proper GOLOG Program

A GOLOG program 6 is proper iff s and s’ are the only free variables (in-
dividual or predicate) mentioned in Do(é,s,s’). In other words, for each
individual variable # mentioned in é, lies in the scope of (V&) or (Jz) in
a test condition of é, or x is mentioned in the scope of a nondeterminis-
tic choice operator (mx). Moreover, for every procedure call P(ty,...,t,)
mentioned in é, the second order variable P is bound in é by a procedure
declaration for P in some block surrounding the procedure call.

A proper GOLOG program is evaluated relative to a background basic
theory of actions specifying a particular application domain. Specifically, if
D is such a basic action theory, and ¢ is a proper GOLOG program, then
the evaluation of é relative to D is defined to be the task of establishing the
following entailment:

D E (3s)Do(é, Sy, s).

Any binding for the existentially quantified variable s obtained as a side
effect of such a proof constitutes an execution trace of 6. In this respect,

12

the evaluation of a GOLOG program is much like that of a Prolog goal
statement, in the sense that both are evaluated by a theorem-prover for the
purposes of obtaining bindings to existentially quantified variables of the
theorem. Of course, in the case of GOLOG, this theorem-proving task is
much more daunting, because in general, (Is)Do(é, So, s) stands for a very
complicated second order sentence of Lg;icaie, and moreover, D includes
a second order induction axiom. However, GOLOG enjoys a strong -
Reduction property that somewhat simplifies this task, as we now describe.

6.4 Y-Elimination for GOLOG

As defined above, a GOLOG program is evaluated relative to a basic action
theory D. One can prove [24] that for this purpose, the foundational axioms
for situations contained in D are not needed:

Theorem 4 (X-Elimination Theorem for GOLOG)
Suppose that D = XU Dy, UDgp UDyna UDs, ts a basic action theory and
that 6 1s a proper GOLOG program. Then,

D E(3s)Do(8,50,5) iff Dss UDap UDupna UDs, = (Is)Do(8, So, 5).

7 Sensing and Knowledge

To talk about knowledge explicitly in the language of the situation calculus,
we follow Moore [21] and suppose that there are situations other than Sy and
its successors that serve as epistemic alternatives to the “real” situations.
A fluent 1s considered to be known in a situation s if it holds in all the
epistemic alternatives to s. To allow knowledge to change as the result of
performing actions, we imagine that certain actions return sensing results
(here taken to be binary). What is known in a situation s will be fully
determined by what was known initially, the actions that led to situation
s, and the sensing results of those actions. The material in this section is
adapted from Lakemeyer and Levesque [11].

The language of the epistemic situation calculus £, is L1041 augmented
by two new distinguished symbols: Ky, a unary predicate over situations,
and SF(a,s), a binary predicate over actions and situations. Informally,
Ky(s) holds when s is an epistemic alternative to Sy, and SF(a,s) holds
when action @ returns binary sensing result 1 in situation s.

The foundational axioms for £, describe the augmented set of situations.
First, for any situation term o, let Init(c) be the abbreviation

Init(c) 2 (¥s,a). o # do(a, s).
where a and s do not appear in o. The first axiom is
do(ay,s1) = do(az, s2) D a; = az A'sy = sa,
just as 1t was in X, and
(VP) {(Vs)[Init(s) D P(s)] A (¥s,a).P(s) D P(do(a,s))} D (Vs).P(s),

which is similar to its counterpart in X, stating that all situations are suc-
cessors of some initial one. Next, we need axioms that define the C relation:

Init(s') D=sC ¢,

13

which is an analogue of the one in X, and
sC do(a,s)=sC s,

which is unchanged. Next, we need to say that Sy and Ky are initial situa-
tions:

Init(Sy) A (Vs).Ko(s) D Init(s).

Finally, we need to characterize the set of initial situations. To ensure that
nothing need be known about the fluents initially, we insist that there be
initial situations (to serve as possible epistemic alternatives) for all combi-
nations of fluent values. To keep things simple here, let us assume that there
are only finitely many relational fluents Fy, ..., F,, € L., and no functional
fluents. We then use the following abbreviation:

FV(PL,..., Pa, Pag1, Pagays) 2

Nici (VE)[Fi(Z3, 8) = Pi(Z;)]
A (Ya)[Poss(a, s) = Poi1(a)] A (Ya)[SF(a,s) = Ppya(a)].

The next foundational axiom 1s then
(VP)(3s). Init(s) ANFV(P,s).

This 1s a variant of the existence of situations axiom first introduced by
Baker [1]. For some applications it will be desirable to have additional ini-
tial situations where actions produce arbitrary effects [11]. Here, we simply
assume that actions satisfy the successor state axioms in all epistemic alter-
natives, and hence we state that there are no additional initial situations.
So the final foundational axiom is

(Vs1, 521. Init(s_}) A Init(ss) /_’(51 #82) D
(3P).FV(P,s1) A=FV(P,s5).

We refer to these seven foundational axioms as X..
To characterize what is known, we need two new categories of axioms:

Definition 7.1 Sensed Fluent Axiom
A sensed fluent axiom of £, for an action A is a sentence of the form:

SF(A(x1,...,25),8) = Oalx1,...,2n,8),

where A is an n-ary action function symbol, and ©4(x1,...,2,,s) is a
formula that is uniform in s and whose free variables are among x1, ..., z,, s.

These axioms are used to characterize the conditions under which the action
returns the binary value 1. For example, in a 1-dimensional robotics domain,
we might have

SF(check Bumper, s) = (3z). robot Pos(x,s) Az < 3.5

as a way of saying that a bumper sensor on the robot returns 1 when the
robot gets within 3.5 units of a wall located at the origin. Actions that do
not involve any sensing can be assumed to always return 1, and hence the

© would be TRUE.

14

Definition 7.2 Initial Knowledge Axiom
An initial knowledge axiom of L. is a sentence of the form:

Ky(s) = O(s),
where O(s) is a formula that is uniform in s, and whose only free variable
18 s.

Axioms of this type are used to characterize the epistemic alternatives to
Sp. For example, in the 1-dimensional robotics world, we might have

Ky(s) = (3z). « <10 A (Vy). robotPos(y,s) = = y.

as a way of saying that all the robot knows initially is that it is no further
than 10 units away from the wall.
Given these, a knowledge-action theory D, is of the following form:

D, =3, UD,, UDyp UDypny UDs, UD, UDg,

where, ¥, is the new set of foundational axioms, Ds,, Dap, Puna, and Dg,
are as before, D,; is a set of sensed fluent axioms, one for each action
function symbol, and Dk, is an initial knowledge axiom.

With such a theory in hand, we can now explain what it means to know
a formula in an arbitrary situation by using two abbreviations. First, we
have

K(o1,00) 2 (YP)[...D P(o1, 00)]

where the ellipsis stands for the universal closure of

{Init(SQ) A [(0(51) D P(Sl, 52)} A
{P(s1,s2) A [Poss(a,s1) = Poss(a,s2)] A
[SF(a,s1) = SF(a,s2)] D P(do(a,s1),do(a, s2))}.

The formula K(s', s) can be read as saying that s’ is an epistemic alter-
native to situation s. It is not hard to show that as a binary relation, K is
required to be transitive and FEuclidean:

Theorem 5 The closure of the following two formulas is logically valid:

1. [((52, 51) A [((53, 52) D [((53, 51)

2. [((52, 51) A [((53, 51) D [((53, 52)

With respect to knowledge, this means that we are imagining an agent
that has positive and negative introspection [8]. The above definition of
K also inductively specifies the epistemic alternatives after performing any
sequence of actions:

Theorem 6 The closure of the following two formulas is logically valid:

1. K(s',Sp) = Ko(s');

2. K(s',do(a,s)) = (3s"). s’ = do(a,s") AN K(s",s) A
[Poss(a,s'") = Poss(a, s)| A [SF(a,s") = SF(a,s)].

15

So for an initial situation like Sy, s’ is an epistemic alternative only when
Ky(s") holds; for a non-initial situation do(a, s), an epistemic alternative is
of the form do(a, s”) where s” is an alternative to s, and where s and s”
agree on Poss and SF.

If we were to consider the formula K(—, s) as a fluent, we can see that
the second part of the above theorem amounts to a successor state theorem
for K, as it shows how to obtain the value of K(—, do(a, s)) as a function
of K(—,s) and other properties of @ and s. Because we define knowledge
in terms of K below, this means we have provided a solution to the frame
problem for knowledge: a complete specification of how knowledge changes
as the result of performing any action.

Finally, we have the abbreviation

Knows(¢,0) = (Vs). K(s,0) D ¢[s]

where ¢ is a situation-suppressed formula and o is any term of sort situation.
This says that ¢ is known in situation ¢ if it comes out true at all epistemic
alternatives to o. Here for simplicity, we are requiring ¢ to be situation-
suppressed; a more elaborate account would allow us to express knowledge
about knowledge and other formulas where the ¢ mentions situations.

To see how this would work in practice, imagine that we have an action
theory D, for the 1-dimensional robotics world that includes the two axioms
above and

(Vz). robotPos(z,Sp) = z = 4.0

saying that the actual position of the robot is 4.0 units away from the wall,
as well as a successor state axiom for robot Pos saying that it 1s only affected
by a move action:

(Vz). robot Pos(z, do(move(z), s)) = robot Pos(z + x, s).
Then, letting WallClose(o) stand for the abbreviation
(Fz). © < 3.5 A (Vy). robotPos(y,0) =z = y.

we get the following as logical consequences of D,:

- Knows(WallClose, Sy)
- Knows(=WallClose, Sy)

- Knows(WallClose, do(move(—1), Sp))
- Knows(=WallClose, do(move(—1), Sp))

Knows(WallClose, do(check Bumper, do(move(—1), Sp)))
Knows(WallClose, do(move(—1), do(check Bumper, do(move(—1), .5y))))

- Knows(WallClose, do(move(1), do(check Bumper, do(move(—1), Sp))))
- Knows(=WallClose, do(move(1), do(check Bumper, do(move(—1), Sp)))).

Acknowledgments

As described here, the formal foundations of the situation calculus have
evolved over a number of years, and we gratefully acknowledge the con-
tributions of the present, emeritus and honorary members of the Univer-
sity of Toronto Cognitive Robotics Group: Alfredo Gabaldon, Giuseppe
De Giacomo, Todd Kelley, Sam Kaufman, Iluju Kiringai, Gerhard Lake-
meyer, Yves Lespérance, Fangzhen Lin, Jeff Lloyd, Sheila Mcllraith, Daniel
Marcu, Javier Pinto, Shane Ruman, Richard Scherl, Steven Shapiro, Misha

16

Soutchanski and Eugenia Ternovskaia. We wish also to thank our research
sponsors: Agenzia Spaziale Italiana, the National Science and Engineer-
ing Research Council of Canada, the Canadian Institute for Robotics and
Intelligent Systems, and the Centre for Information Technology of Ontario.

References

(1]

[2]

[3]

A. Baker. A simple solution to the Yale shooting problem. In R. Brach-
man, H.J. Levesque, and R. Reiter, editors, Proceedings of the First
International Conference on Principles of Knowledge Representation
and Reasoning (KR’89), pages 11-20. Morgan Kaufmann Publishers,
San Francisco, CA, 1989.

L. Bertossi, M. Arenas, and C. Ferretti. SCDBR: An automated rea-
soner for specifications of database updates. Journal of Intelligent In-
formation Systems, 1997. To appear.

W. Burgard, A.B. Cremers, D. Fox, D. Hahnel, G. Lakemeyer,
D. Schultz, W. Steiner, and S. Thrun. The interactive museum tour-
guide robot. In Proceedings of the National Conference on Artificial
Intelligence (AAAI’98), pages 11-18. AAAT Press/MIT Press, 1998.

G. De Giacomo, Y. Lespérance, and H.J. Levesque. Reasoning about
concurrent execution, prioritized interrupts, and exogenous actions in
the situation calculus. In Proceedings of the Fourteenth International
Joint Conference on Artificial Intelligence, pages 1221-1226, Nagoya,
Japan, 1997.

R. Goldblatt. Logics of Time and Computation. CSLI Lecture Notes
No. 7. Center for the Study of Language and Information, Stanford
Univers ity, Stanford, CA, 2nd edition, 1987.

C.C. Green. Theorem proving by resolution as a basis for question-
answering systems. In B. Meltzer and D. Michie, editors, Machine
Intelligence 4, pages 183-205. American Elsevier, New York, 1969.

A.R. Haas. The case for domain-specific frame axioms. In F. M. Brown,
editor, The frame problem in artificial intelligence. Proceedings of the
1987 workshop, pages 343-348, Los Altos, California, 1987. Morgan

Kaufmann Publishers, San Francisco, CA.

J.Y. Halpern and Y.O. Moses. A guide to completeness and complexity
for modal logics of knowledge and belief. Artificial Intelligence, 54:319—
379, 1992.

M. Jenkin, Y. Lespérance, H.J. Levesque, F. Lin, J. Lloyd, D. Marcu,
R. Reiter, R.B. Scherl, and K. Tam. A logical approach to portable
high-level robot programming. In Proceedings of the Tenth Australian
Joint Conference on Artificial Intelligence (AI’97), Perth, Australia,
1997. Invited paper.

T.G. Kelley. Modeling complex systems in the situation calculus: A
case study using the Dagstuhl steam boiler problem. In L.C. Aiello,
J. Doyle, and S.C. Shapiro, editors, Principles of Knowledge Represen-
tation and Reasoning: Proceedings of the Fifth International Confer-
ence (KR’96), pages 26-37. Morgan Kaufmann Publishers, San Fran-
cisco, CA, 1996.

[11]

[12]

[13]

[22]

17

G. Lakemeyer and H. Levesque. AOL: a logic of acting, sensing, know-
ing, and only knowing. In Proc. of KR-98, Sizth International Confer-
ence on Principles of Knowledge Representation and Reasoning, pages

316-327, June 1998.

Y. Lespérance, H.J. Levesque, F. Lin, D. Marcu, R. Reiter, and
R. Scherl. A logical approach to high-level robot programming — a
progress report. In Control of the Physical World by Intelligent Sys-
tems, Working Notes of the 1994 AAAI Fall Symp., 1994.

Y. Lespérance, H.J. Levesque, and R. Reiter. A situation calcu-
lus approach to modeling and programming agents. In A. Rao and
M. Wooldridge, editors, Foundations and Theories of Rational Agency,
1997. In press.

H.J. Levesque. What is planning in the presence of sensing? In Proceed-
ings of the National Conference on Artificial Intelligence (AAAI’96),
pages 1139-1146, 1996.

H.J. Levesque, R. Reiter, Y. Lespérance, F. Lin, and R. Scherl.
GOLOG: a logic programming language for dynamic domains. J. of
Logic Programming, Special Issue on Actions, 31(1-3):59-83, 1997.

F. Lin and R. Reiter. State constraints revisited. J. of Logic and
Computation, special issue on actions and processes, 4:655-678, 1994.

J. McCarthy. Situations, actions and causal laws. Technical report,
Stanford University, 1963. Reprinted in Semantic Information Process-
ing (M. Minsky ed.), MIT Press, Cambridge, Mass., 1968, pp. 410-417.

J. McCarthy and T. Costello. Combining narratives. In A.G. Cohn and
L.K. Schubert, editors, Principles of Knowledge Representation and
Reasoning: Proceedings of the Sizth International Conference (KR’98),
pages 48-59. Morgan Kaufmann Publishers, San Francisco, CA, 1998.

J. McCarthy and P. Hayes. Some philosophical problems from the
standpoint of artificial intelligence. In B. Meltzer and D. Michie, ed-
itors, Machine Intelligence 4, pages 463-502. Edinburgh University
Press, Edinburgh, Scotland, 1969.

S. A. Mcllraith. Towards a Formal Account of Diagnostic Problem
Solving. PhD thesis, Department of Computer Science, University of
Toronto, Toronto, Ontario, Canada, 1997.

R.C. Moore. A formal theory of knowledge and action. In Jerry B.
Hobbs and Robert C. Moore, editors, Formal Theories of the Com-
monsense World, chapter 9, pages 319-358. Ablex Publishing Corp.,
Norwood, New Jersey, 1985.

E.P.D. Pednault. ADL: Exploring the middle ground between STRIPS
and the situation calculus. In R.J. Brachman, H. Levesque, and
R. Reiter, editors, Proceedings of the First International Conference on
Principles of Knowledge Representation and Reasoning (KR’89), pages
324-332. Morgan Kaufmann Publishers, San Francisco, CA, 1989.

J.A. Pinto. Temporal Reasoning in the Situation Calculus. PhD thesis,
University of Toronto, Department of Computer Science, 1994.

F. Pirr1 and R. Reiter. Some contributions to the metatheory of the
situation calculus. Journal of the ACM, 1999. To appear.
http://www.cs.toronto.edu/ "cogrobo/.

[25]

[26]

[27]

[28]

[29]

[32]

18

R. Reiter. The frame problem in the situation calculus: a simple
solution (sometimes) and a completeness result for goal regression.
In Vladimir Lifschitz, editor, Artificial Intelligence and Mathematical
Theory of Computation: Papers in Honor of John McCarthy, pages
359-380. Academic Press, San Diego, CA, 1991.

R. Reiter. Proving properties of states in the situation calculus. Arti-

ficial Intelligence, 64:337-351, 1993.

R. Reiter. On specifying database updates. Journal of Logic Program-
ming, 25:25-91, 1995.

R. Reiter. Natural actions, concurrency and continuous time in the
situation calculus. In L.C. Aiello, J. Doyle, and S.C. Shapiro, editors,
Principles of Knowledge Representation and Reasoning: Proceedings
of the Fifth International Conference (KR’96), pages 2-13. Morgan
Kaufmann Publishers, San Francisco, CA, 1996.

R. Reiter. Sequential, temporal GOLOG. In A.G. Cohn and L.K. Schu-
bert, editors, Principles of Knowledge Representation and Reasoning:
Proceedings of the Sizth International Conference (KR’98), pages 47—
556. Morgan Kaufmann Publishers, San Francisco, CA, 1998.

L.K. Schubert. Monotonic solution of the frame problem in the situa-
tion calculus: an efficient method for worlds with fully specified actions.
In H.E. Kyberg, R.P. Loui, and G.N. Carlson, editors, Knowledge Rep-
resentation and Defeasible Reasoning, pages 23-67. Kluwer Academic

Press, 1990.

S. Shapiro, Y. Lespérance, and H.J. Levesque. Goals and rational
action in the situation calculus — a preliminary report. In Working
Notes of the AAAT Fall Symposium on Rational Agency: Concepts,
Theories, Models and Applications, Cambridge, MA, 1995.

J.E. Stoy. Denotational Semantics. MIT Press, 1977.

